Eighth International Conference SYMMETRY IN NONLINEAR MATHEMATICAL PHYSICS

June 21 - 27, 2009
Kiiv, Ukraine

V.V. Kudriashov, Yu.A. Kurochkin,
 E.M. Ovsiyuk, V.M. Red'kov
 CLASSICAL PARTICLE IN PRESENCE OF MAGNETIC FIELD, HYPERBOLIC LOBACHEVSKY AND SPHERICAL RIEMANN MODELS

Laboratory of theoretical physics, Institute of physics,
National Academy of Sciences of Belarus

In the paper exact solutions for classical problem of a particle in magnetic field on the background of hyperbolic Lobachevsky H_{3} and spherical Riemann S_{3} space models will be constructed explicitly.

1. These both are extensions for a well-known problem in theoretical physics.
2. They can be used to describe behavior of charged particles in macroscopic magnetic field in the context of astrophysics.
3. Earlier, the quantum-mechanical variant (Shrödinger equation) of the problem has been solved as well and generalized formulas for Landau levels in the models H_{3} and S_{3} have been produced:

Bogush A.A., Red'kov V.M., Krylov G.G.. Schrödinger particle in magnetic and electric fields in Lobachevsky and Riemann spaces. // Nonlinear Phenomena in Complex Systems. 2008. Vol. 11. no 4, P. 403 - 416.

CONTENT

PART I. PARTICLE IN THE MODEL H_{3}

1. Introduction
2. Newton second law in Lobachevsky space
3. Particle in the uniform magnetic field, hyperbolic model H_{3}
4. Simplest solutions in Lobachevsky model
5. Conserved quantity - energy in hyperbolic space H_{3}
6. Particle in magnetic field and Lagrange formalism in space H_{3}
7. Possible solutions in H_{3} model, radial finite and infinite motions
8. Trajectory equation in the form $F(r, z)=0$, model H_{3}
9. Trajectory equation $F(r, \phi)=0$, the role of Lorentz $S O(3,1)$ transversal shifts
in Lobachevsky space
10. Space shifts and gauge symmetry of the magnetic field in H_{3}

PART II. PARTICLE IN THE MODEL S_{3}

11. Particle in magnetic field, spherical Riemann model S_{3}
12. Simplest solutions in spherical space
13. Conserved quantity - energy ϵ in spherical space S_{3}
14. Particle in magnetic field and Lagrange formalism in S_{3}
15. All possible trajectories and $S O(4)$ homogeneity of the space S_{3}
16. Space shifts and gauge symmetry of the magnetic field in H_{3}
17. Extension to relativistic case
18. Discussion

References

Motion of a classical particle in external electromagnetic and gravitational fields is described by

$$
\begin{aligned}
& m c^{2}\left(\frac{d^{2} x^{\alpha}}{d s^{2}}+\Gamma_{\beta \sigma}^{\alpha} \frac{d x^{\beta}}{d s} \frac{d x^{\sigma}}{d s}\right)=e F^{\alpha \rho} U_{\rho}, \\
& \text { or Lagrangian } \quad L=-m c^{2} \sqrt{1-\frac{V^{2}}{c^{2}}}+\frac{e}{c} A_{\beta} U^{\beta}
\end{aligned}
$$

Lobachevsky and Riemann models have nontrivial only 3 -space structure:

$$
d s^{2}=\left(d x^{0}\right)^{2}+\mathrm{g}_{\mathrm{jk}}\left(\mathbf{x}^{1}, \mathbf{x}^{2}, \mathbf{x}^{3}\right) d x^{j} d x^{k}
$$

In the model H_{3} we have used special cylindric coordinates (ρ is the curvature radius.)

$$
\begin{array}{r}
d S^{2}=c^{2} d t^{2}-\left(\operatorname{ch}^{2} \frac{z}{\rho} d r^{2}+\rho^{2} \operatorname{ch}^{2} \frac{z}{\rho} \operatorname{sh}^{2} \frac{r}{\rho} d \phi^{2}+d z^{2}\right), \\
z \in(-\infty,+\infty), \quad r \in[0,+\infty), \quad \phi \in[0,2 \pi] .
\end{array}
$$

Space H_{3} can be realized as a surface in 4 -space (it simplifies symmetry description in H_{3}):

$$
\begin{array}{r}
\mathbf{u}_{0}^{2}-\mathbf{u}_{1}^{2}-\mathbf{u}_{2}^{2}-\mathbf{u}_{3}^{2}=\rho^{2}, \quad \mathbf{u}_{0}=+\sqrt{\rho^{2}+\overrightarrow{\mathbf{u}}^{2}}, \\
u_{1}=\rho \operatorname{ch} \frac{z}{\rho} \operatorname{sh} \frac{r}{\rho} \cos \phi, \quad u_{2}=\rho \operatorname{ch} \frac{z}{\rho} \operatorname{sh} \frac{r}{\rho} \sin \phi, \\
u_{3}=\rho \operatorname{sh} \frac{z}{\rho}, \quad u_{0}=\rho \operatorname{ch} \frac{z}{\rho} \operatorname{ch} \frac{r}{\rho} .
\end{array}
$$

