Higher genus Abelian functions associated with algebraic curves

Matthew England

Department of Mathematics, MACS Heriot Watt University, Edinburgh

Symmetry in Nonlinear Mathematical Physics National Academy of Sciences of Ukraine, Kyiv, June 25th 2009

in collaboration with Chris Eilbeck

A 3 5 4

Outline

Background and motivation

- 2 Abelian functions associated to the (4,5)-curve
 - The cyclic tetragonal curve of genus six
 - The sigma-function expansion
 - New results for the (4,5)-case
- 3 Additional new results of interest
 - Bilinear and quadratic relations
 - Reductions of the Benney moment equations

Outline

Background and motivation

- Abelian functions associated to the (4,5)-curve
 The cyclic tetragonal curve of genus six
 The sigma-function expansion
 New results for the (4,5)-case
- 3 Additional new results of interest
 - Bilinear and quadratic relations
 - Reductions of the Benney moment equations

3 1 4

The Weierstrass *p*-function

Recall the classic elliptic p-function by Weierstrass.

Karl Weierstrass 1815-1897 We can define using the auxiliary σ-function,

$$\wp(u) = -\frac{d^2}{du^2} \ln[\sigma(u)].$$

• The function satisfies key differential equations,

$$\begin{split} [\wp'(u)]^2 &= 4\wp(u)^3 - g_2\wp(u) - g_3, \\ \wp''(u) &= 6\wp(u)^2 - \frac{1}{2}g_2. \end{split}$$

General and cyclic (n, s)-curves

We can define functions with multiple periods using the periodicity properties of algebraic curves — Abelian functions.

General and cyclic (n, s)-curves

We can define functions with multiple periods using the periodicity properties of algebraic curves — Abelian functions.

General (n,s)-curves

Let (n, s) be coprime with n < s. Define general (n, s)-curves as

$$y^{n} - x^{s} - \sum_{\alpha,\beta} \mu_{[ns-\alpha n-\beta s]} x^{\alpha} y^{\beta} \qquad \mu_{j} \text{ constants}$$

where $\alpha, \beta \in \mathbb{Z}$ with $\alpha \in (0, s - 1), \beta \in (0, n - 1)$ and $\alpha n + \beta s < ns$. These have genus $g = \frac{1}{2}(n - 1)(s - 1)$.

General and cyclic (n, s)-curves

We can define functions with multiple periods using the periodicity properties of algebraic curves — Abelian functions.

General (n,s)-curves

Let (n, s) be coprime with n < s. Define general (n, s)-curves as

$$y^{n} - x^{s} - \sum_{\alpha,\beta} \mu_{[ns-\alpha n-\beta s]} x^{\alpha} y^{\beta} \qquad \mu_{j} \text{ constants},$$

where $\alpha, \beta \in \mathbb{Z}$ with $\alpha \in (0, s - 1), \beta \in (0, n - 1)$ and $\alpha n + \beta s < ns$. These have genus $g = \frac{1}{2}(n - 1)(s - 1)$.

They have a simpler subclass of cyclic (n, s)-curves

$$y^{n} = x^{s} + \lambda_{s-1}x^{s-1} + \dots + \lambda_{1}x + \lambda_{0}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Kleinian *p*-functions

Kleinian *p*-functions

Define the Kleinian \wp -functions as the second log derivatives of the multivariate σ -function, $\sigma = \sigma(\mathbf{u}) = \sigma(u_1, u_2, ..., u_g)$

$$\wp_{ij}(\boldsymbol{u}) = -rac{\partial^2}{\partial u_i \partial u_j} \ln \sigma(\mathbf{u}), \quad i \leq j \in \{1, 2, ..., g\}$$

Kleinian *p*-functions

Kleinian *p*-functions

Define the Kleinian \wp -functions as the second log derivatives of the multivariate σ -function, $\sigma = \sigma(\mathbf{u}) = \sigma(u_1, u_2, ..., u_g)$

$$\wp_{ij}(\boldsymbol{u}) = -\frac{\partial^2}{\partial u_i \partial u_j} \ln \sigma(\mathbf{u}), \quad i \leq j \in \{1, 2, ..., g\}$$

