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Abstract

A very short discussion of the main scientific results obtained by Prof. W. Fushchych
is presented.

Introduction

The scientific heritage of Prof. W. Fushchych is great indeed. All of us have obtained
the list of his publications which includes more than 330 items. It is difficult to imagine
that all this was produced by one man. But it is the case, and numerous students of
Prof. Fushchych can confirm that he made a decisive contribution to the majority of his
publications.

As one of the first students of Prof. W. Fushchych, I would like to say a few words
about the style of his collaboration with us. He liked and appreciated any collaboration
with him. He was a very optimistic person and usually believed in the final success of
every complicated investigation, believed that his young collaborators are able to overcome
all difficulties and to solve the formulated problem. In addition to his purely scientific
contributions to research projects, such an emotional support was very important for all
of us. He helped to find a way in science and life for great many of people including those
of them who had never collaborated with him directly. His scientific school includes a lot
of researchers, and all of them will remember this outstanding and kind person.

Speaking about scientific results obtained by my teacher, Prof. W. Fushchych, I have
to restrict myself to the main ones only. In any case, our discussion will be fragmen-
tary inasmuch it is absolutely impossible to go into details of such a large number of
publications.

From the extremely rich spectrum of scientific interests of W. Fushchych, I selected the
following directions:

1. Invariant wave equations.

2. Generalized Poincaré groups and their representations.

3. Non-Lie and hidden symmetries of PDE.

4. Symmetry analysis and exact solutions of nonlinear PDE.

I will try to tell you about contributions of Prof. W. Fushchych to any of the fields
enumerated here. It is necessary to note that item 4 represents the most extended field of
investigations of W. Fushchych, which generated the majority of his publications.
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1. Invariant wave equations

1. Poincaré-invariant equations

W. Fushchych solved a fundamental problem of mathematical physics, which was for-
mulated long ago and attacted much attention of such outstanding scientists as Wigner,
Bargmann, Harish-Chandra, Gelfand and others. The essence of this problem is a descrip-
tion of multicomponent wave equations which are invariant with respect to the Poincaré
group and satisfy some additional physical requirements.

In order to give you an idea about of this problem, I suggest to consider the Dirac
equation

0
LY = (v'py, —m)¥ =0, Py = —i7—, pw=0,1,23. (1)
Oz,

Here, 7, are 4 x 4 matrices satisfying the Clifford algebra:

YV + VoV = 29,

(2)
goo = —g11 = —9g22 = —g33 = 1, guw =0, p#wv.

Equation (1) is invariant with respect to the Poincaré group. Algebraic formulation of
this statement is the following: there exist symmetry operators for (1)

.0
Pu = 2871‘#7 Jw/ = TuPy — TyPp + Suuy (3)
where
)
S,LLV = Z[')’H,"}/y], w, V= 07 17273'

These operators commute with L of (1) and satisfy the Poincaré algebra AP(1,3)

[L7Pu] = [LaJm/] =0, [Pmpu] =0, (4)
[Puv Jvo] = i(guVPa - g;wpu)- (5)

It follows from (4) that generators P,, J,, transform solutions of (1) into solutions.

Of course, the Dirac equation is not the only one having this symmetry, and it is
interesting to search for other equations invariant with respect to the Poincaré algebra. In
papers of Bargmann, Harish-Chandra, Gelfand, Umezawa and many others, we can find a
number of relativistic wave equations for particles of arbitrary spin. It happens, however,
that all these equations are inconsistent inasmuch as they lead to violation of the causality
principle for the case of a particle interacting with an external field. Technically speaking,
these equations lose their hyperbolic nature if we take into account the interaction with
an external field.

To overcome this difficulty, Fushchych proposed to search for Poincaré-invariant wave
equations in the Schrodinger form

0

U = HU H = H(p
v , (D), (6)
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where H is a differential operator which has to be found starting with the requirement of
Poincaré invariance of equation (6). In spite of the asymmetry between spatial and time
variables, such an approach proved to be very fruitful and enables to find causal equations
for arbitrary spin particles.

I will not enter into details but present a nice formulation of the Poincaré-invariance
condition for equation (6):

([H, ], [H, 23] = 4,
H? = %+ m?.

