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fAbstract:

A direct procedure for determining the propagator associated with a
guantum mechanical problem was given by the Path Integration
Procedure of Feynman. The Green function, which is the Fourier
Transform with respect to the time variable of the propagator, can be
derived later. In our approach, with the help of a Laplace transform, a
direct way to get the energy dependent Green function is presented, and
the propagator can be obtained later with an inverse Laplace transform.
The method is illustrated through simple one dimensional examples and
for time independent potentials, though it can be generalized to the
derivation of more complicated propagators.
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Introduction

fIn contrast of the Hamiltonian emphasis in the original formulation of
guantum mechanics, Feynmans approach could be referred to as
Lagrangian and it emphasized the propagator K (x,t, x’,t") which takes
the wave function ¢ (z’, t") at the point ' and time ¢’ to the point x, at time
t1.e.

p(x,t) = /K(x,t,x’,t’)w(x’,t’)dx’ (1)

While this propagator could be derived by the standard methods of
guantum mechanics, Feynman invented a procedure by summing all time
dependent paths connecting points x, ' and this became an alternative
formulation of quantum mechanics whose results coincided with the older
version when all of them where applicable, but also became relevant for
problems that the original methods could not solve.
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Introduction

|7In Feynmans approach the first step is deriving the propagator
K(x,t,2',t") and later the energy dependent Green functions G(z, x', F).
In this paper we invert the procedure, we start by deriving the G(z, ', E)
which is a simpler problem, at least in the one dimensional single particle
case we will be discussing here. Once we have G(x,2’, F) the
K(x,t,z’ t") is given by the inverse Laplace transform and can be written
as

1 thc+o00
K(z,z',t) = 5 h'/ exp(—iEt/h)G(x, 2, E)dE )
whi J,

hc—oo

where c is a constant that allows the upper line ¢Ac + E in the complex

plane of E' to be above all the poles of G(z, z’, E¥). For compactness in the
notation from now on we will take ¢t = 0 so we write K(z,t,z’,t") as
K(x,x',t). The real hard part in our approach will be the determination by

(2) of K(x,x',t) but this is a well defined problem in mathematics and
procedures have been developed to solve it. J
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Introduction

This is then the program we plan to follow. In section 2 we show that for a
single particle in one dimension (the initial case of our analysis) all we
need to know are two independent solutions 7 of the equation.

—h? d?

2m dx?

| + V() — Eluz(z, E) = 0 (3)
to be able to derive G(z, x’, F) in section 3. We then consider in section 4,
two elementary cases, the free one dimensional particle and the harmonic
oscillator. In the first case the integral (2) is trivial to evaluate. In the case
of the harmonic oscillator the evaluation of (2) requires a more careful
analysis but it can be carried out. In all cases our final result is identical to
the one in the book of Grosche and Steiner|1] that use Feynmans method
to derive the results. Thus we have an alternative method for deriving
K(x, o' t).
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The Hamiltonian and the propagator equation

W

e start with the simplest Hamiltonian of one particle in one dimension i.e.

h? d?
H=—1 2 4
2m dx? +Viz) #)

with thus far an arbitrary potential V' (x).

>From the equation (1) that defines the properties of the propagator it
must satisfy the equation

h? 02 e, ,
[—%@+V(x)—zha K(xz,z',t) =0 (5)
and besides if t = 0 it becomes
K(xz,2',0) = 6(x — 2') (6)

LWe proceed now to take the Laplace transform of (5) J
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The Hamiltonian and the propagator equation

-

/OO (—st) —h—28—2+V()—ih2 K(z,z',t)ds =0
0 ST 2m Ox? ! ot Y B
h? 0%G(z, 2, s) _ , L [ 0K (a2 )
= —5- 5,2 + V(z)G(x,x's) — zh/o e 5 dt (7)
where
G(x,az’,s)E/ e 'K (x, 2, t)dt (8)
0

We note though that

©. @) / ©. @)
/ G_St 8K(CE7 X 7t) dt — / g le_StK(ZE, x/’ t)] dt
. ot ot

+3/ e 'K (x,2',t)dt = 6(x — ') + sG(x, 2, s) (9)
0

Lwhere we made use of (6) and (8). J
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The Hamiltonian and the propagator equation

-

With the help of (9) we see that G(z, 2/, s) satisfies

~ 5= +V(z) —ihs|G(x,2's) = ihd(x — x') (10)

[ h? d? -

where we now have that the partial derivative with respect to x becomes
the ordinary one as there is no longer a time variable.

We integrate with respect to the variable z in the interval

' —e <z <z’ +eandinthe limit e — 0. Eg.(10) leads to the equations

2 (dG N n? (dG 7 (11)
— — 1
2m \ dx z=x'4+0 2m \ dx x=z'—0
FLQ d2 B
[‘%@W@)—W]Gw,xes) — 0 aAd @)

We proceed now to indicate how we can derive K (z,z’,t) with the help of J
L(?(x, z’, s) of the corresponding problem satisfying (11) and (12).
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Green function and its inverse Laplace Transform

-

Our interest is not to stop at Eq. (11), (12) for G(x, ', s) but actually to get
K (x,x',t) for which we can use the inverse Laplace transform [2] to get

1 c+100
K(z,2' t) = —/ G(z,2',s)e’ ds (13)

2T J o ioo

where the integration takes place along a line in the complex plane s
parallel to the imaginary axis and at a distance c to it so that all
singularities of G(x, 2’, s) in the s plane are on the left of it.

