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We investigate the separation property for hierarchies of Schrödinger operators for identical
particles. We show that such hierarchies of translation invariant second order differential
operators are necessarily linear. A weakened form of the separation property, related to
a strong form of cluster decomposition, allows for homogeneous hierarchies of nonlinear
differential operators. Some connection with field theoretic formalisms in Fock space are
pointed out.

1 Introduction

In [1] we studied hierarchies of N -particle Schrödinger equations that satisfy the separation
property. By this we mean that product functions evolve as product functions. The separation
property was considered as a nonlinear version of the notion of non-interacting systems, as then
uncorrelated states remain uncorrelated under time evolution. The motivation for studying such
hierarchies came from concrete examples of nonlinear Schrödinger equations arising in problems
of representations of the diffeomorphism group.

The hierarchies of Schrödinger operators that one encounters in such evolution equation
satisfies a property that we called tensor derivation as the characteristic property is formally a
derivation with respect to the tensor product of wave functions.

Fn(ψ1 ⊗ ψ2 ⊗ · · · ⊗ ψp) = Fn1(ψ1) ⊗ ψ2 ⊗ · · · ⊗ ψp

+ ψ1 ⊗ Fn2(ψ2) ⊗ · · · ⊗ ψp + · · · + ψ1 ⊗ ψ2 ⊗ · · · ⊗ Fnp(ψp), (1)

where the Fm are m-particle operators, the ψk are nk-particle wave function and n = n1+· · ·+np.
Tensor derivations were fully classified in [1]. Canonical decompositions and constructions were
also presented.

The analysis in [1] is incomplete in several aspects. One most apparent is that there one only
considered N -particle systems in which the particles were all of different species. Thus there
was no need to consider symmetric or antisymmetric wave functions. Since the world is made of
bosons and fermions, one should reconsider the whole question for systems of identical particles.
The tensor derivation property (1) must then be reformulated not with respect to the simple
tensor product

φ ⊗ ψ(x1, . . . , xn, xn+1, . . . , xn+m) = φ(x1, . . . , xn)ψ(xn+1, . . . , xn+m)

of two wave functions, but with respect to the symmetric or anti-symmetric tensor product

φ⊗̂ψ(x1, . . . , xn, xn+1, . . . , xn+m)

=
1

n!m!

∑
π

(−1)fs(π)φ(xπ(1), . . . , xπ(n))ψ(xπ(n+1), . . . , xπ(n+m)),

where π is a permutation of {1, 2, . . . , n + m}, s(π) its parity, and f is the Fermi number equal
to zero for bosons and one for fermions. The coefficient in front of the sum is conventional.
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In [2] we explored the possibility of formulating a nonlinear relativistic quantum mechanics
based on a nonlinear version of the consistent histories approach to quantum mechanics. A toy
model led to a set of equations among which there were instances of the separation property
for a symmetric tensor product. This showed once more that such a separation property is
fundamental for understanding any nonlinear extension of ordinary quantum mechanics.

Given these motivations, this paper is dedicated to the beginning of a systematic exploration
of the symmetric separation property.

2 Symmetric tensor derivations

A symmetric tensor derivation would be a hierarchy of operators that satisfies (1) with ⊗̂ instead
of ⊗. That is,

Fn(ψ1⊗̂ψ2⊗̂ · · · ⊗̂ψp) = Fn1(ψ1)⊗̂ψ2⊗̂ · · · ⊗̂ψp

+ ψ1⊗̂Fn2(ψ2)⊗̂ · · · ⊗̂ψp + · · · + ψ1⊗̂ψ2⊗̂ · · · ⊗̂Fnp(ψp). (2)

One does not have a classification of these as one has for ordinary tensor derivations as given
in [1]. It seems that the conditions to be a tensor derivation in the symmetric case is rather
stringent, and as we shall now see, in the case of differential operators, implies linearity under
some general conditions. We only treat the case of second order operators as these are the most
common kind in physical applications.

