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Abstract

We describe new classes of nonlinear Galilean–invariant equations of Burgers and
Korteweg–de Vries type and study symmetry properties of these equations.

1 Introduction

Equations which are writen below, simple wave, Burgers, Korteweg–de Vries, Korteweg-de
Vries-Burgers and Kuramoto-Sivashinski equations
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are widely used for the mathematical modelling of various physical and hydrodynamic
processes [4, 7, 9].

These equations possess very important properties:

1. All these equations have the same nonlinearity u
∂u

∂x
, and the operator

∂

∂t
+u

∂

∂x
≡ d

dt
is “the material derivative”.

2. All these equations are compatible with the Galilean relativity principle.

This talk is based on the results obtained in collaboration with Prof. W. Fushchych [2] and dedicated
to his memory.
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The last assertion means that equations (1)–(5) are invariant with respect to the
Galilean transformations

t → t′ = t, x → x′ = x + vt, u → u′ = u + v, (6)

where v is the group parameter (velocity of an inertial system with respect to another
inertial system).

It is evident that equations (1)–(5) are invariant also with respect to the transformations
group

t → t′ = t + a, x → x′ = x + b, u → u′ = u, (7)

where a and b are group parameters.
In terms of the Lie algebra, invariance of equations (1)–(5) with respect to transfor-

mations (6)–(7) means that the Galilean algebra, which will be designated as AG(1, 1) =
〈P0, P1, G〉 [3] with basis elements

P0 = ∂t, P1 = ∂x, G = t∂x + ∂u. (8)

is an invariance algebra of the given equations.
Let us recall some well-known facts on symmetry properties of equations (1)–(5). The

equation of a simple wave (1) has general solutions of the form u = f(x − ut) [9] and
admits an infinite invariance algebra.

Equation (2) admits a five-dimensional invariance algebra [3], besides, let us note that
this equation can be reduced to the heat equation by means of the Cole-Hopf transforma-
tion [9].

The Korteweg-de Vries equation (3) admits a four-dimensional invariance algebra [5],
besides equation (2) is the classical example of an integrable equation [1].

Unfortunately, the symmetry of equations (4) and (5) is rather poor (the maximal
invariance algebra is a three-dimensional algebra (8)), though, the presence of members
which contain uxxx, uxxxx in these equations, is very important from the physical point of
view.

Thus, linearity of equations (3)–(5) with respect to uxxx, uxxxx is bad from the point of
view of symmetry, linearity of these equations causes the essential narrowing of symmetry
the compared to the Burgers equation (2). The question arises how we can “correct”
equations (3)–(5) so as at least to preserve the symmetry of the Burgers equation or to
obtain some new generalization of the Galilean algebra (8).

To solve the problem, let us consider a natural generalization of all adduced equations,
namely, the equation of the form

u(0) + uu(1) = F
(
u(2), u(3), . . . , u(n)

)
, (9)

and, as particular case, the equation

u(0) + uu(1) = F
(
u(n)

)
. (10)

Here and further, we use the following designations: u = u(t, x); u(0) =
∂u

∂t
; u(n) =

∂nu

∂xn
;

F
(
u(2), u(3), . . . , u(n)

)
, F

(
u(n)

)
are arbitrary smooth functions.
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Evidently, equations (9)–(10) will be invariant with respect to transformation (6)–(7),
so they are compatible with the Galilean relativity princeple, and thus equations (9), (10)
with an arbitrary function F will be invariant with respect to the Galilean algebra (8).

To have a hope to construct at least partial solutions of equations (9), (10), we need to
specify (to fix) the function F . One of approaches to this problem is based on description
of equations (9), (10) which admit wider invariance algebras than the Galilean algebra
AG(1, 1) [3]. Wide symmetries of nonlinear equations, as is well known [3, 5, 6], enable to
describe ansatzes reducing partial differential equations to ordinary differential equations
which can often be solved exactly or approximately, or for which qualitative properties of
solutions, asymptotic properties, etc. can be studied.

