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Abstract Weakly nonlinear resonant sloshing in a circular cylindrical baffled tank with a fairly deep fluid
depth (depth/radius ratio ≥ 1) is examined by using an asymptotic modal method, which is based on the
Moiseev asymptotic ordering. The method generates a nonlinear asymptotic modal system coupling the
time-dependent displacements of the linear natural modes. Emphasis is placed on quantifying the effective
frequency domains of the steady-state resonant waves occurring due to lateral harmonic excitations, versus
the size and the location of the baffle. The forthcoming Part 3 will focus on the vorticity stress at the sharp
baffle edge and related generalisations of the present nonlinear modal system.

Keywords Nonlinear sloshing · Modal system · Steady-state resonant waves

1 Introduction

Baffles are extensively used in various industrial applications to suppress sloshing, modify dynamic fea-
tures of the coupled ‘fluid-structure’ mechanical systems and/or to increase the overall structural damping.
When structural vibrations do not excite the lowest natural sloshing frequency, hydrodynamic loads owing
to sloshing can often be quantified within the framework of a linear theory. The linear sloshing analysis
was carried out in Part 1 [1]. Closeness of the lowest natural sloshing frequency to a control structural
frequency leads to violent resonant fluid motions. As long as the ‘resonance’ structural vibrations are of
relatively large magnitude and/or the liquid is shallow, these motions become strongly dissipative. Breaking
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waves and slamming may matter. Besides, baffles can penetrate the free surface and cause its fragmenta-
tion. Analytical investigations are then hardly possible. The interested engineers should look for specific
numerical tools [2–5].

Sloshing is of a weakly nonlinear nature for small-magnitude resonant excitations and a fairly deep fluid
depth. This is relevant to spacecraft applications and Tuned Sloshing Dampers. Fundamental studies by
NASA [6], as well as experimental and numerical works by Bogoryad and Druzhinina [7], Mikishev [8],
Mikishev and Churilov [9], showed that, even though flow separation occurs in a neighbourhood of the
sharp baffle edge, the weakly nonlinear sloshing is satisfactory predicted by an inviscid solution with irrota-
tional flow. This solution constitutes an ‘ambient flow’. As shown by Cole [6], Buzhinskii [10] and Isaacson
and Premasiri [11], using the inviscid solution also makes it possible to estimate the vortex shedding and
related damping. Damping plays a secondary role in a qualitative description of the resonant steady-state
sloshing. However, it considerably influences the transient waves. This conclusion follows from studies
by Miles [12, 13] and Faltinsen et al. [14], who manipulated with a speculative increase/decrease of the
damping rates.

Using the inviscid hydrodynamic model extends the number of suitable computational-fluid-dynamics
(CFD) methods, which are applicable to weakly nonlinear baffled sloshing (see, the recent publications
[15–19]). These methods are typically based on the finite-element technique. To the authors’ knowledge,
the present paper is a pioneering work generalising a semi-analytical, nonlinear multi-modal method for
baffled sloshing. Multi-modal methods have earlier been developed only for tanks without baffles [20–28].

Multi-modal methods use variational and asymptotic techniques to reduce the original free-boundary
“sloshing” problem to a system of nonlinear ordinary differential equations (modal system). This makes
it possible to consider sloshing as a mechanical system with a finite number of degrees of freedom. Each
of its generalised coordinates is associated with a time-dependent coefficient in the Fourier representation
of the free surface. The main advantages of multi-modal methods relative to traditional CFD-tools consist
of (i) straightforward incorporation of modal systems into the dynamic equations of the whole object; this
facilitates studies on coupled motions [27–30]; (ii) CPU-efficient simulations of both transient and steady-
state weakly nonlinear waves [21, 23, 26, 31–33] and (iii) the possibility of analytical studies of steady-state
(periodic) resonant waves in a harmonically oscillated tank [23–29, 34].

Because the steady-state resonant waves are realised on a long-time scale [25, 35, 36], task (iii) is tedious
and CPU-demanding for CFD-methods. This is especially true for three-dimensional sloshing when several
steady-state regimes co-exist for the same forcing parameters and irregular (‘chaotic’) motions may occur.
In order to identify effective frequency domains of steady-state waves by direct simulations, an exhaustive
search with various initial scenarios is required. Besides, CFD-methods may run into serious difficulties to
distinguish hydrodynamic and numerical instabilities.

Hermann and Timokha [37] have categorised the multi-modal methods into the following four sub-clas-
ses: (I) Perko-like or pseudo-spectral methods [33, 38, 39], (II) the Miles–Lukovsky variational-asymptotic
technique and its modifications [23, 29, 32, 40, 41], (III) modal methods based on separation of the quick
and slow time scales [12, 13, 26, 42] (applicable only for harmonically forced tanks) and (IV) asymptotic
modal methods, e.g. [27, 28], whose fundamentals are best represented by Narimanov [43, 44]. The usage of
multi-modal methods needs analytically given natural sloshing modes. Moreover, even though the natural
modes are theoretically defined only in the hydrostatic domain, the methods (I–III) require an extension
of these modes through the unperturbed water plane to the actual time-varying flow domain. As a conse-
quence, almost all the nonlinear modal systems have been derived for rectangular and circular-base tanks,
i.e., when those analytical natural modes exist. Rare modal systems for some of complex shapes, e.g. [45]
for a ∨-shaped conical tank, are based on special approximations of the natural modes.

Part 1 constructs analytical approximate natural modes for a circular cylindrical tank with a rigid-ring
baffle. These modes are given by a Green representation, which diverges outside the hydrostatic fluid
shape. This means that these approximate modes are not defined in the time-varying flow domain and,
therefore, the methods (I–III) cannot employ the results of Part 1. In contrast, although the original paper
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by Narimanov [44] and existing modifications of his methods [44] also use the analytical natural modes
that are expandable over the static fluid domain, this asymptotic technique may in general utilise the
fundamental solutions from Part 1. There are two necessary conditions. First, the approximate natural
modes should admit higher derivatives, whose projections on the water plane must belong to a suitable
functional space. Second, the solution of Narimanov’s recurrence boundary problems (computing higher-
oder asymptotic terms) must be presented as a Fourier series by approximate natural modes. The present
paper demonstrates that the approximate natural modes of Part 1 satisfy these two conditions and derives
the corresponding asymptotic modal system.

Furthermore, the paper concentrates on harmonic excitations of the lowest natural frequency. The third-
order intermodal ordering by Moiseyev [46], following from the general theory of autonomous systems by
Krylov-Bogoljubov [47] or a Duffing’s analogy ([48, 49]), is used. The Moiseev asymptotics is common for
the previous studies on resonant sloshing in a circular cylindrical tank without baffles [12, 13, 20, 21, 27–29,
44, 50]. It suggests that the scaled forcing amplitude ε � 1 (ε is “excitation amplitude/radius” ratio) and
the forcing frequency is close to the lowest natural frequency. A consequence is that the two lowest modes
are of the dominating order O(ε1/3), but there exist an infinite number of O(ε2/3)-order modes. When
studying resonant sloshing in a circular cylindrical tank without baffles, Miles [12, 13] has theoretically
shown that the second-order contribution can be described precisely by only three second-order modes
from this infinite set. Exceptions are associated with a critical fluid depth, for which internal (secondary)
resonance occurs. Specific physical and geometrical argumentations for this result are given in [27, 28, 44].
Numerical results based on a five-mode approximation (two dominating and three second-order modes)
agree with experiments [20–22, 27, 28]. The five-mode solution will be adopted in the present paper.