We are to extend the concept of a uniform magnetic field to model H_{3}.
It should be a solution of Maxwell equations in H_{3}, and it is given by

$$
\begin{array}{ll}
& \mathbf{A}_{\phi}=-\rho^{2} \mathbf{B}\left(\operatorname{ch} \frac{\mathrm{r}}{\rho}-1\right), \quad \mathbf{F}_{\phi \mathrm{r}}=\mathbf{B} \rho \operatorname{sh} \frac{\mathrm{r}}{\rho} ; \\
\text { correct flat space limit: } \quad\left(\rho \rightarrow \infty, \quad A_{\phi}=-\frac{B r^{2}}{2}, \quad F_{\phi r}=B r\right) .
\end{array}
$$

Additional arguments for that terminology will be given below

In the similar manner, for the model S_{3} we have used special cylindric coordinates

$$
\begin{array}{r}
d S^{2}=c^{2} d t^{2}-\left(\cos ^{2} \frac{z}{\rho} d r^{2}+\rho^{2} \cos ^{2} \frac{z}{\rho} \sin ^{2} \frac{r}{\rho} d \phi^{2}+d z^{2}\right), \\
\\
\mathrm{z} \in[-\pi / \mathbf{2},+\pi / 2], \quad \mathrm{r} \in[0,+\pi], \quad \phi \in[0,2 \pi] .
\end{array}
$$

Riemann space can be realized as a surface in 4 -space (it simplifies symmetry description in S_{3}):

$$
\begin{array}{r}
u_{1}=\rho \cos \frac{z}{\rho} \sin \frac{r}{\rho} \cos \phi, \quad u_{1}^{2}+\mathbf{u}_{2}^{2}+\mathbf{u}_{3}^{2}=\rho^{2}, \\
u_{3}=\rho \cos \frac{z}{\rho} \sin \frac{r}{\rho}, \quad u_{0}=\rho \sin \phi, \\
\frac{z}{\rho} \cos \frac{r}{\rho} .
\end{array}
$$

We are to extend the concept of a uniform magnetic field to model S_{3} :

$$
\mathbf{A}_{\phi}=\rho^{2} \mathbf{B}\left(\cos \frac{\mathbf{r}}{\rho}-1\right), \quad \mathbf{F}_{\phi \mathbf{r}}=\mathbf{B} \rho \sin \frac{\mathbf{r}}{\rho}
$$

$$
\text { correct flat space limit: } \quad\left(\rho \rightarrow \infty, \quad A_{\phi}=-\frac{B r^{2}}{2}, \quad F_{\phi r}=B r\right)
$$

In Lobachevsky model H_{3}, Lagrangian of the system is given by

$$
\begin{aligned}
& L=-m c^{2} \sqrt{1-\frac{V^{2}}{c^{2}}}+\frac{e B \rho^{2}}{c}\left(\operatorname{ch} \frac{r}{\rho}-1\right)\left(\frac{d \phi}{d t}\right) ; \\
& V^{2}=\operatorname{ch}^{2} \frac{z}{\rho}\left[\left(\frac{d r}{d t}\right)^{2}+\rho^{2} \operatorname{sh}^{2} \frac{r}{\rho}\left(\frac{d \phi}{d t}\right)^{2}\right]+\left(\frac{d z}{d t}\right)^{2} .
\end{aligned}
$$

Equations of motion look as follows:

$$
\begin{aligned}
\frac{d^{2} r}{d t^{2}}+2 \operatorname{th} \frac{z}{\rho} \frac{d z}{d t} \frac{d r}{d t}-\rho \operatorname{sh} \frac{r}{\rho}\left[\operatorname{ch} \frac{r}{\rho} \frac{d \phi}{d t}+\frac{\omega}{\operatorname{ch}^{2}(z / \rho)}\right] \frac{d \phi}{d t} & =0, \\
\frac{d}{d t}\left[\rho^{2} \operatorname{sh}^{2} \frac{r}{\rho} \operatorname{ch}^{2} \frac{z}{\rho} \frac{d \phi}{d t}+\omega \rho^{2}\left(\operatorname{ch} \frac{r}{\rho}-1\right)\right] & =0, \\
\frac{d^{2} z}{d t^{2}}-\frac{1}{\rho} \operatorname{ch} \frac{z}{\rho} \operatorname{sh} \frac{z}{\rho}\left[\left(\frac{d r}{d t}\right)^{2}+\rho^{2} \operatorname{sh}^{2} \frac{r}{\rho}\left(\frac{d \phi}{d t}\right)^{2}\right] & =0 .
\end{aligned}
$$

The squared velocity is conserved quantity: $V^{2}=$ const.

In Riemann model S_{3}, Lagrangian of the system is given by

$$
\begin{aligned}
& L=-m c^{2} \sqrt{1-\frac{V^{2}}{c^{2}}}-\frac{e B \rho^{2}}{c}\left(\cos \frac{r}{\rho}-1\right)\left(\frac{d \phi}{d t}\right) ; \\
& V^{2}=\cos ^{2} \frac{z}{\rho}\left[\left(\frac{d r}{d t}\right)^{2}+\rho^{2} \sin ^{2} \frac{r}{\rho}\left(\frac{d \phi}{d t}\right)^{2}\right]+\left(\frac{d z}{d t}\right)^{2} .
\end{aligned}
$$

