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Abstract

A new simple method for constructing solutions of multidimensional nonlinear wave
equations is proposed

1 Introduction

The method of the symmetry reduction of an equation to equations with fewer variables,
in particularly, to ordinary differential equations [1–3] is among efficient methods for con-
structing solutions of nonlinear equations of mathematical physics. This method is based
on investigation of the subgroup structure of an invariance group of a given differential
equation. Solutions being obtained in this way are invariant with respect to a subgroup of
the invariance group of the equation. It is worth to note that the invariance imposes very
severe constraints on solutions. For this reason, the symmetry reduction doesn’t allow to
obtain in many cases sufficiently wide classes of solutions.

At last time, the idea of the conditional invariance of differential equations, proposed
in [3–6], draws intent attention to itself. By conditional symmetry of an equation, one
means the symmetry of some solution set. For a lot of important nonlinear equations of
mathematical physics, there exist solution subsets, the symmetry of which is essentially
different from that of the whole solution set. One chooses such solution subsets, as a rule,
with the help of additional conditions representing partial differential equations. The
description of these additional conditions in the explicit form is a difficult problem and
unfortunately there are no efficient methods to solve it.

In this paper, we propose a constructive and simple method for constructing some
classes of exact solutions to nonlinear equations of mathematical physics. The essence of
the method is the following. Let we have a partial differential equation

F
(
x, u, u

1
, u

2
, . . . , u

m

)
= 0, (1)

where u = u(x), x = (x0, x1, . . . , xn) ∈ R1,n, u
m

is a collection of all possible derivatives of
order m, and let equation (1) have a nontrivial symmetry algebra. To construct solutions
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of equation (1), we use the symmetry (or conditional symmetry) ansatz [3]. Suppose that
it is of the form

u = f(x)ϕ(ω1, . . . , ωk) + g(x), (2)

where ω1 = ω1(x0, x1, . . . , xn), . . . , ωk = ωk(x0, x1, . . . , xn) are new independent variables.
Ansatz (2) singles out some subset S from the whole solution set of equation (1). Construct
(if it is possible) a new ansatz

u = f(x)ϕ(ω1, . . . , ωk, ωk+1, . . . , ωl) + g(x), (3)

being a generalization of ansatz (2). Here ωk+1, . . . , ωl are new variables that should be
determined. We choose the variables ωk+1, . . . , ωl from the condition that the reduced
equation corresponding to ansatz (3) coincides with the reduced equation corresponding
to ansatz (2). Ansatz (3) singles out a subset S1 of solutions to equation (1), being an
extension of the subset S. If solutions of the subset S are known, then one also can
construct solutions of the subset S1. These solutions are constructed in the following way.
Let u = u(x,C1, . . . , Ct) be a multiparameter solution set of the form (2) of equation (1),
where C1, . . . , Ct are arbitrary constants. We shall obtain a more general solution set of
equation (1) if we take constants Ci in the solution u = u(x,C1, . . . , Ct) to be arbitrary
smooth functions of ωk+1, . . . , ωl.

Basic aspects of our approach are presented by the examples of d’Alembert, Liouville
and eikonal equations.

2 Nonlinear d’Alembert equations

Let us consider a nonlinear Poincaré-invariant d’Alembert equation

✷u + F (u) = 0, (4)

where

✷u =
∂u

∂x2
0

− ∂u

∂x2
1

− · · · − ∂u

∂x2
n

,

F (u) is an arbitrary smooth function. Papers [3, 7–9] are devoted to the construction of
exact solutions to equation (4) for different restrictions on the function F (x). Majority of
these solutions is invariant with respect to a subgroup of the invariance group of equation
(4), i.e., they are Lie solutions. One of the methods for constructing solutions is the
method of symmetry reduction of equation (4) to ordinary differential equations. The
essence of this method for equation (4) consists in the following.

Equation (4) is invariant under the Poincaré algebra AP (1, n) with the basis elements

J0a = x0∂a + xa∂0, Jab = xb∂a − xa∂b,

P0 = ∂0, Pa = ∂a (a, b = 1, 2, . . . , n).

Let L be an arbitrary rank n subalgebra of the algebra AP (1, n). The subalgebra L
has two main invariants u, ω = ω(x0, x1, . . . , xn). The ansatz u = ϕ(ω) corresponding to
the subalgebra L reduces equation (4) to the ordinary differential equation

ϕ̈(∇ω)2 + ϕ̇✷ω + F (ϕ) = 0, (5)
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where

(∇ω)2 ≡
(
∂ω

∂x0

)2

−
(
∂ω

∂x1

)2

− · · · −
(
∂ω

∂xn

)2

.

