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Abstract

On the one hand, we put in evidence new symmetry operators of the nonlinear
Korteweg-de Vries equation by exploiting its Lax form expressed in terms of a pair of
linear equations. A KdV supersymmetric version is also studied in order to determine
its symmetry Lie superalgebra. On the other hand, nonlinear sl(2)-algebras are then
visited and new unitary irreducible representations are characterized.

This talk is dedicated to the Memory of my Colleague Wilhelm Fushchych, a man I
have mainly appreciated outside our common interests in mathematical physics.

1 Introduction

I would like to discuss in this talk two subjects which both are concerned with fundamental
symmetries in theoretical physics and both are developed through mathematical methods.
Moreover, these two subjects deal with nonlinear characteristics so that the invitation of
the organisers of this Conference was welcome and I take this opportunity to thank them
cordially.

The first subject (reported in Sections 2 and 3) deals with new symmetries and su-
persymmetries of the famous (nonlinear) Korteweg-de Vries equation [1] by exploiting its
formulation(s) through the corresponding Lax form(s) [2, 3]. These results have already
been collected in a not yet published recent work [4] to which I refer for details if necessary.

The second subject (developed in Sections 4 and 5) concerns the so-called nonlinear
sl(2, R)-algebras containing, in particular, the linear sl(2)-case evidently, but also the
quantum slq(2)-case. These two particular cases are respectively very interesting in con-
nection with the so-important theory of angular momemtum [5, 6] (developed in quantum
physics at all the levels, i.e., the molecular, atomic, nuclear and subnuclear levels) and with
the famous quantum deformations [7] applied to one of the simplest Lie algebras with fun-
damental interest in quantum physics [8, 9]. But my main purpose is to study here the
nonlinear sl(2)-algebras which are, in a specific sense, just between these two cases: in

Talk presented in Kyiv (July 1997): 2nd International Conference on ”Symmetry in Nonlinear Mathe-
matical Physics”.



On Specific Symmetries of the KdV Equation and on New Representations 109

such categories we find the nonlinear cases corresponding to finite powers of Lie genera-
tors differing from the first power evidently but being possibly of second (the quadratic
context) or third powers (the cubic context) for example. Both of these quadratic and
cubic cases [10] have already been exploited in physical models or theories so that a very
interesting amount of original informations is the knowledge of the unitary irreducible rep-
resentations (unirreps) of these nonlinear algebras: such results can be found in different
recent papers [10, 11, 12] that I want to refer to in the following by dealing more partic-
ularly here with the so-called Higgs algebra [13]. This algebra is an example of a cubic
sl(2)-algebra with much physical attraction: it corresponds to physical descriptions in
curved spaces (its original appearance [13]) or in flat spaces (its more interesting recent
discover in quantum optics, for example [14]).

2 On the KdV equation and its symmetries

Let us remember the famous nonlinear Korteweg-de Vries (KdV) equation [1] introduced
in 1885 in the form

ut = 6uux − uxxx, (1)

where the unknown function u(x, t) also admits time and space partial derivatives with
the usual notations

ut ≡ ∂u(x, t)
∂t

, ux ≡ ∂u(x, t)
∂x

= ∂xu(x, t), (2)

the space ones going to the maximal third order (uxxx). Its Lax form [2] is usually denoted
by (L, A) where

L ≡ −∂2
x + u, A ≡ −4∂3

x + 6u∂x + 3ux, (3)

so that

∂tL = [A, L]. (4)

This is equivalent to a pair of linear equations

Lψ(x, t) = λψ(x, t), ψt = Aψ (5)

which can be rewritten as a system of the following form

L1ψ(x, t) = 0, L1 ≡ L − λ,

L2ψ(x, t) = 0, L1 ≡ ∂t − A,
(6)

with the compatibility condition

[L1, L2]ψ = 0. (7)

By searching for symmetry operators X of such a system, we ask for operators X such
that

[�, X] = λX (8)
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ensuring that, if ψ is a solution of �ψ = 0, we know that Xψ is still a solution of the same
equation, i.e., �(Xψ) = 0. We have solved [4] such an exercise with two equations (6) so
that the general conditions (8) here reduce to

[L1, X] = λ1L1 and [L2, X] = λ2L1, (9)

where λ1 and λ2 are arbitrary functions of x and t. This system leads to nine partial
differential equations and to a resulting set of three (nontrivial) independent symmetry
operators according to different u-values [4]. They are given by the explicit expressions

X1 ≡ ∂x,

X2 ≡ ∂3
x − 3

2
u∂x + λ∂x − 3

4
ux,

X3 ≡ t∂3
x − 1

12
x∂x − 3

2
tu∂x + λt∂x − 3

4
tux.