Let us consider a possibly nonlinear differential operators of second order not depending ex-
plicitly on the position coordinates (dependence on time can be construed as simply dependence
on a parameter), in the case N = 2. Such an operator has the form

H

(
φ,

∂φ

∂xi
,

∂φ

∂yj
,

∂2φ

∂xi∂xj
,

∂2φ

∂xi∂yj
,

∂2φ

∂yi∂yj

)
.

Introducing variable names for the arguments of H, we write H(a, bi, cj , dij , eij , fij). When φ is
constrained to be a symmetrized product (here f is the Fermi number)

φ(x, y) = α(x)β(y) + fβ(x)α(y)

then the arguments of H are constrained to take on values of the form .

a = α0β0 + fβ̃0α̃0, bi = αiβ0 + fβ̃iα̃0, ci = α0βi + fβ̃0α̃i, (3)

dij = αijβ0 + fβ̃ijα̃0, eij = αiβj + fβ̃iα̃j , fij = α0βij + fβ̃0α̃ij (4)

where all the quantities on the right-hand sides: α0, β0, αi, βi, αij , βij , α̃0, β̃0, α̃i, β̃i, α̃ij , β̃ij ,
which we shall call the αβ-quantities, can be given, by Borel’s lemma, arbitrary complex values
by an appropriate choice of the points x and y and functions α and β. Denote the right-hand
sides of the above equations by â, b̂i, ĉi, d̂ij , êij , and f̂ij , respectfully.

The separability condition for the symmetrized tensor product now reads:

F2(â, b̂i, ĉi, d̂ij , êij , f̂ij) = F1(α0, αi, αij)β0

+ fF1(α̃0, α̃i, α̃ij)β̃0 + F1(β0, βi, βij)α0 + fF1(β̃0, β̃i, β̃ij)α̃0. (5)

Based on the examples of separating hierarchies for the non symmetrized tensor product, we
must admit that the differential operators F1 and F2 may be singular, so that in analyzing (5)
we should avoid points in which the first argument vanishes. Aside from this we put no further
restrictions the values of the αβ-quantities. The freedom of choice in these quantities is now
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such that we can give arbitrary values to a, with a �= 0, bi, ci, dij , and fij . This is achieved by
setting

α0 =
a − fα̃0β̃0

β0
, αi =

bi − fβ̃iα̃0

β0
, α̃i = f

β0ci − (a − fα̃0β̃0)βi

β0β̃0

,

αij =
dij − fβ̃ijα̃0

β0
, α̃ij = f

β0fij − (a − fα̃0β̃0)βij

β0β̃0

with these substitutions one finds

êij =
β̃0biβj + β0β̃icj − aβ̃iβj

β0β̃0

.

Equation (8) now becomes

F2(a, bi, ci, dij , êij , fij) = F1

(
a − fα̃0β̃0

β0
,

bi − fβ̃iα̃0

β0
,

dij − fβ̃ijα̃0

β0

)
β0

+ fF1

(
α̃0, f

β0ci − (a − fα̃0β̃0)βi

β0β̃0

, f
β0fij − (a − fα̃0β̃0)βij

β0β̃0

)
β̃0

+
a − fα̃0β̃0

β0
F1

(
β0, βi, βij) + fα̃0F1(β̃0, β̃i, β̃ij

)
. (6)

The left-hand side of (6) is independent of β̃ij and the right-hand side has two terms that
depend on it. Differentiating both sides with respect to βij one arrives at the following identity:

Dij
3 F1

(
a − fα̃0β̃0

β0
,

bi − fβ̃iα̃0

β0
,

dij − fβ̃ijα̃0

β0

)
= Dij

3 F1(β̃0, β̃i, β̃ij) (7)

which must hold for all values of the variables that appear. Here Dij
3 stands for the partial

derivative with respect to the ij component of the third argument of F1. Choosing α̃0 = 1,
β0 = fβ̃0, a = 2fβ̃0, bi = fβ̃i, and dij = fβ̃ij one gets