Such a reduction is called the symmetry reduction, and the ansatz is called the symme-
try ansatz. There exist eight types of nonequivalent rank n subalgebras of the algebra
AP (1, n) [7]. In Table 1, we write out these subalgebras, their invariants and values of
(∇ω)2, ✷ω for each invariant.

Table 1.

N Algebra Invariant ω (∇ω)2 ✷ω

1. P1, . . . , Pn x0 1 0
2. P0, P1, . . . , Pn−1 xn −1 0

3. P1, . . . , Pn−1, J0n (x2
0 − x2

n)2 1
1
ω

4. Jab (a, b = 1, . . . , k), (x2
1 + · · · + x2

k)1/2 −1 −k − 1
ω

Pk+1, . . . , Pn, P0 (k ≥ 2)

5. Ga = J0a − Jak, Jab (x2
0 − x2

1 − · · · − x2
k)1/2 1

k

ω
(a, b = 1, . . . , k − 1)
J0k, Pk+1, . . . , Pn (k ≥ 1)

6. P1, . . . , Pn−2, P0 + Pn α ln(x0 − xn) + xn−1 −1 0
J0n + αPn−1

7. P0 + Pn, P1, . . . , Pn−1 x0 − xn 0 0
8. Pa (a = 1, . . . , n− 2),

Gn−1 + P0 − Pn, P0 + Pn (x0 − xn)2 − 4xn−1 −1 0

The method proposed in [11] of reduction of equation (4) to ODE is a generalization
of the symmetry reduction method. Equation (4) is reduced to ODE with the help of the
ansatz u = ϕ(ω), where ω = ω(x) is a new variable, if ω(x) satisfies the equations

✷ω = F1(ω), (∇ω)2 = F2(ω). (6)

Here F1, F2 are arbitrary smooth functions depending only on ω.
Thus, if we construct all solutions to system (6), hence we get the set of all values of

the variable ω, for which the ansatz u = ϕ(ω) reduces equation (4) to ODE in the variable
ω. Papers [10–11] are devoted to the investigation of system (6).

Note, however, that ansatzes obtained by solving system (6), don’t exaust the set of all
ansatzes reducing equation (4) to ordinary differential equations. For this purpose, let us
consider the process of finding generalized ansatzes (3) on the known symmetry ansatzes
(2) of equation (4).
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a) Consider the symmetry ansatz u = ϕ(ω1) for equation (4), where ω1 = (x2
0 − x2

1 −
· · · − x2

k), k ≥ 2. The ansatz reduces equation (4) to the equation

ϕ11 +
k

ω1
ϕ1 + F (ω1) = 0, (7)

where ϕ11 =
d2ϕ

dω2
1

, ϕ1 =
dϕ

dω1
. This ansatz should be regarded as a partial case of the more

general ansatz u = ϕ(ω1, ω2), where ω2 is an unknown variable. The ansatz u = ϕ(ω1, ω2)
reduces equation (4) to the equation

ϕ11 +
k

ω1
ϕ1 + 2ϕ12(∇ω1 ·∇ω2) + ϕ2✷ω2 + ϕ22(∇ω2)2 + F (ϕ) = 0, (8)

where

∇ω1 ·∇ω2 =
∂ω1

∂x0
· ∂ω2

∂x0
− ∂ω1

∂x1
· ∂ω2

∂x1
− · · · − ∂ω1

∂xn
· ∂ω2

∂xn
.

Let us impose the condition on equation (8), under which equation (8) coincides with the
reduced equation (7). Under such assumption, equation (8) decomposes into two equations

ϕ11 +
k

ω1
ϕ1 + F (ϕ) = 0, (9)

2ϕ12(∇ω1 ·∇ω2) + ϕ22(∇ω2)2 + ϕ12✷ω2 = 0. (10)

Equation (10) will be fulfilled for an arbitrary function ϕ if we impose the conditions

✷ω2 = 0, (∇ω2)2 = 0, (11)

∇ω1 ·∇ω2 = 0 (12)

on the variable ω2. Therefore, if we choose the variable ω2 such that conditions (11), (12)
are satisfied, then the multidimensional equation (4) is reduced to the ordinary differential
equation (7) and solutions of the latter equation give us solutions of equation (4). So, the
problem of reduction is reduced to the construction of general or partial solutions to system
(11), (12).