We can extend this notation to higher order derivatives

$$\wp_{ijk} = -\frac{\partial^3}{\partial u_i \partial u_j \partial u_k} \ln \sigma(\mathbf{u}) \qquad i \le j \le k \in \{1, 2, ..., g\}$$
$$\wp_{ijkl} = -\frac{\partial^4}{\partial u_i \partial u_j \partial u_k \partial u_l} \ln \sigma(\mathbf{u}) \qquad i \le j \le k \le l \in \{1, 2, ..., g\}$$

etc. They are all Abelian functions.

Kleinian *p*-functions: Examples

Imposing this notation on the elliptic case would show

$$\wp \equiv \wp_{11}$$
$$\wp' \equiv \wp_{111}$$
$$\wp'' \equiv \wp_{1111}$$

• A curve with g = 3 has 6 \wp_{ij} and 10 \wp_{ijk} : { $\wp_{11}, \wp_{12}, \wp_{13}, \wp_{22}, \wp_{23}, \wp_{33}$ }

 $\{\wp_{111}, \wp_{122}, \wp_{123}, \wp_{222}, \wp_{233}, \wp_{233}, \wp_{333}\}$

.

Review of higher genus work

n=2, s=3: elliptic curves

э

Review of higher genus work

- n=2, s=3: elliptic curves
- n=2, s>3: hyperelliptic curves
 - Klein and Baker derived many results for the Kleinian functions associated to a (2,5)-curve that generalised the elliptic results.

Review of higher genus work

- n=2, s=3: elliptic curves
- n=2, s>3: hyperelliptic curves
 - Klein and Baker derived many results for the Kleinian functions associated to a (2,5)-curve that generalised the elliptic results.
 - A theory for hyperelliptic curves of arbitrary genus has been developed by Buchstaber, Enolski and Leykin (1997).

Review of higher genus work

n=2, s=3: elliptic curves

n=2, s>3: hyperelliptic curves

- Klein and Baker derived many results for the Kleinian functions associated to a (2,5)-curve that generalised the elliptic results.
- A theory for hyperelliptic curves of arbitrary genus has been developed by Buchstaber, Enolski and Leykin (1997).

n=3: trigonal curves

- Considerable work has been published by authors including Baldwin, Buchstaber, Eilbeck, Enolski, Gibbons, Leykin, Matsutani, Onishi and Previato.
- Recent work has focussed on a matrix formulation of the differential equations satisfied by \wp -functions.

The cyclic tetragonal curve of genus six The sigma-function expansion New results for the (4,5)-case

Outline

Background and motivation

2 Abelian functions associated to the (4,5)-curve

- The cyclic tetragonal curve of genus six
- The sigma-function expansion
- New results for the (4,5)-case

3 Additional new results of interest

- Bilinear and quadratic relations
- Reductions of the Benney moment equations

• • • • • • •

The cyclic tetragonal curve of genus six The sigma-function expansion New results for the (4,5)-case

The cyclic (4,5)-curve

n=4: tetragonal curves

We have considered the cyclic (4,5)-curve, which has genus g = 6.

$$y^4 = x^5 + \lambda_4 x^4 + \lambda_3 x^3 + \lambda_2 x^2 + \lambda_1 x + \lambda_0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The cyclic tetragonal curve of genus six The sigma-function expansion New results for the (4,5)-case

The cyclic (4,5)-curve

n=4: tetragonal curves

We have considered the cyclic (4,5)-curve, which has genus g = 6.

$$y^4 = x^5 + \lambda_4 x^4 + \lambda_3 x^3 + \lambda_2 x^2 + \lambda_1 x + \lambda_0$$

For every (n, s)-curve we can define a set of Sato weights that render all equations in the theory homogeneous.