Equations of motion look

$$
\begin{aligned}
\frac{d^{2} r}{d t^{2}}+2 \operatorname{tg} \frac{z}{\rho} \frac{d z}{d t} \frac{d r}{d t}-\rho \sin \frac{r}{\rho}\left[\cos \frac{r}{\rho} \frac{d \phi}{d t}+\frac{\omega}{\cos ^{2}(z / \rho)}\right] \frac{d \phi}{d t} & =0, \\
\frac{d}{d t}\left[\rho^{2} \sin ^{2} \frac{r}{\rho} \cos ^{2} \frac{z}{\rho} \frac{d \phi}{d t}-\omega \rho^{2}\left(\cos \frac{r}{\rho}-1\right)\right] & =0, \\
\frac{d^{2} z}{d t^{2}}+\frac{1}{\rho} \cos \frac{z}{\rho} \sin \frac{z}{\rho}\left[\left(\frac{d r}{d t}\right)^{2}+\rho^{2} \sin ^{2} \frac{r}{\rho}\left(\frac{d \phi}{d t}\right)^{2}\right] & =0 .
\end{aligned}
$$

The squared velocity is conserved quantity: $V^{2}=$ const.

In flat space E_{3}, solutions are well-known:

$$
\begin{aligned}
& r=r_{0}=\mathrm{const}, \quad \phi(t)=\omega t+\phi_{0}, \quad \frac{d^{2} z}{d t^{2}}=0 \\
& x=r \cos \phi \\
& y=r \sin \phi \\
& V^{z}=\mathrm{const}
\end{aligned}
$$

There exist many other SHIFTED IN PLANE (x, y) trajectories, they all are in essence the same.

In the first place, the task is to construct their analogues in models H_{3} and S_{3}.
It is convenient to introduce dimensionless coordinates and parameters:

$$
\begin{aligned}
t \Longleftarrow \frac{c t}{\rho}, \quad r & \Longleftarrow \frac{r}{\rho}, \quad z \Longleftarrow \frac{z}{\rho}, \\
B & \Longleftarrow \frac{e}{m} \frac{\rho B}{c} \sqrt{1-\frac{V^{2}}{c^{2}}},
\end{aligned}
$$

then EQUATIONS ARE MUCH SIMPLIFIED (no redundant elements):
In H_{3} model

$$
\begin{array}{r}
\frac{d^{2} r}{d t^{2}}+2 \operatorname{th} z \frac{d z}{d t} \frac{d r}{d t}-\operatorname{sh} r\left[\operatorname{ch} r \frac{d \phi}{d t}+\frac{B}{\operatorname{ch}^{2} z}\right] \frac{d \phi}{d t}=0, \\
\frac{d}{d t}\left[\operatorname{sh}^{2} r \operatorname{ch}^{2} z \frac{d \phi}{d t}+B(\operatorname{ch} r-1)\right]=0, \quad I=\mathrm{const} \\
\frac{d^{2} z}{d t^{2}}-\operatorname{ch} z \operatorname{sh} z\left[\left(\frac{d r}{d t}\right)^{2}+\operatorname{sh}^{2} r\left(\frac{d \phi}{d t}\right)^{2}\right]=0 .
\end{array}
$$

In S_{3} model

$$
\begin{array}{r}
\frac{d^{2} r}{d t^{2}}+2 \operatorname{tg} z \frac{d z}{d t} \frac{d r}{d t}-\sin r\left[\cos r \frac{d \phi}{d t}+\frac{B}{\cos ^{2} z}\right] \frac{d \phi}{d t}=0 \\
\frac{d}{d t}\left[\sin ^{2} r \cos ^{2} z \frac{d \phi}{d t}-B(\cos r-1)\right]=0, \quad I=\mathrm{const} \\
\frac{d^{2} z}{d t^{2}}+\cos z \sin z\left[\left(\frac{d r}{d t}\right)^{2}+\sin ^{2} r\left(\frac{d \phi}{d t}\right)^{2}\right]=0
\end{array}
$$

In H_{3},
let $r=r_{0}=$ const, then eqs. reduce to

$$
\begin{array}{rlrl}
\frac{d \phi}{d t}=\frac{\alpha}{\operatorname{ch}^{2} z}, & \frac{d V^{z}}{d t} & =A \frac{\operatorname{sh} z}{\operatorname{ch}^{3} z}, \\
\alpha & =-\frac{B}{\operatorname{ch} r_{0}}, & A & =B^{2} \operatorname{th}^{2} r_{0}>0
\end{array}
$$

There exist effective repulsion to both sides from the center $z=0$.
One can simplify (translate 2-nd order to 1 -st order) equation the second equation to

$$
\frac{A}{\operatorname{ch}^{2} z}=\text { const }-\left(\frac{d z}{d t}\right)^{2} .
$$

const must be identified as $\epsilon=V^{2}$:

$$
\frac{A}{\operatorname{ch}^{2} z}=\epsilon-\left(\frac{d z}{d t}\right)^{2},
$$

In the limit of flat space A corresponds to a transversal squared velocity V_{\perp}^{2}.
In Lobachevsky model transversal motion should vanish (to be frozen) when $z \rightarrow \pm \infty$.