The overdetermined system (11) is studied in detail in papers [12–13]. A wide class of
solutions to system (11) is constructed in papers [12–13]. These solutions are constructed
in the following way. Let us consider a linear algebraic equation in variables x0, x1, . . . , xn

with coefficients depending on the unknown ω2:

a0(ω2)x0 − a1(ω2)x1 − · · · − an(ω2)xn − b(ω2) = 0. (13)

Let the coefficients of this equation represent analytic functions of ω2 satisfying the con-
dition

[a0(ω2)]2 − [a1(ω2)]2 − · · · − [an(ω2)]2 = 0.

Suppose that equation (13) is solvable for ω2 and let a solution of this equation represent
some real or complex function

ω2(x0, x1, . . . , xn). (14)
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Then function (14) is a solution to system (11). Single out those solutions (14), that
possess the additional property ∇ω1 ·∇ω2 = 0. It is obvious that

∂ω2

∂x0
= −a0

δ′
,

∂ω2

∂x1
=

a1

δ′
, . . . ,

∂ω2

∂xn
=

an

δ′
,

where

δ(ω2) ≡ a0(ω2)x0 − a1(ω2)x1 − · · · − an(ω2)xn − b(ω2)

and δ′ is the derivative of δ with respect to ω2. Since

∂ω1

∂x0
=

x0

ω1
,

∂ω1

∂x1
= −x1

ω1
, . . . ,

∂ω1

∂xn
= −xn

ω1
,

we have

∇ω1 ·∇ω2 = − 1
ω1δ′

(a0x0 − a1x1 − · · · − anxn).

Hence, with regard for (13), the equality ∇ω1·∇ω2 = 0 is fulfilled if and only if b(ω2) = 0.
Therefore, we have constructed the wide class of ansatzes reducing the d’Alembert equation
to ordinary differential equations. The arbitrariness in choosing the function ω2 may be
used to satisfy some additional conditions (initial, boundary and so on).

b) The symmetry ansatz u = ϕ(ω1), ω1 = (x2
1+· · ·+x2

l )1/2, 1 ≤ l < n−1, is generalized
in the following way. Let ω2 be an arbitrary solution to the system of equations

∂2ω

∂x2
0

− ∂2ω

∂x2
l+1

− · · · − ∂2ω

∂x2
n

= 0,

(
∂ω

∂x0

)2

−
(

∂ω

∂xl+1

)2

− · · · −
(
∂ω

∂xn

)2

= 0.

(15)

The ansatz u = ϕ(ω1, ω2) reduces equation (4) to the equation

−d2ϕ

dω2
1

− k − 1
ω1

dϕ

dω1
+ F (ϕ) = 0.

If l = n − 1, then the ansatz u = ϕ(ω1, ω2), ω2 = x0 − xn is a generalization of the
symmetry ansatz u = ϕ(ω1).

Ansatzes corresponding to subalgebras 2, 6 and 8 in Table 1, are particular cases of the
ansatz constructed above. Doing in a similar way, one can obtain wide classes of ansatzes
reducing equation (4) to two-dimensional, three-dimensional and so on equations. Let us
present some of them.

c) The ansatz u = ϕ(ω1, . . . , ωl, ωl+1), where ω1 = x1, . . . , ωl = xl, ωl+1 is an ar-
bitary solution of system (15), l ≤ n − 1, is a generalization of the symmetry ansatz
u = ϕ(ω1, . . . , ωl) and reduces equation (4) to the equation

−∂2ϕ

∂ω2
1

− ∂2ϕ

∂ω2
2

− · · · − ∂2ϕ

∂ω2
l

+ F (ϕ) = 0.
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d) The ansatz u = ϕ(ω1, . . . , ωs, ωs+1), where ω1 = (x2
0 − x2

1 − · · · − x2
l )1/2, ω2 =

xl+1, . . . , ωs = xl+s−1, l ≥ 2, l + s− 1 ≤ n, ωs+1 is an arbitrary solution of the system

✷ωs+1 = 0, (∇ωs+1)2 = 0, ∇ωi ·∇ωs+1 = 0, i = 1, 2, . . . , s, (16)

is a generalization of the symmetry ansatz u = ϕ(ω1, . . . , ωs) and reduces equation (4) to
the equation

ϕ11 − l

ω1
ϕ1 − ϕ22 − · · · − ϕss + F (ϕ) = 0.

