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Abstract:
A direct procedure for determining the propagator associated with a
quantum mechanical problem was given by the Path Integration
Procedure of Feynman. The Green function, which is the Fourier
Transform with respect to the time variable of the propagator, can be
derived later. In our approach, with the help of a Laplace transform, a
direct way to get the energy dependent Green function is presented, and
the propagator can be obtained later with an inverse Laplace transform.
The method is illustrated through simple one dimensional examples and
for time independent potentials, though it can be generalized to the
derivation of more complicated propagators.
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Introduction

In contrast of the Hamiltonian emphasis in the original formulation of
quantum mechanics, Feynmans approach could be referred to as
Lagrangian and it emphasized the propagator K(x, t, x′, t′) which takes
the wave function ψ(x′, t′) at the point x′ and time t′ to the point x, at time
t ı.e.

ψ(x, t) =

∫

K(x, t, x′, t′)ψ(x′, t′)dx′ (1)

While this propagator could be derived by the standard methods of
quantum mechanics, Feynman invented a procedure by summing all time
dependent paths connecting points x, x′ and this became an alternative
formulation of quantum mechanics whose results coincided with the older
version when all of them where applicable, but also became relevant for
problems that the original methods could not solve.
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Introduction

In Feynmans approach the first step is deriving the propagator
K(x, t, x′, t′) and later the energy dependent Green functions G(x, x′, E).
In this paper we invert the procedure, we start by deriving the G(x, x′, E)

which is a simpler problem, at least in the one dimensional single particle
case we will be discussing here. Once we have G(x, x′, E) the
K(x, t, x′, t′) is given by the inverse Laplace transform and can be written
as

K(x, x′, t) =
1

2π~i

∫ i~c+∞

i~c−∞

exp(−iEt/~)G(x, x′, E)dE (2)

where c is a constant that allows the upper line i~c+E in the complex
plane of E to be above all the poles of G(x, x′, E). For compactness in the
notation from now on we will take t′ = 0 so we write K(x, t, x′, t′) as
K(x, x′, t). The real hard part in our approach will be the determination by
(2) of K(x, x′, t) but this is a well defined problem in mathematics and
procedures have been developed to solve it.
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Introduction

This is then the program we plan to follow. In section 2 we show that for a
single particle in one dimension (the initial case of our analysis) all we
need to know are two independent solutions u±E of the equation.

[
−~

2

2m

d2

dx2
+ V (x) −E]u±E(x,E) = 0 (3)

to be able to derive G(x, x′, E) in section 3. We then consider in section 4,
two elementary cases, the free one dimensional particle and the harmonic
oscillator. In the first case the integral (2) is trivial to evaluate. In the case
of the harmonic oscillator the evaluation of (2) requires a more careful
analysis but it can be carried out. In all cases our final result is identical to
the one in the book of Grosche and Steiner[1] that use Feynmans method
to derive the results. Thus we have an alternative method for deriving
K(x, x′, t).
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The Hamiltonian and the propagator equation

We start with the simplest Hamiltonian of one particle in one dimension i.e.

H = −
~

2

2m

d2

dx2
+ V (x) (4)

with thus far an arbitrary potential V (x).
>From the equation (1) that defines the properties of the propagator it
must satisfy the equation

[

−
~

2

2m

∂2

∂x2
+ V (x) − i~

∂

∂t

]

K(x, x′, t) = 0 (5)

and besides if t = 0 it becomes

K(x, x′, 0) = δ(x− x′) (6)

We proceed now to take the Laplace transform of (5)
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The Hamiltonian and the propagator equation

∫ ∞

0

exp(−st)

[

−
~

2

2m

∂2

∂x2
+ V (x) − i~

∂

∂t

]

K(x, x′, t)ds = 0

= −
~

2

2m

∂2Ḡ(x, x′, s)

∂x2
+ V (x)Ḡ(x, x′s) − i~

∫ ∞

0

e−st ∂K(x, x′, t′)

∂t
dt (7)

where

Ḡ(x, x′, s) ≡

∫ ∞

0

e−stK(x, x′, t)dt (8)