After a general statement of the problem in Sect. 2.1, Sect. 2.2 gives preliminaries from Part 1. In Sects.
2.3 and 2.4, the Narimanov method is used to derive a system of ordinary differential equations (modal
system) governing time-dependent displacements of the five lowest natural modes. Argumentations by
Miles [12, 13], Lukovsky [20], Gavrilyuk et al. [21], Ikeda and Murakami [27], Ikeda and Ibrahim [28] on
the five-mode approximation for a smooth circular cylindrical tank are discussed. Section 2.5 includes an
estimate of the secondary resonance and occurrence of shallow fluid flows. In Sect. 3, we study steady-state
resonant sloshing.

In summary, the main results consist of (A) derivation of an asymptotic modal system for baffled slosh-
ing (first in the literature); (B) study of steady-state nonlinear baffled sloshing; we show that there exist
only ‘planar’ and ‘swirling’ resonant regimes, (C) estimate of effective frequency domains for steady-state
regimes versus the size and the vertical location of the annular baffle.

2 Nonlinear multi-modal theory

2.1 Free-boundary problem

Let a rigid circular-base cylindrical tank of radius R1 be partially filled by a fluid with mean depth h. The
inner periphery of the tank is equipped with a thin rigid-ring baffle which divides h into h1 and h2, where
h1 is the mean height of the fluid layer over the baffle. The thickness of the baffle is neglected. The radius
of the circular hole is a (see, Fig. 1). The fluid sloshing is described within the framework of an inviscid
hydrodynamic model with irrotational flow. It is assumed that the free surface �(t) does not touch (cross)
the baffle �. The problem is studied in the scaled formulation suggesting that all the lengths and physical
constants are normalised by R1. This implies, in particular, that h1 := h1/R1, h2 := h2/R1, g := g/R1 (grav-
ity acceleration g has the dimension [s−2]), etc. The free-boundary problem is formulated in the tank-fixed
coordinate system Oxyz. The non-dimensional h1 and h2 are assumed to be finite. Shallow-water waves
are not considered.
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Without loss of generality, the Oz-axis is directed along the symmetry axis and the origin O is posed on
the baffle plane as shown in Fig. 1. Furthermore, the analysis is restricted to prescribed translatory tank
oscillations, which are governed by the time-dependent vector vO(t) = (vO1(t), vO2(t), vO3(t))T (translatory
velocity of the mobile coordinate system relative to an absolute coordinate system O′x′y′z′).

The free-boundary-value problem takes the following form (see [29, 51, 52]):

�� = 0 in Q(t);
∂�

∂ν
= vO · ν on S(t) ∪ �,

∂�

∂ν
= vO · ν + ft√

1 + (∇f )2
on �(t);

∫

Q(t)
dQ = const,

∂�

∂t
+ 1

2
(∇�)2 − ∇� · vO + gf = 0 on �(t).

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(1)

Here, the unknowns are f (x, y, t) defining the free surface �(t) : z = f (x, y, t) and the absolute velocity
potential �(x, y, z, t), which is defined in the time-varying Q(t). The latter is confined to the wetted body
surface S(t), the baffle surface � and �(t), ν is the outward normal vector.

Assuming a resonant lateral harmonic excitation implies

vO1(t) = −σε sin σ t; vO2 = vO3 ≡ 0. (2)

Here ε � 1 is the non-dimensional amplitude and σ → ω
(1)
1 , where ω(1)1 is the lowest natural sloshing

frequency.
The free-boundary problem (1) should be completed by either initial or periodicity conditions. The

initial (Cauchy) conditions assume

f (x, y, t0) = f0(x, y);
∂�

∂ν

∣
∣
∣
z=f0(x,y)

= �0(x, y, z) (3)

to be known at t = t0. The steady-state harmonic solutions are associated with the T = 2π/σ -periodic
wave patterns, i.e.,

f (x, y, t + T) = f (x, y, t); ∇�(x, y, z, t + T) = ∇�(x, y, z, t). (4)

Fig. 1 Sketch of a baffled
circular cylindrical tank
partially filled by a fluid
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2.2 Preliminaries from Part 1

Part 1 concentrated on the natural sloshing modes. These are associated with eigenfunctions of the following
spectral problem

�ϕ = 0 in Q0;
∂ϕ

∂ν
= 0 on S0 and �,

∂ϕi

∂z
= κϕ on �0;

∫

�0

ϕ dS = 0

⎫
⎪⎬

⎪⎭
(5)

with the spectral parameter κ on the unperturbed (hydrostatic) water plane �0 (see, geometric definitions
in Fig. 2a).

The spectral problem (5) has the real positive eigenvalues. Its eigenfunctions satisfy the zero Neumann
boundary condition on S0 +�, but projections of the eigenfunctions on�0 constitute a basis in L2(�0). By
separating the spatial variables in the (r, θ , z) cylindrical coordinate system (x = r cos θ , y = r sin θ , z = z)
and introducing

ϕ(r, θ , z) = ψ(m)(z, r) exp(imθ), m = 0, 1, . . . ; i2 = −1,

we reduced problem (5) to an m-parametric family of two-dimensional spectral problems in the meridional
cross-section G (see, Fig. 2b).

Part 1 uses the domain decomposition

ψ(m)(z, r) =
{
ψ(m,1)(z, r), in G1,
ψ(m,2)(z, r), in G2

(6)

and derives the Green representation for each of the sub-domains as

ψ(m,1)(z, r) = −
a∫

0

Nκ(m)

m (r0)K(κ(m))
m (z, r; r0)r0dr0, in G1, (7)

ψ(m,2)(z, r) =
a∫

0

Nκ(m)

m (r0)Km(z, r; r0)r0dr0 − δ0m, in G2. (8)

Here δim is the Kronecker delta, κ(m) is an eigenvalue for the corresponding spectral problem in the

meridional cross-section G, the kernels K(κ(m))
m and Km are explicitly given by series in Bessel functions
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Fig. 2 Hydrostatic fluid shape in the baffled tank, three-dimensional and meridional sketches
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and

Nκ(m)

m (r0) = ∂ψ(m)

∂z

∣
∣
∣
z=0

, 0 < r0 < a.

The Dirichlet transmission condition on γ0 yields a κ(m)-parametric integral equation with respect to

Nκ(m)

m . Both the eigenvalues κ(m)i and the corresponding Nκ
(m)
i

m , m = 0, 1, . . . ; i = 1, 2, . . . are found from
this integral equation by a Galerkin method. A special functional basis reflects the singular behaviour of

Nκ
(m)
i

m at the sharp edges (as r0 → a). The method demonstrates fast convergence and high precision.

