Lie symmetries of fundamental solutions of the Kramers equation

Sergii Kovalenko¹, and Valeriy Stogniy²

¹ Department of Physics, Faculty of Oil, Gas and Nature Management, Poltava National Technical University, Poltava, Ukraine (e-mail: kovalenko@imath.kiev.ua)

² Department of Mathematical Physics, Faculty of Physics and Mathematics, National Technical University of Ukraine "Kyiv Polytechnic Institute", Kyiv, Ukraine (e-mail: valeriy_stogniy@mail.ru)

In our talk the equation

$$u_t = u_{yy} - yu_x + (\omega^2 x + y)u_y + u \tag{1}$$

is considered. In this equation we use the following designations: u = u(t, x, y) is the unknown function to be found, $u_t = \frac{\partial u}{\partial t}$, $u_x = \frac{\partial u}{\partial x}$, $u_y = \frac{\partial u}{\partial y}$, $u_{yy} = \frac{\partial^2 u}{\partial y^2}$; ω is an arbitrary real constant fulfilling the condition $\omega^2 < \frac{1}{4}$. Note that equation (1) is the particular case of the known Kramers equation [1]

$$u_t = u_{yy} - (yu)_x + ((V'(x) + y)u)_y,$$

describing the motion of a particle in the fluctuating environments with the external potential V(x).

By using the Berest–Aksenov algorithm [2, 3], the Lie invariance algebra of fundamental solutions of equation (1) was found, namely, it was proved the statement.

Theorem 1. The equation

$$u_t - u_{yy} + yu_x - (\omega^2 x + y)u_y - u = \delta(t, x, y),$$
(2)

defining the fundamental solutions of equation (1) ($\delta = \delta(t, x, y)$ is the delta-function) admits a non-trivial two-dimensional Lie algebra of invariance, which is spanned by the generators:

$$Y_{1} = \left\{ (\mu_{1} - \mu_{2}) e^{\mu_{1}t} - e^{-\mu_{1}t} - 2\mu_{1}e^{-\mu_{2}t} \right\} \partial_{x} + \left\{ (\mu_{1}^{2} - \omega^{2}) e^{\mu_{1}t} + \mu_{1}e^{-\mu_{1}t} + 2\omega^{2}e^{-\mu_{2}t} \right\} \partial_{y} + \\ + \left\{ (\omega^{2}e^{-\mu_{1}t} + 2\mu_{1}\omega^{2}e^{-\mu_{2}t}) x - (\mu_{1}e^{-\mu_{1}t} + 2\omega^{2}e^{-\mu_{2}t}) y \right\} u \partial_{u}, \\ Y_{2} = \left\{ (\mu_{1} - \mu_{2}) e^{\mu_{2}t} + 2\mu_{2}e^{-\mu_{1}t} + e^{-\mu_{2}t} \right\} \partial_{x} + \left\{ (\omega^{2} - \mu_{2}^{2}) e^{\mu_{2}t} - 2\omega^{2}e^{-\mu_{1}t} - \mu_{2}e^{-\mu_{2}t} \right\} \partial_{y} + \\ + \left\{ - (2\mu_{2}\omega^{2}e^{-\mu_{1}t} + \omega^{2}e^{-\mu_{2}t}) x + (2\omega^{2}e^{-\mu_{1}t} + \mu_{2}e^{-\mu_{2}t}) y \right\} u \partial_{u}, \end{cases}$$

where $\mu_i (i = 1, 2)$ are the roots of the equation $\mu^2 + \mu + \omega^2 = 0$.

The fundamental solution of equation (1) was found in explicit form by Chandrasekhar in his famous article [4]:

$$u = \frac{\theta(t) e^t}{2\pi\sqrt{\Delta}} \cdot \exp\left\{-\frac{A(t) x^2 + B(t) xy + C(t) y^2}{2\Delta}\right\},\tag{3}$$

where $\theta = \theta(t)$ is the Heaviside function; the functions A(t), B(t), C(t), and Δ are equal respectively

$$A(t) = 4\omega^{2}e^{t} + (1 - 4\omega^{2})e^{2t} + \mu_{1}e^{-2\mu_{2}t} + \mu_{2}e^{-2\mu_{1}t}, \quad B(t) = 4e^{t} - 2e^{-2\mu_{2}t} - 2e^{-2\mu_{1}t},$$

$$C(t) = 4e^{t} + \frac{1 - 4\omega^{2}}{\omega^{2}}e^{2t} + \frac{1}{\mu_{1}}e^{-2\mu_{2}t} + \frac{1}{\mu_{2}}e^{-2\mu_{1}t}, \quad \Delta = 8e^{t} + \frac{1 - 4\omega^{2}}{\omega^{2}}(e^{2t} + 1) - \frac{1}{\omega^{2}}\left(e^{-2\mu_{1}t} + e^{-2\mu_{2}t}\right).$$

It is easy to prove that the fundamental solution (3) is invariant with respect to the generators Y_1 and Y_2 . Hence, the following statement takes place.

Theorem 2. The fundamental solution (3) of equation (1) is invariant with respect to the two-parametric group of point transformations corresponding to the Lie algebra $\langle Y_1, Y_2 \rangle$ of the symmetry generators of equation (2).

This theorem gives us the possibility to construct the fundamental solution (3) of equation (1) as the weak invariant solution of equation (2).

References

1. C. W. Gardiner, Handbook of Stochastic Methods: for Physics, Chemistry and Natural Sciences, 3rd edn., Springer-Verlag, Berlin (2004).

2. Yu. Yu. Berest, Group analysis of linear differential equations in distributions and the construction of fundamental solutions, *Differ. Equations* **29** (1993), 1700–1711.

3. A.V. Aksenov, Symmetries of linear partial differential equations and fundamental solutions, *Dokl. Math.* **51** (1995), 329–331.

4. S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Modern Phys. 15 (1943), 1–89.