Let us construct in the way described above some classes of exact solutions of the
equation

✷u + λuk = 0, k 
= 1. (17)

The following solution of equation (17) is obtained in paper [9]:

u1−k = σ(k, l)(x2
1 + · · · + x2

l ), (18)

where

σ(k, l) =
λ(1 − k)2

2(l − lk + 2k)
, l = 1, 2, . . . , n.

Solution (18) defines a multiparameter solution set

u1−k = σ(k, l)
[
(x1 + C1)2 + · · · + (xl + Cl)2

]
,

where C1, . . . , Cl are arbitrary constants. Hence, according to c), we obtain the following
set of solutions to equation (17) for l ≤ n− 1:

u1−k = σ(k, l)
[
(x1 + h1(ω))2 + · · · + (xl + hl(ω))2

]
, k 
= l

l − 2
,

where ω is an arbitrary solution of system (15) and h1(ω), . . . , hl(ω) are arbitrary twice
differentiable functions of ω. In particular, if n = 3 and l = 1, then equation (17) possesses
in the space R1,3 the solution set

u1−k =
λ(1 − k)2

2(1 + k)
[x1 + h1(ω)]2 , k 
= −1.

Next, let us consider the following solution of equation (4) [9]:

u1−k = σ(k, s)(x2
0 − x2

1 − · · · − x2
s), s = 2, . . . , n, (19)

where

σ(k, s) = − λ(1 − k)2

2(s− ks + k + 1)
, k 
= s + 1

s− 1
.

Solution (19) defines the multiparameter solution set

u1−k = σ(k, s)
[
x2

0 − x2
1 − · · · − x2

l − (xl+1 + Cl+1)2 − · · · − (xs + Cs)2
]
,
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where Cl+1, . . . , Cs are arbitrary constants. According to d) we obtain the following solu-
tion set for l ≥ 2

u1−k = σ(k, s)
[
x2

0 − x2
1 − · · · − x2

l − (xl+1 + hl+1(ω))2 − · · · − (xs + hs(ω))2
]
,

where ω is an arbitrary solution of system (16), and hl+1(ω), . . . , hs(ω) are arbitrary twice
differentiable functions. In particular, if l = 2 and s = 3, then equation (4) possesses in
the space R1,3 the following solution set

u1−k =
λ(1 − k)2

4(k − 2)

[
x2

0 − x2
1 − x2

2−(x3 − h3(ω))2
]
, k 
= 2.

The equation

✷u + 6u2 = 0 (20)

possesses the solution u = P(x3 +C2), where P(x3 +C2) is an elliptic Weierstrass function
with the invariants g2 = 0 and g3 = C1. Therefore, according to c) we get the following
set of solutions of equation (20):

u = P(x3 + h(ω)),

where ω is an arbitrary solution to system (15) and h(ω) is an arbitrary twice differentiable
function of ω.

Next consider the Liouville equation

✷u + λ expu = 0. (21)

The symmetry ansatz u = ϕ(ω1), ω1 = x3, reduces equation (21) to the equation

d2ϕ

dω2
1

= λ expϕ(ω1).

Integrating this equation, we obtain that ϕ coincides with one of the following functions:

ln

{(
−C1

2λ
sec2

[√−C1

2
(ω1 + C2)

])}
(C1 < 0, λ > 0, C2 ∈ R);

ln

{
2C1C2 exp(

√
C1ω1)

λ[1 − C2 exp(
√
C1ω1)]2

}
(C1 > 0, λC2 > 0);

− ln




√
λ

2
ω1 + C




2

.

Hence, according to c) we get the following solutions set for equation (21):

u = ln

{(
−h1(ω)

2λ
sec2

[√−h1(ω)
2

(ω1 + h2(ω))

])}
(h1(ω) < 0, λ > 0);

u = ln

{
2h1(ω)h2(ω) exp(

√
h1(ω)ω1)

λ[1 − h2(ω) exp(
√
h1(ω)ω1)]2

}
(h1(ω) > 0, λh2(ω) > 0);
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u = − ln




√
λ

2
ω1 + h(ω)




2

,

where h1(ω), h2(ω), h(ω) are arbitrary twice differentaible functions; ω is an arbitrary
solution to system (15).