Dij
3 F1(1, 0, 0) = Dij

3 F1(β̃0, β̃i, β̃ij)

which means that

F1(u, vi, wij) = G(u, vi) +
∑
ij

kijwij ,

where kij are constants. After substituting this into (6) and simplifying, that equation now
becomes

F2(a, bi, ci, dij , êij , fij)

= G

(
a − fα̃0β̃0

β0
,

bi − fβ̃iα̃0

β0

)
β0 + fG

(
α̃0, f

β0ci − (a − fα̃0β̃0)βi

β0β̃0

)
β̃0

+
a − fα̃0β̃0

β0
G(β0, βi) + fα̃0G(β̃0, β̃i) +

∑
ij

kij(dij + fij). (8)

The linear differential operator represented by the term
∑
ij

kij(dij+fij) is of the form I⊗L+L⊗I

and which is part of a ⊗̂-separating hierarchy (in which the one-particle operator is L), so
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subtracting it from F2 results in a new separating hierarchy with kij = 0. We now note that the
left-hand side of (8) is independent of α̃0 so differentiation both sides with respect to α̃0 results
in the following identity:

−D1G

(
a − fα̃0β̃0

β0
,

bi − fβ̃iα̃0

β0

)
β̃0

−
∑

i

Di
2G

(
a − fα̃0β̃0

β0
,

bi − fβ̃iα̃0

β0

)
β̃i + D1G

(
α̃0, f

β0ci − (a − fα̃0β̃0)βi

β0β̃0

)
β̃0

+
β̃0

β0

∑
i

Di
2G

(
α̃0, f

β0ci − (a − fα̃0β̃0)βi

β0β̃0

)
βi − β̃0

β0
G(β0, βi) + G(β̃0, β̃i) = 0. (9)

Choosing now as before α̃0 = 1, β0 = fβ̃0, βi = 0, a = 2fβ̃0, bi = fβ̃i, and ci = 0 one finds

G(β̃0, β̃i) + fG(fβ̃0, 0) +
∑

i

Di
2G(1, 0)β̃i = 0. (10)

This means that

G(u, vi) = A(u) +
∑

i

kivi, (11)

where ki are constants. Substituting this into (8) with kij = 0 one gets

F2(a, bi, ci, dij , êij , fij) = A

(
a − fα̃0β̃0

β0

)
β0 + fA(α̃0)β̃0

+
a − fα̃0β̃0

β0
A(β0) + fα̃0A(β̃0) +

∑
i

ki(bi + ci). (12)

As before, the differential operator represented by the last term is part of a ⊗̂-separating hie-
rarchy, so subtracting it from F2 results in a new separating hierarchy with ki = 0.

Also as before the right-hand side of (12) has to be independent of α̃0. Differentiating again
both sides with respect to α̃0 one arrives at

−A′
(

a − fα̃0β̃0

β0

)
β̃0 + A′(α̃0)β̃0 − f

β̃0

β0
A(β0) + fA(β̃0) = 0. (13)

As the first term is the only one that depends on a, this equation can only hold if A′(u) is a
constant, that is A(u) = ku + � for constants k and �. Substituting this into (12) now results in

F2(a, bi, ci, dij , êij , fij) = 2ka + �

(
β0 + fβ̃0 + fα̃0 +

a − fα̃0β̃0

β0

)

which seeing that the right-hand side must be independent of α̃0 means that � = 0, and we
conclude.

Lemma 1. A ⊗̂-derivation of translation invariant second order differential operators neces-
sarily has F1 a linear operator.

Following the procedure in [1], we define e00 = a, e0j = cj , ei0 = bi, and let the upper case
indices I, J , K, L range over 0, 1, . . . , d, then the parameterization of our variety is given by
eIJ = αIβJ + α̃I β̃J . This is equivalent to saying that eIJ is at most a rank two matrix. By
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standard results about determinantal ideals, the ideal of polynomials over the complex numbers
vanishing on the variety of such matrices is generated by the order-three minors

MIJKABC =

∣∣∣∣∣∣
eIA eIB eIC

eJA eJB eJC

eKA eKB eKC

∣∣∣∣∣∣ .