• For the (4,5) curve they are given by

х	у	u_1	<i>u</i> ₂	U3	<i>u</i> 4	и ₅	u ₆	λ_4	λ_3	λ_2	λ_1	λ_0
-4	-5	11	7	6	3	2	1	-4	-8	-12	-16	-20

.

The cyclic tetragonal curve of genus six The sigma-function expansion New results for the (4,5)-case

The cyclic (4,5)-curve

n=4: tetragonal curves

We have considered the cyclic (4,5)-curve, which has genus g = 6.

$$y^4 = x^5 + \lambda_4 x^4 + \lambda_3 x^3 + \lambda_2 x^2 + \lambda_1 x + \lambda_0$$

Example: $wt(\lambda_3 x^3) = -8 + 3(-4) = -20$

For every (n, s)-curve we can define a set of Sato weights that render all equations in the theory homogeneous.

• For the (4,5) curve they are given by

X	у	u_1	<i>u</i> ₂	U3	<i>u</i> 4	<i>u</i> 5	<i>u</i> 6	λ_4	λ_3	λ_2	λ_1	λ_0
-4	-5	11	7	6	3	2	1	-4	-8	-12	-16	-20

The sigma-function expansion I

We want to construct a power series expansion for $\sigma(\boldsymbol{u})$.

• It is known that $\sigma(\boldsymbol{u})$ has weight

$$\frac{1}{24}(n^2-1)(s^2-1)=15.$$

The expansion will be multivariate in the variables
 u = (u₁, u₂, u₃, u₄, u₅, u₆) [+ve weight] and may depend on the curve coefficients, {λ₄, λ₃, λ₂, λ₁, λ₀} [-ve weight].

• • = = • • = =

The cyclic tetragonal curve of genus six **The sigma-function expansion** New results for the (4,5)-case

The sigma-function expansion I

We want to construct a power series expansion for $\sigma(\boldsymbol{u})$.

• It is known that $\sigma(\boldsymbol{u})$ has weight

$$\frac{1}{24}(n^2-1)(s^2-1)=15.$$

• The expansion will be multivariate in the variables $\boldsymbol{u} = (u_1, u_2, u_3, u_4, u_5, u_6)$ [+ve weight] and may depend on the curve coefficients, $\{\lambda_4, \lambda_3, \lambda_2, \lambda_1, \lambda_0\}$ [-ve weight].

Hence we can write the expansion as

$$\sigma(\mathbf{u}) = C_{15} + C_{19} + C_{23} + \dots + C_{15+4n} + \dots$$

where each C_k has weight k in the u_i and (15 - k) in the λ_j .

イロト イヨト イヨト イヨ

The sigma-function expansion II

We can find the C_k in turn as follows:

- Identify the possible terms those with correct weight.
- Ø Form the sigma function with unidentified coefficients.
- Oetermine coefficients by satisfying known properties.

< ロ > < 同 > < 三 > < 三 >

The cyclic tetragonal curve of genus six **The sigma-function expansion** New results for the (4,5)-case

The sigma-function expansion II

We can find the C_k in turn as follows:

- Identify the possible terms those with correct weight.
- Ø Form the sigma function with unidentified coefficients.
- Oetermine coefficients by satisfying known properties.

Latter polynomials were very large and represent significant computation challenges.

Polynomial	# terms				
C ₁₉	50				
C ₃₅	2193				
C ₅₁	28359				
C ₅₉	81832				

The cyclic tetragonal curve of genus six **The sigma-function expansion** New results for the (4,5)-case

The sigma-function expansion III

- We used Distributed Maple to run computations in parallel on a cluster of machines in our department.
- Available for free at

www.risc.uni-linz.ac.at/software/distmaple/

The cyclic tetragonal curve of genus six The sigma-function expansion New results for the (4,5)-case

New results for the (4,5)-curve I

New results we have derived for the (4,5)-curve include:

- A basis for Abelian functions associated to the (4,5)-curve, with poles of order at most 2.
- A solution to the Jacobi Inversion Problem for this case.
- A two-term addition formula similar to that found in lower genus cases.