2.3 Nonlinear asymptotic modal system

As remarked in the Introduction, there exist four sub-classes of multi-modal methods. In common, these
methods utilise a Fourier representation of the free surface by projections of the natural modes on �0.
This reads

f (r, θ , t) =
∞∑

m=0

∞∑

i=1

(
βs

m,i(t) sin θ + βc
m,i(t) cos θ

)
F̃(m)i (r) (9)

in the cylindrical coordinate system Orθz. Here, βs
m,i(t) and βc

m,i(t) are time-dependent (modal) functions

and F̃(m)i (r) are the normalised radial profiles of the natural modes (see, the non-normalised definition in
Equation (13) of Part 1) as follows

F̃(m)i (r) = ψ
(m,1)
i (h1, r)

ψ
(m,1)
i (h1, 1)

, 0 < r < 1, m = 0, . . . ; i = 1, . . .

so that

ηmax = max
0≤θ<2π

∞∑

m=0

∞∑

i=1

(
βs

m,i(t) sin θ + βc
m,i(t) cos θ

)

implies a maximum instant wave elevation at the upright walls.
Multi-modal methods also need an analogous modal representation for the velocity potential �. The

Introduction mentions the three most popular sub-classes of multi-modal methods, which are based on a
Fourier series of the natural modes. These require that the eigenfunctions of (5) are analytically defined,
not only in Q0, but also in the time-dependent fluid domain Q(t). Because the kernels in (7)–(8) diverge
over �0, these methods cannot use results of Part 1 to derive a nonlinear modal system. That is why the
paper adopts the asymptotic method by Narimanov. It may employ (7)–(8).

Narimanov et al. [44] gave all the formal formulas of his asymptotic scheme for an arbitraryly shaped
tank. However, to the author’s knowledge, his method has been elaborated only for circular and rectan-
gular-base tanks without baffles. A reason may be the difficulties involved in constructing approximate
natural modes, which provide convergence to the coefficients of the corresponding modal system. The
solutions (7)–(8) allow for that, at least, for a subset of a, h1 and h2. This is shown in the Appendix.

In order to derive a system of ordinary differential equations (modal system) coupling {β̃m,i(t)} =
{βs

m,i(t)} ∪ {βc
m,i(t)}, Narimanov [43, 44] proposed the following expression for the velocity potential

�(r, θ , z, t) = −rσε cos(θ) sin(σ t)+
∞∑

m=0

∞∑

i=1

(
dβs

m,i(t)

dt
φ(m,s)

i (r, θ , z, t)+ dβc
m,i(t)

dt
φ(m,c)

i (r, θ , z, t)
)

. (10)

This expression follows from linear sloshing theory. One can see that the linearisation makes φ(m,s)
i and

φ
(m,c)
i to coincide with the natural modes sin(mθ) ψ(m)i (z, r) and cos(mθ) ψ(m)i (z, r), respectively. Further,
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inserting (9), (10) into (1) establishes that φF = (φ(m,s)
i or φ(m,c)

i ) is a solution of the following Neumann
boundary-value problem

�φF = 0 in Q(t);
∂φF

∂ν
= 0 on S(t) and �,

∂φF

∂ν
= F(r, θ)

√
1 + (∇f )2

on �(t), (11)

where F(r, θ) coincides with F̃(m)i (r) sin(mθ) or F̃(m)i (r) cos(mθ), respectively. The functions φ(m,s)
i and φ(m,c)

i
parametrically depend on β̃m,i. If deviations of the free surface �(t): z = f (r, θ , t) are small, the solution
of (11) permits a Taylor expansion by β̃m,i:

φF(r, θ , z, t) = φ
(0)
F (r, θ , z)+

∞∑

m=0

∞∑

i=1

β̃m,iφ
(1)
F,mi(r, θ , z)+

∞∑

m,n=0

∞∑

i,j=1

β̃m,iβ̃n,jφ
(2)
F,mi,nj(r, θ , z)+ · · · , (12)

where φ(0)F (r, θ , z), φ(1)F,mi(r, θ , z), φ(2)F,mi,nj(r, θ , z) etc. should be found from a set of recursive Neumann
boundary-value problems in the hydrostatic domain Q0 with zero (on S0) and non-zero (on �0) Neumann
boundary conditions. For circular cylindrical tanks without baffles, a Bessel-function algebra can be used
to find solutions of these boundary-value problems. In our case, φ(1)F,mi(r, θ , z), φ(2)F,mi,nj(r, θ , z), etc. should be

found numerically as truncated Fourier series by φ(0)F (r, θ , z). This is exemplified in the Appendix.

When assuming that we know φ
(1)
F,mi(r, θ , z), φ(2)F,mi,nj(r, θ , z), etc., substituting (9), (10) and (12) in the last

boundary condition of (1), using a Taylor expansion by β̃m,i and implementing a projective procedure on�0

(in terms of the basic functions {F̃(m)i (r) sin(mθ), F̃(m)i (r) cos(mθ)}) leads to a required infinite-dimensional

system of ordinary differential equations coupling β̃m,i(t),
˙̃
βm,i(t) and ¨̃

βm,i(t).

2.4 Asymptotic modal system for resonant sloshing due to lateral harmonic excitations (2)

As shown by Lukovsky [20] and Miles [13], resonant lateral harmonic excitation of the lowest natural
modes in a circular cylindrical tank invertible yields a Duffing-like intermodal ordering. In our case, this
implies

βc
1,1 ∼ βs

1,1 = O(ε1/3), βc
2,i ∼ βs

2,i ∼ βc
0,i ∼ βs

0,i = O(ε2/3),

βc
j,i ∼ βs

j,i � O(ε), j ≥ 3, i = 1, 2, . . . . (13)

Here, two modal functions βc
1,1 and βs

1,1 are dominating, but the infinite set βc
2,i, β

s
2,i, β

c
0,i, β

s
0,i, i = 1, 2, . . .

is of second order relative to βc
1,1 and βs

1,1. The remaining modes contribute only O(ε) and, pursuing an
approximation of the free surface to within O(ε), we can neglect them. Thus, the nonlinear modal systems
based on (13) should have an infinite number of degrees of freedom.

Miles [12, 13] demonstrated that separating the slow and fast time scales makes it possible to derive
a Hamiltonian system, which governs the dominating O(ε1/3)-amplitudes and accounts for the feedback
formed by the second-order modes (O(ε)-modal functions do not affect βc

1,1 and βs
1,1). Further, he has

shown that βc
2,i, β

s
2,i, β

c
0,i, β

s
0,i, i ≥ 2 contribute less than 1% to the fixed-point solutions (steady-state

waves), unless the depth/radius ratio is close to the critical value 0.831 or shallow. The critical depth leads
to a secondary resonance. Comparisons with experimental data done by Lukovsky [20], Gavrilyuk et al.
[21], Ikeda and Murakami [27] and Ikeda and Ibrahim [28] have confirmed that the five-mode approxi-
mation associated with βc

1,1,βs
1,1,βc

2,1,βs
2,1 and βc

0,1 gives good agreement with measurements of the wave
elevations and hydrodynamic forces.

The approximate natural modes of Part 1 cannot be used in the method by Miles [12, 13]. The use of
a large set of the second-order modes is also hardly possible in the Narimanov’s method. The reason is a
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dramatical increase of numerical operations. However, conclusions by Miles and Lukovsky are definitely
true for a small-size baffle and a small hole radius a. The first limit case can be considered as a perturbed
solution by Miles. The second case is characterised by almost zero flux through the baffle hole and, as a
consequence, baffled sloshing is mainly determined by the fluid flow in the upper subdomain (z > 0). We
must, however, guarantee that the secondary resonance does not occur. This will be studied in the next
subsection.

