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In our talk the equation
ut = uyy − yux + (ω2x+ y)uy + u (1)

is considered. In this equation we use the following designations: u = u(t, x, y) is the unknown function to be

found, ut =
∂u
∂t , ux = ∂u

∂x , uy = ∂u
∂y , uyy = ∂2u

∂y2 ; ω is an arbitrary real constant fulfilling the condition ω2 < 1
4 .

Note that equation (1) is the particular case of the known Kramers equation [1]

ut = uyy − (yu)x + ((V ′(x) + y)u)y,

describing the motion of a particle in the fluctuating environments with the external potential V (x).
By using the Berest–Aksenov algorithm [2, 3], the Lie invariance algebra of fundamental solutions of equa-

tion (1) was found, namely, it was proved the statement.

Theorem 1. The equation
ut − uyy + yux − (ω2x+ y)uy − u = δ(t, x, y), (2)

defining the fundamental solutions of equation (1) (δ = δ(t, x, y) is the delta-function) admits a non-trivial
two-dimensional Lie algebra of invariance, which is spanned by the generators:

Y1 =
{
(µ1 − µ2) e

µ1t − e−µ1t − 2µ1e
−µ2t

}
∂x +

{(
µ2
1 − ω2

)
eµ1t + µ1e

−µ1t + 2ω2e−µ2t
}
∂y+

+
{(

ω2e−µ1t + 2µ1ω
2e−µ2t

)
x−

(
µ1e

−µ1t + 2ω2e−µ2t
)
y
}
u∂u,

Y2 =
{
(µ1 − µ2) e

µ2t + 2µ2e
−µ1t + e−µ2t

}
∂x +

{(
ω2 − µ2

2

)
eµ2t − 2ω2e−µ1t − µ2e

−µ2t
}
∂y+

+
{
−
(
2µ2ω

2e−µ1t + ω2e−µ2t
)
x+

(
2ω2e−µ1t + µ2e

−µ2t
)
y
}
u∂u,

where µi (i = 1, 2) are the roots of the equation µ2 + µ+ ω2 = 0.

The fundamental solution of equation (1) was found in explicit form by Chandrasekhar in his famous
article [4]:

u =
θ(t) et

2π
√
∆

· exp
{
−A(t)x2 +B(t)xy + C(t) y2

2∆

}
, (3)

where θ = θ(t) is the Heaviside function; the functions A(t), B(t), C(t), and ∆ are equal respectively

A(t) = 4ω2et + (1− 4ω2) e2t + µ1e
−2µ2t + µ2e

−2µ1t, B(t) = 4et − 2e−2µ2t − 2e−2µ1t,

C(t) = 4et +
1− 4ω2

ω2
e2t +

1

µ1
e−2µ2t +

1

µ2
e−2µ1t, ∆ = 8et +

1− 4ω2

ω2
(e2t + 1)− 1

ω2

(
e−2µ1t + e−2µ2t

)
.

It is easy to prove that the fundamental solution (3) is invariant with respect to the generators Y1 and Y2.
Hence, the following statement takes place.

Theorem 2. The fundamental solution (3) of equation (1) is invariant with respect to the two-parametric group
of point transformations corresponding to the Lie algebra ⟨Y1, Y2⟩ of the symmetry generators of equation (2).

This theorem gives us the possibility to construct the fundamental solution (3) of equation (1) as the weak
invariant solution of equation (2).

References

1. C.W. Gardiner, Handbook of Stochastic Methods: for Physics, Chemistry and Natural Sciences, 3rd edn., Springer-
Verlag, Berlin (2004).

2. Yu.Yu. Berest, Group analysis of linear differential equations in distributions and the construction of fundamental
solutions, Differ. Equations 29 (1993), 1700–1711.

3. A.V. Aksenov, Symmetries of linear partial differential equations and fundamental solutions, Dokl. Math. 51
(1995), 329–331.

4. S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Modern Phys. 15 (1943), 1–89.

1


