'Homotopy' of Prandtl and Nadai solutions

$\begin{array}{ccc} S.Senashov^1 & L.Yakhno^1 \\ & A.Yakhno^2 \end{array}$

¹Siberian State Aerospace University (Russia) ²University of Guadalajara (Mexico)

Symmetry-2009

Alexander Yakhno (UdG)

homotopy for plane plasticity

Kyiv, June 21-27, 2009

1 / 27

Actually, the mathematical theory of plasticity is one of the detailed parts of solid mechanics. The study of the plane ideal plasticity is of a fundamental importance in mechanical and civil engineering, because it serves as a model problem to calculate different technological processes.

A systematic method of determining stress fields in ideal plastic bodies obeying the Saint-Venant – Mises' yield criterion in plane strain was developed in the 1920s by Prandtl, Hencky, Mises and others. This method, generally known as the slip line theory, is based on an analysis of characteristic curves (known in the mathematical plasticity theory as slip lines) of the hyperbolic system of plane plasticity.

Image: Image:

Actually, the mathematical theory of plasticity is one of the detailed parts of solid mechanics. The study of the plane ideal plasticity is of a fundamental importance in mechanical and civil engineering, because it serves as a model problem to calculate different technological processes.

A systematic method of determining stress fields in ideal plastic bodies obeying the Saint-Venant – Mises' yield criterion in plane strain was developed in the 1920s by Prandtl, Hencky, Mises and others. This method, generally known as the slip line theory, is based on an analysis of characteristic curves (known in the mathematical plasticity theory as slip lines) of the hyperbolic system of plane plasticity.

Image: Image:

• the Prandtl solution [L. Prandtl, 1923] to describe stresses of a rectangular block of plastic-rigid material compressed between rigid parallel plates which are assumed to be rough;

• the solution for a cavity of circular form, stressed by uniform pressure;

- Nadai solutions: a) for the stresses in the plastic region around a circular cavity loaded by a constant shear stress and b) solution for the channel with straight line borders [A. Nadai, 1924];
- the spiral-symmetrical solution for the channel with logarithmic spiral borders [B. Annin, 1985].

- the Prandtl solution [L. Prandtl, 1923] to describe stresses of a rectangular block of plastic-rigid material compressed between rigid parallel plates which are assumed to be rough;
- the solution for a cavity of circular form, stressed by uniform pressure;
- Nadai solutions: a) for the stresses in the plastic region around a circular cavity loaded by a constant shear stress and b) solution for the channel with straight line borders [A. Nadai, 1924];
- the spiral-symmetrical solution for the channel with logarithmic spiral borders [B. Annin, 1985].

- the Prandtl solution [L. Prandtl, 1923] to describe stresses of a rectangular block of plastic-rigid material compressed between rigid parallel plates which are assumed to be rough;
- the solution for a cavity of circular form, stressed by uniform pressure;
- Nadai solutions: a) for the stresses in the plastic region around a circular cavity loaded by a constant shear stress and b) solution for the channel with straight line borders [A. Nadai, 1924];
- the spiral-symmetrical solution for the channel with logarithmic spiral borders [B. Annin, 1985].

- the Prandtl solution [L. Prandtl, 1923] to describe stresses of a rectangular block of plastic-rigid material compressed between rigid parallel plates which are assumed to be rough;
- the solution for a cavity of circular form, stressed by uniform pressure;
- Nadai solutions: a) for the stresses in the plastic region around a circular cavity loaded by a constant shear stress and b) solution for the channel with straight line borders [A. Nadai, 1924];
- the spiral-symmetrical solution for the channel with logarithmic spiral borders [B. Annin, 1985].

- the Prandtl solution [L. Prandtl, 1923] to describe stresses of a rectangular block of plastic-rigid material compressed between rigid parallel plates which are assumed to be rough;
- the solution for a cavity of circular form, stressed by uniform pressure;
- Nadai solutions: a) for the stresses in the plastic region around a circular cavity loaded by a constant shear stress and b) solution for the channel with straight line borders [A. Nadai, 1924];
- the spiral-symmetrical solution for the channel with logarithmic spiral borders [B. Annin, 1985].

Prandtl solution, being the first one, has obtained numerous generalizations both theoretically for the three-dimension [Ishlinskii, 1988] and plane cases, and for some practical applications.

∃ → (∃ →

The talk is structured as follows:

- u we provide some known results for the system of plane ideal plasticity;
- reproduction of exact solution by admitted symmetries;
- Solutions of Nadai to Prandtl one by homotopy and look for the suitable boundary lines.

The talk is structured as follows:

- we provide some known results for the system of plane ideal plasticity;
- reproduction of exact solution by admitted symmetries;
- Solutions of Nadai to Prandtl one by homotopy and look for the suitable boundary lines.

Image: Image:

The talk is structured as follows:

- we provide some known results for the system of plane ideal plasticity;
- eproduction of exact solution by admitted symmetries;
- I we relate two solutions of Nadai to Prandtl one by homotopy and look for the suitable boundary lines.

Image: Image:

The talk is structured as follows:

- we provide some known results for the system of plane ideal plasticity;
- 2 reproduction of exact solution by admitted symmetries;
- we relate two solutions of Nadai to Prandtl one by homotopy and look for the suitable boundary lines.

Two equilibrium equations and strongly nonlinear Saint-Venant – Mises' yield criterion (condition on the second invariant of the stress tensor):

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0, \quad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} = 0,$$

$$(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2 = 4k^2,$$

$$(1)$$

 $\sigma_x, \sigma_y, \tau_{xy}$ are components of a stress tensor, k is a constant of plasticity.

change of variables by \qquad system (1) \Rightarrow quasilinear one: Lévy

$$\sigma_{\mathbf{x}} = \sigma - k \sin 2\theta,$$

$$\sigma_{\mathbf{y}} = \sigma + k \sin 2\theta,$$

$$\tau_{\mathbf{x}\mathbf{y}} = k \cos 2\theta,$$

Two equilibrium equations and strongly nonlinear Saint-Venant – Mises' yield criterion (condition on the second invariant of the stress tensor):

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0, \quad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} = 0,$$

$$(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2 = 4k^2,$$
(1)

 $\sigma_x, \sigma_y, \tau_{xy}$ are components of a stress tensor, k is a constant of plasticity.