The usage of the following five-dimensional modal expression

f (r, θ , t) = βc
0,1(t)F

(0)
1 (r)+

[
βs

1,1(t) sin θ + βc
1,1(t) cos θ

]
F(1)1 (r)

+
[
βs

2,1(t) sin 2θ + βc
2,1(t) cos 2θ

]
F(2)1 (r), (14)

in the Narimanov scheme and disregarding terms of o(ε) make it possible to derive the following system
of nonlinear ordinary differential equations

β̈s
1,1 + ω

(1)
1 βs

1,1

+ D1((β
s
1,1)

2β̈s
1,1 + βs

1,1(β̇
s
1,1)

2 + βs
1,1β

c
1,1β̈

c
1,1 + βs

1,1(β̇
c
1,1)

2)

+ D2((β
c
1,1)

2β̈s
1,1 + 2βc

1,1β̇
s
1,1β̇

c
1,1 − βs

1,1β
c
1,1β̈

c
1,1 − 2βs

1,1(β̇
c
1,1)

2)

− D3(β
c
2,1β̈

s
1,1 − βs

2,1β̈
c
1,1 + β̇s

1,1β̇
c
2,1 − β̇c

1,1β̇
s
2,1)

+ D4(β
s
1,1β̈

c
2,1 − βc

1,1β̈
s
2,1)+ D5(β

c
0,1β̈

s
1,1 + β̇s

1,1β̇
c
0,1)

+ D6(β
s
1,1β̈

c
0,1) = 0, (15)

β̈c
1,1 + ω

(1)
1 βc

1,1

+ D1((β
c
1,1)

2β̈c
1,1 + βs

1,1β
c
1,1β̈

s
1,1 + βc

1,1(̇β
s
1,1)

2 + βc
1,1(β̇

c
1,1)

2)

+ D2((β
s
1,1)

2β̈c
1,1 − βs

1,1β
c
1,1β̈

s
1,1 + 2βs

1,1β̇
s
1,1β̇

c
1,1 − 2βc

1,1(β̇
s
1,1)

2)

+ D3(β
c
2,1β̈

c
1,1 + βs

2,1β̈
s
1,1 + β̇s

1,1β̇
s
2,1 + β̇c

1,1β̇
c
2,1)

− D4(β
c
1,1β̈

c
2,1 + βs

1,1β̈
s
2,1)+ D5(β

c
0,1β̈

c
1,1 + β̇c

1,1β̇
c
0,1)

+ D6(β
c
1,1β̈

c
0,1)−�v̈O1 = 0, (16)

β̈c
0,1 + ω

(0)
1 βc

0,1 + D10(β
s
1,1β̈

s
1,1 + βc

1,1β̈
c
1,1)+ D8((β̇

s
1,1)

2 + (β̇c
1,1)

2) = 0, (17)

β̈s
2,1 + ω

(2)
1 βs

2,1 − D9(β̈
s
1,1β

c
1,1 + β̈c

1,1β
s
1,1)− 2D7(β̇

s
1,1β̇

c
1,1) = 0, (18)

β̈c
2,1 + ω

(2)
1 βc

2,1 + D9(β̈
s
1,1β

s
1,1 − β̈c

1,1β
c
1,1)+ D7((β̇

s
1,1)

2 − (β̇c
1,1)

2) = 0, (19)

where ω(m)i =
√

gκ(m)i and Di, i = 1, . . . , 10; � are functions of h1, h2 and a computed by

D1 = d1

μ11
; D2 = d2

μ11
; D3 = d3

μ11
; D4 = d4

μ11
,

D5 = d5

μ11
; D6 = d6

μ11
; D7 = d7

μ21
; D8 = d8

μ01
, (20)

D9 = d4

μ21
; D10 = d6

μ01
; � = λ

μ11
,

where expressions for di, i = 1, . . . , 8;μ11,μ01,μ21 are derived in the Appendix. Some of the values in
Table 1 may be of interest to the reader.
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Table 1 Coefficients in (21) versus h1 and a; h1 + h2 = 1.0

h1 μ01 μ11 μ21 κ
(0)
1 κ

(1)
1 κ

(2)
1 d1 d2 d3 d4 d5 d6 λ

Coefficients for a = 0.4
0.25 1.0424 1.1096 0.4374 2.9084 0.9286 2.0076 3.6519 1.4384 0.8838 0.6474 1.7457 −0.8467 0.8971
0.30 0.9654 0.9961 0.3934 3.1778 1.0518 2.2471 2.3531 0.7392 0.8303 0.4236 1.5966 −0.5777 0.9041
0.35 0.9170 0.9140 0.3642 3.3738 1.1615 2.4383 1.6583 0.3697 0.7893 0.2839 1.4848 −0.4153 0.9095
0.40 0.8855 0.8524 0.3443 3.5136 1.2585 2.5881 1.2499 0.1569 0.7576 0.1909 1.3963 −0.3102 0.9138
0.45 0.8645 0.8048 0.3303 3.6120 1.3436 2.7038 0.9926 0.0263 0.7327 0.1262 1.3245 −0.2387 0.9170
0.50 0.8504 0.7673 0.3204 3.6805 1.4179 2.7921 0.8216 −0.0576 0.7128 0.0795 1.2656 −0.1881 0.9195
0.55 0.8408 0.7375 0.3132 3.7280 1.4822 2.8589 0.7031 −0.1135 0.6969 0.0451 1.2171 −0.1512 0.9214
0.60 0.8343 0.7134 0.3081 3.7607 1.5377 2.9091 0.6182 −0.1518 0.6839 0.0192 1.1770 −0.1235 0.9229

Coefficients for a = 0.5
0.25 0.9699 0.9462 0.4106 2.9996 1.0445 2.0807 2.8393 0.9970 0.6863 0.4825 1.2082 −0.6779 0.8796
0.30 0.9199 0.8765 0.3759 3.2463 1.1588 2.3072 1.8781 0.5052 0.6965 0.3177 1.2251 −0.4677 0.8911
0.35 0.8883 0.8247 0.3526 3.4236 1.2582 2.4862 1.3578 0.2363 0.6963 0.2122 1.2223 −0.3394 0.9001
0.40 0.8674 0.7847 0.3365 3.5490 1.3445 2.6255 1.0490 0.0764 0.6916 0.1404 1.2079 −0.2556 0.9069
0.45 0.8531 0.7529 0.3251 3.6368 1.4193 2.7325 0.8527 −0.0245 0.6851 0.0893 1.1872 −0.1981 0.9121
0.50 0.8432 0.7271 0.3168 3.6978 1.4837 2.8139 0.7210 −0.0910 0.6780 0.0520 1.1642 −0.1572 0.9160
0.55 0.8362 0.7059 0.3108 3.7399 1.5391 2.8753 0.6289 −0.1363 0.6709 0.0241 1.1412 −0.1272 0.9190
0.60 0.8313 0.6885 0.3063 3.7689 1.5865 2.9214 0.5625 −0.1678 0.6644 0.0028 1.1196 −0.1047 0.9211

Coefficients for a = 0.6
0.25 0.8811 0.7926 0.3721 3.1508 1.2039 2.2157 2.0178 0.5927 0.5571 0.3124 0.8822 −0.4784 0.8649
0.30 0.8639 0.7615 0.3505 3.3583 1.3024 2.4169 1.3823 0.2767 0.6014 0.2041 0.9804 −0.3360 0.8812
0.35 0.8530 0.7372 0.3356 3.5041 1.3855 2.5729 1.0363 0.0978 0.6258 0.1326 1.0365 −0.2478 0.8934
0.40 0.8450 0.7170 0.3250 3.6059 1.4560 2.6927 0.8298 −0.0120 0.6390 0.0826 1.0655 −0.1895 0.9025
0.45 0.8389 0.6999 0.3172 3.6765 1.5161 2.7839 0.6974 −0.0833 0.6454 0.0463 1.0773 −0.1490 0.9092
0.50 0.8341 0.6853 0.3113 3.7253 1.5672 2.8528 0.6079 −0.1314 0.6478 0.0192 1.0787 −0.1199 0.9141
0.55 0.8304 0.6726 0.3069 3.7589 1.6106 2.9046 0.5446 −0.1648 0.6477 −0.0013 1.0742 −0.0983 0.9177
0.60 0.8275 0.6617 0.3036 3.7819 1.6475 2.9433 0.4983 −0.1884 0.6463 −0.0170 1.0665 −0.0820 0.9203

