
Symmetry in Nonlinear Mathematical Physics 1997, V.1, 115–121.

To the Classif ication of Integrable Systems

in 1+1 Dimensions

I.V. KULEMIN and A.G. MESHKOV

Oryol State University, 95 Komsomolskaya Str, Oryol, 302015, Russia
meshkov@esc.private.oryol.su

Abstract

The aim of this article is to classify completely integrable systems of the following
form ut = u3 + f(u, v, u1, v1, u2, v2, ), vt = g(u, v, u1, v1). Here, ui = ∂u/∂xi, ut =
∂u/∂t. The popular symmetry approach to the classification of integrable partial
differential systems requires large calculations. That is why we applied the simpler
”Chinese” method that deals with canonical conserved densities. Moreover, we proved
and applied some additional integrability conditions. These conditions follow from the
assumption that the Noether operator exists.

1 Introduction

This article contains our recent results on a classification of the following completely
integrable systems

ut = u3 + f(u, v, u1, v1, u2, v2), vt = g(u, v, u1, v1) (1)

Here, ut = ∂u/∂t, u1 = ∂u/∂x, u2 = ∂2u/∂x2 and so on. We used the so-called ”Chinese”
method of classification [1] that was developed in the recent years (see [2], [3], for example).

Let us consider the evolutionary partial differential system

ut = K(u1, u2, . . . , uq) (2)

with two independent variables t, x and the m-dependent u = {u1, u2, . . . , um}. Let K ′ be
a Frechet derivative of the operator K and K ′+ be the formally conjugate operator for K ′:

(K ′)αβ(D) =
∂Kα

∂uβ
n

Dn, (K ′+)αβ(D) = (−D)n
∂Kβ

∂uα
n

.

Here D is the total differentiation operator with respect to x and the summation over the
index n is implied.

The ”Chinese” method deals with the following equation[
Dt + θ + K ′+(D + ρ)

]
a = 0, (3)

where Dt is the derivative along trajectories of system (2), the functions θ and ρ satisfy
the continuity equation

Dtρ = Dθ (4)
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and the vector function a satisfies the normalization condition (c, a) = 1 with a constant
vector c.

It is proved in [3] that if system (2) admits the Lax representation and satisfies some
additional conditions, then equation (3) generates a sequence of local conservation laws for
system (2). The notion local function F means that F depends on t, x, uα, uα

1 , . . . , uα
n only

and n < ∞. (Local function does not depend on any integrals in the form
∫

h(t, x, u) dx.)
The conserved densities ρk and the currents θk follow from the formal series expansions

ρ =
∞∑

k=0

ρkz
k−n, θ =

∞∑
k=l

θkz
k−n, a =

∞∑
k=0

akz
k, (5)

where z is a parameter and n is a positive integer. Substituting expansions (5) into
equation (3), one can obtain ρk as differential polynomials K. Then equation (4) provides
the infinity of the local conservation laws Dtρk = Dθk. As ρi = ρi(K), constraints for
the function K are obtained. The explicit form of these constraints are δ(Dtρi)/δuα = 0,
where δ/δuα is variational derivative. The conserved densities ρi arising from equation (3)
are called canonical densities.

If system (3) has a formal local solution in the form (5) satisfying equation (4), then
we call system (2) formally integrable.

2 Systems with a Noether operator

According to the definition [4], a Noether operator N satisfies the following equation

(Dt − K ′)N = N(Dt + K ′+) (6)

Theorem. If the formally integrable system (2) admits the Noether operator N , then the
equation

[Dt + θ̃ − K ′(D + ρ̃)]ã = 0 (7)

generates the same canonical densities ρi as equation (3).

Proof. Let us set ω =
∫

ρ dx + θ dt and γ = a exp(ω), where a is a solution of equation
(3). Then the following obvious equation is valid

[Dt + K ′+(D)]γ = eω[Dt + θ + K ′+(D + ρ)]a = 0.

Therefore, equation (6) implies

[Dt + θ − K ′(D + ρ)]ã = 0, (8)

where ã = e−ωN(D)eωa = N(D + ρ)a. It was proved in [3] that one may require the
constraint (ã, c̃) = 1. This is equivalent to the gauge transformation

ρ(u, z) = ρ̃(u, z) + Dξ(u, z), θ(u, z) = θ̃(u, z) + Dtξ(u, z),

where ξ is a holomorphic function of z. This completes the proof.
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The known today Noether operators take the following form

Nαβ =
p∑

k=0

Nαβ
k Dk +

r∑
i=1

Aα
i D−1Bβ

i (9)

and we consider below this case only.

