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Preliminaries

Actually, the mathematical theory of plasticity is one of the detailed parts
of solid mechanics. The study of the plane ideal plasticity is of a
fundamental importance in mechanical and civil engineering, because it
serves as a model problem to calculate di�erent technological processes.

A systematic method of determining stress �elds in ideal plastic bodies
obeying the Saint-Venant � Mises' yield criterion in plane strain was
developed in the 1920s by Prandtl, Hencky, Mises and others. This method,
generally known as the slip line theory, is based on an analysis of
characteristic curves (known in the mathematical plasticity theory as slip
lines) of the hyperbolic system of plane plasticity.
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Preliminaries

As for exact closed-form solutions of the system, there are a few of them:

the Prandtl solution [L. Prandtl, 1923] to describe stresses of a
rectangular block of plastic-rigid material compressed between rigid
parallel plates which are assumed to be rough;

the solution for a cavity of circular form, stressed by uniform pressure;

Nadai solutions: a) for the stresses in the plastic region around a
circular cavity loaded by a constant shear stress and b) solution for the
channel with straight line borders [A. Nadai, 1924];

the spiral-symmetrical solution for the channel with logarithmic spiral
borders [B. Annin, 1985].
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rectangular block of plastic-rigid material compressed between rigid
parallel plates which are assumed to be rough;

the solution for a cavity of circular form, stressed by uniform pressure;

Nadai solutions: a) for the stresses in the plastic region around a
circular cavity loaded by a constant shear stress and b) solution for the
channel with straight line borders [A. Nadai, 1924];

the spiral-symmetrical solution for the channel with logarithmic spiral
borders [B. Annin, 1985].

Prandtl solution, being the �rst one, has obtained numerous generalizations
both theoretically for the three-dimension [Ishlinskii, 1988] and plane cases,
and for some practical applications.
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Preliminaries

Systematic study of the plane plasticity system from the group-theoretical
point of view was started in Ref. [Annin, 1985], and continued in
[Senashov, 1988] where a complete group of admitted symmetries was
constructed and all conservation laws were enumerated. In Refs. [Senashov,
2004, Yakhno, 2008] the analytical solutions for some boundary problems
were constructed with the help of conservation laws.

The talk is structured as follows:

1 we provide some known results for the system of plane ideal plasticity;

2 reproduction of exact solution by admitted symmetries;

3 we relate two solutions of Nadai to Prandtl one by homotopy and look
for the suitable boundary lines.
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Plane plasticity system

Two equilibrium equations and strongly nonlinear Saint-Venant � Mises'
yield criterion (condition on the second invariant of the stress tensor):

∂σx
∂x

+
∂τxy
∂y

= 0,
∂τxy
∂x

+
∂σy
∂y

= 0,

(σx − σy )2 + 4τ2xy = 4k2,

(1)

σx , σy , τxy are components of a stress tensor, k is a constant of plasticity.

change of variables by
L�evy

σx = σ − k sin 2θ,

σy = σ + k sin 2θ,

τxy = k cos 2θ,

system (1) ⇒ quasilinear one:

∂σ

∂x
− 2k

(
∂θ

∂x
cos 2θ +

∂θ

∂y
sin 2θ

)
= 0,

∂σ

∂y
− 2k

(
∂θ

∂x
sin 2θ − ∂θ

∂y
cos 2θ

)
= 0,

(2)
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Plane plasticity system

σ is hydrostatic pressure, θ + π/4 is the angle between the �rst principal
direction of a stress tensor and the ox-axis.
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System is a hyperbolic one and has two families of characteristic curves
de�ned from equations:

dy

dx
= tan θ,

dy

dx
= − cot θ.

with corresponding Riemann invariants:

ξ = σ/(2k)− θ, η = σ/(2k) + θ.

by means of applying hodograph transformation x = x(σ, θ), y = y(σ, θ)
one can obtain the corresponding linear system (J 6= 0):

∂x

∂θ
− 2k

(
∂x

∂σ
cos 2θ +

∂y

∂σ
sin 2θ

)
= 0,

∂y

∂θ
− 2k

(
∂x

∂σ
sin 2θ − ∂y

∂σ
cos 2θ

)
= 0.

In Mikhlin variables u, v :

x = u cos θ − v sin θ, y = u sin θ + v cos θ,

and taking ξ, η as a new independent ones:

∂u

∂ξ
+

v

2
= 0,

∂v

∂η
+

u

2
= 0.
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Linear system
∂u

∂ξ
+

v

2
= 0,

∂v

∂η
+

u

2
= 0.

is integrated by the method of Riemann and generally is expressed in
therms of Bessel function of zero order [Geiringer, 1958].