The signs \pm correspond to motion along axis z in opposite directions. Behavior of $z(t)$:

$$
\begin{gathered}
\text { I. } \quad \epsilon>\mathbf{A}, \quad \mathrm{z} \in(-\infty,+\infty) \\
\operatorname{sh} z(t)= \pm \sqrt{1-A / \epsilon} \operatorname{sh} \sqrt{\epsilon} t, \quad z_{0}=0
\end{gathered}
$$

Trajectories run through $z=0$.

$$
\begin{array}{r}
\text { II. } \quad \epsilon<\mathbf{A}, \quad \operatorname{sh}^{2} \mathbf{z}>\frac{\mathbf{A}}{\epsilon}-1 \\
\operatorname{sh} z(t)= \pm \sqrt{\frac{A}{\epsilon}-1} \text { ch } \sqrt{\epsilon} t .
\end{array}
$$

The particle is rejected at the points $t=0$. Such an effect does not exist in flat space model
(For brevity we will omit a very peculiar case at $\epsilon=A$.)
Now we are to find $\phi(t)$ (no need to distinguish between I and II)

$$
A \neq \epsilon, \quad \phi-\phi_{0}=\frac{\alpha}{\sqrt{A}} \operatorname{arcth}\left(\sqrt{\frac{A}{\epsilon}} \operatorname{th} \sqrt{\epsilon} t\right)
$$

When $t \rightarrow+\infty$ we obtain a finite value for total rotation angle (rotation freezing):

$$
\left.\left(\phi-\phi_{0}\right)\right|_{t \rightarrow \infty}=\frac{\alpha}{\sqrt{A}} \operatorname{arcth} \sqrt{\frac{A}{\epsilon}}
$$

In S_{3},
let $r=r_{0}=$ const, then eqs. reduce to

$$
\begin{aligned}
\frac{d \phi}{d t}=\frac{\alpha}{\cos ^{2} z}, & \frac{d V^{z}}{d t}=-A \frac{\sin z}{\cos ^{3} z}, \\
\alpha=-\frac{B}{\cos r_{0}}, & A=B^{2} \operatorname{tg}^{2} r_{0}>0
\end{aligned}
$$

There exist effective attraction to the center $z=0$.
One can simplify (2 -nd order to 1 -st order) equation the second equation to

$$
\frac{A}{\cos ^{2} z}=\text { const }-\left(\frac{d z}{d t}\right)^{2},
$$

const must be identified as ϵ

$$
\epsilon=\frac{A}{\cos ^{2} z}+\left(\frac{d z}{d t}\right)^{2},
$$

In contrast to Lobachevsky model, now only one possibility is realized: $\epsilon>A$): No rotation freezing effect exist here, instead the motion must be finite, and there must arise turning points in z variable. Therefore motion must be periodical.

Analytical formulas are

(signs (\pm) correspond to motions in opposite direction along z):

$$
\begin{array}{r}
r=r_{0}=\text { const }, \quad \epsilon>A, \\
\sin z(t)= \pm \sqrt{1-\frac{A}{\epsilon}} \sin \sqrt{\epsilon} t, \\
\phi-\phi_{0}=\frac{\alpha}{\sqrt{A}} \operatorname{arctg}\left(\sqrt{\frac{A}{\epsilon}} \operatorname{tg} \sqrt{\epsilon} t\right) .
\end{array}
$$

Distinctive feature of the motion is its periodicity and its closed character.
The period T is determined by

$$
T=\frac{\pi}{\sqrt{\epsilon}} \quad\left(\text { in usual units } T=\rho \frac{\pi}{V}\right)
$$

Special case $\epsilon=A$:

$$
z(t)=0 \quad, \quad \phi(t)=\phi_{0}+\alpha t
$$

rotation with constant angular velocity on the circle $r=r_{0}$ in absence any motion along z.

Space shifts and gauge symmetry of the uniform magnetic field in H_{3}

Now the question is on the role of the $S O(3.1)$ symmetry in the model H_{3}. In the first place we are interested in shift transformations.

Let us turn to a pair of coordinate systems in space H_{3} :

$$
\begin{aligned}
& u_{1}=\operatorname{ch} z \operatorname{sh} r \cos \phi, \quad u_{2}=\operatorname{ch} z \operatorname{sh} r \sin \phi, \quad u_{3}=\operatorname{sh} z, \quad u_{0}=\operatorname{ch} z \operatorname{ch} r ; \\
& u_{1}^{\prime}=\operatorname{ch} z^{\prime} \operatorname{sh} r^{\prime} \cos \phi^{\prime}, \quad u_{2}^{\prime}=\operatorname{ch} z^{\prime} \operatorname{sh} r^{\prime} \sin \phi^{\prime}, \quad u_{3}^{\prime}=\operatorname{sh} z^{\prime}, \quad u_{0}^{\prime}=\operatorname{ch} z^{\prime} \operatorname{ch} r^{\prime},
\end{aligned}
$$

related by the shift $(0-1)$

$$
\left|\begin{array}{c}
u_{0}^{\prime} \\
u_{1}^{\prime}
\end{array}\right|=\left|\begin{array}{c}
\operatorname{ch} \beta \operatorname{sh} \beta \\
\operatorname{sh} \beta \operatorname{ch} \beta
\end{array}\right|\left|\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right|, u_{2}^{\prime}=u_{2}, u_{3}^{\prime}=u_{3} .
$$

or in cylindric coordinates

$$
\begin{array}{r}
z^{\prime}=z, \quad \operatorname{sh} r^{\prime} \sin \phi^{\prime}=\operatorname{sh} r \sin \phi, \\
\operatorname{sh} r^{\prime} \cos \phi^{\prime}=\operatorname{sh} \beta \operatorname{ch} r+\operatorname{ch} \beta \operatorname{sh} r \cos \phi, \\
\operatorname{ch} r^{\prime}=\operatorname{ch} \beta \operatorname{ch} r+\operatorname{sh} \beta \operatorname{sh} r \cos \phi
\end{array}
$$