change of variables by \qquad system (1) \Rightarrow quasilinear one: Lévy

$$\sigma_{x} = \sigma - k \sin 2\theta, \qquad \qquad \frac{\partial \sigma}{\partial x} - 2k \left(\frac{\partial \theta}{\partial x} \cos 2\theta + \frac{\partial \theta}{\partial y} \sin 2\theta \right) \\ \tau_{xy} = k \cos 2\theta, \qquad \qquad \frac{\partial \sigma}{\partial y} - 2k \left(\frac{\partial \theta}{\partial x} \sin 2\theta - \frac{\partial \theta}{\partial y} \cos 2\theta \right)$$

Two equilibrium equations and strongly nonlinear Saint-Venant – Mises' yield criterion (condition on the second invariant of the stress tensor):

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0, \quad \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} = 0,$$

$$(\sigma_x - \sigma_y)^2 + 4\tau_{xy}^2 = 4k^2,$$
(1)

 $\sigma_x, \sigma_y, \tau_{xy}$ are components of a stress tensor, k is a constant of plasticity.

change of variables by $(1) \Rightarrow quasilinear one:$ Lévy

$$\sigma_{x} = \sigma - k \sin 2\theta, \qquad \qquad \frac{\partial \sigma}{\partial x} - 2k \left(\frac{\partial \theta}{\partial x} \cos 2\theta + \frac{\partial \theta}{\partial y} \sin 2\theta \right) = 0, \\ \tau_{xy} = k \cos 2\theta, \qquad \qquad \frac{\partial \sigma}{\partial y} - 2k \left(\frac{\partial \theta}{\partial x} \sin 2\theta - \frac{\partial \theta}{\partial y} \cos 2\theta \right) = 0,$$
(2)

 σ is hydrostatic pressure, $\theta + \pi/4$ is the angle between the first principal direction of a stress tensor and the *ox*-axis.

Alexander Yakhno (UdG)

homotopy for plane plasticity

System is a hyperbolic one and has two families of characteristic curves defined from equations:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan \theta, \quad \frac{\mathrm{d}y}{\mathrm{d}x} = -\cot \theta.$$

with corresponding Riemann invariants:

$$\xi = \sigma/(2k) - \theta, \ \eta = \sigma/(2k) + \theta.$$

by means of applying hodograph transformation $x = x(\sigma, \theta)$, $y = y(\sigma, \theta)$ one can obtain the corresponding linear system $(J \neq 0)$:

$$\frac{\partial x}{\partial \theta} - 2k \left(\frac{\partial x}{\partial \sigma} \cos 2\theta + \frac{\partial y}{\partial \sigma} \sin 2\theta \right) = 0,$$
$$\frac{\partial y}{\partial \theta} - 2k \left(\frac{\partial x}{\partial \sigma} \sin 2\theta - \frac{\partial y}{\partial \sigma} \cos 2\theta \right) = 0.$$

In Mikhlin variables u, v:

Alexander Yakhno (UdG)

System is a hyperbolic one and has two families of characteristic curves defined from equations:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \tan \theta, \quad \frac{\mathrm{d}y}{\mathrm{d}x} = -\cot \theta.$$

with corresponding Riemann invariants:

$$\xi = \sigma/(2k) - \theta, \ \eta = \sigma/(2k) + \theta.$$

by means of applying hodograph transformation $x = x(\sigma, \theta)$, $y = y(\sigma, \theta)$ one can obtain the corresponding linear system $(J \neq 0)$:

$$\frac{\partial x}{\partial \theta} - 2k \left(\frac{\partial x}{\partial \sigma} \cos 2\theta + \frac{\partial y}{\partial \sigma} \sin 2\theta \right) = 0,$$
$$\frac{\partial y}{\partial \theta} - 2k \left(\frac{\partial x}{\partial \sigma} \sin 2\theta - \frac{\partial y}{\partial \sigma} \cos 2\theta \right) = 0.$$

In Mikhlin variables *u*, *v*

Alexander Yakhno (UdG)

$$\xi = \sigma/(2k) - \theta, \ \eta = \sigma/(2k) + \theta.$$

by means of applying hodograph transformation $x = x(\sigma, \theta)$, $y = y(\sigma, \theta)$ one can obtain the corresponding linear system $(J \neq 0)$:

$$\frac{\partial x}{\partial \theta} - 2k \left(\frac{\partial x}{\partial \sigma} \cos 2\theta + \frac{\partial y}{\partial \sigma} \sin 2\theta \right) = 0,$$
$$\frac{\partial y}{\partial \theta} - 2k \left(\frac{\partial x}{\partial \sigma} \sin 2\theta - \frac{\partial y}{\partial \sigma} \cos 2\theta \right) = 0.$$

In Mikhlin variables u, v:

$$x = u \cos \theta - v \sin \theta$$
, $y = u \sin \theta + v \cos \theta$,

and taking ξ , η as a new independent ones:

$$\frac{\partial u}{\partial \xi} + \frac{v}{2} = 0, \ \frac{\partial v}{\partial \eta} + \frac{u}{2} = 0.$$

$$\frac{\partial u}{\partial \xi} + \frac{v}{2} = 0, \ \frac{\partial v}{\partial \eta} + \frac{u}{2} = 0.$$

is integrated by the method of Riemann and generally is expressed in therms of Bessel function of zero order [Geiringer, 1958].

 $(x, y) \iff (\sigma, \theta)$: • if $J_1 = \partial(\sigma, \theta) / \partial(x, y) = 0$ we could not linearize (simple stress state). • if $J_2 = \partial(x, y) / \partial(\sigma, \theta) = 0$ we couldn't regress.

[H.Geiringer, 1958]: if a family of slip lines has an envelope $(J_2 = 0)$, then it well be a natural boundary for the analytic solution.

$$\frac{\partial u}{\partial \xi} + \frac{v}{2} = 0, \ \frac{\partial v}{\partial \eta} + \frac{u}{2} = 0.$$

is integrated by the method of Riemann and generally is expressed in therms of Bessel function of zero order [Geiringer, 1958].

(x, y)
$$\iff$$
 (σ , θ):
(a) if $J_1 = \partial(\sigma, \theta) / \partial(x, y) = 0$ we could not linearize (simple stress state).
(a) if $J_2 = \partial(x, y) / \partial(\sigma, \theta) = 0$ we couldn't regress.

[H.Geiringer, 1958]: if a family of slip lines has an envelope $(J_2 = 0)$, then it well be a natural boundary for the analytic solution.

$$\frac{\partial u}{\partial \xi} + \frac{v}{2} = 0, \ \frac{\partial v}{\partial \eta} + \frac{u}{2} = 0.$$

is integrated by the method of Riemann and generally is expressed in therms of Bessel function of zero order [Geiringer, 1958].

$$(x, y) \iff (\sigma, \theta)$$
:
1 if $J_1 = \partial(\sigma, \theta) / \partial(x, y) = 0$ we could not linearize (simple stress state).
2 if $J_2 = \partial(x, y) / \partial(\sigma, \theta) = 0$ we couldn't regress.