We note though that

∫ ∞

0

e−st ∂K(x, x′, t)

∂t
dt =

∫ ∞

0

∂

∂t

[

e−stK(x, x′, t)

]

dt

+s

∫ ∞

0

e−stK(x, x′, t)dt = δ(x− x′) + sḠ(x, x′, s) (9)

where we made use of (6) and (8).
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The Hamiltonian and the propagator equation

With the help of (9) we see that Ḡ(x, x′, s) satisfies

[

−
~

2

2m

d2

dx2
+ V (x) − i~s

]

Ḡ(x, x′s) = i~δ(x− x′) (10)

where we now have that the partial derivative with respect to x becomes
the ordinary one as there is no longer a time variable.
We integrate with respect to the variable x in the interval
x′ − ε ≤ x ≤ x′ + ε and in the limit ε→ 0. Eq.(10) leads to the equations

[

−
~

2

2m

(

dḠ

dx

)

x=x′+0

+
~

2

2m

(

dḠ

dx

)

x=x′−0

]

= i~ (11)

[

−
~

2

2m

d2

dx2
+ V (x) − i~s

]

Ḡ(x, x′, s) = 0 x 6= x′ (12)

We proceed now to indicate how we can derive K(x, x′, t) with the help of
Ḡ(x, x′, s) of the corresponding problem satisfying (11) and (12).
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Green function and its inverse Laplace Transform

Our interest is not to stop at Eq. (11), (12) for Ḡ(x, x′, s) but actually to get
K(x, x′, t) for which we can use the inverse Laplace transform [2] to get

K(x, x′, t) =
1

2πi

∫ c+i∞

c−i∞

Ḡ(x, x′, s)estds (13)

where the integration takes place along a line in the complex plane s
parallel to the imaginary axis and at a distance c to it so that all
singularities of Ḡ(x, x′, s) in the s plane are on the left of it.
To have a more transparent notation rather than the s plane we shall
consider an energy variable E proportional to it through the relation

E = i~s or s = −i(E/~) (14)
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Green function and its inverse Laplace Transform

and define G(x, x′, E) by

G(x, x′, E) ≡ Ḡ(x, x′,−iE/~) (15)

The energy Green Function, which must be symmetric under interchange
of x and x′, has then the property

G(x, x′, E) = G(x′, x, E) (16)

which combines with the two equations (11), (12) to give in this notation

[

dG

dx

]

x=x′+0

−

[

dG

dx

]

x=x′−0

= −
2m

~2
(17)

[

−
~

2

2m

d2

dx2
+ V (x) −E

]

G(x, x′, E) = 0 for x 6= x′ (18)
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Green function and its inverse Laplace Transform

Let us first consider the case when x < x′ and proceed to show that the
equations (16), (17), (18) determine in a unique way the Green function of
the problem. For this purpose we introduce with the notation u±E(x) two
linearly independent solutions of the equation (18)

[

−
~

2

2m

d2

dx2
+ V (x) −E

]

u±E(x) = 0 (19)

>From this equation we see that

u−E(x)
d2u+

E(x)

dx
− u+

E

d2u−E(x)

dx
=

d

dx

(

u−E
du+

E

dx
− u+

E

du−E
dx

)

= 0 (20)

Thus the Wronskian of the problem is independent of x, i.e.

W (E) = u−E(x)
du+

E

dx
− u+

E(x)
du−E
dx

(21)
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Green function and its inverse Laplace Transform

As G(x, x′, E) satisfies (18) we can write it for x < x′ as

G(x, x′, E) = F (x′, E)u+

E(x), (22)

choosing one of the two solutions of equation (18) and F (x′, E) is as yet
an undetermined function of x′, E.
We see from the symmetry of G(x, x′, E) that it must satisfy the same
equation (18) in x′ so that from (22) we get

[

−
~

2

2m

d2

dx′2
+ V (x′) −E

]

F (x′, E) = 0 (23)

and thus F (x′, E) must be a linear combination of the two independent
solutions u±E(x) i.e.