The principal aim of our work is as follows: to give a description of equations (9), (10)
which have wider symmetry properties than the algebra AG(1, 1) or to describe nonlinear
smooth functions F for which these equations are invariant with respect to Lie algebras
which are extensions of the Galilean algebra AG(1, 1); using the symmetry of equations,
to construct ansatzes and to reduce partial differential equations to ordinary differential
equations.

The paper is organized as follows. In Section 2, we present all principal theorems and
corollaries on symmetry classification of equations (9), (10) which admit wider symmetry
than the Galilean algebra AG(1, 1). We do not give proofs of theorems, because they
are extremely cumbersome, though simple from the point of view of ideas. In Section
3, we adduce finite group transformations, construct anzatzes and some classes of exact
solutions.

2 Symmetry classif ication

Let us first formulate the statements on the Lie symmetry of certain equations of the
type (10). Consider the following equations:

u(0) + uu(1) = F
(
u(2)

)
, (11)

u(0) + uu(1) = F
(
u(3)

)
, (12)

u(0) + uu(1) = F
(
u(4)

)
. (13)

Theorem 1 The maximal invariance algebras of equation (11) depending on F
(
u(2)

)
are

the following Lie algebras:
1. 〈P0, P1, G〉 if F

(
u(2)

)
is arbitrary;

2. 〈P0, P1, G, Y1〉 if F
(
u(2)

)
= λ

(
u(2)

)k
, k = const; k �= 0; k �= 1; k �= 1

3
;

3. 〈P0, P1, G, Y2〉 if F
(
u(2)

)
= lnu(2);

4. 〈P0, P1, G, D,Π〉 if F
(
u(2)

)
= λu(2);

5. 〈P0, P1, G, R1, R2, R3, R4〉 if F
(
u(2)

)
= λ

(
u(2)

)1/3
.

Here, λ = const, λ �= 0, and basis elements of the Lie algebras have the following repre-
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sentation:

Y1 = (k + 1)t∂t + (2 − k)x∂x + (1 − 2k)u∂u, Y2 = t∂t +
(

2x − 3
2
t2

)
∂x + (u − 3t)∂u,

D = 2t∂t + x∂x − u∂u, Π = t2∂t + tx∂x + (x − tu) ∂u, R1 = 4t∂t + 5x∂x + u∂u,

R2 = u∂x, R3 = (2tu − x) ∂x + u∂u, R4 = (tu − x) (t∂x + ∂u) .

Theorem 1 makes the result obtained in [8] more precise. The Burgers equation (2) as
a particular case of (11) is includes in Case 4 of Theorem 1.

Note that the following equation has the widest symmetry in the class of equations (11)
(7–dimensional algebra):

u(0) + uu(1) = λ
(
u(2)

)1/3
. (14)

Theorem 2 The maximal invariance algebras of equation (7) depending on F
(
u(3)

)
are

the following Lie algebras:
1. 〈P0, P1, G〉 if F

(
u(3)

)
is arbitrary;

2. 〈P0, P1, G, Y3〉 if F
(
u(3)

)
= λ

(
u(3)

)k
, k = const; k �= 0; k �= 3

4
;

3. 〈P0, P1, G, Y4〉 if F
(
u(3)

)
= lnu(3);

4. 〈P0, P1, G, D,Π〉 if F
(
u(3)

)
= λ

(
u(3)

)3/4
.

Here, λ = const, λ �= 0,

Y3 = (2k + 1)t∂t + (2 − k)x∂x + (1 − 3k)u∂u, Y4 = t∂t +
(

2x − 5
2
t2

)
∂x + (u − 5t)∂u.

Case 2 of Theorem 2 for k = 1 includes the Korteweg–de Vries equation (3) as a
particular case of (12).

Theorem 3 The maximal invariance algebras of equation (8) depending on F
(
u(4)

)
are

the following Lie algebras:
1. 〈P0, P1, G〉 if F

(
u(4)

)
is arbitrary;

2. 〈P0, P1, G, Y5〉 if F
(
u(4)

)
= λ

(
u(4)

)k
, k = const; k �= 0; k �= 3

5
;

3. 〈P0, P1, G, Y6〉 if F
(
u(4)

)
= lnu(4);

4. 〈P0, P1, G, D,Π〉 if F
(
u(4)

)
= λ

(
u(4)

)3/5
.