(7)

It is easy to verify that the Dirac Hamiltonian H = 79747, + Yom satisfies (7). The other
solutions of these relations present new relativistic wave equations [3, 4].

It is necessary to note that relativistic wave equations found by W. Fushchych with
collaborators present effective tools for solving physical problems related to the interaction
of spinning particles with external fields. Here, I present the formula (obtained by using
these equations) which describes the energy spectrum of a relativistic particle of spin s
interesting with the Coulomb field:

1/2

O52

L ) ) 9 sj 1/2 2
’I’L’+§‘|‘ (]‘{‘5) —012—b>\}

1
Here n’ =0,1,2,..., j = 3

E=n|l+

(8)

yees ,bij is a root of the specific algebraic equation defined

by the value of spin s.
Formula (8) generalizes the famous Sommerfeld formula for the case of arbitrary spin s
(3, 4] .

2. Galilei-invariant wave equations

In addition to the Poincaré group, the Galilei group has very important applications in
physics. The Galilei relativity principle is valid for the main part of physical phenomena
which take place on the Earth. This makes the problem of description of Galilei-invariant
equations very interesting. In papers of W. Fushchych with collaborators, the problem is
obtained a consistent solution.

Starting with the first—order equations

(Bup" — Bam)¥ =0 (9)
and requiring the invariance with respect to the Galilei transformations
Tq — Rapxy + Vol + ba, to — to + bo,
(I|Rap|| are orthogonal matrices), we come to the following purely algebraic problem:
Saffo = BoSa =0,  Safs—PuSa =0,
NaBs — Bana = —iBa,  Nabb — Bonla = —i0abos (10)
Nafo = Pona =0,  a=1,2,3;
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where S,, 7, and S, 7j, are matrices satisfying the algebra AE (3)

[Saa SO] = Z.5achw [Sm 77b] = 1€qbcTes [77(1; 77b] =0. (11)

The principal result of investigation of the Galilei-invariant equations (9) is that these
equations describe correctly the spin-orbit and Darwin couplings of particles with all
external fields. Prior to works of W. Fushchych, it was generally accepted that these
couplings are purely relativistic effects. Now we understand that these couplings are
compatible with the Galilei relativity principle [3, 4].

For experts in particle physics, I present the approximate Hamiltonian for a Galilean
particle interacting with an external electromagnetic field:

2

H=2 mtedy+-—3 H+
2m 2ms (12)
e ]_—» — - ]. 8E 1 . ~
+1 —55-(77><E—Exw)—i—g@aba—x:—i—gs(s—i-l)dlvE ;

where
Oup = 3[Sa, Spl+ — 20aps(s + 1).

The approximate Hamiltonian (12), obtained by using Galilei-invariant equations, co-

incides for s = 3 with the related Hamiltonian obtained from the Dirac equation [3, 4].

3. Nonlinear equations invariant with respect to the Galilei and Poincaré
groups

W. Fushchych made a very large contribution into the theory of nonlinear equations with
a given invariance group. Here, I present some of his results connected with Galilei and
Poincaré invariant equations.

Theorem 1 [4, 5]. The nonlinear d’Alembert equation
P W + P(W) = 0

1s tnvariant with respect the extended Poincaré group ]5(1, 3) iff
F(¥)=M\U", r#1,

or
F(¥) = Aaexp(P).

Here, W is a real scalar function.

Theorem 2 [4, 5, 8]. The nonlinear Dirac equation
[P+ F (T, V)W =0

is invariant with respect to the Poincaré group iff
F(U,0) = Fy + Fyys + Fsy" U579,V + F1S" U8, 0,

where Fy, ..., Fy are arbitrary functions of ¥¥ and U5V, 75 = Yo717273-
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Theorem 3 [3, 4]. The Mazwell’s equations for electromagnetic field in a medium
oD _ _ 0B
6:1:0 - P ’ 81’0 N

p-D=0, @§-B=0

px E,

with constitutive equations
E=4&(D,H), B=F(D,H)

are invariant with respect to the group P(1,3) iff
D=ME+NB, H=MB-NE,

where M = M(C1,C2) and N = N(Cy,Cs2) are arbitrary functions of the invariants of
electromagnetic field

C,=E*-B?  (Oy=BE.