Using, for example, the solution to the Liouville equation (21) [9]

u = ln
2(s− 2)

λ[x2
0 − x2

1 − · · · − x2
s]
, s 
= 2,

we obtain the wide class of solutions to the Liouville equation

u = ln
2(s− 2)

λ[x2
0 − x2

1 − · · · − x2
l − (xl+1 + hl+1(ω))2 − · · · − (xs + hs(ω))2]

,

where ω is an arbitrary solution to system (16), and hl+1(ω), . . . , hs(ω) are arbitrary twice
differentaible functions. If s = 3, then equation (21) possesses in the space R1,3 the
following solution set

u = ln
2

λ[x2
0 − x2

1 − x2
2 − (x3 + h3(ω))2]

.

Let us consider now the sine–Gordon equation

✷u + sinu = 0.

Doing in an analogous way, we get the following solutions:

u = 4 arctanh1(ω) exp(ε0x3) − 1
2

(1 − ε)π, ε0 = ±1, ε = ±1;

u = 2 arccos[dn (x3 + h1(ω)),m] +
1
2

(1 + ε)π, 0 < m < 1;

u = 2 arccos
[
cn

(
x3 + h1(ω)

m

)
,m

]
+

1
2

(1 + ε)π, 0 < m < 1,

where h1(ω) is an arbitrary twice differentiable function, ω is is an arbitrary solution to
system (15).

3 Eikonal equation

Consider the eikonal equation(
∂u

∂x0

)2

−
(
∂u

∂x1

)2

−
(
∂u

∂x2

)2

−
(
∂u

∂x3

)2

= 1. (22)

The symmetry ansatz u = ϕ(ω1), ω1 = x2
0 − x2

1 − x2
2 − x2

3, reduces equation (22) to the
equation

4ω1

(
∂ϕ

∂ω1

)2

− 1 = 0. (23)
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We shall look for a generalized ansatz in the form u = ϕ(ω1, ω2). This ansatz reduces
equation (22) to the equation

4ω1

(
∂ϕ

∂ω1

)2

+ 2(∇ω1 ·∇ω2)
∂ϕ

∂ω1
+ (∇ω2)2

(
∂ϕ

∂ω2

)2

= 1. (24)

Impose the condition on equation (24), under which equation (24) coincides with equa-
tion (23). It is obvious that this condition will be fulfilled if we impose the conditions

(∇ω2)2 = 0, ∇ω1 ·∇ω2 = 0 (25)

on the variable ω2. Having solved system (25), we get the explicit form of the variable ω2.
It is easy to see that an arbitrary function of a solution to system (25) is also a solution
to this system.

Having integrated equation (23), we obtain (u+C)2 = x2
0−x2

1−x2
2−x2

3, where C is an
arbitrary constant. We shall obtain a more general solution set for the eikonal equation if
we take C to be an arbitrary solution to system (25).

The symmetry ansatz u = ϕ(ω1, ω2), ω1 = x2
0 − x2

1 − x2
2, ω2 = x3 can be generalized in

the following way. Let ω3 be an arbitrary solution to the system of equations
(
∂ω3

∂x0

)2

−
(
∂ω3

∂x1

)2

−
(
∂ω3

∂x2

)2

= 0,

x0
∂ω3

∂x0
+ x1

∂ω3

∂x1
+ x3

∂ω3

∂x2
= 0.

(26)

Then the ansatz u = ϕ(ω1, ω2, ω3) reduces the eikonal equation to the equation

4ω1

(
∂ϕ

∂ω1

)2

−
(
∂ϕ

∂ω2

)2

− 1 = 0. (27)

Equation (27) possesses the solution [9]

ϕ =
C2

1 + 1
2C1

(x2
0 − x2

1 − x2
2)1/2 +

C2
1 − 1
2C1

x3 + C2,

(ϕ + C2)2 = x2
0 − x2

1 − x2
2 − (x3 + C1)2,

that can be easily found by using the symmetry reduction method of equation (27) to
ordinary differential equation. Having replaced arbitary constants C1 and C2 by arbitrary
functions h1(ω) and h2(ω), we get the more wide classes of exact solutions to the eikonal
equation:

u =
h1(ω3)2 + 1

2h1(ω3)
(x2

0 − x2
1 − x2

2)1/2 +
h1(ω3)2 − 1

2h1(ω3)
x3 + h2(ω3),

(u + h2(ω3))2 = x2
0 − x2

1 − x2
2 − (x3 + h1(ω3))2.

Let us note, since the Born–Infeld equation is a differential consequence of the eikonal
equation [3], hence we also constructed wide classes of exact solutions of the Born–Infeld
equation.
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