(10)

They generate a (closed) invariance (Lie) algebra characterized by the commutation rela-
tions

[X1, X2] = 0, [X1, X3] =
1
3
X1, [X2, X3] = X2 − 4

3
λX1. (11)

In fact, such results are readily obtained if one requires that the X-operators are given by

X =
3∑

i=0

ai(x, t)∂i
x, (12)

where i = 0 refers to time and i = 1, 2, 3 refer to first, second and third respective space
derivatives. Conditions (9) relate among themselves the corresponding arbitrary ai(x, t)-
functions so that the discussion appears to be restricted to the following contexts:

uxx = 0 and uxx �= 0. (13)

Another simple equation leads to the possible values

u = λ �= 0 or 6ut = −x (14)

so that these different contexts allow the existence of new symmetries of the KdV equation.

3 The supersymmetric context

Let us remember the Mathieu supersymmetric extension [3] of the KdV equation charac-
terized by

ut = 6uux − uxxx − aξξxx (15)

and

ξt = −ξxxx + auxξ + (6 − a)uξx, (16)
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where a is a constant taken equal to 3 for obtaining a nontrivial Lax representation and ξ,
ξt , ξx, . . . are ”fermionic” quantities as usual. Now the differential operators of the Lax
pair take the explicit forms

L ≡ −∂2
x + u + θξx + θξ∂x − ξ∂θ − uθ∂θ (17)

and

A ≡ −4∂3
x + 6u∂x + 3ux + 3θξxx − 3θux∂θ + 9θξx∂x

−3ξx∂θ + 6θξ∂2
x − 6ξ∂x∂θ − 6θu∂x∂θ.

(18)

Here θ is the necessary Grassmannian variable permitting to distinguish even and odd
terms in these developments, or let us say ”bosonic” and ”fermionic” symmetry operators.

By taking care of the grading in the operators as developed in the study of supersym-
metric Schrödinger equations [15], we can determine the even and odd symmetries of the
context after a relatively elaborated discussion. We refer the interested reader to the orig-
inal work [4]. Here evidently we get invariance Lie superalgebras [16] for the KdV equation
whose orders are 11, 9 or 4 in the complete discussion we skip here.

4 On nonlinear sl(2)-algebras

Let us remember the linear sl(2)-algebra subtending all the ingredients of the angular
momentum theory [5, 6] , i.e., the set of commutation relations (defining this Lie algebra)
between the three Cartan-Weyl generators (J±, J3) given by

[J3, J±] = ±J±, (19)

[J+, J−] = 2J3. (20)

Here J+ and J− are the respective raising and lowering operators acting on the real
orthogonal basis { | j, m > } in the following well-known way:

J+ | j, m >=
√

(j − m)(j + m + 1) | j, m + 1 >, (21)

J− | j, m >=
√

(j + m)(j − m + 1) | j, m − 1 > (22)

while J3 is the diagonal generator giving to m(= −j,−j+1, ..., j−1, j) its meaning through
the relation

J3 | j, m >= m | j, m > . (23)

Moreover, by recalling the role of the Casimir operator

C ≡ 1
2
(J+J− + J−J+) + J2

3 (24)

such that

C | j, m >= j(j + 1) | j, m >, j = 0,
1
2
, 1,

3
2
, 2, . . . , (25)
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it is easy to define our nonlinear sl(2)-algebras by asking that the commutation relation
(20) has to be replaced by the following one:

[J+, J−] = f(J3) =
N∑

p=0

βp (2J3)2p+1. (26)

In particular, if N = p = 0, β0 = 1, we recover the linear (above-mentioned) context.
If N = 1, p = 0, 1, β0 = 1, β1 = 8β where β is a real continuous parameter, we obtain
the remarkable Higgs algebra [13] already studied [10, 11, 12] in connection with specific
physical contexts in curved or flat spaces [13, 14]. If N → ∞ and if we choose ad hoc
βp-coefficients [12] , we easily recover the quantum slq(2)-algebra [8].