Here, λ = const, λ �= 0,

Y5 = (3k + 1)t∂t + (2 − k)x∂x + (1 − 4k)u∂u, Y6 = t∂t +
(

2x − 7
2
t2

)
∂x + (u − 7t)∂u.

Theorems 1–3 give the exhaustive symmetry classification of equations (11)–(13).
On the basis of Theorems 1–3, let us formulate some generalizations concerning the

symmetry of equations (10), namely, investigate symmetry properties of equation (10)
with fixed functions F (u(n)).
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Theorem 4 For any integer n ≥ 2, the maximal invariance algebra of the equation

u(0) + uu(1) = lnu(n) (15)

is the four–dimensional algebra 〈P0, P1, G, A1〉, where

A1 = t∂t +
(

2x − 2n − 1
2

t2
)

∂x +
(
u − (2n − 1)t

)
∂u.

Theorem 5 For any integer n ≥ 2, the maximal invariance algebra of the equation

u(0) + uu(1) = λ
(
u(n)

)k
(16)

is the four–dimensional algebra 〈P0, P1, G, A2〉, where
A2 = ((n − 1)k + 1) t∂t + (2 − k)x∂x + (1 − nk)u∂u,

k, λ are real constants, k �= 0, k �= 3
n + 1

, λ �= 0; for n = 2, there is the additional

condition: k �= 1
3
(see Case 5 of Theorem 1).

Theorem 6 For any integer n ≥ 2, the maximal invariance algebra of the equation

u(0) + uu(1) = λ
(
u(n)

)3/(n+1)
, λ = const, λ �= 0 (17)

is the five–dimensional algebra

〈P0, P1, G, D,Π〉. (18)

Remark. If n = 1 in (17), then we get the equation

u(0) + uu(1) = λ
(
u(1)

)3/2
. (19)

Theorem 7 The maximal invariance algebra of equation (19) is the four–dimensional
algebra 〈P0, P1, G, D〉.

Remark. It is interesting that (18) defines an invariance algebra for equation (17) for
any natural n ≥ 2. With n = 2, (17) is the classical Burgers equation (2). Let us note that
operators (18) determine a representation of the generalized Galilean algebra AG2(1, 1) [3].

Now let us investigate the invariance of equation (9) with respect to representation (18)
or point out from the class of equations (9) those which are invariant with respect of the
invariance algebra of the classical Burgers equation. The following statement is true:

Theorem 8 Equation (9) is invariant under the generalized Galilean algebra AG2(1, 1)
(18) iff it has the form

u(0) + uu(1) = u(2)Φ
(
ω3, ω4, . . . , ωn

)
, (20)

where Φ is an arbitrary smooth function,

ωk =
1

u(2)

(
u(k)

)3/(k+1)
, u(k) =

∂ku

∂xk
, k = 3, . . . , n.
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The class of equations (20) contains the Burgers equation (2) (for Φ = const) and
equation (17). Equation (20) includes as a particular case the following equation which
can be interpreted as a generalization of the Burgers equation and used for description of
wave processes:

u(0) + uu(1) = λ2u(2) + λ3

(
u(3)

)3/4
+ · · · + λn

(
u(n)

)3/(n+1)
, (21)

λ2, λ3, . . . , λn are an arbitrary constant.
Let us note that the maximal invariance algebra of equation (21) is a generalized

Galilean algebra (18).
Below we describe all second–order equations invariant under the generalized Galilean

algebra (18). The following assertions are true:

Theorem 9 A second–order equation is invariant under the generalized Galilean algebra
AG2(1, 1) iff it has the form

Φ

((
u00u11 − (u01)2 + 4u0u1u11 + 2uu11(u1)2 − 2u01(u1)2 − (u1)4

)3

(u11)8
;

u0 + uu1

u11
;
(
u01 + uu11 + (u1)2

)3

(u11)4

)
= 0,

(22)

where Φ is an arbitrary function.