Coefficients for a = 0.7
0.25 0.8049 0.6764 0.3306 3.3580 1.3991 2.4266 1.2826 0.2531 0.5073 0.1603 0.7654 −0.2876 0.8615
0.30 0.8167 0.6728 0.3228 3.5071 1.4722 2.5837 0.9303 0.0724 0.5593 0.0982 0.8780 −0.2077 0.8805
0.35 0.8233 0.6678 0.3168 3.6091 1.5321 2.7023 0.7391 −0.0331 0.5912 0.0558 0.9476 −0.1574 0.8940
0.40 0.8260 0.6619 0.3120 3.6791 1.5819 2.7918 0.6246 −0.0998 0.6107 0.0252 0.9889 −0.1235 0.9036
0.45 0.8266 0.6556 0.3081 3.7272 1.6237 2.8589 0.5504 −0.1440 0.6223 0.0026 1.0118 −0.0995 0.9104
0.50 0.8260 0.6493 0.3049 3.7603 1.6588 2.9092 0.4994 −0.1745 0.6287 −0.0146 1.0230 −0.0820 0.9153
0.55 0.8250 0.6432 0.3023 3.7829 1.6884 2.9468 0.4627 −0.1960 0.6320 −0.0277 1.0270 −0.0688 0.9187
0.60 0.8239 0.6375 0.3003 3.7984 1.7133 2.9747 0.4354 −0.2113 0.6333 −0.0379 1.0268 −0.0588 0.9211

Coefficients for a = 0.8
0.25 0.7736 0.6156 0.3003 3.5858 1.5991 2.6972 0.7201 −0.0148 0.5271 0.0401 0.8083 −0.1391 0.8777
0.30 0.7977 0.6235 0.3020 3.6648 1.6403 2.7901 0.5846 −0.0965 0.5674 0.0111 0.8909 −0.1061 0.8936
0.35 0.8107 0.6267 0.3021 3.7180 1.6738 2.8585 0.5108 −0.1457 0.5923 −0.0095 0.9413 −0.0845 0.9042
0.40 0.8172 0.6271 0.3013 3.7541 1.7015 2.9092 0.4653 −0.1776 0.6075 −0.0246 0.9712 −0.0694 0.9113
0.45 0.8201 0.6260 0.3001 3.7787 1.7245 2.9469 0.4347 −0.1993 0.6167 −0.0361 0.9883 −0.0584 0.9162
0.50 0.8212 0.6240 0.2990 3.7955 1.7438 2.9748 0.4126 −0.2144 0.6220 −0.0448 0.9974 −0.0502 0.9195
0.55 0.8215 0.6217 0.2979 3.8070 1.7599 2.9956 0.3962 −0.2253 0.6250 −0.0515 1.0016 −0.0438 0.9217
0.60 0.8214 0.6193 0.2970 3.8149 1.7733 3.0109 0.3835 −0.2331 0.6265 −0.0567 1.0029 −0.0389 0.9233

Coefficients for a = 0.9
0.25 0.7959 0.6069 0.2917 3.7647 1.7496 2.9470 0.4195 −0.1917 0.5901 −0.0400 0.9328 −0.0532 0.9090
0.30 0.8086 0.6106 0.2942 3.7862 1.7650 2.9753 0.3976 −0.2116 0.6052 −0.0486 0.9609 −0.0453 0.9153
0.35 0.8148 0.6119 0.2952 3.8007 1.7777 2.9960 0.3834 −0.2244 0.6139 −0.0550 0.9766 −0.0396 0.9192
0.40 0.8179 0.6119 0.2954 3.8106 1.7883 3.0113 0.3730 −0.2331 0.6189 −0.0597 0.9851 −0.0353 0.9217
0.45 0.8193 0.6113 0.2953 3.8173 1.7971 3.0225 0.3651 −0.2392 0.6217 −0.0634 0.9895 −0.0320 0.9234
0.50 0.8199 0.6104 0.2951 3.8219 1.8045 3.0309 0.3589 −0.2436 0.6233 −0.0662 0.9915 −0.0294 0.9245
0.55 0.8201 0.6094 0.2949 3.8250 1.8106 3.0370 0.3539 −0.2467 0.6241 −0.0684 0.9921 −0.0273 0.9252
0.60 0.8202 0.6084 0.2947 3.8271 1.8157 3.0415 0.3499 −0.2490 0.6244 −0.0701 0.9919 −0.0257 0.9257
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2.5 Secondary resonance and applicability of (15)–(19)

First, we have to remember that the Galerkin method of Part 1 provides stable calculations of the natural
modes only for a ≥ 0.3 and h1 ≥ 0.1. Physical and numerical treatments of this point were given in Part 1.
Further, our numerical experiments in the Appendix show that the hydrodynamic coefficients di stably
converge only for a ≥ 0.38 and h1 ≥ 0.2. A physical explanation of this new limitation is associated with
occurrence of a nonlinear shallow-water flow over the baffle for relatively small h1/(1 − a).

Second, several combinations of h1, h2 and a may lead to secondary resonance, for which the five-mode
solution (14) fails and some of βc

2,i, β
s
2,i, β

c
0,i, β

s
0,i, i ≥ 1 must be considered of the order O(ε1/3). The

secondary resonance was discussed by Bryant [53] (circular basin); it was extensively examined for large-
amplitude forcing by Faltinsen and Timokha [14, 54] (rectangular tank), Ockendon et al. [49], La Rocca
et al. [32, 33] and Faltinsen et al. [24] (square base tank). Following Bryant [53], we expect secondary
resonances as

R0i = 1
2

√√
√
√κ

(0)
i

κ
(1)
1

or R2i = 1
2

√√
√
√κ

(2)
i

κ
(1)
1

, i ≥ 1 (21)

passes to 1. Our numerical analysis shows that only R22 and R02 can be equal to 1. Figure 3 illustrates
this fact by curves r22 and r02 coupling the critical combinations of a and h1. In a small neighbourhood of
these curves in the (a, h1)-plane, βc

0,2 and βc
2,2 ∼ βs

2,2 = O(ε1/3) and, therefore, the system (15)–(19) is not
applicable.

3 Steady-state resonant waves

The steady-state waves in a circular cylindrical tank without baffles are restricted to ‘planar’ and ‘swirling’
regimes. Their stability changes with the forcing frequency and amplitude [12, 13, 20, 21, 35, 44]. These
regimes are best classified in terms of the two conjugate lowest-order modes. A spherical-pendulum anal-
ogy is also useful. Assuming a harmonic horizontal forcing, we observe that the ‘planar’ regime involves
only one lowest-order mode. In view of the pendulum analogy, this regime corresponds to a planar motion
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Fig. 3 Resonance detuning parameters R22 and R02 for h1 + h2 = 1 (first row) and for h1 + h2 = 2 (second row)
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in the excitation plane. ‘Swirling’ or ‘rotary wave’ involves both dominating modes. It appears as an analogy
of rotary motions of the spherical pendulum. Because the modal equations (15)–(19) are similar to those
for a circular tank without baffles [21], the same two regimes for the baffled sloshing are expected.