Proposition. If a Noether operator takes the form (9), then the vector function ã =
N(D + ρ)a can be represented by the Laurent series in a parameter z.

Proof. If ρ and a are given by series (5), then the expression (D+ρ)ka = Dka+kDk−1ρa+
· · · is the Laurent series obviously. Let us consider the last term in expression (9) and
denote e−ωD−1eω(Bi, a) ≡ h. This is equivalent to the following equation for h:

(D + ρ)h = (Bi, a) =
∞∑

k=0

(Bi, ak)zk.

Setting h =
∑

hiz
i, we obtain hi = 0 for i < n, hn = ρ−1

0 (Bi, a0), hn+1 = ρ−1
0 [(Bi, a1)−

ρ1hn − δ1
nDhn] and so on. So, the last term in expression (9) gives the Taylor series and

this completes the proof.
As equation (8) contains ã in the first power, we can multiply ã by any power of z.

Hence, we can consider ã the Taylor series. It was mentioned above that we can submit
the vector ã to a normalization condition (c̃, ã) = 1 by the gauge transformation. It is im-
portant to stress that this gauge transformation does not change the densities ρ0, . . . , ρn−1

as ξ(z) is a holomorphic function. Hence, the conserved densities ρi and ρ̃i obtained from
equations (3) and (7), respectively, satisfy the following conditions

ρi = ρ̃i for i < n, ρi − ρ̃i ∈ ImD for i ≥ n. (10)

These conditions give very strong constraints for system (2) and we must explain why they
are relevant. It is well known that systems integrable by the inverse scattering transform
method possess the Hamiltonian structures. It is also known that any Hamiltonian (or
implectic) operator is a Noether operator for the associated evolution system [4]. Hence,
for a wide class of integrable systems, conditions (10) are valid.

To use conditions (10), we must choose the correct normalization vector c̃ for ã. Let us
write the matrix operator K ′ in the form K ′ = KqD

q + Kq−1D
q−1 + · · ·, then the vector

a0 is a eigenvector of the matrix KT
q

KT
q a0 = λa0, λ = (−1)q+1θl/ρ

q
0, (11)

where l = n(1− q) [3]. As the series expansions for ρ̃, θ̃ and ã take the same form (5) and
θ̃l = θl, ρ̃0 = ρ0 according to (10), then we easily obtain

Kqã0 = (−1)q+1λã0. (12)

Equations (11) and (12) define the normalization of the vector ã, but some ambiguity is
always possible [3].
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3 Classif ication results

For system (1), we set u1 = u, u2 = v. Then

K3 =

(
1 0
0 0

)
, λ = λ̃ = 1.

One can see now that a0 = ã0 = (1, 0)T . This means that we can choose c = c̃ = (1, 0)T

or equivalently a = (1, b)T , ã = (1, b̃)T . The series expansions (5) take now the following
form

ρ = z−1 +
∞∑
i=0

ρiz
i, θ = z−3 +

∞∑
i=0

θiz
i,

ρ̃ and θ̃ has the same form. Substituting these series into equations (3) and (7), we obtain
the recursion relations for ρi and ρ̃i. We can not present these relations here because they
take large room. Here are the first terms of the sequences of ρi and ρ̃i:

ρ0 = −ρ̃0 =
1
3

∂f

∂u2
, ρ1 = ρ̃1 = ρ2

0 −
1
3

∂f

∂u1
,

ρ2 = −ρ̃2 =
1
3

(
θ0 − ρ3

0 + 3ρ0ρ1 +
∂f

∂u
+

∂f

∂v2

∂g

∂u1

)
.

We find with the help of a computer that sufficiently many integrability conditions (4)
and (10) (8 or 12 sometimes) are satisfied in the following four cases only: (I) system (1)
admits nontrivial higher conserved densities; (II) the system is reducible to the triangular
or linear form with the help of a contact transformation; (III) the system is linear or
triangular. The last case is not interesting and we omit it.

We present here the complete classification the systems (I) and (II).