Theorem 4 [4]. The nonlinear Schrédinger equation

p2
(po = %> wt Pz, u,u) = 0

is invariant with respect to the Galilei algebra AG(1,3) iff
F = o(Jul)u,

to the extended Galilei algebra (including the dilation operator) AG1(1,3) iff
F = Mul*u, Ak #0,

and to the Schrodinger algebra AGo(1,3) iff
F = Mu**u.

I present only a few fundamental theorems of W. Fushchych concerning to the descrip-
tion of nonlinear equations with given invariance groups. A number of other results can
be found in [1-10].

By summarizing, we can say that W. Fushchych made the essential contribution to the

theory of invariant wave equations. His fundamental results in this field are and will be
used by numerous researchers.

2. Generalized Poincaré groups and their representations

Let us discuss briefly the series of W. Fushchych’s papers devoted to representations of
generalized Poincaré groups.

A generalized Poincaré group is defined as a semidirect product of the groups SO(1, n)
and T

P(1,n) =S0(1,n) &T,
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where T is an additive group of (n + 1)-dimensional vectors pi,pa,...,p, and SO(1,n) is
a connected component of the unity in the group of all linear transformations of 7" into T’
preserving the quadratic form

PE—Di—P3— - — P

Prof. W. Fushchych was one of the first who understood the importance of generalized
Poincaré groups for physics. A straightforward interest to these groups can be explained,
for example, by the fact that even the simplest of these, the group P(1,4), includes the
Poincaré, Galilei and Euclidean groups as subgroups. In other words, the group P(1,4)
unites the groups of motion of the relativistic and nonrelativistic quantum mechanics and
the symmetry group of the Euclidean quantum field theory.

Using the Wigner induced representations method, W. Fushchych described for the first
time all classes of unitary IRs of the generalized Poincaré group and the related unproper
groups including reflections [3, 4].
n(n+3)+2

The Lie algebra of the generalized Poincaré group P(1,4) includes basis
elements { Py, Jyn} which satisfy the following commutation relations:
[Pua Py] =0, [Pua Jya] = i(guupa - g,uaPzz)7
[J;Lw Jpo] = i(guszxa + guaJup - gupJ,ucr - gquup)a (13)

wv,p,0=0,1,...,n.

W. Fushchych found realizations of algebra (13) in different bases.

3. Non-Lie symmetries

In 1974, W. Fushchych discovered that the Dirac equation admits a specific symmetry
which is characterized by the following property.

1. Symmetry operators are non-Lie derivatives (i.e., do not belong to the class of first
order differential operators).

2. In spite of this fact, they form a finite-dimensional Lie algebra.

This symmetry was called a non-Lie symmetry. It was proved by W. Fushchych and
his collaborators that a non-Lie symmetry is not a specific property of the Dirac equation.
Moreover, it is admitted by great many of equations of quantum physics and mathematical
physics. Among them are the Kemmer-Duffin-Petiau, Maxwell equations, Lamé equation,
relativistic and nonrelativistic wave equations for spinning particles and so on.

In order to give you an idea about “non-Lie” symmetries, I will present you an example
connected with the Dirac equation. In addition to generators of the Poincaré group, this
equation admits the following symmetries [1, 2]:

FY}Lpl/ _W/l/p,u‘ (14)

Q,uu =YW+ (1 - 275) m

Operators (14) transform solutions of the Dirac equation into solutions. They are non-
Lie derivatives inasmuch as their first term includes differential operators with matrix
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coefficients. In spite of this fact, they form a 6-dimensional Lie algebra defined over the
field of real numbers. Moreover, this algebra can be united with the Lie algebra of the
Poincaré group in frames of a 16-dimensional Lie algebra. This algebra is characterized
by the following commutation relations

[J;un Q)\O'] = [Q,uua Q)\a] =2 (g}LO'QVO' + QUAQ;U/ - gu/\Qua - QVJQ;L)\) )

(15)
[Q,um PA] =0.
Taking into account relations (15) and
2 g —
},LV\II =V, (16)

we conclude that the Dirac equation is invariant with respect to the 16-parameter group
of transformations. Generalizing symmetries (14) to the case of higher order differential
operators, we come to the problem of description of complete sets of such operators (which
was called higher order symmetries):

ov

“w

+ D(NT (A 'z — a).