With respect to that change $(r, \phi) \Longrightarrow\left(r^{\prime}, \phi^{\prime}\right)$ magnetic field transforms according to

$$
F_{\phi^{\prime} r^{\prime}}=\frac{\partial x^{\alpha}}{\partial \phi^{\prime}} \frac{\partial x^{\beta}}{\partial r^{\prime}} F_{\alpha \beta}=\left(\frac{\partial \phi}{\partial \phi^{\prime}} \frac{\partial r}{\partial r^{\prime}}-\frac{\partial r}{\partial \phi^{\prime}} \frac{\partial \phi}{\partial r^{\prime}}\right) F_{\phi r}, \quad F_{\phi r}=B \operatorname{sh} r ;
$$

so the magnetic field transforms with the help of Jacobian:

$$
F_{\phi^{\prime} r^{\prime}}=J F_{\phi r}, \quad J=\left|\begin{array}{l}
\frac{\partial r}{\partial r^{\prime}} \frac{\partial r}{\partial \phi^{\prime}} \\
\frac{\partial \phi}{\partial r^{\prime}} \frac{\partial \phi}{\partial \phi^{\prime}}
\end{array}\right|, \quad F_{\phi r}=B \operatorname{sh} r .
$$

After calculation, the Jacobian of the shift $(0-1)$ reads

$$
J=\frac{\operatorname{sh} r^{\prime}}{\operatorname{sh} r}
$$

and therefore this shift $(0-1)$ leaves invariant the uniform magnetic field under consideration

$$
F_{\phi r}=B \operatorname{sh} r, \quad F_{\phi^{\prime} r^{\prime}}=B \operatorname{sh} r^{\prime} .
$$

By symmetry reason we can conclude the same result for shifts of the type $(0-2)$. However, shifts of the type $(0-3)$ result in different things: the uniform magnetic field in the space H_{3} is not invariant with respect to the shifts $(0-3)$.

Electromagnetic field in terms of 4-potential in H_{3}

The rule to transform the field with respect to the shift $(0-1)$ looks

$$
A_{\phi}=-B(\operatorname{ch} r-1) \quad \Longrightarrow \quad A_{\phi^{\prime}}^{\prime}=\frac{\partial \phi}{\partial \phi^{\prime}} A_{\phi}, \quad A_{r^{\prime}}^{\prime}=\frac{\partial \phi}{\partial r^{\prime}} A_{\phi} ;
$$

In flat space, the shift $\vec{r}^{\prime}=\vec{r}+\vec{b}$ generates a definite gauge transformation:

$$
\vec{A}(\vec{r})=\frac{1}{2} \vec{B} \times \vec{r}, \quad \vec{A}^{\prime}\left(\vec{r}^{\prime}\right)=\frac{1}{2} \vec{B} \times \vec{r}^{\prime}+\nabla_{\vec{r}^{\prime}} \Lambda, \Lambda=-\frac{\mathrm{bB}}{2} \mathrm{y}^{\prime} .
$$

By analogy reason one could expect something similar in Lobachevsky space as well:

$$
\begin{array}{r}
A_{\phi^{\prime}}^{\prime}=\frac{\partial \phi}{\partial \phi^{\prime}} A_{\phi}=-B\left(\operatorname{ch} r^{\prime}-1\right)+\frac{\partial}{\partial \phi^{\prime}} \Lambda, \\
A_{r^{\prime}}^{\prime}=\frac{\partial \phi}{\partial r^{\prime}} A_{\phi}=\frac{\partial}{\partial r^{\prime}} \Lambda .
\end{array}
$$

It is indeed so - and the gauge function has been found:

$$
\Lambda\left(\mathrm{r}^{\prime}, \phi^{\prime}\right)=+2 B \operatorname{arctg}\left(\frac{(\operatorname{ch} \beta-1)\left(\operatorname{ch} r^{\prime}-1\right)-\operatorname{sh} \beta \operatorname{sh} r^{\prime} \cos \phi^{\prime}}{\operatorname{sh} \beta \operatorname{sh} r^{\prime} \sin \phi^{\prime}}\right)-2 B \phi^{\prime}+\lambda_{0} .
$$

Space shifts and gauge symmetry of the uniform magnetic field in S_{3}

Now the question is on the role of the $S O(4)$ symmetry in the model S_{3}.
Let us turn to a pair of coordinate systems in space S_{3} :

$$
\begin{aligned}
& u_{1}=\cos z \sin r \cos \phi, \quad u_{2}=\cos z \sin r \sin \phi, \quad u_{3}=\sin z, \quad u_{0}=\cos z \cos r ; \\
& u_{1}^{\prime}=\cos z^{\prime} \sin r^{\prime} \cos \phi^{\prime}, \quad u_{2}^{\prime}=\cos z^{\prime} \sin r^{\prime} \sin \phi^{\prime}, \quad u_{3}^{\prime}=\sin z^{\prime}, \quad u_{0}^{\prime}=\cos z^{\prime} \sin r^{\prime},
\end{aligned}
$$