(x , y) ⇐⇒ (σ, θ):

1 if J1 = ∂(σ, θ)/∂(x , y) = 0 we could not linearize (simple stress state).

2 if J2 = ∂(x , y)/∂(σ, θ) = 0 we couldn't regress.

[H.Geiringer, 1958]: if a family of slip lines has an envelope (J2 = 0), then
it well be a natural boundary for the analytic solution.
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Admitted symmetries

[Senashov, 1988]: Lie algebra L of point transformations is formed by:

X1 = x
∂

∂x
+ y

∂

∂y
, X2 = y

∂

∂x
− x

∂

∂y
− ∂

∂θ
, X3 =

∂

∂σ
,

X4 = ξ1(x , y , σ, θ)
∂

∂x
+ ξ2(x , y , σ, θ)

∂

∂y
− 4kθ

∂

∂σ
− σ

k

∂

∂θ
,

X5 = x0(σ, θ)
∂

∂x
+ y0(σ, θ)

∂

∂y
,

where

ξ1 = x cos 2θ + y sin 2θ + y
σ

k
, ξ2 = x sin 2θ − y cos 2θ − x

σ

k
,

and (x0, y0) is an arbitrary solution of linearized system.

X1 scales in the plane xy : x ′ = ea1x , y ′ = ea1y ;
X2 rotation group:

x ′ = x cos a2 + y sin a2, y
′ = −x sin a2 + y cos a2, θ

′ = θ + a2;

X3 translation of σ: σ′ = σ + a3;
X5 corresponds to linearization xy :

x ′ = x + a5x0(σ, θ), y ′ = y + a5y0(σ, θ),
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One parametric group of X4:

x ′ = uea4 cos θ′ − ve−a4 sin θ′,

y ′ = uea4 sin θ′ + ve−a4 cos θ′,

σ′ = 2k
( σ
2k

cosh 2a4 − θ sinh 2a4
)
,

θ′ = −
( σ
2k

sinh 2a4 − θ cosh 2a4
)
,

where u and v are Mikhlin variables:

u = x cos θ + y sin θ, v = −x sin θ + y cos θ.

X4 acts over u(ξ, η), v(ξ, η) as a scales:

u′ = ea4u, v ′ = e−a4v , ξ′ = e2a4ξ, η′ = e−2a4η,

so for x , y , σ, θ we can call them quasi-scales.
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Prandtl solution

In terms of variables σ, θ has the form:

σ = −p1 − k
x

h
+ k

√
1− y2

h2
, y = h cos 2θ,

where 2h = const is the height of a block, p1 = const is a value of the
pressure on the plate when x = 0. Boundary conditions:

θ|y=h = πn, n ∈ Z, σ|y=h = −p1 − k
x

h
.

The slip lines families are the parts of cycloids:

x = h(∓2θ − sin 2θ)− h (2Ci + p1/k) , y = h cos 2θ, i = 1, 2,

have two envelopes y = ±h.
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Is invariant solution for subalgebra < X3 + γX5 >.
Acting by quasi-scales X4 we obtain ¾reproduced¿ solution:

−x
h

= ea4 sin θ cos θ′ + e−a4 cos θ sin θ′+

+
σ′ + p1

k
(ea4 sin θ sin θ′ + e−a4 cos θ cos θ′),

y

h
= ea4 cos θ cos θ′ − e−a4 sin θ sin θ′+

+
σ′ + p1

k
(ea4 cos θ sin θ′ − e−a4 sin θ cos θ′),

where θ =
σ′

2k
sinh 2a4 + θ′ cosh 2a4 and parametric equations for

¾deformed¿ slip lines (θ′ is parameter):

x = −h
k

(
2k(K1 + θ′) + p1

) (
cosh a4 cos(θ − θ′)− sinh a4 cos(θ + θ′)

)
−

− h
(
sinh a4 sin(θ − θ′) + cosh a4 sin(θ + θ′)

)
,

y = −h
k

(
2k(K1 + θ′) + p1

) (
cosh a4 sin(θ − θ′)− sinh a4 sin(θ + θ′)

)
−

− h
(
− sinh a4 cos(θ − θ′)− cosh a4 cos(θ + θ′)