In the papers of W. Fushchych, the complete sets of higher order symmetry operators
for the main equations of classical field theory were found. Here, I present numbers of
linearly independent symmetry operators of order n for the Klein-Gordon-Fock, Dirac,
and Maxwell equations.

KGF equation:
1 2
Np = Z(n +1)(n+2)(n+3)(n”" 4+ 3n+4).
The Dirac equation:
N 1 2 1 n
N, =5N, — 6(2n+ 1)(13n“ + 19n + 18) — 5[1 — (=1)"].
The Maxwell equation:

N, = (2n +3)[2n(n — 1)(n + 3)(n +4) + (n +1)*(n + 2)%]/12.

4. Symmetries and exact solutions of nonlinear PDE

In this fundamental field, W. Fushchych obtained a lot of excellent results. Moreover, he
discovered new ways in obtaining exact solutions of very complicated systems of nonlinear

PDE.
It is necessary to mention the following discoveries of W. Fushchych.



18 A. Nikitin

1. The ansatz method

It is proved that if a system of nonlinear differential equations
L(z,¥(x))=0

admits a Lie symmetry, it is possible to find exact solutions of this system in the form
¥ = A(z)p(w), (17)

where A(x) is a matrix, ¢(w) is an unknown function of group invariants w = (wi, ..., wy).

Long ago, W. Fushchych understood that relation (17) can be treated as an ansatz
which, in some sense, is a more general substance than a Lie symmetry. I should like to
say that it is possible to use successfully substitutions (17) (and more general ones) even
in such cases when an equation do not admit a Lie symmetry.

2. Conditional symmetry
Consider a system of nonlinear PDE of order n
L(z,uy,ug,...,uy) =0, x € R(1,n),
u1:<8u &L”'EEJ, ufz<yu 0% .”>' (18)

Oxo’ O0r1' " Oz, 0x3’ OxoOxy’

Let some operator (@ do not belong to the invariance algebra of equation (18) and its

prolongation satisfy the relations
QL = NoL + A\ L1,
- (19)
QL1 = ML + A3L4

with some functions Ag, A1, Az, As.
We say that equation (18) is conditionally invariant if relations (19) hold. In this case
we can impose an additional condition

Ly = Li(z,u1,ug,...)

and system (18), (19) is invariant under Q.
We say that equation (18) is @-invariant provided

@L = )\oL + )\1 (QU)

The essence of this definition is that we can extend a symmetry of PDE by adding
some addititonal conditions on its solutions. The conditional and Q-invariance approaches
make it possible to find a lot of new exact solutions for great many of important nonlinear
equations. Let us enumerate some of them:

1.The nonlinear Schrodinger equation

iU+ AV = F(z, U, ¥").
2. The nonlinear wave equation

Ou = F(u).
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3. The nonlinear eikonal equation
uz, — (Vu)? = \.
4. The Hamilton-Jacobi equation
Ugy — (V) = A
5.The nonlinear heat equation
wr =V (f (u)Vu) = g(u).
6. The Monge-Ampéré equation
det iz, 1,0 = F ().
7. The nonlinar Born-Infeld equation
(1 — g, g ) OU + Uy, Ug, UgnUgr = 0.
8. The nonlinear Maxwell equations
OA, — 0:,0:,A, = A F(ALA”).
9. The nonlinear Dirac Equations
i Ve, = F(U*, ).
10. The nonlinear Lev-Leblond equations.
i(yo + 7)Yt + 7. Ve, = (U7, V).
11. Equations of the classical electrodynamics.
i, Ve, + (e AP —m)¥ = 0,
0A, — 0:,0:,A, = e@’yu\lf.
12. SU(2) Yang-Mills Equations.

Oy Opv Ay — Dy, Ay + € ((axyffy) X Ay — 204y Ay) X Ayt

-

+(8xu/_l‘,,) X /YV) +e2A, x (AY x [f#) —0.

Summary

In conclusion, I should like to say that the main heritage of Prof. Fushchych is a scientific
school created by him. About 60 Philosophy Doctors whose theses he supervised work at
many institutions of the Ukraine and abroad. And his former students will make their
best to continue the ideas of Prof. Wilhelm Fushchych.
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