related by the shift ($0-1$)

$$
\left|\begin{array}{l}
u_{0}^{\prime} \\
u_{1}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
\cos \beta & \sin \beta \\
-\sin \beta & \cos \beta
\end{array}\right|\left|\begin{array}{c}
u_{0} \\
u_{1}
\end{array}\right|, u_{2}^{\prime}=u_{2}, u_{3}^{\prime}=u_{3} .
$$

or in cylindric coordinates

$$
\begin{array}{r}
0-1, \quad z^{\prime}=z, \quad \sin r^{\prime} \sin \phi^{\prime}=\sin r \sin \phi, \\
\sin r^{\prime} \cos \phi^{\prime}=\sin \beta \cos r+\cos \beta \sin r \cos \phi, \\
\cos r^{\prime}=\cos \beta \cos r-\sin \beta \sin r \cos \phi ;
\end{array}
$$

With respect to that change $(r, \phi) \Longrightarrow\left(r^{\prime}, \phi^{\prime}\right)$ magnetic field transforms according to

$$
F_{\phi^{\prime} r^{\prime}}=\frac{\partial x^{\alpha}}{\partial \phi^{\prime}} \frac{\partial x^{\beta}}{\partial r^{\prime}} F_{\alpha \beta}=\left(\frac{\partial \phi}{\partial \phi^{\prime}} \frac{\partial r}{\partial r^{\prime}}-\frac{\partial r}{\partial \phi^{\prime}} \frac{\partial \phi}{\partial r^{\prime}}\right) F_{\phi r}, \quad F_{\phi r}=B \sin r ;
$$

so the magnetic field transforms with the help of Jacobian:

$$
F_{\phi^{\prime} r^{\prime}}=J F_{\phi r}, \quad J=\left|\begin{array}{ll}
\frac{\partial r}{\partial r^{\prime}} & \frac{\partial r}{\partial \phi^{\prime}} \\
\frac{\partial \phi}{\partial r^{\prime}} & \frac{\partial \phi}{\partial \phi^{\prime}}
\end{array}\right|, \quad F_{\phi r}=B \operatorname{sh} r .
$$

After calculation, the Jacobian of the shift $(0-1)$ reads

$$
J=\frac{\sin r^{\prime}}{\sin r}
$$

and therefore this shift $(0-1)$ leaves invariant the uniform magnetic field under consideration

$$
F_{\phi r}=B \sin r, \quad F_{\phi^{\prime} r^{\prime}}=B \sin r^{\prime} .
$$

By symmetry reason we can conclude the same result for shifts of the type $(0-2)$. However, shifts of the type $(0-3)$ behave differently: the uniform magnetic field in the space H_{3} is not invariant with respect to the shifts $(0-3)$.

Electromagnetic field in terms of 4-potential in S_{3}

, then The rule to transform the field with respect to the shift $(0-1)$ looks

$$
A_{\phi}=B(\cos r-1) \quad \Longrightarrow \quad A_{\phi^{\prime}}^{\prime}=\frac{\partial \phi}{\partial \phi^{\prime}} A_{\phi}, \quad A_{r^{\prime}}^{\prime}=\frac{\partial \phi}{\partial r^{\prime}} A_{\phi} ;
$$

In flat space, the shift $\vec{r}^{\prime}=\vec{r}+\vec{b}$ generates a definite gauge transformation:

$$
\vec{A}(\vec{r})=\frac{1}{2} \vec{B} \times \vec{r}, \quad \vec{A}^{\prime}\left(\vec{r}^{\prime}\right)=\frac{1}{2} \vec{B} \times \vec{r}^{\prime}+\nabla_{\vec{r}^{\prime}} \Lambda, \quad \Lambda=-\frac{\mathrm{bB}}{2} \mathrm{y}^{\prime} .
$$

By analogy reason one could expect something similar in Lobachevsky space as well:

$$
\begin{array}{r}
A_{\phi^{\prime}}^{\prime}=\frac{\partial \phi}{\partial \phi^{\prime}} A_{\phi}=B\left(\cos r^{\prime}-1\right)+\frac{\partial}{\partial \phi^{\prime}} \Lambda, \\
A_{r^{\prime}}^{\prime}=\frac{\partial \phi}{\partial r^{\prime}} A_{\phi}=\frac{\partial}{\partial r^{\prime}} \Lambda .
\end{array}
$$

It is indeed so and the gauge function has been found:

$$
\Lambda\left(\mathrm{r}^{\prime}, \phi^{\prime}\right)=-2 B \operatorname{arctg}\left(\frac{(\cos \beta-1)\left(\cos r^{\prime}-1\right)-\sin \beta \sin r^{\prime} \cos \phi^{\prime}}{\sin \beta \sin r^{\prime} \sin \phi^{\prime}}\right)+2 B \phi^{\prime}+\lambda_{0} .
$$