3.1 Steady-state regimes

Considering the harmonic horizontal forcing (2) and accounting for (13), we obtain the dominating com-
ponents for the lowest conjugate modes F̃(1)1 (r) cos θ and F̃(1)1 (r) sin θ as follows:

βc
1,1(t) = A cos σ t + Ā sin σ t + o(ε1/3),
βs

1,1(t) = B̄ cos σ t + B sin σ t + o(ε1/3).
(22)

Setting (22) in (17)–(19) and using the Fredholm alternative computes the second-order component, we
have:

βc
0,1(t) = c0 + c1 cos 2σ t + c2 sin 2σ t + o(ε2/3),
βc

2,1(t) = s0 + s1 cos 2σ t + s2 sin 2σ t + o(ε2/3),
βs

2,1(t) = e0 + e1 cos 2σ t + e2 sin 2σ t + o(ε2/3).
(23)

Here

c0 = l0(A2 + Ā2 + B2 + B̄2); c1 = p0(A2 − Ā2 − B2 + B̄2),
c2 = 2p0(AĀ + BB̄); s0 = l2(A2 + Ā2 − B2 − B̄2),
s1 = p2(A2 − Ā2 + B2 − B̄2); s2 = 2p2(AĀ − BB̄),
e0 = −2l2(AB̄ + BĀ); e1 = 2p2(ĀB − AB̄),
e2 = −2p2(AB + ĀB̄)

(24)

and

p0 = D10 + D8

2(σ̄ 2
0 − 4)

, l0 = D10 − D8

2σ̄ 2
0

,

p2 = D9 + D7

2(σ̄ 2
2 − 4)

, l2 = D9 − D7

2σ̄ 2
2

; σ̄m = ω
(m)
1

σ
, m = 0, 1, 2. (25)

By substituting (22) and (23) in (15)–(16) and using the Fredholm alternative, we get the following
system of algebraic equations with respect to four variables A, Ā, B and B̄

A[σ̄ 2
1 − 1 + m1(A

2 + Ā2 + B̄2)+ m2B2] + m3ĀBB̄ = �ε,
Ā[σ̄ 2

1 − 1 + m1(A
2 + Ā2 + B2)+ m2B̄2] + m3ABB̄ = 0,

B[σ̄ 2
1 − 1 + m1(B

2 + Ā2 + B̄2)+ m2A2] + m3B̄AĀ = 0,
B̄[σ̄ 2

1 − 1 + m1(A
2 + B2 + B̄2)+ m2Ā2] + m3ĀAB = 0,

⎫
⎪⎪⎬

⎪⎪⎭
(26)

where the coefficients

m1 = D5

(
1
2

p0 − l0

)
− D3

(
1
2

p2 − l2

)
− 2D6p0 − 2D4p2 − 1

2
D1,

m2 = −D3

(
l2 + 3

2
p2

)
− D5

(
l0 + 1

2
p0

)
+ 2D6p0 − 6D4p2 + 1

2
D1 − 2D2, (27)

m3 = m1 − m2

depend on σ , h1, h2 and a.
Further, accounting for the limit σ̄1 → 1 and the asymptotics A ∼ Ā ∼ B ∼ B̄ = O(ε1/3)we deduce that

σ̄ 2
1 − 1 = O(ε2/3); mi(σ , h1, h2, a) = m0

i (h1, h2, a)+ o(ε1/3), i = 1, 2, 3, (28)
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where the first relationship implies the so-called Moiseyev asymptotic detuning and m0
i = mi(ω

(1)
1 , h1,

h2, a) = O(1) (computing m0
i means σ ≡ ω

(1)
1 in (25)).

When analysing similar algebraic systems, Gavrilyuk et al. [21] and Faltinsen et al. [54] showed that their
resolvability condition reads

A 
= 0; B̄ = Ā = 0; m0
3 
= 0. (29)

By fixing the overall fluid depth h = h1 + h2, we may evaluate the coefficient m0
3 versus h1 and a. Zeros of

m0
3, which imply that (26) cannot be solved, correspond to the curve γ3 in the (a, h1)-plane, as demonstrated

in Fig. 4. Shapes and location of γ3 are almost invariant for h ≥ 1.
Considering fixed a and h1 away from γ3 and neglecting the o(ε)-terms, we may rewrite (26) in the

following form

A(σ̄ 2
1 − 1 − m0

1A2 − m0
2B2) = ε�; B(σ̄ 2

1 − 1 − m0
1B2 − m0

2A2)= 0. (30)

Solutions of (30) are functions of σ/ω(1)1 = 1/σ̄1. Accounting for the second equation of (30), which is
always fulfilled as B = 0, yields two types of solutions. These are
(i) ‘planar’ waves

f (r, θ , t) = AF̃(1)1 (r) cos θ cos σ t + o(ε1/3) (31)

occurring for B = 0. The unique dominating amplitude A is then a root of the algebraic equation

A(σ̄ 2
1 − 1 + m0

1A2) = �ε. (32)

(ii) ‘swirling’ waves

f (r, θ , t) = F̃(1)1 (r)(A cos θ cos σ t ± B sin θ sin σ t)+ o(ε1/3) (33)

Fig. 4 m(0)
3 versus (h1, a)

for h1 + h2 = 1
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Fig. 5 Comparison with
experiments by Hutton
[55] and Abramson [35]
for a circular cylindrical
tank without baffles.
‘Planar’ steady-state
regimes, the depth/radius
ratio h/R1 = 2.
Calculated and measured
values are presented for ε:
�− ε = 0.0454; � − ε =
0.0344; © − ε =
0.023; ♦ − ε = 0.0112
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occurring for B 
= 0. The first dominating amplitude A is then defined by

A(σ̄ 2
1 − 1 + m0

4A2) = m5�ε, m0
5 = −m0

1

m0
3

, m0
4 = m0

1 + m0
2, (34)

but the second lowest-order amplitude B is expressed via A as

B2 = 1

m0
1

(σ̄ 2
1 − 1 + m0

2A2) > 0. (35)

The ± ahead of B in (33) implies either a clockwise or a counterclockwise rotary wave. Since both signs
are mathematically possible, the initial conditions and transients should determine the sign.

Existence and stability of these two steady-state regimes are a function of the coefficients m1 and m2
and, in turn, a function of the geometric parameters h1, h2 and a. The regimes depend also on the forcing
ε and σ̄1 = ω

(1)
1 /σ .