[H.Geiringer, 1958]: if a family of slip lines has an envelope $(J_2 = 0)$, then it well be a natural boundary for the analytic solution.

$$\frac{\partial u}{\partial \xi} + \frac{v}{2} = 0, \ \frac{\partial v}{\partial \eta} + \frac{u}{2} = 0.$$

is integrated by the method of Riemann and generally is expressed in therms of Bessel function of zero order [Geiringer, 1958].

[H.Geiringer, 1958]: if a family of slip lines has an envelope $(J_2 = 0)$, then it well be a natural boundary for the analytic solution.

$$\frac{\partial u}{\partial \xi} + \frac{v}{2} = 0, \ \frac{\partial v}{\partial \eta} + \frac{u}{2} = 0.$$

is integrated by the method of Riemann and generally is expressed in therms of Bessel function of zero order [Geiringer, 1958].

[H.Geiringer, 1958]: if a family of slip lines has an envelope $(J_2 = 0)$, then it well be a natural boundary for the analytic solution.

[Senashov, 1988]: Lie algebra L of point transformations is formed by:

$$\begin{split} X_1 &= x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}, \ X_2 = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} - \frac{\partial}{\partial \theta}, \ X_3 = \frac{\partial}{\partial \sigma}, \\ X_4 &= \xi_1(x, y, \sigma, \theta) \frac{\partial}{\partial x} + \xi_2(x, y, \sigma, \theta) \frac{\partial}{\partial y} - 4k\theta \frac{\partial}{\partial \sigma} - \frac{\sigma}{k} \frac{\partial}{\partial \theta}, \\ X_5 &= x_0(\sigma, \theta) \frac{\partial}{\partial x} + y_0(\sigma, \theta) \frac{\partial}{\partial y}, \end{split}$$

where

$$\xi_1 = x\cos 2 heta + y\sin 2 heta + yrac{\sigma}{k}, \ \xi_2 = x\sin 2 heta - y\cos 2 heta - xrac{\sigma}{k},$$

and (x_0, y_0) is an arbitrary solution of linearized system.

- X_1 scales in the plane $xy: x' = e^{a_1}x, y' = e^{a_1}y;$
- X₂ rotation group:

 $x' = x \cos a_2 + y \sin a_2, \ y' = -x \sin a_2 + y \cos a_2, \ heta' = heta + a_2;$

• X_3 translation of σ : $\sigma' = \sigma + a_3$;

Alexander Yakhno (UdG)

[Senashov, 1988]: Lie algebra L of point transformations is formed by:

$$X_{1} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}, X_{2} = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} - \frac{\partial}{\partial \theta}, X_{3} = \frac{\partial}{\partial \sigma},$$

$$X_{4} = \xi_{1}(x, y, \sigma, \theta) \frac{\partial}{\partial x} + \xi_{2}(x, y, \sigma, \theta) \frac{\partial}{\partial y} - 4k\theta \frac{\partial}{\partial \sigma} - \frac{\sigma}{k} \frac{\partial}{\partial \theta},$$

$$X_{5} = x_{0}(\sigma, \theta) \frac{\partial}{\partial x} + y_{0}(\sigma, \theta) \frac{\partial}{\partial y},$$

X₁ scales in the plane xy: x' = e^{a1}x, y' = e^{a1}y;
X₂ rotation group:

 $x' = x \cos a_2 + y \sin a_2, \ y' = -x \sin a_2 + y \cos a_2, \ \theta' = \theta + a_2;$

$$x' = x + a_5 x_0(\sigma, \theta), \ y' = y + a_5 y_0(\sigma, \theta),$$

Alexander Yakhno (UdG)

[Senashov, 1988]: Lie algebra L of point transformations is formed by:

$$\begin{split} X_1 &= x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}, \ X_2 = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} - \frac{\partial}{\partial \theta}, \ X_3 = \frac{\partial}{\partial \sigma}, \\ X_4 &= \xi_1(x, y, \sigma, \theta) \frac{\partial}{\partial x} + \xi_2(x, y, \sigma, \theta) \frac{\partial}{\partial y} - 4k\theta \frac{\partial}{\partial \sigma} - \frac{\sigma}{k} \frac{\partial}{\partial \theta}, \\ X_5 &= x_0(\sigma, \theta) \frac{\partial}{\partial x} + y_0(\sigma, \theta) \frac{\partial}{\partial y}, \end{split}$$

X₁ scales in the plane xy: x' = e^{a1}x, y' = e^{a1}y;
X₂ rotation group:

 $x' = x \cos a_2 + y \sin a_2, \ y' = -x \sin a_2 + y \cos a_2, \ \theta' = \theta + a_2;$

• X_3 translation of σ : $\sigma' = \sigma + a_3$;

• X₅ corresponds to linearization xy:

$$x' = x + a_5 x_0(\sigma, \theta), \ y' = y + a_5 y_0(\sigma, \theta),$$

[Senashov, 1988]: Lie algebra L of point transformations is formed by:

$$\begin{split} X_1 &= x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}, \ X_2 = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y} - \frac{\partial}{\partial \theta}, \ X_3 = \frac{\partial}{\partial \sigma}, \\ X_4 &= \xi_1(x, y, \sigma, \theta) \frac{\partial}{\partial x} + \xi_2(x, y, \sigma, \theta) \frac{\partial}{\partial y} - 4k\theta \frac{\partial}{\partial \sigma} - \frac{\sigma}{k} \frac{\partial}{\partial \theta}, \\ X_5 &= x_0(\sigma, \theta) \frac{\partial}{\partial x} + y_0(\sigma, \theta) \frac{\partial}{\partial y}, \end{split}$$

X₁ scales in the plane xy: x' = e^{a1}x, y' = e^{a1}y;
X₂ rotation group:

 $x' = x \cos a_2 + y \sin a_2, \ y' = -x \sin a_2 + y \cos a_2, \ \theta' = \theta + a_2;$

• X_3 translation of σ : $\sigma' = \sigma + a_3$;

• X₅ corresponds to linearization xy:

$$x' = x + a_5 x_0(\sigma, \theta), \ y' = y + a_5 y_0(\sigma, \theta),$$

One parametric group of X_4 :

$$\begin{aligned} x' &= ue^{a_4} \cos \theta' - ve^{-a_4} \sin \theta', \\ y' &= ue^{a_4} \sin \theta' + ve^{-a_4} \cos \theta', \\ \sigma' &= 2k \left(\frac{\sigma}{2k} \cosh 2a_4 - \theta \sinh 2a_4\right), \\ \theta' &= -\left(\frac{\sigma}{2k} \sinh 2a_4 - \theta \cosh 2a_4\right), \end{aligned}$$

where u and v are Mikhlin variables:

$$u = x \cos \theta + y \sin \theta, \ v = -x \sin \theta + y \cos \theta.$$

 X_4 acts over $u(\xi,\eta)$, $v(\xi,\eta)$ as a scales:

$$u' = e^{a_4}u, v' = e^{-a_4}v, \xi' = e^{2a_4}\xi, \eta' = e^{-2a_4}\eta,$$

so for x, y, σ, θ we can call them **quasi-scales**.