Analytical description of the all (shifted) trajectories in H_{3}

is given through constructing 3 conserved quantities

$$
\begin{aligned}
\epsilon=\operatorname{ch}^{2} z\left[\left(\frac{d r}{d t}\right)^{2}+\operatorname{sh}^{2} r\left(\frac{d \phi}{d t}\right)^{2}\right]+\left(\frac{d z}{d t}\right)^{2}, \quad 0<\epsilon<1, & \epsilon=\text { const }, \\
I=\operatorname{sh}^{2} r \operatorname{ch}^{2} z \frac{d \phi}{d t}+B(\operatorname{ch} r-1), & \mathrm{I}=\text { const }, \\
A=\operatorname{ch}^{4} z\left[\left(\frac{d r}{d t}\right)^{2}+\operatorname{sh}^{2} r\left(\frac{d \phi}{d t}\right)^{2}\right], \quad A>0, & \mathbf{A}=\text { const },
\end{aligned}
$$

they permit to reduce the task to calculating the integrals (NO MORE DETAILS):

$$
\begin{array}{ccc}
\frac{d z}{ \pm \sqrt{\epsilon-A / \operatorname{ch}^{2} z}}=d t & \Longrightarrow & \mathbf{z}=\mathbf{z}(\mathbf{t}), \\
\frac{d \operatorname{ch} r}{ \pm \sqrt{A\left(\operatorname{ch}^{2} r-1\right)-[I-B(\operatorname{ch} r-1)]^{2}}}=\frac{d t}{\operatorname{ch}^{2} z(t)} & \Longrightarrow & \mathbf{r}=\mathbf{r}(\mathbf{t}), \\
d \phi=\frac{1}{\operatorname{ch}^{2} z(t)} \frac{I-B[\operatorname{ch} r(t)-1]}{\operatorname{ch}^{2} r(t)-1} d t & \Longrightarrow & \phi=\phi(\mathrm{t}) .
\end{array}
$$

Trajectory equation $F(r, \phi)=0$, the role of Lorentz $S O(3,1)$ shifts in H_{3}
Now, let us consider the trajectory equation $F(r, \phi)$

$$
\begin{gathered}
\frac{[(I+B)-B \operatorname{ch} r] d r}{\operatorname{sh} r \sqrt{A \operatorname{sh}^{2} r-[(I+B)-B \operatorname{ch} r]^{2}}}=d \phi \Longrightarrow \\
\mathrm{~F}(\mathrm{r}, \phi)=0: \quad(I+B) \operatorname{ch} \mathrm{r}-\sqrt{(I+B)^{2}+\left(A-B^{2}\right)} \operatorname{sh} \mathrm{r} \cos \phi=\mathrm{B} .
\end{gathered}
$$

This is the most general form of trajectory equation $F(r, \phi)=0$.
Trajectory equation $F(r, \phi)=0$ translated to coordinate $\left(r^{\prime}, \phi^{\prime}\right)$ looks

$$
\begin{aligned}
& \mathrm{F}\left(\mathrm{r}^{\prime}, \phi^{\prime}\right)=0: \quad\left[\operatorname{ch} \beta(I+B)+\operatorname{sh} \beta \sqrt{(I+B)^{2}+\left(A-B^{2}\right)}\right] \mathrm{ch} \mathrm{r}^{\prime}- \\
& -\left[\operatorname{sh} \beta(I+B)+\operatorname{ch} \beta \sqrt{(I+B)^{2}+\left(A-B^{2}\right)}\right] \operatorname{sh} \mathrm{r}^{\prime} \cos \phi^{\prime}=\mathrm{B},
\end{aligned}
$$

They are of the same form if parameters transform according to Lorentz shift

$$
\begin{aligned}
I^{\prime}+B & =\operatorname{ch} \beta(I+B)+\operatorname{sh} \beta \sqrt{(I+B)^{2}+\left(A-B^{2}\right)}, \\
\sqrt{\left(I^{\prime}+B\right)^{2}+\left(A^{\prime}-B^{2}\right)} & =\operatorname{sh} \beta(I+B)+\operatorname{ch} \beta \sqrt{(I+B)^{2}+\left(A-B^{2}\right)} .
\end{aligned}
$$

These Lorentz shifts leave invariant the following combination in parametric space:

$$
\operatorname{inv}=(I+B)^{2}-\left(\sqrt{(I+B)^{2}+\left(A-B^{2}\right)}\right)^{2} \quad \Longrightarrow \quad \mathbf{A}^{\prime}=\mathbf{A} .
$$

This means that Lorentz shifts vary only parameter I.
It has sense to introduce new parameters J, C :

$$
\mathrm{J}=I+B, \quad \mathrm{C}=\sqrt{(I+B)^{2}+\left(A-B^{2}\right)}
$$

then (4) read

$$
J^{\prime}=\operatorname{ch} \beta J+\operatorname{sh} \beta C, \quad C^{\prime}=\operatorname{sh} \beta J+\operatorname{ch} \beta C
$$

and invariant form of trajectory equation $F(r, \phi)=0$ can be presented as

$$
\mathbf{J} \operatorname{ch} \mathbf{r}-\mathbf{C} \operatorname{sh} \mathbf{r} \cos \phi=\mathbf{B}
$$

in any other shifted reference frame it looks

$$
\mathrm{J}^{\prime} \operatorname{ch} \mathrm{r}^{\prime}-\mathrm{C}^{\prime} \operatorname{sh} \mathrm{r}^{\prime} \cos \phi^{\prime}=\mathrm{B}
$$

Correspondingly the main invariant reads

$$
\mathrm{inv}=\mathrm{J}^{2}-\mathrm{C}^{2}=\mathrm{J}^{\prime 2}-\mathrm{C}^{\prime 2}=\mathrm{B}^{2}-\mathrm{A}
$$