List I. Systems admitting higher conserved densities

ut = u3 − 3u2
2/(4u1) + v2u1 + c1u1, vt = u + c2v1. (13)

ut = u3 − 3u2
2/(4u1) + v1u1 + c1u1, vt = u1 + c2v1. (14)

ut = w2 + 6c0euu1 − 1/2w3 + c1w + c2u1, w = u1 − v,

vt = 3c0euu2
1 + 4c0euv1 + c0euv2 − 2c0c1eu + c2v1, c0 	= 0.

(15)

ut = u3 + uv2 + u1v1 + c1u1, vt = u + c0v1. (16)

ut = u3 + u1v + uv1 + c1u1 + c2v1, vt = u1 + c0v1. (17)

ut = u3 + u1v1 + c1u1 + c2v1, vt = u1 + c0v1. (18)

ut = u3 + u1v2 + c1u1 + c2v2, vt = u + c0v1. (19)

ut = u3 + 3u1v + 2uv1 + v1v2 + c1v1 + 2c2vv1 − 2v2v1, vt = u1 + vv1 + c2v1. (20)
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ut = u3 + 2u1v1 + uv2 + c1u1, vt = c2u
2 + c3v1. (21)

ut = u3 + 2u1v + uv1 + c1u1, vt = 2c2uu1 + c3v1. (22)

ut = u3 − u1v2/v − 3u2v1/(2v) + 3u1v
2
1/(2v

2) + u2u1/v+

+c1u1/(2v) + 2c2v
2u1 + 3c2uvv1, vt = 2uu1.

(23)

ut = u3 − u1v2/v − 3u2v1/(2v) + 3u1v
2
1/(2v

2) + 3c1uv2
1/(2v

2)+

+u2u1/v − c1(u1v1 + uv2 − u3)/v + c2
1uv1/(2v)− c2

1u1 − c2u,

vt = 2uu1 + 2c1u
2 − 2c2v.

(24)

ut = u3 + 3/2u12 + c1v
2
1 + c2u1, vt = u1v1 + c3v1. (25)

ut = u3 + 3uu1 + 2c1v1v2 + c2u1, vt = uv1. (26)

ut = u3 + 3uu1 + 2c1vv1 + c2u1, vt = uv1 + u1v. (27)

System (14) follows from system (13) under the substitution v1 → v. System (15) is trian-
gular if c0 = 0, and moreover the transformation (u, v) → (v, w) gives in this case the pair
of independent equations. Systems (16)–(19) are connected by the contact transformations
A, B, C, D and E according to the following diagram

(16)

❄

(17)

(18)(19) ✲

✲

❄











�

B

C

E A
D

A: (u, v) → (u1, v1)

E: (u, v) → (u1 + c2, v1 + c2t)

C: (u, v1) → (u, v)

B: (u, v1) → (u + c2, v)

D: (u, v) → (u1 + c2, v + c2t)

System (22) follows from system (21) under the substitution v1 → v. The systems
(25)–(27) are connected each other according to the following diagram

F
(25) (26) ✲ (27)

G✲

where the maps F and G take the following form: F : (u1, v, c2) → (u−c3, v, c2+3c3), G :
(u, v1) → (u, v).

List II. Systems reducible to the triangular form

ut = w2 − 3w2
1/(4w)− h(u, v) + f1(w),

vt = huu1 + hvv1 + f2(w), w = v + u1.
(28)

The reduction to the triangular form: (u, v) → (u,w).

ut = u3 + v2 + h(u, v)− ξ(u)v1 + 3/2ξ′u2
1,

vt = ξ2v1 − hvv1 − huu1 + ξ′u1v1 − 3/2ξξ′u2
1 − 1/2ξ′′u3

1 − hξ + c.
(29)
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The reduction to the triangular form: (u, v) → (u,w), where w = v + u1 +
∫

ξ(u) du.

ut = u3 − 2/3(v2 + u1v
2 + c1v1e−u − c2v1eu)− 3/2(c2

1e
−2u + c2

2e
2u)u1

+2(c1e−u + c2eu)u1v + u2
1v − 1/2u3

1 + h(u, v) + c0u1,

vt = 3/2u2
1v(c2eu − c1e−u) + 3/2(huu1 + hvv1 − c1he−u + c2heu)− 2/3v2v1

+(u1v1 + 2vv1)(c1e−u + c2eu)− 1/2v1(c1e−u + c2eu)2 + (c0 − c1c2)v1.

