About solutions of an initial equation adjoint to its known solutions

Tychynin V. A.

Prydniprovs'ka State Academy of Civil Engineering and Architecture, 24a Chernyshevsky Str., Dnipropetrovsk, 49005 Ukraine, tychynin@ukr.net

A concept of solution of initial equation adjoint to its known solutions are developed and used for searching new symmetries of differential equations.

Suppose a given nonlocal transformation

$$
\begin{array}{lll}
\mathcal{T}: & x^{i}=h^{i}\left(y, v_{(k)}\right), & u^{K}=H^{K}\left(y, v_{(k)}\right), \\
& i=1, \ldots, n, & K=1, \ldots, m . \tag{1}
\end{array}
$$

maps an initial equation

$$
\begin{equation*}
F_{0}\left(x, u_{(n)}\right)=0 \tag{2}
\end{equation*}
$$

into the equation $\Phi\left(y, v_{(q)}\right)=0$ of order $q=n+k$, which admits a factorization to another, we call them a target, equation

$$
\begin{equation*}
F_{1}\left(y, v_{(s)}\right)=0, \tag{3}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\Phi\left(y, v_{(q)}\right)=\lambda F_{1}\left(y, v_{(s)}\right) . \tag{4}
\end{equation*}
$$

λ is a differential operator of order $n+k-s$. Above results in algorithms for finding solutions of (2) from known ones of (3). An existence of the factorization equation (4) give rise to technique of finding a special solution to the initial equation (2). Further we name it adjoint.

Let's assume, that a given function $v=f(y)$ is not a solution of equation (3), that is, substituting this function into (3), we get the equation

$$
\begin{equation*}
F_{1}\left(y, v_{(s)}\right)=w(y) . \tag{5}
\end{equation*}
$$

Suppose, nevertheless, that equation (4) holds and the PDE

$$
\begin{equation*}
\lambda\left(y, v_{(s)}\right) w(y)=0 . \tag{6}
\end{equation*}
$$

appears true. Here w runs through the solution set of a linear equation with variable coefficients of spatial form. Solving this equation with respect to unknown function w, one can find its solution as a function depending on $y, v_{(k)}(y)$

$$
\begin{equation*}
w=W\left(y, v_{(k)}(y)\right) . \tag{7}
\end{equation*}
$$

After substitution of this expression $w=W(y, v(y))$ into the equation (5) we obtain an inhomogeneous equation for dependent variable v in the form

$$
\begin{equation*}
F_{1}\left(y, v_{(s)}\right)=W\left(y, v_{(k)}(y)\right) . \tag{8}
\end{equation*}
$$

A function $v(y)$ determined by this equation is a solution of equation (4). Substituting obtained $v(y)$ into the formulae of a nonlocal transformation \mathcal{T} one can find appropriate solution of a given equation (2). Moreover, having the information on point symmetries of the inhomogeneous equation (8), one can construct r-parametrical family of solutions to it and, consequently, find the corresponding parametrical sets of solutions to Eq. (2). We illustrate this construction by some examples.