3 Finite group transformations, ansatzes, solutions

Operators of the algebra L = 〈P0, P1, G, R1, R2, R3, R4〉 which define the invariance alge-
bra equation (14), satisfy the following group relations:

P0 P1 G R1 R2 R3 R4

P0 0 0 P1 4P0 0 2R2 R3

P1 0 0 0 5P1 0 −P1 −G

G −P1 0 0 G P1 G 0
R1 −4P0 −5P1 −G 0 −4R2 0 4R4

R2 0 0 −P1 4R2 0 −2R2 −R3

R3 −2R2 P1 −G 0 2R2 0 −2R4

R4 −R3 −G 0 −4R4 R3 2R4 0

Let us note that it is possible to specify three subalgebras of the algebra L, which are
Galilean algebras: 〈P0, P1, G〉, 〈P1, G,−R4〉, 〈−R2, P1, G〉.

The finite transformations corresponding to the operators R1, R2, R3, R4 are the fol-
lowing:

R1 : t → t̃ = t exp(4θ),
x → x̃ = x exp(5θ),
u → ũ = u exp(θ),

R2 : t → t̃ = t
x → x̃ = x + θu,
u → ũ = u,

R3 : t → t̃ = t,
x → x̃ = x exp(−θ) + tu exp(θ),
u → ũ = u exp(θ),

R4 : t → t̃ = t,
x → x̃ = x + θt (ut − x) ,
u → ũ = u + θ(ut − x),

where θ is the group parameter.
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Let us represent the exact solution of (14) (below, we point out the operator, the ansatz,
the reduced equation, and the solution obtained by means of reduction and integration of
the reduced equation)

the operator: R3 = (2tu − x) ∂x + u∂u,
the ansatz: xu − tu2 = ϕ(t),
the reduced equation: ϕ′ = λ(2ϕ)1/3,
the solution:

xu − tu2 =
1
2

(
4
3
λt + C

)3/2

. (23)

Relation (23) determines the set of exact solutions of equation (14) in implicit form.
The following Table contains the commutation relations for operators (18):

P0 P1 G D Π
P0 0 0 P1 2P0 D

P1 0 0 0 P1 G

G −P1 0 0 −G 0
D −2P0 −P1 G 0 2Π
Π −D −G 0 −2Π 0

The finite group transformations corresponding to the operators D, Π in representation
(18) are the following:

D : t → t̃ = t exp(2θ),

x → x̃ = x exp(θ),

u → ũ = u exp(−θ),

Π : t → t̃ =
t

1 − θt
,

x → x̃ =
x

1 − θt
,

u → ũ = u + (x − ut) θ,

where θ is the group parameter.
The ansatz

u = t−1ϕ(ω) +
x

t
, ω = 2xt−1

constructed by the operator Π reduces equation (17) to the following ordinary differential
equation

ϕϕ′ = λ12(2n−1)/(n+1)
(
ϕ(n)

)3/(n+1)
. (24)

A partial solution (24) has the form

ϕ = −2
(
λ1

(n+1)(n!)3
)1/(2n−1)

ω−1,

and whence we get the following exact solution of equation (17)

u = −2
(
λ1

(n+1)(n!)3
)1/(2n−1) 1

2x
+

x

t
.

In general case, it is necessary to use nonequvilent one-dimensional subalgebras to
obtain solutions. In Table, nonequivalent one–dimensional subalgebras for algebra (18)
and corresponding ansatzes are adduced. (Classification of one–dimensional subalgebras
is carried out according to the scheme adduced in [5].)
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Ansatz
P1 u = ϕ(t)
G u = ϕ(t) + xt−1

P0 + αG, α ∈ R u = ϕ

(
x − α

2
t2

)
+ αt

D u = t−1/2ϕ
(
xt−1/2

)
P0 + Π u = (t2 + 1)−1/2ϕ

(
x

(t2 + 1)1/2

)
+

tx

t2 + 1

The ansatzes constructed can be used for symmetry reduction and for construction of
solutions for equations (17), (20), (21).
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