Alexander Yakhno (UdG)

One parametric group of X_4 :

$$\begin{aligned} x' &= ue^{a_4} \cos \theta' - ve^{-a_4} \sin \theta', \\ y' &= ue^{a_4} \sin \theta' + ve^{-a_4} \cos \theta', \\ \sigma' &= 2k \left(\frac{\sigma}{2k} \cosh 2a_4 - \theta \sinh 2a_4\right), \\ \theta' &= -\left(\frac{\sigma}{2k} \sinh 2a_4 - \theta \cosh 2a_4\right), \end{aligned}$$

where u and v are Mikhlin variables:

$$u = x \cos \theta + y \sin \theta$$
, $v = -x \sin \theta + y \cos \theta$.

 X_4 acts over $u(\xi,\eta)$, $v(\xi,\eta)$ as a scales:

$$u' = e^{a_4}u, v' = e^{-a_4}v, \xi' = e^{2a_4}\xi, \eta' = e^{-2a_4}\eta,$$

so for x, y, σ, θ we can call them **quasi-scales**.

Alexander Yakhno (UdG)

Prandtl solution

In terms of variables σ , θ has the form:

$$\sigma = -p_1 - k\frac{x}{h} + k\sqrt{1 - \frac{y^2}{h^2}}, \ y = h\cos 2\theta,$$

where 2h = const is the height of a block, $p_1 = \text{const}$ is a value of the pressure on the plate when x = 0. Boundary conditions:

The slip lines families are the parts of cycloids:

 $x = h(\mp 2 heta - \sin 2 heta) - h(2C_i + p_1/k), \ y = h\cos 2 heta, \ i = 1, 2,$

have two envelopes $y = \pm h$.

Alexander Yakhno (UdG)

Kyiv, June 21-27, 2009

Prandtl solution

In terms of variables σ , θ has the form:

$$\sigma = -p_1 - k\frac{x}{h} + k\sqrt{1 - \frac{y^2}{h^2}}, \ y = h\cos 2\theta,$$

where 2h = const is the height of a block, $p_1 = \text{const}$ is a value of the pressure on the plate when x = 0. Boundary conditions:

The slip lines families are the parts of cycloids:

$$x = h(\mp 2\theta - \sin 2\theta) - h(2C_i + p_1/k), \ y = h\cos 2\theta, \ i = 1, 2,$$

have two envelopes $y = \pm h$.

Alexander Yakhno (UdG)

Kyiv, June 21-27, 2009

Is invariant solution for subalgebra $< X_3 + \gamma X_5 >$. Acting by quasi-scales X_4 we obtain «reproduced» solution:

$$\begin{aligned} -\frac{x}{h} &= e^{a_4} \sin \theta \cos \theta' + e^{-a_4} \cos \theta \sin \theta' + \\ &+ \frac{\sigma' + p_1}{k} (e^{a_4} \sin \theta \sin \theta' + e^{-a_4} \cos \theta \cos \theta'), \\ \frac{y}{h} &= e^{a_4} \cos \theta \cos \theta' - e^{-a_4} \sin \theta \sin \theta' + \\ &+ \frac{\sigma' + p_1}{k} (e^{a_4} \cos \theta \sin \theta' - e^{-a_4} \sin \theta \cos \theta'), \end{aligned}$$

where $\theta = \frac{\sigma'}{2k} \sinh 2a_4 + \theta' \cosh 2a_4$ and parametric equations for «deformed» slip lines (θ' is parameter):

$$\begin{aligned} x &= -\frac{h}{k} \left(2k(K_1 + \theta') + p_1 \right) \left(\cosh a_4 \cos(\theta - \theta') - \sinh a_4 \cos(\theta + \theta') \right) - \\ &- h \left(\sinh a_4 \sin(\theta - \theta') + \cosh a_4 \sin(\theta + \theta') \right), \\ y &= -\frac{h}{k} \left(2k(K_1 + \theta') + p_1 \right) \left(\cosh a_4 \sin(\theta - \theta') - \sinh a_4 \sin(\theta + \theta') \right) - \\ &- h \left(-\sinh a_4 \cos(\theta - \theta') - \cosh a_4 \cos(\theta + \theta') \right) + \theta - K_1 \sinh 2a_4 + \theta' e^2 \\ &- Alexander Yakhno (UdG) \qquad homotopy for plane plasticity = Kyiv, June 21-27, 2009 = 11/2 \end{aligned}$$

Is invariant solution for subalgebra $< X_3 + \gamma X_5 >$. Acting by quasi-scales X_4 we obtain «reproduced» solution:

$$\begin{aligned} -\frac{x}{h} &= e^{a_4} \sin \theta \cos \theta' + e^{-a_4} \cos \theta \sin \theta' + \\ &+ \frac{\sigma' + p_1}{k} (e^{a_4} \sin \theta \sin \theta' + e^{-a_4} \cos \theta \cos \theta'), \\ \frac{y}{h} &= e^{a_4} \cos \theta \cos \theta' - e^{-a_4} \sin \theta \sin \theta' + \\ &+ \frac{\sigma' + p_1}{k} (e^{a_4} \cos \theta \sin \theta' - e^{-a_4} \sin \theta \cos \theta'), \end{aligned}$$

where $\theta = \frac{\sigma'}{2k} \sinh 2a_4 + \theta' \cosh 2a_4$ and parametric equations for «deformed» slip lines (θ' is parameter):

$$\begin{aligned} x &= -\frac{h}{k} \left(2k(K_1 + \theta') + p_1 \right) \left(\cosh a_4 \cos(\theta - \theta') - \sinh a_4 \cos(\theta + \theta') \right) - \\ &- h \left(\sinh a_4 \sin(\theta - \theta') + \cosh a_4 \sin(\theta + \theta') \right), \\ y &= -\frac{h}{k} \left(2k(K_1 + \theta') + p_1 \right) \left(\cosh a_4 \sin(\theta - \theta') - \sinh a_4 \sin(\theta + \theta') \right) - \\ &- h \left(-\sinh a_4 \cos(\theta - \theta') - \cosh a_4 \cos(\theta + \theta') \right), \\ \theta &= K_1 \sinh 2a_4 + \theta' e^{2a_4} \\ \text{Alexander Yakhon} \left(\text{UdG} \right) \end{aligned}$$