3.2 Stability

The stability of ‘planar’ and ‘swirling’ regimes can be studied by combining the first Lyapunov method
and the multi-timing technique (see, [13] and [24]). This technique introduces the slowly varying time
τ = ε2/3σ t/2 and expresses the infinitesimally perturbed dominating terms as

βc
1,1 = (A + α(τ)) cos σ t + ᾱ(τ ) sin σ t + o(ε1/3), (36)

βs
1,1 = β̄(τ ) cos σ t + (B + β(τ)) sin σ t + o(ε1/3),

where A and B are solutions of (30) and α, ᾱ,β and β̄ are relative perturbations depending on τ .
Inserting (36) into (15)–(19), collecting terms of the lowest asymptotic order and keeping linear terms

in α, ᾱ,β and β̄ leads to the following linear system of ordinary differential equations

c′ + Cc = 0. (37)

Further, c = (α, ᾱ,β, β̄)T and the matrix C has the following non-zero elements

c12 = −[σ̄ 2
1 − 1 + m0

1A2 + m0
1B2]; c21 = σ̄ 2

1 − 1 + 3m0
1A2 + m0

2B2,

c14 = −(m0
1 − m0

2)AB; c41 = −2m0
2AB,

c23 = 2ABm0
2; c32 = (m0

1 − m0
2)AB,

c34 = σ̄ 2
1 − 1 + m0

1B2 + m0
1A2; c43 = −[σ̄ 2

1 − 1 + 3m0
1B2 + m0

2A2].
The fundamental solution of the Hamiltonian system (37) depends on the eigenvalue problem det[λE +

C] = 0, where E is the identity matrix. Computations lead to the following characteristic polynomial

λ4 + c1λ
2 + c0 = 0, (38)

where c0 is the determinant of C and c1 is a complicated function of the elements of C. The necessary and
sufficient condition for the real part of the quartic equation (38) to be non-positive, i.e., for the steady-state
solutions be stable, is ([13])

c0 > 0; c1 > 0; c2
1 − 4c0 > 0. (39)

Here c0 vanishes at the turning-point solutions and at the Poincaré bifurcation points. The zeros of the
discriminant c2

1 − 4c0 are Hamiltonian Hopf-bifurcation points where the real parts of a pair of complex-
conjugate zeros of c0 becomes positive.
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3.3 Validation by experiments

To the authors’ knowledge, the literature does not contain experimental data about steady-state resonant
regimes in baffled circular cylindrical tanks. These exist only for the non-baffled case (see [55], [35] and,
recently, [56]). Measurements of the wave elevation as well as detection of the effective frequency domain
have mostly been reported for the ‘planar’ regime. Complications in measuring the amplitude responses
for ‘swirling’ are caused by the occurrence of breaking waves. See, for details [56] and, for ‘swirling’ in a
square-base tank, [57].

Assuming a = 1 and using results of Sects. 3.1 and 3.2, we compared our theoretical prediction with
[35]. The original experimental data were normalised as the half-sum of two diametrically opposite wave
elevations near the wall in the plane of excitations to the radius R1. In our modal representation, this
implies

η = 1
2

max
t∈[0,2π/σ ](|β

c
0,1 + βc

1,1 − βc
2,1| + |βc

0,1 − βc
1,1 − βc

2,1|) (40)

provided by the non-dimensional steady-state solution (22) + (23).
Comparison for different non-dimensional forcing amplitudes is presented in Fig. 5. It demonstrates

good agreement.

3.4 Response curves

The appearance and stability of ‘planar’ and ‘swirling’ flows depend on the signs and the absolute values
of m0

1 and m0
4. For a fairly large fluid depth (h = h1 + h2 ≥ 1), our numerical analysis found that m0

4 > 0,
but m0

1 can change sign on a curve γ1 belonging to the (a, h1)-plane. This is illustrated in Fig. 6(a, b), where
M+

1 and M−
1 are the areas of positive and negative m0

1, respectively. Evaluating the response curves in
the (1/σ̄1, |A|)-plane, we conclude that ‘swirling’ is always characterised by ‘hard-spring’ behaviour, but
‘planar’ may change from ‘soft’ (in M−

1 ) to ‘hard-spring’ (in M+
1 ) behaviour.

The lowest-order amplitudes A and B characterise two perpendicular wave profiles. A implies a wave
component in the plane of excitation (in-phase with forcing), but B is perpendicular to the plane of excita-
tion (out-of-phase by 90◦). This means that the response curves are best illustrated in the (1/σ̄1, |A|, |B|)-
space. Figure 7(a–f) demonstrate the response curves for h1 = 0.3, h1 + h2 = 1 and ε = 0.002. The columns
(sub-figures) a–f are ordered for decreasing a, where sub-figure (a) implies a tank without baffles. A three-
dimensional view is accompanied by projections on both the (1/σ̄1, |A|) and (1/σ̄1, |B|)-planes. The solid
line is used for stable solutions, but the dashed line denotes unstable ones.

Figure 7(a) starts with a = 1 (tank without baffle). This type of branching was analysed by Miles [12, 13],
Lukovsky [20], Lukovsky and Timokha [29] and Gavrilyuk et al. [21]. The analysis exhibits a turning point
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Fig. 7 Response curves for ε = 0.002, h1 +h2 = 1 and h1 = 0.3. Each column gives the response curves in the (1/σ̄1, |A|, |B|)-
space and their projections on the (1/σ̄1, |A|)- and (1/σ̄1, |B|)-planes. The solid line corresponds to stable, but the dashed
line—to unstable steady-state solutions. The effective frequency domains for ‘planar’ and ‘swirling’ regimes are presented in
the (1/σ̄1, |A|)-plane. The ‘chaotic’ domain is caused by instability of both steady-state regimes. (a)—The tank has no baffle
(a = 1), T is the turning point of the ‘planar’ response curve, P is the Poincare-bifurcation point, where unstable ‘swirling’
emerges from ‘planar’ solutions and H is the Hamiltonian Hopf-bifurcation point. (b)—The same as (a), but for a = 0.7.
(c)—The same as (a), but for a = 0.6. (d)—The same as (a), but for a = 0.5. Here, T is the turning point for the ‘planar’
response curve, P1 implies the Poincare-bifurcation point, T1 is the turning point for ‘swirling’ and Hi, i = 1, 2 are the
Hamiltonian Hopf-bifurcation points. (e)—The same as (d), but for a = 0.44. Here, P2 is the Poincare-bifurcation point, H is
the Hamiltonian Hopf-bifurcation point, T is the turning point for ‘planar’. (f)—The same as (e), but for a = 0.4

T for the ‘planar’ response curve, a Poincare-bifurcation point P, from which ‘planar’ response curve may
bifurcate to ‘swirling’ (this fact is demonstrated by a three-dimensional view), and a Hamiltonian Hopf-
bifurcation point H, where the ‘swirling’ changes its stability feature. The effective frequency domains of
stable ‘planar’ and ‘swirling’ are marked in the (1/σ̄1, |A|)-plane. These domains imply intervals on the
1/σ̄1-axis, on which the denoted wave regime exist, are stable and have minimum kinetic energy with
respect to other stable steady-state waves. In addition, we introduced a ‘chaotic’ frequency domain. In this
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Fig. 7 continued

range, our analysis has not been able to establish any stable steady-state waves and irregular waves were
detected in [35, 55, 56]. As shown in Fig. 7(b), a small-size annular baffle does not change this branching.
There is a small drift of the ‘chaotic’ domain, but its range (interval between abscissas of T and H) is mostly
the same as in Fig. 7(a).

“Migration” of the ‘chaotic’ frequency domain becomes visible only if (a, h1) ∈ M−
1 is close to γ1 in

Fig. 6(a). The situation is depicted in Fig. 7(c) drawn for a = 0.6. The Hamiltonian Hopf-bifurcation point
H moves then to the right and projections of the two ‘swirling’ response curves on the (1/σ̄1, |A|)-plane
are situated close to each other.