F (x′, E) = a+(E)u+

E(x′) + a−(E)u−E(x′) (24)
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Green function and its inverse Laplace Transform

and our Green function becomes

G(x, x′, E) =

[

a+(E)u+

E(x′) + a−(E)u−E(x′)

]

u+

E(x), (25)

while for the other case, i.e.x > x′, the symmetry of the Green function
demands

G(x, x′, E) =

[

a+(E)u+

E(x) + a−(E)u−E(x)

]

u+

E(x′), (26)

Replacing (25) and (26) in (17) we find that the coefficient a+(E) vanishes
and a−(E) satisfies

a−(E)W (E) = −
2m

~2
. (27)

Thus from (25), (26) and (27) we get that

Alternative method for determining the Feynman propagator... June 2007 – p. 13/21



Green function and its inverse Laplace Transform

G(x, x′, E) = −
2m

~2
W−1(E)







u−E(x′)u+

E(x) if x < x′

u−E(x)u+

E(x′) if x > x′
(28)

We now have the explicit Green function of our problem once we can
obtain two independent solutions of the equations (18).
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Conclusion

Once G(x, x′, E) has been determined, the propagator K(x, x′, t) is given
by the inverse Laplace transform (13) which in terms of the E variable
becomes

K(x, x′, t) =
1

2π~i

∫ i~c+∞

i~c−∞

exp(−iEt/~)G(x, x′, E)dE (29)

where now the integral takes place in the E plane over a line parallel to
the real axis with all the poles of G(x, x′, E) below it.
We proceed to give the results of some specific examples of our method.
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Specific examples: The free particle

The potential V (x) is taken as zero and so the equation (18)becomes

[

−
~

2

2m

d2

dx2
− E

]

G(x, x′, E) = 0 (30)

We introduce the variable k through the definition

E =
~

2k2

2m
, dE =

~
2k

m
dk (31)

and thus the u±E(x) for this problem satisfy the equation

[

d2

dx
+ k2

]

u±E(x) = 0, u±E(x) = exp(±ikx) (32)

with the Wronskian (21) given by

W (E) = 2ik (33)
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Specific examples: The free particle

Thus from the two cases of (28) our function G(x, x′, E) is written
compactly as

G(x, x′E) =
im

~k
exp[ik|x− x′|] (34)

The propagator K(x, x′, t) is given by (29) in terms of G(x, x′, E) and
substituting (34) in it we get

K(x, x′, t) =
1

2π

∫ ∞

−∞

exp[ik|x− x′| − i(~k2/2m)t]dk

=

√

m

2πi~t
exp

[

im(x− x′)2

2~t

]

(35)

which is also the result obtained by Feynmans method.
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Specific examples: The harmonic oscillator

The potential V (x) is proportional to x2 and thus u±E(x) satisfies the
equation

[

−
~

2

2m

d2

dx2
+

1

2
mω2x2 −E

]

u±E(x) = 0 (36)

where ω is the frequency of the oscillator
We introduce the variables

z =

√

2mω

~
x , p =

E

~ω
−

1

2
(37)

in terms of which the equation (36) takes the form

[

d2

dz2
−
z2

4
+ p+

1

2

]

u±E(x) = 0 (38)
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Specific examples: The harmonic oscillator

Two independent solutions of (38) are given by parabolic cylinder
functions[3]i.e.

u±E(x) = Dp(±z) (39)

Following an analysis similar to that of the free particle we get

G(x, x′, E) =

√

2m

π~3ω
Γ

(

1

2
−
E

~ω

)

D E

~ω
−

1

2

(

√

2mω

~
x>

)

D E

~ω
−

1

2

(

−

√

2mω

~
x<

)

.

(40)

where

x> = max {x, x′}, x< = min {x, x′} (41)
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We want though to obtain K(x, x′, t) of (29) from (40) and we find out

K(x, x′, t) =
( mω

2πi~ sinωt

)1/2

exp

{

imω

2~ sinωt

[

(x′2 + x2) cosωt− 2xx′
]}

(42)

Again the result coincides with the one obtained from Feynman’s method.
We have treated the simplest Hamiltonians but the method can be
generalized to many particles with angular momentum as well as to
relativistic and time dependent problems.
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