)
, θ = K1 sinh 2a4 + θ′e2a4 ;
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To construct the envelope for the family of characteristics x = x(θ′,Ki ),
y = y(θ′,Ki ) use necessary condition of existence:

∂x

∂Ki

∂y

∂θ′
− ∂y

∂Ki

∂x

∂θ′
= 0, i = 1, 2,

due to relations along characteristics gives for Ki :

∂x

∂K1
− ∂y

∂K1
cot θ′ = 0,

∂x

∂K2
+

∂y

∂K2
tan θ′ = 0,

therefore

K1 = −θ′ − p1/(2k) +
(
e2a4/sinh 2a4 − 1/2

)
tan θ′, a4 6= 0

K2 = θ′ − p1/(2k)−
(
e−2a4/sinh 2a4 + 1/2

)
cot θ′,
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Slip line �eld looks as shown

describes the block of plastic-rigid material compressed between rigid plates
of speci�c form.
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Group foliation

Quasilinear plasticity system is
automorphic one with respect to
the group

X5 = x0(σ, θ)
∂

∂x
+ y0(σ, θ)

∂

∂y

x ′ = x + a5x0(σ, θ),

y ′ = y + a5y0(σ, θ),

since any nonsingular solution
(with Jacobian 6= 0) can be
moved to another nonsingular
solution by group transformation.

Let χ1 = (x1(σ, θ), y1(σ, θ)),
χ2 = (x2(σ, θ), y2(σ, θ)) are two
solutions of linearized system, de�ne
implicitly two solutions U1 è U2 of
quasilinear system. Let us take in X5:

x0 = x1 − x2, y0 = y1 − y2 ⇒

x ′ = x2 + a5x0 = a5x1 + (1− a5)x2,

y ′ = y2 + a5y0 = a5y1 + (1− a5)y2,

that gives the linear combination of
two solutions and de�nes the family of
reproduced solutions:

σ = σ(x , y , a5), θ = θ(x , y , a5).
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One can relate two nonsingular
solutions U1, U2, represented in
the form χ1, χ2.

The linear combination of this
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Nadai solution [Nadai, 1924]

in therms of the functions σ, θ can be written:

σ = −kc
[
ln
(
x2 + y2

)
+ ln

{
c + sin

(
2θ − 2 arctan

y

x

)}]
+ A,

θ = arctan
y

x
− π

4
+ arctan

{√
c − 1

c + 1
tan

√
c2 − 1

c

(
θ +

π

4

)}
,

satis�ed boundary conditions:

θ|ϕ=α = α, σ|ϕ=α = −kc ln
(
x2 + y2

)
+ A.

Constant c > 1 is related to channel angle 2α in the following way:

α + π/4 =
c√

c2 − 1
arctan

√
(c + 1)/(c − 1), α ∈ (0, π/2) .
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The sides of the channel are rough and it is supposed that the frictional
stress is constant.

�ow of plastic material through the wedge-shaped converging channel (total angle 2α)
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The Nadai solution for the linearized system has the form (index N):

xN = ± exp

(
A− σ
2kc

)
S−1(θ), yN = ±xNT (θ),

T (θ) = tan [θ + π/4−

− arctan

{√
c − 1

c + 1
tan

√
c2 − 1

c

(
θ +

π

4

)}]
,

S(θ) =
√
c + cT 2(θ) + (1− T 2(θ)) sin 2θ − 2T (θ) cos 2θ.

The Prandtl solution of the linearized system (index P):

xP = −σh/k − p1h/k − h sin 2θ, yP = h cos 2θ.

Homotopy of two solutions:

x = axN + (1− a5)xP , y = a5yN + (1− a5)yP .

gives the equations of envelopes:
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Γ1 : x = (a5 − 1)h

(
sin 2θ − 2c ln

(
2hc

a5 − 1

a5

S(θ)

1− T (θ) cot θ

))
− 2(1− a5)hc

1− T (θ) cot θ
− (1− a5)h

k
(A + p1) , θ ∈ (0, α),

y = (1− a5)h cos 2θ − 2(1− a5)hc

1− T (θ) cot θ
T (θ);

Γ2 : x = (a5 − 1)h

(
sin 2θ − 2c ln

(
2hc

a5 − 1

a5

S(θ)

1 + T (θ) tan θ

))
− 2(1− a5)hc

1 + T (θ) tan θ
− (1− a5)h

k
(A + p1) ,

y = (1− a5)h cos 2θ − 2(1− a5)hc

1 + T (θ) tan θ
T (θ),

θ ∈ (−α− π/2,−π/2) .