Here, let us more specifically consider finite values of N(�= 0) in order to include (in
particular) the Higgs algebra. Our main purpose is to determine the unirreps of such a
family of algebras by putting in evidence the effect of the deformed generators satisfying
Eqs. (19) and (26). In terms of the old sl(2)-generators, we have obtained the whole answer
[12] by noticing that relation (23) has to play a very important role in the discovery of
new unirreps having a physical interest. In order to summarize our improvements, let us
mention that equation (23) can be generalized through two steps.

The first step is to modify it in the following way as proposed by Abdesselam et al.
[12], i.e.,

J3 | j, m >= (m + γ) | j, m >, (27)

where γ is a real scalar parameter. This proposal leads us to

J+ | j, m >= ((j − m)(j + m + 1 + 2γ)(1 + 2β(j(j + 1) + m(m + 1)+

2γ(j + m + 1 + γ))))
1
2 | j, m + 1 >,

(28)

J− | j, m >= ((j − m + 1)(j + m + 2γ)(1 + 2β(j(j + 1) + m(m − 1)+

2γ(j + m + γ))))
1
2 | j, m − 1 > .

(29)

This context (interesting to consider at the limits γ = 0, or β = 0, or β = γ = 0) is such
that three types of unirreps can be characterized, each of them corresponding to specific
families. Restricting our discussion to the Higgs algebra corresponding to N = 1, β0 = 1,
β1 = β, it is possible to show [12] that, if γ = 0, it corresponds a class I of unirreps
permitting

β ≥ − 1
4j2

∀j(�= 0) (30)

but also that, if γ �= 0, we get two other families of unirreps characterized by

γ+ =
1
2β

√
−β − 4β2j(j + 1), (class II), (31)

or by

γ− = − 1
2β

√
−β − 4β2j(j + 1), (class III), (32)



On Specific Symmetries of the KdV Equation and on New Representations 113

both values being constrained by the parameter β according to

− 1
4j(j + 1)

< β ≤ 1
4j(j + 1) + 1

. (33)

The second step is another improvement proposed by N. Debergh [12] so that Eqs. (23)
or (27) are now replaced by

J3 | j, m >=
(

m

c
+ γ

)
| j, m > (34)

where c is a nonnegative and nonvanishing integer. The previous contexts evidently cor-
respond to c = 1, but for other values, we get new unirreps of specific interest as we will
see. Let us also mention that actions of the ladder operators are also c-dependent. We
have

J+ | j, m >=
√

f(m) | j, m + c > (35)

and

J− | j, m >=
√

f(m − c) | j, m − c >, (36)

where the f -functions can be found elsewhere [12]. The Casimir operator of this deformed
(Higgs) structure appears also as being c-dependent. In conclusion, this second step leads
for c = 2, 3, . . . to new unirreps of the Higgs algebra.

5 On the Higgs algebra and some previous unirreps

The special context characterizing the Higgs algebra is summarized by the following com-
mutation relation replacing Eq.(20)

[J+, J−] = 2J3 + 8βJ3
3 (37)

besides the unchanged ones

[J3, J±] = ±J±. (38)

After Higgs [13, 17], we know that this is an invariance algebra for different physical sys-
tems (the harmonic oscillator in two dimensions, in particular) but described in curved
spaces. It has also been recognized very recently as an interesting structure for physical
models in flat spaces and I just want to close this talk by mentioning that multipho-
ton processes of scattering described in quantum optics [14, 18] are also subtended (in a
2-dimensional flat space) by such a nonlinear algebra. The important point to be men-
tioned here is that these developments deal with the very recent last step (34) and the
corresponding unirreps, this fact showing their immediate interest.
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