$$\frac{\sigma(\mathbf{u}+\mathbf{v})\sigma(\mathbf{u}-\mathbf{v})}{\sigma(\mathbf{u})^2\sigma(\mathbf{v})^2} = f(\mathbf{u},\mathbf{v}) - f(\mathbf{v},\mathbf{u})$$

where f(u, v) is a polynomial of Abelian functions.

$$f(\boldsymbol{u},\boldsymbol{v}) = -6\wp_{55}(\boldsymbol{v})\wp_{66}(\boldsymbol{u})\lambda_4^2\lambda_1 + 4\wp_{44}(\boldsymbol{v})\wp_{46}(\boldsymbol{u})\lambda_4\lambda_1 + \dots$$

< ロ > < 同 > < 三 > < 三 >

New results for the (4,5)-curve II

• A complete set of PDEs that express the 4-index \wp -functions, using Abelian functions of order at most 2.

(4)
$$\wp_{66666} = 6\wp_{66}^2 - 3\wp_{55} + 4\wp_{46}$$

(5) $\wp_{56666} = 6\wp_{56}\wp_{66} - 2\wp_{45}$
 \vdots
(20) $\wp_{2336} = 4\wp_{23}\wp_{36} + 2\wp_{26}\wp_{33} + 8\wp_{16}\lambda_3 - 2\wp_{55}\lambda_1 + 2\wp_{35}\lambda_2 + 8\wp_{16}\wp_{26} - 2\wp_{1356} + 4\wp_{13}\wp_{56} + 4\wp_{15}\wp_{36} + 4\wp_{16}\wp_{35} - 2\wp_{1266} + 4\wp_{12}\wp_{66}$

These are generalisations of the elliptic PDE:

$$\wp''(u) = 6\wp(u)^2 - \tfrac{1}{2}g_2$$

< ロ > < 同 > < 三 > < 三 >

The cyclic tetragonal curve of genus six The sigma-function expansion New results for the (4,5)-case

New results for the (4,5)-curve III

• We demonstrate that the function

$$W(x, y, t) = \wp_{66}(x, y, t, u_4, u_5, u_6)$$

gives a solution to the KP-equation,

$$\left[W_{xxx} - 12WW_x - 4W_t\right]_x + 3W_{yy} = 0.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The cyclic tetragonal curve of genus six The sigma-function expansion New results for the (4,5)-case

New results for the (4,5)-curve III

• We demonstrate that the function

$$W(x, y, t) = \wp_{66}(x, y, t, u_4, u_5, u_6)$$

gives a solution to the KP-equation,

$$\left[W_{xxx} - 12WW_x - 4W_t\right]_x + 3W_{yy} = 0.$$

These results and other results were published earlier this year:

 M. England and J.C. Eilbeck Abelian functions associated with a cyclic tetragonal curve of genus six.
 J. Phys. A: Math. Theor. 42 (2009) 095210.

• • • • • • •

ilinear and quadratic relations eductions of the Benney moment equations

Outline

Background and motivation

2 Abelian functions associated to the (4,5)-curve
The cyclic tetragonal curve of genus six
The sigma-function expansion
New results for the (4,5)-case

3 Additional new results of interest

- Bilinear and quadratic relations
- Reductions of the Benney moment equations

• • • • • • •

B-Functions and bilinear relations

We used pole analysis on the \wp -function definition to derive the 4 functions that sum $\wp_{ij} \wp_{ijk}$ to have poles of order at most 3.

$$B^{A}_{ijklm} = \wp_{ij} \wp_{klm} + \frac{1}{3} \wp_{jk} \wp_{ilm} + \frac{1}{3} \wp_{jl} \wp_{ikm} + \frac{1}{3} \wp_{jm} \wp_{ikl}$$

$$\vdots \quad -\frac{2}{3} \wp_{kl} \wp_{ijm} - \frac{2}{3} \wp_{km} \wp_{ijl} - \frac{2}{3} \wp_{lm} \wp_{ijk}.$$