A simple rotation-invariant example would be given by jp and kq contraction of∣∣∣∣∣∣
a cj ck

bp epj epk

bq eqj eqk

∣∣∣∣∣∣
that is,∑

pq

(a(eppeqq − epqeqp) − 2cpbpeqq + 2cpbqepq).

For the curious, written out explicitly as a differential operator for φ(x, y), using the summation
convention, this is:

φ

(
∂2φ

∂xp∂yp

)2

− φ
∂2φ

∂xp∂yq

∂2φ

∂xq∂yp
− 2

∂φ

∂xp

∂φ

∂yp

∂2φ

∂xq∂yq
+ 2

∂φ

∂xp

∂2φ

∂xp∂yq

∂φ

∂yq
.

A somewhat more concise expression results if we use the mixed Hessian

Hpq =
∂2φ

∂xq∂yp

then our operator becomes

φTr(H)2 − φTr
(
H2

) − 2∇xφ · ∇yφ Tr(H) + 2∇xφ · H · ∇yφ.

This is not a homogeneous operator, but dividing it by φ2 turns it into one.
If we were simply interested in only the one- and two-particle equations then a separating

hierarchy would consist of a linear one-particle operator, and the two particle operator would
be given by the sum of the canonically lifted one-particle operator [1] and an operator that
vanishes identically on symmetrized tensor products of one-particle functions. If we want a full
multiparticle hierarchy with N -particle operators for all N , the story is different. An N -particle
wave-function for particles in R

d can be viewed as a one-particle wave-function for particles
(let us call these conglomerate particles) in R

Nd. We can now consider the consequences of the
separating property for the hierarchy consisting of a 2N particle operator on a symmetrized
tensor product of two N -particle wave functions reinterpreted as one consisting of an operator
for two conglomerate particles and an operator for one conglomerate particle. A wave-function of
two conglomerate particles does not have the same permutation symmetry as the wave-function
of 2N particles, but the difference is such as to impose even stronger conditions due to the
separation property. Let φ(x1, . . . , xN ) and ψ(y1, . . . , yN ) be two properly symmetric N -particle
wave-functions. One has

φ⊗̂ψ(x1, . . . , x2N ) = C
∑

I

(−1)fp(I)φ(xi1 , . . . , xiN )ψ(xj1 , . . . , xjN ), (15)

where C is a combinatorial factor, I = (i1, . . . , iN ) are N numbers from {1, . . . , 2N}, in ascending
order, (j1, . . . , jN ) the complementary numbers, also in ascending order, and p(I) is the parity
(0 or 1) of the permutation (1, . . . , 2N) �→ (i1, . . . , iN , j1, . . . , jN ). For (15) the possible values
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that one can attribute to the wave-function and its derivatives at a point is now more complicated
than that given by expressions (3), (4), but by an appropriate choice of coordinates and an
appeal to Borel’s lemma, we can again use, as a particular case, expressions (3), (4) for two
conglomerate particles. Repeating the argument presented above for the two-particle case we
see that the operator for one conglomerate particle must be linear and so the N -particle operator
must be linear. With this the whole hierarchy must be linear. We thus have:

Theorem 1. A ⊗̂-derivation of translation invariant second order differential operators is li-
near.

This result of course does not rule out the physical possibility of nonlinear quantum mechanics
for identical particles, but points out a further subtlety in its manifestation. The separation
property cannot be used as a generalization of the idea of non-interacting systems and the
notion of lack of interaction becomes more subtle.