To construct the envelope for the family of characteristics $x = x(\theta', K_i)$, $y = y(\theta', K_i)$ use necessary condition of existence:

$$\frac{\partial x}{\partial K_i}\frac{\partial y}{\partial \theta'} - \frac{\partial y}{\partial K_i}\frac{\partial x}{\partial \theta'} = 0, \quad i = 1, 2,$$

due to relations along characteristics gives for *K*_i:

$$\frac{\partial x}{\partial K_1} - \frac{\partial y}{\partial K_1} \cot \theta' = 0, \quad \frac{\partial x}{\partial K_2} + \frac{\partial y}{\partial K_2} \tan \theta' = 0,$$

therefore

$$\begin{split} & K_1 = -\theta' - p_1/(2k) + \left(e^{2a_4}/\sinh 2a_4 - 1/2\right)\tan\theta', \ a_4 \neq 0 \\ & K_2 = \theta' - p_1/(2k) - \left(e^{-2a_4}/\sinh 2a_4 + 1/2\right)\cot\theta', \end{split}$$

Alexander Yakhno (UdG)

Kyiv, June 21-27, 2009

To construct the envelope for the family of characteristics $x = x(\theta', K_i)$, $y = y(\theta', K_i)$ use necessary condition of existence:

$$\frac{\partial x}{\partial K_i}\frac{\partial y}{\partial \theta'} - \frac{\partial y}{\partial K_i}\frac{\partial x}{\partial \theta'} = 0, \quad i = 1, 2,$$

due to relations along characteristics gives for K_i :

$$\frac{\partial x}{\partial K_1} - \frac{\partial y}{\partial K_1} \cot \theta' = 0, \quad \frac{\partial x}{\partial K_2} + \frac{\partial y}{\partial K_2} \tan \theta' = 0,$$

therefore

$$\begin{split} & \mathcal{K}_1 = -\theta' - p_1/(2k) + \left(e^{2a_4}/\sinh 2a_4 - 1/2\right)\tan\theta', \ a_4 \neq 0 \\ & \mathcal{K}_2 = \theta' - p_1/(2k) - \left(e^{-2a_4}/\sinh 2a_4 + 1/2\right)\cot\theta', \end{split}$$

Alexander Yakhno (UdG)

Slip line field looks as shown

describes the block of plastic-rigid material compressed between rigid plates of specific form.

Alexander Yakhno (UdG)

Kyiv, June 21-27, 2009

9 13 / 27

Group foliation

Quasilinear plasticity system is automorphic one with respect to the group

$$X_{5} = x_{0}(\sigma, \theta) \frac{\partial}{\partial x} + y_{0}(\sigma, \theta) \frac{\partial}{\partial y}$$
$$x' = x + a_{5}x_{0}(\sigma, \theta),$$
$$y' = y + a_{5}y_{0}(\sigma, \theta),$$

since any nonsingular solution (with Jacobian \neq 0) can be moved to another nonsingular solution by group transformation. Let $\chi_1 = (x_1(\sigma, \theta), y_1(\sigma, \theta)),$ $\chi_2 = (x_2(\sigma, \theta), y_2(\sigma, \theta))$ are two solutions of linearized system, define implicitly two solutions U_1 μ U_2 of quasilinear system. Let us take in X_5 :

 $x_0 = x_1 - x_2, \ y_0 = y_1 - y_2 \Rightarrow$

 $\begin{aligned} x' &= x_2 + a_5 x_0 = a_5 x_1 + (1 - a_5) x_2, \\ y' &= y_2 + a_5 y_0 = a_5 y_1 + (1 - a_5) y_2, \end{aligned}$

that gives the linear combination of two solutions and defines the family of reproduced solutions:

 $\sigma = \sigma(x, y, a_5), \ \theta = \theta(x, y, a_5).$

Group foliation

Quasilinear plasticity system is automorphic one with respect to the group

$$X_{5} = x_{0}(\sigma, \theta) \frac{\partial}{\partial x} + y_{0}(\sigma, \theta) \frac{\partial}{\partial y}$$
$$x' = x + a_{5}x_{0}(\sigma, \theta),$$
$$y' = y + a_{5}y_{0}(\sigma, \theta),$$

since any nonsingular solution (with Jacobian $\neq 0$) can be moved to another nonsingular solution by group transformation. Let $\chi_1 = (x_1(\sigma, \theta), y_1(\sigma, \theta)),$ $\chi_2 = (x_2(\sigma, \theta), y_2(\sigma, \theta))$ are two solutions of linearized system, define implicitly two solutions U_1 in U_2 of quasilinear system. Let us take in X_5 :

$$x_0 = x_1 - x_2, \ y_0 = y_1 - y_2 \Rightarrow$$

$$\begin{aligned} x' &= x_2 + a_5 x_0 = a_5 x_1 + (1 - a_5) x_2, \\ y' &= y_2 + a_5 y_0 = a_5 y_1 + (1 - a_5) y_2, \end{aligned}$$

that gives the linear combination of two solutions and defines the family of reproduced solutions:

$$\sigma = \sigma(x, y, a_5), \ \theta = \theta(x, y, a_5).$$

One can relate two nonsingular solutions U_1 , U_2 , represented in the form χ_1 , χ_2 .

The linear combination of this form can be called «homotopy» of solution χ_1 , χ_2 .