When (a, h1) runs into M+
1 in Fig. 6(a), the branching changes dramatically. Examples are given in

Fig. 7(d–f) for a = 0.5, 0.44 and 0.4, respectively. The ‘planar’ response curves are then characterised by a
‘hard-spring’ behaviour. As a result, the turning point T is situated on the right sub-branch. Besides, the
frequency domain of ‘chaotic’ motions disappears and the response curves responsible for ‘swirling’ move
away from the primary resonance 1/σ̄1 = 1. In the case a = 0.5 depicted in Fig. 7(d), the ‘planar’ regime
is stable for either 1/σ̄1 close to 1 and ‘swirling’ is not realised. Stable ‘swirling’ between the turning point
T1 and the Hamiltonian Hopf-bifurcation point H1 and in a zone to the right of H2 is characterised by a
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Fig. 7 continued

higher kinetic energy than in the ‘planar’ case. Figure 7(e, f) shows that T1, H1 and H2-bifurcation points
disappear with decreasing a down to 0.4. Here, the Poincare-bifurcation point P1 “jumps” to P2, i.e., from
the right to the left ‘planar’ sub-branch. In addition, there is a frequency domain where our theory expects
stable ‘swirling’, but unstable ‘planar’ waves.

Evolution of the branching in Fig. 7(a–f) versus a is typical for h1 +h2 ≥ 1 and h1 ≤ 0.45. When h1 > 0.45
the branching always is similar to that in Fig. 7(a, b). This means that, if the annular baffle is immersed
deep into fluid, the weakly nonlinear resonant sloshing is qualitatively the same as in a circular cylindrical
tank without baffles.

Summarising, the branchings versus a and h1 with h1+h2 ≥ 1 lead us to conclude that the response curves
behave as in Fig. 7(a–c) for (a, h1) ∈ M−

1 (see, Fig. 6(a)). The response curves illustrated in Fig. 7(e, f) may
be found only for (a, h1) ∈ M+

1 . In particular, evaluating the branching versus h1 for a fixed a > 0.65, we
observe curves similar to those established in Fig. 7(a, b). Physically, this means that a small-sized annular
baffle does not affect the nonlinear resonant steady-state waves. It should, however, yield vortex-induced
damping, whose influence will be addressed in Part 3.
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Finally, varying the non-dimensional forcing amplitude ε for h1 + h2 ≥ 1 and h1 ≤ 0.45 does not change
the types of the branching illustrated in Fig. 7(a–f). However, the frequency domain of ‘chaotic’ motions
increases with increasing ε. This result may also be corrected by accounting for damping.

4 Conclusions

In the present paper a weakly nonlinear modal theory of sloshing in a baffled circular cylindrical tank has
been proposed. The asymptotic modal method by Narimanov [43] has been used. A system of nonlinear
ordinary differential equations (modal system) coupling the five lowest natural modes was derived. The
system is a direct generalisation of an analogous five-dimensional system by Dodge et al. [50], Lukovsky
[20], Gavrilyuk et al. [21] and Ikeda and Murakami [27] that was developed for a circular cylindrical tank
without baffles. In the absence of secondary resonance, the usage of the five-mode solution for the non-
baffled tank was justified by Miles [12, 13] and Lukovsky [20]. This explains why the five-mode solution
is applicable to the case studied here. Occurrence of the secondary resonance versus the size and the
position of the baffle was estimated to confirm that this resonance and consequent amplification of higher
second-order modes may be important only for a few isolated geometric configurations.

The asymptotic modal system is applicable for the scaled (by radius) width of the ring baffle (1−a) ≤ 0.62
and the scaled height of the fluid layer over the baffle h1 ≥ 0.2. These limitations are in part associated
with numerical problems discussed in Part 1 as well as with convergence to the coefficients of the modal
system. Physically, small h1/(1 − a) implies also a shallow-water flow over the horizontal baffle. This flow is
strongly dissipative and cannot be described by our inviscid-fluid model. Besides the effect of the vortices
shed from the baffle edge near the free surface, as well as a penetration of the free surface by the baffle
for large-amplitude sloshing, may play a role. This means that the case of small h1 (especially with a small
overall depth h = h1 + h2) needs a dedicated study based on the Navier–Stokes formulation.

The modal system was used to study steady-state resonant fluid motions due to lateral excitations of
the lowest natural frequency. The analysis concentrated on the case of the overall fluid depth to the radius
ratio h = h1 + h2 ≥ 1. It established two and only two steady-state regime, i.e., ‘planar’ and ‘swirling’. In
the particular case of a non-baffled tank, results have been validated by experimental data from [35]. The
behaviour of the response curves has been studied versus a and h1.

Our studies do not account for damping. Its accurate quantification should lead to new terms in our
nonlinear modal system. These are responsible for shear ([58]) and vorticity stresses ([10, 11, 59]). Forth-
coming Part 3 will focus on the modified system. It is of primary interest for small-sized baffles. As one can
see from our analysis, a small annular baffle does not influence the effective frequency domains of both
‘planar’ and ‘swirling’ regimes. However, damping may affect them. This was shown by Miles [13] who
tested speculatively large damping rates for a circular cylindrical tank without baffles. He has shown in par-
ticular that the range of ‘chaotic’ waves may decrease considerably and even disappear. On the other hand,
decreasing the hole in an annular baffle decreases a flux between the upper and lower fluid sub-domains.
This is because the two lowest-order modes are characterised by a zero vertical velocity component in the
centre. In that case, the vortex shedding is basically formed by the second-order terms, which are small. As
a result, we do not expect a substantial effect of vortex-induced damping when a decreases.

Appendix

In order to derive expressions for di, i = 1, . . . , 8, we had to find first- and second-order solutions of (11)
in terms of β̃mi(t). This is a straightforward, but tedious analytical task. By denoting

G1 = ∂F̃(1)1

∂r

∂ψ
(1,1)
1

∂r
− F̃(1)1

∂2ψ
(1,1)
1

∂z2 ; G2 = 1
r2 F̃(1)1 ψ

(1,1)
1 ,
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where�0(z, r) and�2(z, r) are solutions of the following Neumann boundary-value problems in the merid-
ional plane G:

L0(�0) = 0 in G; |�0(z, 0)| < ∞,
∂�0

∂ν
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2
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(see, geometrical definitions in Fig. 2), we get
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Table 2 Convergence to d1 and d2 versus I0 in the Fourier series (43) (a = 0.7; h2 = 0.5)

h1 = 0.3 h1 = 0.5

I0 d1 d2 d1 −d2

1 0.91465 0.064550 0.52435 0.16810
2 1.00504 0.095611 0.53062 0.16729
3 1.01616 0.099171 0.53091 0.16729
4 1.01640 0.099204 0.53093 0.16728
5 1.01645 0.099239 0.53094 0.16728
6 1.01647 0.099245 0.53094 0.16728

μ11 = π

∫

L0

F̃(1)1 ψ
(1,1)
1 rdr; μ01 = 2π

∫

L0

F̃(0)1 ψ
(0,1)
1 rdr, μ21 = π

∫

L0

F̃(2)1 ψ
(2,1)
1 rdr.

Approximate solutions of (41) and (42) should be found with utilising the Fourier series by ψ(0)i and
ψ
(2)
i , i ≥ 1 as follows

�0 = lim
I0→∞

I0∑
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aiψ
(0)
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biψ
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where
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i rdr
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r(ψ(0)i )2dr
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(2)
i rdr

2κ(2)i
∫
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r(ψ(2)i )2dr

.

Equation (43) needs accurate approximations of the higher natural modes. These are given in Part 1.
Convergence to d1 and d2, which depend on �0(z, r) and �2(z, r), is illustrated in Table 2. It is fast for
h1 ≥ 0.2 and a ≥ 0.38. However, smaller h1 and a give rise to slow convergence.
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