3 Strong cluster property

Given that separation cannot hold for identical particles in the nonlinear case, one can expect
on intuitive grounds that it may hold for systems in which the subsystems are distant from each
other. This is usually called the cluster decomposition property. This property however holds
even in the interacting case, given short range interparticle potentials. A slightly strengthened
version however eliminates interaction potentials in the linear case, and can be used as a gener-
alization that can be extended to the symmetric nonlinear case. Consider an n-fold symmetric
tensor product

(φ1⊗̂φ2⊗̂ · · · ⊗̂φn)(x) = C
∑
π∈S

±φ1(x(1,π))φ2(x(2,π)) · · ·φn(x(n,π)), (16)

where C is a combinatorial coefficient x is an m-tuple of space points, S is a subset of the
permutation group, and each x(k,π) is a subset of the m-tuple x ordered according to its original
order in x. The sum is over all permutations that distribute x into the subsets x(k,π). We say
such a product is cluster-separated if the supports of the summand in (16) are all disjoint. We
say a hierarchy of operators has the strong cluster separation property if (2) holds for cluster-
separated products. A simple verification with ordinary linear Schrödinger operators shows that
these satisfy the strong cluster-separation property if and only if the interparticle potentials
vanish, so this is indeed a proper generalization of lack of interaction. One sees immediately
that the strong cluster separation property would hold if the ordinary separation property holds
and if the operators were linear on sums of functions with disjoint supports. This linearity
may at first sight seem contrary to the spirit of looking for nonlinear theories, but in fact, for
differential operators it follows from the ordinary separation property in almost all cases. As
was shown in [1] tensor derivations are for the most part homogeneous. Those that are not, differ
from these by a fixed canonical term. Homogeneous differential operators have the remarkable
property that they are linear on spaces generated by functions with disjoint supports:

Theorem 2. If G be a differential operator which is homogeneous of degree k �= 0 then it is
additive on spaces generated by functions with disjoint support and for k = 1 it is linear on such
spaces.

Proof. By Euler’s formula DG(φ)φ = kG(φ) where D denotes the Frechét derivative. Let φj ,
j = 1, . . . , r have disjoint supports. We have

G


∑

j

φj


 = k−1DG


∑

j

φj


 (∑

�

φ�

)
= k−1

∑
�

DG


∑

j

φj


φ�.
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Now in a neighborhood of a point where φ� �= 0 one has for j �= � that φj = 0. Since the value at
a point of a differential operator applied to a function depends only on the values of the function
in any neighborhood of the point, we can write the last term as k−1

∑
�

DG(φ�)φ� =
∑
j

G(φj)

and we have additivity. If now k = 1, the operator will in fact be real-linear on the subspace
generated by the φj . �

From this we deduce

Theorem 3. Homogeneous ordinary tensor derivations of differential operators satisfy the
strong cluster separation property.

This means that we can apply all the structural theorems of [1] to symmetric tensor derivation
provided that we stay within the class of homogeneous differential operators.

4 Fock space considerations

In [2] we were led to consider the problem of finding a Lorentz invariant nonlinear operator K
in a relativistic scalar free field Fock space for which

[[K, φ(f)], φ(g)] = 0 (17)

provided the supports of f and g are space-like separated. In that reference we analyzed only
the simplest consequence of this equation that arising from applying it to the vacuum state. One
of the conditions was a symmetric separation property for space-like separated supports. We
now address (17) more systematically. We here consider only the bosonic case as the fermionic
one is entirely similar.

Let H =
⊕∞

n=0 Hn be the bosonic Fock space where H0 = C, H1 is the 1-particle subspace,
and Hn = H1⊗̂ · · · ⊗̂H1, the n-fold symmetric tensor product, is the n-particle subspace. We
assume H1 has a antilinear involution f �→ f̄ satisfying

(f̄ , g) = (ḡ, f). (18)

For f ∈ H1 one defines the creation operator a+(f) and the annihilation operator a(f) in H by

(a+(f)Ψ)n =
√

n f⊗̂Ψn−1, (19)