Let $\chi_1 = (x_1(\sigma, \theta), y_1(\sigma, \theta)),$ $\chi_2 = (x_2(\sigma, \theta), y_2(\sigma, \theta))$ are two solutions of linearized system, define implicitly two solutions U_1 in U_2 of quasilinear system. Let us take in X_5 :

$$x_0 = x_1 - x_2, \ y_0 = y_1 - y_2 \Rightarrow$$

$$\begin{aligned} x' &= x_2 + a_5 x_0 = a_5 x_1 + (1 - a_5) x_2, \\ y' &= y_2 + a_5 y_0 = a_5 y_1 + (1 - a_5) y_2, \end{aligned}$$

that gives the linear combination of two solutions and defines the family of reproduced solutions:

$$\sigma = \sigma(x, y, a_5), \ \theta = \theta(x, y, a_5).$$

Nadai solution [Nadai, 1924]

in therms of the functions σ , θ can be written:

$$\sigma = -kc \left[\ln \left(x^2 + y^2 \right) + \ln \left\{ c + \sin \left(2\theta - 2 \arctan \frac{y}{x} \right) \right\} \right] + A,$$

$$\theta = \arctan \frac{y}{x} - \frac{\pi}{4} + \arctan \left\{ \sqrt{\frac{c-1}{c+1}} \tan \frac{\sqrt{c^2 - 1}}{c} \left(\theta + \frac{\pi}{4} \right) \right\},$$

satisfied boundary conditions:

$$\theta|_{\varphi=\alpha} = \alpha, \quad \sigma|_{\varphi=\alpha} = -kc\ln(x^2 + y^2) + A.$$

Constant c > 1 is related to channel angle 2α in the following way:

$$\alpha + \pi/4 = rac{c}{\sqrt{c^2 - 1}} \arctan \sqrt{(c + 1)/(c - 1)}, \quad \alpha \in (0, \pi/2).$$

Alexander Yakhno (UdG)

Nadai solution [Nadai, 1924]

in therms of the functions σ , θ can be written:

$$\sigma = -kc \left[\ln \left(x^2 + y^2 \right) + \ln \left\{ c + \sin \left(2\theta - 2 \arctan \frac{y}{x} \right) \right\} \right] + A,$$

$$\theta = \arctan \frac{y}{x} - \frac{\pi}{4} + \arctan \left\{ \sqrt{\frac{c-1}{c+1}} \tan \frac{\sqrt{c^2-1}}{c} \left(\theta + \frac{\pi}{4} \right) \right\},$$

satisfied boundary conditions:

$$\theta|_{\varphi=\alpha} = \alpha, \quad \sigma|_{\varphi=\alpha} = -kc\ln(x^2 + y^2) + A.$$

Constant c>1 is related to channel angle 2α in the following way:

$$lpha+\pi/4=rac{c}{\sqrt{c^2-1}} rctan \sqrt{(c+1)/(c-1)}, \quad lpha\in (0,\pi/2)\,.$$

Alexander Yakhno (UdG)

Kyiv, June 21-27, 2009

→ ∃ →

15 / 27

The sides of the channel are rough and it is supposed that the frictional stress is constant.

flow of plastic material through the wedge-shaped converging channel (total angle $2lpha)_{lpha}$,

The Nadai solution for the linearized system has the form (index N):

$$\begin{aligned} x_N &= \pm \exp\left(\frac{A-\sigma}{2kc}\right) S^{-1}(\theta), \quad y_N &= \pm x_N T(\theta), \\ T(\theta) &= \tan\left[\theta + \pi/4 - \right. \\ &- \arctan\left\{\sqrt{\frac{c-1}{c+1}} \tan\frac{\sqrt{c^2-1}}{c} \left(\theta + \frac{\pi}{4}\right)\right\}\right], \\ S(\theta) &= \sqrt{c + cT^2(\theta) + (1 - T^2(\theta))\sin 2\theta - 2T(\theta)\cos 2\theta}. \end{aligned}$$

The Prandtl solution of the linearized system (index *P*):

$$x_P = -\sigma h/k - p_1 h/k - h \sin 2\theta$$
, $y_P = h \cos 2\theta$.

Homotopy of two solutions:

$$x = ax_N + (1 - a_5)x_P, \ y = a_5y_N + (1 - a_5)y_P.$$

gives the equations of envelopes:

The Nadai solution for the linearized system has the form (index N):

$$\begin{aligned} x_N &= \pm \exp\left(\frac{A-\sigma}{2kc}\right) S^{-1}(\theta), \quad y_N &= \pm x_N T(\theta), \\ T(\theta) &= \tan\left[\theta + \pi/4 - \right. \\ &- \arctan\left\{\sqrt{\frac{c-1}{c+1}} \tan\frac{\sqrt{c^2-1}}{c}\left(\theta + \frac{\pi}{4}\right)\right\}\right], \\ S(\theta) &= \sqrt{c+cT^2(\theta) + (1-T^2(\theta))\sin 2\theta - 2T(\theta)\cos 2\theta} \end{aligned}$$

The Prandtl solution of the linearized system (index P):

$$x_P = -\sigma h/k - p_1 h/k - h \sin 2\theta$$
, $y_P = h \cos 2\theta$.

Homotopy of two solutions:

$$x = ax_N + (1 - a_5)x_P, \ y = a_5y_N + (1 - a_5)y_P.$$

gives the equations of envelopes:

Alexander Yakhno (UdG)

$$\begin{split} \Gamma_1 : x &= (a_5 - 1)h\left(\sin 2\theta - 2c \ln\left(2hc\frac{a_5 - 1}{a_5}\frac{S(\theta)}{1 - T(\theta)\cot\theta}\right)\right) \\ &- \frac{2(1 - a_5)hc}{1 - T(\theta)\cot\theta} - \frac{(1 - a_5)h}{k}\left(A + p_1\right), \ \theta \in (0, \alpha), \\ y &= (1 - a_5)h\cos 2\theta - \frac{2(1 - a_5)hc}{1 - T(\theta)\cot\theta}T(\theta); \end{split}$$

$$\begin{split} \Gamma_2 : x &= (a_5 - 1)h\left(\sin 2\theta - 2c\ln\left(2hc\frac{a_5 - 1}{a_5}\frac{S(\theta)}{1 + T(\theta)\tan\theta}\right)\right) \\ &- \frac{2(1 - a_5)hc}{1 + T(\theta)\tan\theta} - \frac{(1 - a_5)h}{k}\left(A + p_1\right), \\ y &= (1 - a_5)h\cos 2\theta - \frac{2(1 - a_5)hc}{1 + T(\theta)\tan\theta}T(\theta), \\ \theta &\in (-\alpha - \pi/2, -\pi/2) \,. \end{split}$$

Note, that envelope Γ_1 is transformed to envelope Γ_2 through the change of θ for $-\pi/2 - \theta$.

