ALEXANDER KACHUROVSKII

I would like to propose one more approach to well-known general problem of S.Kakutani and J.Doob of unification both Martingale convergence and Ergodic theorems.

Suppose that (Ω, F, λ) is a probability space, T is its automorphism, $f \in L_1(\Omega)$. Let $\{F_n\}_{1 \le n \le \infty}$ be a monotone sequence of σ -subalgebras F such that $F_n \uparrow F_{\infty}$ (or $F_n \downarrow F_{\infty}$) as $n \to \infty$. Set

$$A_n f = \frac{1}{n} \sum_{k=0}^n f \circ T^k, \quad f^* = \lim_{n \to \infty} A_n f, \quad f^*_{\infty} = \mathcal{E}(f^* | F_{\infty}).$$

PROBLEM. To prove convergence a.e. of conditional expectations $E(A_n f | F_n) \rightarrow f_{\infty}^*$ as $n \rightarrow \infty$.

COMMENTS. In the degenerate case $F_n \equiv F$ it will be $E(A_n f|F_n) = A_n f$, and we have usial Ergodic theorem. In the case $T \equiv id$ it will be $E(A_n f|F_n) = E(f|F_n)$, and we have Martingale convergence theorem for reversed martingale (if $F_n \downarrow$) or for regular strightforward martingale (if $F_n \uparrow$).

KNOWN. It is proved already (Math. Notes, 1998, 64:2, P.266–269) that proposed statement holds for all $f \in L \log L$. Also, it is proved convergence in L_p for every $p \in [1, \infty)$ (Ibid).

SOBOLEV INSTITUTE OF MATHEMATICS, RUSSIA