(a(f)Ψ)n =
√

n + 1 f�Ψn+1, (20)

where the contraction operator � is defined by

f�(g1⊗̂ · · · ⊗̂gn) =
1
n

n∑
i=1

(f, gi)g1⊗̂ · · · ⊗̂ĝi⊗̂ · · · ⊗̂gn,

where by the hat over gi we mean that that factor is missing. The quantum field is defined as

φ(f) = φ(+)(f) + φ(−)(f) = a+(f) + a(f̄). (21)

One has the famous canonical commutation relations

[φ(+)(f), φ(+)(g)] = 0,

[φ(−)(f), φ(−)(g)] = 0,

[φ(−)(f), φ(+)(g)] = (f̄ , g).
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Assume that K respects particle number, that is, (KΨ)n = KnΨn for a hierarchy of opera-
tors Kn. We analyze the equation

[[K, φ(f)], φ(g)] = 0 (22)

by applying the left-hand side to a Fock space vector which has only an n-particle component Ψn.
One arrives at the following three conditions

Kn+2

(√
(n + 2)(n + 1) f⊗̂g⊗̂Ψn

)
−√

n + 2 f⊗̂Kn+1

(√
n + 1 g⊗̂Ψn

)
−√

n + 2 g⊗̂Kn+1

(√
n + 1 f⊗̂Ψn

)
+

√
(n + 2)(n + 1) f⊗̂g⊗̂Kn(Ψn) = 0, (23)

Kn

(
(n + 1)f̄�g⊗̂Ψn + nf⊗̂ḡ�Ψn

) −√
n + 1 f̄�Kn+1

(√
n + 1 g⊗̂Ψn

)
−√

n + 1 ḡ�Kn+1

(√
n + 1 f⊗̂Ψn

) −√
n f⊗̂Kn−1

(√
n ḡ�Ψn

)
−√

n g⊗̂Kn−1

(√
n f̄�Ψn

)
+ (n + 1)ḡ�f⊗̂Kn(Ψn) + ng⊗̂f̄�Kn(Ψn) = 0, (24)

Kn−2

(√
(n − 1)n f̄�ḡ�Ψn

)
−√

n − 1 f̄�Kn−1

(√
n ḡ�Ψn

)
−√

n − 1 ḡ�Kn−1

(√
n f̄�Ψn

)
+

√
(n − 1)n ḡ�f̄�Kn(Ψn) = 0. (25)

In the relativistic case these conditions are to be satisfied whenever the smearing functions f
and g have space-like separated supports.

We have

Theorem 4. If K is a linear symmetric tensor derivation, then equations (23) and (25) are
satisfied identically, while (24) is satisfied if

(f̄ , K1(g)) + (ḡ, K1(f)) = 0. (26)

This is a straightforward though tedious verification. It is enough to consider Ψn = h1⊗̂ · · ·
⊗̂hn as linear operators are uniquely defined by their action on product functions.

Equation (26), imposed for all f and g says, using (18), that K1 must be anti-symmetric, or
that its exponential is unitary. This is an interesting consequence, as one of the requirements
in [2] for a consistent history model is this unitarity which was states separately; here it is a
consequence of the separation property and the commutation relation.

This result does not in itself provide us with an example of a nonlinear relativistic quantum
mechanics, but it allows us to construct a theory, using the coherent histories approach, in which
the quantum measurement process has properties similar to those we believe a nonlinear theory
must have, that is, the future light-cone singular behavior pointed out in [2].

[1] Goldin G.A. and Svetlichny G., Nonlinear Schrödinger equations and the separation property, J. Math.
Phys., 1994, V.35, 3322–3332.

[2] Svetlichny G., On relativistic non-linear quantum mechanics, in Proceedings of Second International Con-
ference “Symmetry in Nonlinear Mathematical Physics. Memorial Prof. W. Fushchych Conference” (7–13
July, 1997, Kyiv), Editors M. Shkil, A. Nikitin and V. Boyko, Institute of Mathematics, 1997, V.2, 262–269.