To have a more transparent notation rather than the s plane we shall
consider an energy variable E proportional to it through the relation

E =ihs or s=—i(FE/h) (14)

o -
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Green function and its inverse Laplace Transform

End define G(z,z’, F) by
G(z,2',E) = G(z,2', —iE/h) (15)

The energy Green Function, which must be symmetric under interchange
of x and 2/, has then the property

G(z,2',E)=G(z',z,F) (16)

which combines with the two equations (11), (12) to give in this notation

G I _ _2m (17)
dx r=x’+0 dx r=x’—0 B h2
h2 d2 / /
—%@—FV(@')—E Gz, E) = 0 for x#x (18)
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Green function and its inverse Laplace Transform

|7I_et us first consider the case when = < 2’ and proceed to show that the
equations (16), (17), (18) determine in a unigue way the Green function of
the problem. For this purpose we introduce with the notation u%(x) two
linearly independent solutions of the equation

———+V(z) — E] uj_%(:z:) =0 (19)

L W(FE) = ugj(a:)% - uE(a:)% (Zl)J
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Green function and its inverse Laplace Transform

A

s G(z,x’, F) satisfies (18) we can write it for x < 2z’ as
G(z,2',E) = F(z', E)ut(x), (22)

choosing one of the two solutions of equation and F'(z', F) is as yet
an undetermined function of 2/, F.

We see from the symmetry of G(z, 2/, F) that it must satisfy the same
equation in 2’ so that from we get

h*  d?

2m dx'?

+ V(') - E|F(z',E) =0 (23)

and thus F'(2’, F') must be a linear combination of the two independent
solutions u%(x) ie.

L F(2',E) = ay (B)uf(z’) + a—(E)ug(a) (24) J

Alternative method for determining the Feynman propagator... June 2007 — p. 12/



Green function and its inverse Laplace Transform

-

and our Green function becomes
G(z,2',FE) = [CL+(E)UE($/) + a_(E)uE(az")] ul(x), (25)

while for the other case, i.e.x > 2/, the symmetry of the Green function
demands

Gleo' E) = |as(BYib(o) + o (Bup(@)| b)), o

Replacing (25) and in we find that the coefficient a (E) vanishes
and a_ (F) satisfies
2m

a—(B)W(E) = -2

(27)

Thus from (25), (26) and (27) we get that
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— (I \,, T if r < /
G(z,2',F) = —2—77;W_1(E) up(@)up(@) pEs (28)
f ug(@yup(a’)

—+
=

V
H\

We now have the explicit Green function of our problem once we can
obtain two independent solutions of the equations (18).
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Conclusion

fOnce G(xz,2’, F) has been determined, the propagator K (z,z’,t) is given
by the inverse Laplace transform which in terms of the E variable
becomes

1 thc+oo
Koo/ 1) = o / exp(—iEt /W) Gz, 2, B)dE (29)
whi J;

hc—oo

where now the integral takes place in the E plane over a line parallel to
the real axis with all the poles of G(z, z’, E') below it.
We proceed to give the results of some specific examples of our method.
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[————E]G(JC,:E’,E):O (30)

We introduce the variable k£ through the definition

h2 k2 h2k
E = , dFE = —dk (31)
2m m

and thus the ug(x) for this problem satisfy the equation

d? :
[@ + k] up(x) =0, up(e) = exp(ike) (52)

with the Wronskian (21) given by

L W(FE) = 2ik (33)J
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Specific examples: The free particle

ﬁl’hus from the two cases of (28) our function G(x, ', E) is written
compactly as
, m , ,
Gz, 2'F) = T explik|x — x'|] (34)

The propagator K (x,z’,t) is given by (29) in terms of G(z, 2, E) and
substituting (34) in it we get

1 oo
K(z,z',t) = - / explik|z — 2’| — i(hk? /2m)t]dk
™ — OO
B m_ im(x — 2')? -
= Voomint UV 2m 59

which is also the result obtained by Feynmans method.
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Specific examples: The harmonic oscillator

The potential V' (x) is proportional to 22 and thus v% () satisfies the
equation

Reod 1, +
—5 T3 T gmwE —FElug(z)=0 (36)

where w is the frequency of the oscillator
We introduce the variables

[ 2mw _E 1 -
Z = T PE o (37)
in terms of which the equation (36) takes the form
d*  2* 1] 4
[@—Z%—p%—d ’LLE(ZIL‘)—O (38)

o -
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Specific examples: The harmonic oscillator

-

wo independent solutions of (38) are given by parabolic cylinder T
functions|3Ji.e.

uE(z) = Dy(%2) (39)

Following an analysis similar to that of the free particle we get

2m 1 £ 2mw 2mw
/ — — — — —
G(x,ZE,E)— Whgwl“<2 hw)D’i_%( > I‘>)Dhji_%( > x<).

where

T~ =max {z,r'}, x.=min {z,2'} (41)

o -
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fWe want though to obtain K (z,z’,t) of (29) from (40) and we find out T

mw 1/2 imw
K / t — ( ) /2 2 t L 2 /
(z,2,1) 2mih sin wt EP { 2h sin wt [(x a7 cosw o
(42)
Again the result coincides with the one obtained from Feynman’s method.
We have treated the simplest Hamiltonians but the method can be

generalized to many particles with angular momentum as well as to
relativistic and time dependent problems.
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