B-Functions and bilinear relations

We used pole analysis on the \wp -function definition to derive the 4 functions that sum $\wp_{ij} \wp_{ijk}$ to have poles of order at most 3.

$$B^{A}_{ijklm} = \wp_{ij} \wp_{klm} + \frac{1}{3} \wp_{jk} \wp_{ilm} + \frac{1}{3} \wp_{jl} \wp_{ikm} + \frac{1}{3} \wp_{jm} \wp_{ikl}$$
$$\vdots \quad -\frac{2}{3} \wp_{kl} \wp_{ijm} - \frac{2}{3} \wp_{km} \wp_{ijl} - \frac{2}{3} \wp_{lm} \wp_{ijk}.$$

- Using these *B*-functions we can construct a basis for the odd Abelian functions with poles of order at most 3.
- This allows us to find sets of bilinear relations.

$$(-6) \quad 0 = -\wp_{555} + 2\wp_{456} + 2\wp_{566}\wp_{66} - 2\wp_{56}\wp_{666},$$

$$(-7) \quad 0 = 2\wp_{455} - 2\wp_{446} - 2\wp_{466}\wp_{66} + 2\wp_{666}\lambda_4 + 2\wp_{46}\wp_{666}$$

• We derived complete sets for the cyclic (3,4) and (3,5)-cases.

Generalising the quadratic PDE

• Bilinear relations can be employed to find generalisations of the fundamental elliptic differential equation.

$$[\wp'(u)]^2 = 4\wp(u)^3 - g_2\wp(u) - g_3$$

We seek PDEs to express the product of two 3-index \wp -functions, using Abelian functions of order at most 3.

Generalising the quadratic PDE

• Bilinear relations can be employed to find generalisations of the fundamental elliptic differential equation.

$$[\wp'(u)]^2 = 4\wp(u)^3 - g_2\wp(u) - g_3$$

We seek PDEs to express the product of two 3-index \wp -functions, using Abelian functions of order at most 3.

- Many can be obtained by differentiating bilinear relations, or multiplying them by 3-index \wp -functions.
- Alternative methods need to be employed to complete the set.

Quadratic 3-index relations

- From the ℘-function definition we can match the poles of order 5 and 6 in ℘_{ijk}℘_{lmn} with a polynomial of ℘³_{ij}. This significantly simplifies the derivation of quadratic 3-index identities using the σ-function expansion.
- We have completed the sets for the cyclic (3,4)-case and cyclic (3,5)-case. We have the beginnings of a set for the (4,5)-case.

(-6)
$$\wp_{666}^2 = 4\wp_{66}^3 - 7\wp_{56}^2 + 4\wp_{46}\wp_{66} - 8\wp_{55}\wp_{66} - 4\wp_{66}\lambda_4 + 4\wp_{44} + 2\wp_{5566},$$

(-7)
$$\wp_{566}\wp_{666} = 4\wp_{66}^2\wp_{56} + 2\wp_{46}\wp_{56} - \wp_{55}\wp_{56} = \frac{1}{2} - 2\wp_{45}\wp_{66} + 2\wp_{36},$$

イロト イポト イラト イラト

Reductions of the Benney moment equations

- Kleinian \wp -functions have been used in the solution of problems which involve the integral of a meromorphic Abelian differential on an algebraic curves.
- One such class of problems involves reductions of the Benney Moment equations.

Reductions of the Benney moment equations

- Kleinian \wp -functions have been used in the solution of problems which involve the integral of a meromorphic Abelian differential on an algebraic curves.
- One such class of problems involves reductions of the Benney Moment equations.
- We have recently considered the reduction that leads to the cyclic tetragonal surface of genus six...

M. England and J. Gibbons

A genus six cyclic tetragonal reduction of the Benney equations. ArXiv 0903.5203

The End

Bilinear and quadratic relations Reductions of the Benney moment equations

Thanks for listening.

Further Information

M.England@ma.hw.ac.uk http://www.ma.hw.ac.uk/~matte/