Alexander Yakhno (UdG)

Kyiv, June 21-27, 2009

18 / 27

$$\begin{split} \Gamma_1 : x &= (a_5 - 1)h\left(\sin 2\theta - 2c \ln\left(2hc\frac{a_5 - 1}{a_5}\frac{S(\theta)}{1 - T(\theta)\cot\theta}\right)\right) \\ &- \frac{2(1 - a_5)hc}{1 - T(\theta)\cot\theta} - \frac{(1 - a_5)h}{k}\left(A + p_1\right), \ \theta \in (0, \alpha), \\ y &= (1 - a_5)h\cos 2\theta - \frac{2(1 - a_5)hc}{1 - T(\theta)\cot\theta}T(\theta); \end{split}$$

$$\begin{split} \Gamma_2 : x &= (a_5 - 1)h\left(\sin 2\theta - 2c\ln\left(2hc\frac{a_5 - 1}{a_5}\frac{S(\theta)}{1 + T(\theta)\tan\theta}\right)\right) \\ &- \frac{2(1 - a_5)hc}{1 + T(\theta)\tan\theta} - \frac{(1 - a_5)h}{k}\left(A + p_1\right), \\ y &= (1 - a_5)h\cos 2\theta - \frac{2(1 - a_5)hc}{1 + T(\theta)\tan\theta}T(\theta), \\ \theta &\in (-\alpha - \pi/2, -\pi/2). \end{split}$$

Note, that envelope Γ_1 is transformed to envelope Γ_2 through the change of θ for $-\pi/2 - \theta$.

Alexander Yakhno (UdG)

Kyiv, June 21-27, 2009

18 / 27

For $a_5 \in (0, 1)$ the homotopy solution is an exact implicit solution of plasticity system. It describes the stresses for the block with borders Γ_1 , Γ_2 .

$$a_5 = 0.4, c = 1.4, A = 0, h = p_1 = k = 1$$

Boundary conditions:

Alexa

$$\sigma|_{\Gamma_{1}} = A - 2kc \ln \left(-2hc \frac{1-a_{5}}{a_{5}} \frac{S(\theta)}{1-T(\theta)\cot\theta} \right), \ \theta \in (0,\alpha);$$

$$\sigma|_{\Gamma_{2}} = A - 2kc \ln \left(2hc \frac{a_{5}-1}{a_{5}} \frac{S(\theta)}{1+T(\theta)\tan\theta} \right), \ \theta \in (-\pi/2 - \alpha, -\pi/2).$$

$$rder Yakhon (146) \qquad hametony for plane planticity = Kiv, lung 21.27, 2009 = 19/27.$$

Nadai solution for a circular cavity

[A. Nadai, 1924] for the plastic zone around a circular cavity of the radius R, subjected to a constant shear stress ($\neq 0$) in addition to uniform pressure can be expressed as follows:

$$\sigma = -k \ln \tan \left(eta + \pi/4
ight) - p, \ heta = arphi - \pi/2 + eta, \ \cos 2eta = R^2/r^2 > 0$$

 (r, φ) are polar coordinates. Boundary conditions:

$$\sigma|_{r=R} = -p, \quad \theta|_{r=R} = \varphi - \pi/2.$$

Corresponding solution for linearized system is (index *NC*):

$$x_{NC} = -R\left(\sin\theta\cosh\frac{\sigma+p}{2k} + \cos\theta\sinh\frac{\sigma+p}{2k}\right),$$
$$y_{NC} = -R\left(\sin\theta\sinh\frac{\sigma+p}{2k} - \cos\theta\cosh\frac{\sigma+p}{2k}\right).$$

Alexander Yakhno (UdG)

homotopy for plane plasticity

Nadai solution for a circular cavity

[A. Nadai, 1924] for the plastic zone around a circular cavity of the radius R, subjected to a constant shear stress ($\neq 0$) in addition to uniform pressure can be expressed as follows:

$$\sigma = -k \ln \tan \left(eta + \pi/4
ight) - p, \ heta = arphi - \pi/2 + eta, \ \cos 2eta = R^2/r^2 > 0$$

 (r, φ) are polar coordinates. Boundary conditions:

$$\sigma|_{r=R} = -p, \quad \theta|_{r=R} = \varphi - \pi/2.$$

Corresponding solution for linearized system is (index NC):

$$x_{NC} = -R\left(\sin\theta\cosh\frac{\sigma+p}{2k} + \cos\theta\sinh\frac{\sigma+p}{2k}\right),$$
$$y_{NC} = -R\left(\sin\theta\sinh\frac{\sigma+p}{2k} - \cos\theta\cosh\frac{\sigma+p}{2k}\right).$$

Alexander Yakhno (UdG)

Equations for characteristics:

 $\begin{aligned} x &= -R\left(\sin\theta\cosh\left(\pm\theta + C_i + p/(2k)\right) + \cos\theta\sinh\left(\pm\theta + C_i + p/(2k)\right)\right), \\ y &= -R\left(\sin\theta\sinh\left(\pm\theta + C_i + p/(2k)\right) - \cos\theta\cosh\left(\pm\theta + C_i + p/(2k)\right)\right). \end{aligned}$

Alexander Yakhno (UdG)

homotopy for plane plasticity

Kyiv, June 21-27, 2009

Homotopy with Prandtl solution:

$$x = a_5 x_P + (1 - a_5) x_{NC}, \quad y = a_5 y_P + (1 - a_5) y_{NC}.$$

Equation of envelope for corresponding family of slip-lines looks:

$$\begin{aligned} \Gamma : x &= a_5 h(p - p_1)/k - 2 a_5 h \operatorname{arsinh} \frac{2 a_5 h \sin \theta}{R(a_5 - 1)} - \\ &- \sin \theta \sqrt{4 a_5^2 h^2 \sin^2 \theta + R^2 (1 - a_5)^2}, \ a_5 \neq 1, \\ y &= a_5 h + \cos \theta \sqrt{4 a_5^2 h^2 \sin^2 \theta + R^2 (1 - a_5)^2}. \end{aligned}$$

Along boundary line Γ function σ takes values:

$$\sigma|_{\Gamma} = -p + 2k$$
 arsinh $rac{2a_5h\sin heta}{R(a_5-1)}$

Alexander Yakhno (UdG)

Homotopy with Prandtl solution:

$$x = a_5 x_P + (1 - a_5) x_{NC}, \quad y = a_5 y_P + (1 - a_5) y_{NC}.$$

Equation of envelope for corresponding family of slip-lines looks:

$$\begin{aligned} \Gamma : x &= a_5 h(p - p_1)/k - 2a_5 h \operatorname{arsinh} \frac{2a_5 h \sin \theta}{R(a_5 - 1)} - \\ &- \sin \theta \sqrt{4a_5^2 h^2 \sin^2 \theta + R^2 (1 - a_5)^2}, \ a_5 \neq 1, \\ y &= a_5 h + \cos \theta \sqrt{4a_5^2 h^2 \sin^2 \theta + R^2 (1 - a_5)^2}. \end{aligned}$$

Along boundary line Γ function σ takes values:

$$\sigma|_{\mathsf{\Gamma}} = -p + 2k$$
 arsinh $rac{2a_5h\sin heta}{R(a_5-1)}$

Alexander Yakhno (UdG)

Kyiv, June 21-27, 2009

Slip-lines field for homotopy looks as follows:

Note, that homotopy solution describes a stress state around the cavity of the form Γ when $a_5 < R/(2h+R)$, because only for these values of a_5 the boundary line is non-self-intersecting.