Note, that envelope Γ1 is transformed to envelope Γ2 through the change
of θ for −π/2− θ.
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For a5 ∈ (0, 1) the homotopy solution is an exact implicit solution of
plasticity system. It describes the stresses for the block with borders Γ1, Γ2.

a5 = 0.4, c = 1.4,A = 0, h = p1 = k = 1

Boundary conditions:

σ|Γ1 = A− 2kc ln

(
−2hc 1− a5

a5

S(θ)

1− T (θ) cot θ

)
, θ ∈ (0, α);

σ|Γ2 = A− 2kc ln

(
2hc

a5 − 1

a5

S(θ)

1 + T (θ) tan θ

)
, θ ∈ (−π/2− α,−π/2) .
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Nadai solution for a circular cavity

[A. Nadai, 1924] for the plastic zone around a circular cavity of the radius
R , subjected to a constant shear stress ( 6= 0) in addition to uniform
pressure can be expressed as follows:

σ = −k ln tan (β + π/4)− p, θ = ϕ− π/2 + β, cos 2β = R2/r2 > 0

(r , ϕ) are polar coordinates. Boundary conditions:

σ|r=R = −p, θ|r=R = ϕ− π/2.

Corresponding solution for linearized system is (index NC ):

xNC = −R
(
sin θ cosh

σ + p

2k
+ cos θ sinh

σ + p

2k

)
,

yNC = −R
(
sin θ sinh

σ + p

2k
− cos θ cosh

σ + p

2k

)
.
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Equations for characteristics:

x = −R (sin θ cosh (±θ + Ci + p/(2k)) + cos θ sinh (±θ + Ci + p/(2k))) ,

y = −R (sin θ sinh (±θ + Ci + p/(2k))− cos θ cosh (±θ + Ci + p/(2k))) .

r = R is an envelope

Alexander Yakhno (UdG) homotopy for plane plasticity Kyiv, June 21-27, 2009 21 / 27



Homotopy with Prandtl solution:

x = a5xP + (1− a5)xNC , y = a5yP + (1− a5)yNC .

Equation of envelope for corresponding family of slip-lines looks:

Γ : x = a5h(p − p1)/k − 2a5h arsinh
2a5h sin θ

R(a5 − 1)
−

− sin θ
√
4a25h

2 sin2 θ + R2(1− a5)2, a5 6= 1,

y = a5h + cos θ
√
4a25h

2 sin2 θ + R2(1− a5)2.

Along boundary line Γ function σ takes values:

σ|Γ = −p + 2k arsinh
2a5h sin θ

R(a5 − 1)
.
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Slip-lines �eld for homotopy looks as follows:

Note, that homotopy solution describes a stress state around the cavity of
the form Γ when a5 < R/(2h + R), because only for these values of a5 the
boundary line is non-self-intersecting.
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In particular case, when the constant shear stress is equal to zero, Nadai
solution takes the form:

xNC = Re
p2−k
2k cos (θ − π/4) e

σ
2k , yNC = Re

p2−k
2k sin (θ − π/4) e

σ
2k ,

with boundary conditions along r = R : σ = −p2 + k , θ = φ+ π/4.

For homotopy solution, taking equivalent boundary conditions one can
obtain the boundary line:

r = −2ah cosφ+ (1− a)Re
p2−p1

2k ,

which is a limacon of Pascal. This result is similar to the solution obtained
in [Senashov and Yakhno, 2007].
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Initial slip-lines. Transformed slip-lines for limacon of

Pascal.

In left �gure one can see two families of characteristic curves (spirals) for
the circular solution with p2 = k for the circular cavity of the radius R = 2.
The deformed slip-lines are presented in right �gure for a limacon of Pascal
(h = 1, p1 = p2).

Alexander Yakhno (UdG) homotopy for plane plasticity Kyiv, June 21-27, 2009 25 / 27



Conclusions

The action of Lie group of point transformations not only over the set of
known solutions, but over the families of characteristic curves permits to
�nd out e�ciently the suitable boundary conditions for reproduced
solutions.

Some families of exact solutions for the system of plane ideal plasticity as a
result of homotopy of well-known exact solutions of A. Nadai and
L. Prandtl are constructed. By means of homotopy parameter, one can
relate any two known solutions of plane plasticity system, if it is possible to
express them in the form of solutions for the corresponding linearized
system.

The construction of the envelopes for the slip lines permits to determine
the natural boundaries for obtained solutions and give the corresponding
boundary conditions.
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