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Devaney defines a topological dynamical system to be chaotic if it is sensitive to initial
conditions, transitive, and has a dense set of periodic points; several authors afterwards
proved that the two last conditions imply the first.

Cellular automata (CA) are all continuous shift–commuting self–maps acting on a full
shift, or sometimes on a subshift of finite type. It is easy to prove that a transitive CA
acting on the full shift depends sensitively on initial conditions. It was shown by Boyle
and Kitchens [BK] that left–closing CA and right–closing CA have a dense set of periodic
points; the same result was obtained by Blanchard and Tisseur [BT] for surjective non-
sensitive CA. These two classes have a very small intersection. It is easy to prove that any
CA has a dense set of ultimately periodic points.

The questions whether all surjective CA, or at least all transitive CA, have a dense set
of properly periodic points, is still open. The answer, positive or negative, is a necessary
step before one understands the meaning of chaos in this field.
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