(30)

The reduction to the triangular form: (u, v) → (u,w), where w = u1−2v/3+c1e−u+c2eu.

ut = w2 − 3w2
1/(4w)− c1v

2 + c2w, vt = c3

√
w − c1v1, w = u1 + v2. (31)

The reduction to the linear form: (u, v) → (y, v), where y =
√

w.

ut = w2 − h(u, v)− 3w1
2/(2w) + c1w

3 + c2/w, vt = hvv1 + huu1 + c3w, (32)

where w = u1 + v. The reduction to the triangular form: (u, v) → (u,w).

ut = w2 − 3
2

ww1
2

w2 + c
− h(u, v) + f1(w), vt = hvv1 + huu1 + f2(w), w = u1 + v.(33)

The reduction to the triangular form: (u, v) → (u,w).

ut = u3 + u1φ(v, v2 − u), vt = u1,
∂φ

∂v
= φ

∂φ

∂v2
. (34)

One can check that Dt(φ) = 0, hence, φ = F1(x) on solutions of system (34). Denoting
v2 − u = w, we can integrate the equation φv = φφw in the following implicit form
w + vφ = H(φ), where H is arbitrary function. This implies the following equations

u = vxx + vF1(x) + F2(x), vt = vxxx + (vF1)x + F2,x, (34′)

where F1 is an arbitrary function and F2 = H(F1).

ut = w2 + kw1 + h(u, v) + f1(w) + k2u1, w = u1 + v − ku,

vt = kh − huu1 − hvv1 + kc1w + kc2 + k2v1.
(35)

The reduction to the triangular form: (u, v) → (u,w).

ut = u3 + c3u1 + c4w + c5w
2 + kw3 + c6, w = v2 − u − c2v1 + c1v,

vt = u1 + c2u − c1c2v + (c3 + c2
2 − c1)v1 + c7.

(36)

The reduction to the triangular form: (u, v) → (u,w).

ut = u3 + v2 + 6c0(c1uu1 − vu1 − c0u
2u1)− 2c0uv1 + c1v1 + c2u1 − h(u, v),

vt = (c2
1 + c2)v1 − 6c0vv1 + 2c0(u1v1 − c0u

2v1 + c1uv1)

+2c0uh − c1h + huu1 + hvv1.

(37)

The reduction to the triangular form: (u, v) → (u,w), where w = u1 + v − c1u + c0u
2.

In formulas (13)–(37), ci and k are arbitrary constants, h, ξ, φ and fi are arbitrary
functions, hu = ∂h/∂u.
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Conclusion

We believe that any system from the list (I) is integrable in the frame of the inverse
scattering transform method.

Let us note that some equations from the list (I) admit the reduction to a single
integrable equation. For example, excluding the function u from system (13) and setting
c2 = 0 for simplicity, we obtain

vtxvtt − vtxvtxxx +
3
4
v2
txx − vxxv

2
tx − c1v

2
tx = 0. (13′)

For system (16), the same operation gives

ztt − zxztx + (2zxc0 − zt)zxx − ztxxx + c0zxxxx = 0, (16′)

where v = z− (c1 + c0)x− c0(c1 +2c0)t. And system (20) is reduced to the following form

ztt + (3c2 − 4zx)ztx + zxzxxxx − ztxxx + 2zxxzxxx+

+3zxzxx(2zx − 3c2)− 2ztzxx = 0,
(20′)

where v = zx − c2. Let us also notice another forms for systems (23) and (24) that arise
under the exponential substitution v → ev.

ut = u3 − u1v2 + 1/2u1v
2
1 − 3/2u2v1 + c2e2v(2u1 + 3uv1) + e−v(u2 + c1/2)u1,

vt = 2uu1e−v.
(23′)

ut = u3 − 3/2u2v1 − u1v2 + c1(uv2
1/2− uv2 − u1v1 − c1u1 + c1uv1/2)+

+1/2u1v
2
1 − c2u + e−v(c1u

3 + u2u1), vt = 2(uu1 + c1u
2)e−v − 2c2.

(24′)

For the linearizable system (34), we get

ut = u3 + u1(u − v2)/v, vt = u1.

This system is equivalent to system (34′), where F2 = 0.
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