Depending on the sign of this invariant
we may reach the most simple description by means of an appropriate shift:

1) $B^{2}-A>0$ (finite motion)

$$
\begin{array}{r}
J_{0}^{2}=B^{2}-A, \quad C_{0}=0 \\
\text { trajectory equation } \quad J_{0} \operatorname{ch} r=B
\end{array}
$$

2) $B^{2}-A<0$ (infinite motion)

$$
\begin{aligned}
& \qquad J_{0}=0, \quad C_{0}^{2}=A-B^{2} \\
& \text { trajectory equation } \quad-C_{0} \operatorname{sh} r \cos \phi=B
\end{aligned}
$$

Special case exists
3) $B^{2}=A$ (infinite motion)

$$
J=I+B, \quad C=I+B
$$

$$
\text { trajectory equation } \quad \operatorname{ch} r-\operatorname{sh} r \cos \phi=\frac{B}{I+B}
$$

By symmetry reasons, Lorentzian shifts of the type $(0-2)$ will manifest themselves analogously.

Tragectory $F(r, \phi)=0$ in the model S_{3} and SO(4) symmetry
Now, let us consider tragectory in the form $F(r, \phi)=0$:

$$
\int \frac{[I+B(\cos r-1)] d r}{\sin r \sqrt{A \sin ^{2} r-[I+B(\cos r-1)]^{2}}}=\phi .
$$

After integration, general trajectory equation $F(r, \phi)=0$ in the model S_{3} looks

$$
(B-I) \cos \mathrm{r}+\sqrt{\left(A+B^{2}\right)-(I-B)^{2}} \sin \mathrm{r} \cos \phi=\mathrm{B} .
$$

Let us consider behavior of this equation with respect to $)$ shifts $(0-1)$ in space S_{3} :

$$
\begin{array}{r}
{\left[\cos \alpha(B-I)+\sin \alpha \sqrt{\left(A+B^{2}\right)-(I-B)^{2}}\right] \cos \mathrm{r}^{\prime}+} \\
+\left[-\sin \alpha(B-I)+\cos \alpha \sqrt{\left(A+B^{2}\right)-(I-B)^{2}}\right] \sin \mathrm{r}^{\prime} \cos \phi^{\prime}=\mathrm{B} .
\end{array}
$$

we have seen invariance property of the trajectory equation if parameters transform according to

$$
\begin{array}{r}
\mathrm{B}^{\prime}-\mathrm{I}^{\prime}=\cos \alpha(\mathbf{B}-\mathbf{I})+\sin \alpha \sqrt{\left(\mathbf{A}+\mathrm{B}^{2}\right)-(\mathrm{I}-\mathbf{B})^{2}} \\
\sqrt{\left(\mathbf{A}^{\prime}+\mathrm{B}^{2}\right)-\left(\mathbf{I}^{\prime}-\mathbf{B}\right)^{2}}=-\sin \alpha(\mathbf{B}-\mathbf{I})+\cos \alpha \sqrt{\left(\mathbf{A}+\mathbf{B}^{2}\right)-(\mathbf{I}-\mathbf{B})^{2}}
\end{array}
$$

With notation

$$
B-I=J, \quad C=\sqrt{\left(A+B^{2}\right)-(I-B)^{2}}
$$

trajectory equation has the following invariant form

$$
J \cos r+C \sin r \cos \phi=B \quad \Longrightarrow \quad J^{\prime} \cos r^{\prime}+C^{\prime} \sin r^{\prime} \cos \phi^{\prime}=B
$$

with respect to Euclidean shifts $(0-1)$ in S_{3} parameters J, C transform according to

$$
\mathbf{J}^{\prime}=\cos \alpha \mathbf{J}+\sin \alpha \mathbf{C}, \quad \mathbf{C}^{\prime}=-\sin \alpha \mathbf{J}+\cos \alpha \mathbf{C} .
$$

This parametric shift leaves invariant the (Euclidean) combination of two parameters:

$$
\text { inv }=J^{2}+C^{2}=J^{\prime 2}+C^{\prime 2}=A+B^{2} \quad \Longrightarrow \quad \mathbf{A}=\mathbf{A}^{\prime}=\mathrm{inv} .
$$

By special choice of a shift one can translate the general equation to 2 simple forms:

$$
\begin{array}{r}
J_{0}=\sqrt{A+B^{2}}, C_{0}=0 \quad \Longrightarrow \quad J_{0} \cos r_{0}=B ; \\
J_{0}=0, C_{0}=\sqrt{A+B^{2}} \quad \Longrightarrow \quad C_{0} \sin r \cos \phi=B .
\end{array}
$$

CLASSICAL PARTICLE IN PRESENCE OF MAGNETIC FIELD, HYPERBOLIC LOBACHEVSKY AND SPHERICAL RIEMANN MODELS

In the paper an exact solutions for classical problem of a particle in magnetic field on the background of hyperbolic Lobachevsky H_{3} and spherical Riemann S_{3} space models will be constructed explicitly.

Thank You, wishing good luck
Kudriashov Vladimir, Kurochkin Yuriy,
Ovsiyuk Elena, Red'kov Victor
June 26, 2009
Eighth International Conference
SYMMETRY IN NONLINEAR MATHEMATICAL PHYSICS
June 21 - 27, 2009, Kiiv, Ukraine