Alexander Yakhno (UdG)

homotopy for plane plasticity

In particular case, when the constant shear stress is equal to zero, Nadai solution takes the form:

$$x_{NC}=Re^{rac{p_2-k}{2k}}\cos\left(heta-\pi/4
ight)e^{rac{\sigma}{2k}},\;y_{NC}=Re^{rac{p_2-k}{2k}}\sin\left(heta-\pi/4
ight)e^{rac{\sigma}{2k}},$$

with boundary conditions along r = R: $\sigma = -p_2 + k$, $\theta = \phi + \pi/4$.

For homotopy solution, taking equivalent boundary conditions one can obtain the boundary line:

$$r = -2ah\cos\phi + (1-a)Re^{\frac{p_2-p_1}{2k}},$$

which is a limacon of Pascal. This result is similar to the solution obtained in [Senashov and Yakhno, 2007].

In particular case, when the constant shear stress is equal to zero, Nadai solution takes the form:

$$x_{NC}=Re^{rac{p_2-k}{2k}}\cos\left(heta-\pi/4
ight)e^{rac{\sigma}{2k}},\;y_{NC}=Re^{rac{p_2-k}{2k}}\sin\left(heta-\pi/4
ight)e^{rac{\sigma}{2k}},$$

with boundary conditions along r = R: $\sigma = -p_2 + k$, $\theta = \phi + \pi/4$.

For homotopy solution, taking equivalent boundary conditions one can obtain the boundary line:

$$r = -2ah\cos\phi + (1-a)Re^{rac{p_2-p_1}{2k}},$$

which is a limacon of Pascal. This result is similar to the solution obtained in [Senashov and Yakhno, 2007].

Initial slip-lines.

Transformed slip-lines for limacon of Pascal

In left figure one can see two families of characteristic curves (spirals) for the circular solution with $p_2 = k$ for the circular cavity of the radius R = 2. The deformed slip-lines are presented in right figure for a limacon of Pascal $(h = 1, p_1 = p_2).$

The action of Lie group of point transformations not only over the set of known solutions, but over the families of characteristic curves permits to find out efficiently the suitable boundary conditions for reproduced solutions.

Some families of exact solutions for the system of plane ideal plasticity as a result of homotopy of well-known exact solutions of A. Nadai and L. Prandtl are constructed. By means of homotopy parameter, one can relate any two known solutions of plane plasticity system, if it is possible to express them in the form of solutions for the corresponding linearized system.

The construction of the envelopes for the slip lines permits to determine the natural boundaries for obtained solutions and give the corresponding boundary conditions. The action of Lie group of point transformations not only over the set of known solutions, but over the families of characteristic curves permits to find out efficiently the suitable boundary conditions for reproduced solutions.

Some families of exact solutions for the system of plane ideal plasticity as a result of homotopy of well-known exact solutions of A. Nadai and L. Prandtl are constructed. By means of homotopy parameter, one can relate any two known solutions of plane plasticity system, if it is possible to express them in the form of solutions for the corresponding linearized system.

The construction of the envelopes for the slip lines permits to determine the natural boundaries for obtained solutions and give the corresponding boundary conditions. The action of Lie group of point transformations not only over the set of known solutions, but over the families of characteristic curves permits to find out efficiently the suitable boundary conditions for reproduced solutions.

Some families of exact solutions for the system of plane ideal plasticity as a result of homotopy of well-known exact solutions of A. Nadai and L. Prandtl are constructed. By means of homotopy parameter, one can relate any two known solutions of plane plasticity system, if it is possible to express them in the form of solutions for the corresponding linearized system.

The construction of the envelopes for the slip lines permits to determine the natural boundaries for obtained solutions and give the corresponding boundary conditions.

References

B.D. Annin, V.O. Bytev, S.I. Senashov, Gruppovye svoistva uravnenii uprugosti i plastichnosti, Nauka Sibirsk. Otdel., Novosibirsk, **1985** (in Russian).

A.M. Freudenthal, **H. Geiringer**, The Mathematical Theories of the Inelastic Continuum, Encyclopedia of Physics, Vol. VI, Springer-Verlag, Berlin, **1958**.

A.Yu. Ishlinskii, Mechanics of Deformable Solids, Allerton Press, 1988.

 A. Nadai, Über die Gleit- und Verzweigungsflächen einiger Gleichgewichtszustände bildsamer Massen und die Nachspannungen bleibend verzerrter Körper, Z. Physik, 30 (1) (1924) 106–138.
 A. Nadai, Theory of Flow and Fracture of Solids, V. 2, McGraw-Hill, New York, 1963.

L.V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982.
 L. Prandtl, Anwendungsbeispiele zu einem Henckyschen Satz über das plastische Gleichgewicht, ZAMM, 3 (6) (1923) 401–406.

S.I. Senashov, A.M. Vinogradov, Symmetries and conservation laws of 2-dimensional ideal plasticity, Proc. Edinburgh Math. Soc., 31 (**1988**) 415-439.

S.I. Senashov, A. Yakhno, Reproduction of solutions of bidimensional ideal plasticity, Int. J. Non-Linear Mech. 42 (3) (2007) 500–503.

S.I. Senashov, A. Yakhno, Aplicación de Simetrías y Leyes de Conservación a la Resolución de Ecuaciones Diferenciales de Mecánica, Universidad de Guadalajara, **2008** (in Spanish).

S. Senashov, A. Yakhno, Group analysis of solutions of 2-dimensional differential equations, in: Altos B. Canterra (Ed.) Lie groups: New Research, Nova Science Publishers, **2009** (in press).

S.I. Senashov, A. Yakhno, L. Yakhno, Deformation of characteristic curves of the plane ideal plasticity equations by point symmetries, Nonlinear Analysis TMA, doi:10.1016/j.na.2009.01.161 (2009) (in press).

3