DISCRETE LOGISTIC MAP

MICHA£ MISIUREWICZ

In one-dimensional dynamics computer experiments are very useful. They are easy to perform and often provide an important insight into the dynamics of the map that one investigates. However, a computer operates on a finite set, so we would like to know how well the real system is approximated by what the computer is doing. Such questions have been addressed a long ago (for instance, P. Góra and A. Boyarsky, Why computers like Lebesgue measure, Comput. Math. Appl. 16 (1988), 321-329). However, while general questions are being asked, apparently nobody concentrates on the dynamics of concrete maps of finite sets that arise in this context. I propose one such model for investigation.

Let us look at the discrete versions of the logistic map $f(x)=4 x(1-x)$ on the interval $[0,1]$. For a given positive integer n we define a map $g_{n}: E_{n} \rightarrow E_{n}$, where $E_{n}=\{k / n: k=0,1,2, \ldots n\}$ as follows. Let $\varphi_{n}:[0,1] \rightarrow E_{n}$ map any point to its nearest neighbor from E_{n}, that is $\varphi_{n}(x)=k / n$ if $k-0.5 \leq n x<k+0.5$. In other words, φ_{n} is a round-off map. Then we define $g_{n}=\varphi_{n} \circ f$.

Since E_{n} is a finite set, all orbits of g_{n} are periodic or eventually periodic. Many points of E_{n} close to 0.5 are mapped to 1 , which in turn is mapped to 0 . The preimages of those points are mapped to 0 in three steps, etc. Therefore one can predict that considerable number of points of E_{n} will be sooner or later mapped to 0 . Let a_{n} be the number of those elements of E_{n} whose orbits never get to 0 under the iterates of g_{n}.

Computer experiments show that the sequence a_{n} behaves in an unpredictable manner. For example, $a_{34572}=23480, a_{34573}=26294, a_{34574}=1064, a_{34575}=0, a_{34576}=27090$. In fact, those experiments show that from time to time we get $a_{n}=0$. The largest n for which I know that this is the case, is $n=125815$ (I did not try much larger numbers because of the computer time necessary for this). The number of iterates necessary for all orbits to fall into 0 is in this case 548 . This is slightly larger than $\sqrt{2 n}$, which makes sense heuristically.

Thus, we can state the following conjecture.
Conjecture: For infinitely many integers n we have $a_{n}=0$.
In any case, analysis of the behavior of the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ can be interesting. While I believe that some kind of statistical analysis may be possible, proving any dependence of a_{n} on number-theoretic properties of n may be extremely difficult.

