|
SIGMA 3 (2007), 120, 11 pages arXiv:0712.2123
https://doi.org/10.3842/SIGMA.2007.120
Contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson
Conformal Metrics with Constant Q-Curvature
Andrea Malchiodi
SISSA, Via Beirut 2-4, Trieste, Italy
Received September 02, 2007, in final form December 05, 2007; Published online December 13, 2007
Abstract
We consider the problem of varying conformally the metric
of a four dimensional manifold in order to obtain constant
Q-curvature. The problem is variational, and solutions are in
general found as critical points of saddle type. We show how the
problem leads naturally to consider the set of formal barycenters of
the manifold.
Key words:
Q-curvature; geometric PDEs; variational methods; min-max schemes.
pdf (261 kb)
ps (179 kb)
tex (35 kb)
References
- Adams D., A sharp inequality of J. Moser for
higher order derivatives, Ann. of Math. (2) 128 (1988),
385-398.
- Bahri A., Critical points at infinity in some variational
problems, Research Notes in Mathematics, Vol. 182, Longman-Pitman,
London, 1989.
- Bahri A., Coron J.M., On a nonlinear elliptic equation
involving the critical Sobolev exponent: the effect of the topology
of the domain, Comm. Pure Appl. Math. 41 (1988),
253-294.
- Branson T.P., The functional determinant, Global
Analysis Research Center Lecture Note Series, No 4, Seoul
National University, 1993.
- Branson T.P., Differential operators canonically associated to a
conformal structure, Math. Scand. 57 (1985), 293-345.
- Branson T.P., Gover A.R., Conformally invariant operators, differential forms,
cohomology and a generalisation of Q-curvature, Comm. Partial Differential Equations 30 (2005), 1611-1669, math.DG/0309085.
- Branson T.P., Ørsted B., Explicit functional
determinants in four dimensions, Proc. Amer. Math. Soc.
113 (1991), 669-682.
- Branson T.P., Chang S.Y.A., Yang P.C., Estimates and extremal
problems for the log-determinant on 4-manifolds, Comm. Math.
Phys. 149 (1992), 241-262.
- Bredon G.E., Topology and geometry, Graduate Texts in Mathematics, Vol. 139,
Springer, 1997.
- Brendle S., Global existence and convergence for
a higher order flow in conformal geometry, Ann. of Math. (2)
158 (2003), 323-343, math.DG/0404415.
- Brendle S., Prescribing a higher order
conformal invariant on Sn, Comm. Anal. Geom. 11
(2003), 837-858.
- Chang S.Y.A., Gursky M.J., Yang P.C., An
equation of Monge-Ampère type in conformal geometry, and
four-manifolds of positive Ricci curvature, Ann. of Math. (2)
155 (2002), 709-787, math.DG/0409583.
- Chang S.Y.A., Gursky M.J., Yang P.C., A conformally invariant sphere
theorem in four dimensions, Publ. Math. Inst. Hautes Études
Sci. 98 (2003), 105-143, math.DG/0309287.
- Chang S.Y.A., Qing J., The zeta functional determinants on
manifolds with boundary. I. The formula, J. Funct. Anal. 147 (1997),
327-362.
- Chang S.Y.A., Qing J., The zeta functional determinants
on manifolds with boundary. II. Extremal metrics and compactness of
isospectral set, J. Funct. Anal. 147 (1997), 363-399.
- Chang S.Y.A., Qing J., Yang P.C., Compactification of a
class of conformally flat 4-manifold, Invent. Math.
142 (2000), 65-93.
- Chang S.Y.A., Qing J., Yang P.C., On the Chern-Gauss-Bonnet
integral for conformal metrics on R4, Duke Math.
J. 103 (2000), 523-544.
- Chang S.Y.A., Yang P.C., Extremal metrics of zeta functional
determinants on 4-manifolds, Ann. of Math. (2) 142 (1995),
171-212.
- Chang S.Y.A., Yang P.C., On a fourth order curvature
invariant, in Spectral Problems in Geometry and
Arithmetic, Editor T. Branson, Comtemp. Math. 237 (1999), 9-28.
- Chen C.C., Lin C.S., Topological degree for a mean
field equation on Riemann surfaces, Comm. Pure Appl. Math.
56 (2003), 1667-1727.
- Chen W., Li C., Prescribing Gaussian curvatures on
surfaces with conical singularities, J. Geom. Anal. 1
(1991), 359-372.
- Ding W., Jost J., Li J., Wang G., Existence results
for mean field equations, Ann. Inst. H. Poincaré Anal.
Non Linéaire 16 (1999), 653-666, dg-ga/9710023.
- Djadli Z., Malchiodi A., A fourth order uniformization theorem on some four manifolds with large total Q-curvature,
C. R. Math. Acad. Sci. Paris 340 (2005), 341-346.
- Djadli Z., Malchiodi A., Existence of conformal metrics with constant Q-curvature, Ann. of Math. (2), to appear, math.DG/0410141.
- Druet O., Robert F., Bubbling phenomena for fourth-order
four-dimensional pdes with exponential growth, Proc. Amer.
Math. Soc. 134 (2006), 897-908.
- Fefferman C., Graham C.R., Q-curvature and
Poincaré metrics, Math. Res. Lett. 9 (2002),
139-151.
- Fefferman C., Hirachi K., Ambient metric construction of Q-curvature in conformal
and CR geometries, Math. Res. Lett. 10 (2003), 819-832, math.DG/0303184.
- Gover A.R., Invariants and calculus for conformal geometry, Adv.
Math. 163 (2001), 206-257.
- Gover A.R., Peterson L.J., The ambient obstruction tensor and the
conformal deformation complex, Pacific J. Math. 226 (2006), 309-351, math.DG/0408229.
- Graham C.R., Jenne R., Mason L.J., Sparling G.,
Conformally invariant powers of the Laplacian. I. Existence, J.
London Math. Soc. 46 (1992), 557-565.
- Graham C.R., Juhl A., Holographic formula for Q-curvature,
arXiv:0704.1673.
- Graham C.R., Zworski M., Scattering matrix in conformal geometry,
Invent. Math. 152 (2003), 89-118, math.DG/0109089.
- Gursky M., The Weyl functional, de Rham cohomology, and
Kahler-Einstein metrics, Ann. of Math. (2) 148 (1998),
315-337.
- Gursky M., The principal eigenvalue of a conformally
invariant differential operator, with an application to semilinear
elliptic PDE, Comm. Math. Phys. 207 (1999), 131-143.
- Gursky M., Viaclovsky J., A fully nonlinear equation
on four-manifolds with positive scalar curvature, J. Differential Geom. 63 (2003) 131-154,
math.DG/0301350.
- Li J., Li Y., Liu P., The Q-curvature on a 4-dimensional Riemannian manifold
(M,g) with òM QdVg = 8p2, math.DG/0608543.
- Malchiodi A., Compactness of solutions to some geometric
fourth-order equations, J. Reine Angew. Math. 594
(2006), 137-174, math.AP/0410140.
- Malchiodi A., Morse theory and a scalar field equation on
compact surfaces, Preprint.
- Malchiodi A., Struwe M., Q-curvature flow on S4,
J. Differential Geom. 73 (2006), 1-44.
- Ndiaye C.B., Constant Q-curvature metrics in arbitrary dimension, J. Funct. Anal., to appear.
- Ndiaye C.B., Conformal metrics with constant Q-curvature for manifolds with
boundary, Preprint, 2007.
- Ndiaye C.B., Constant T-curvature conformal metrics on 4-manifolds with
boundary, arXiv:0708.0732.
- Paneitz S., A quartic conformally covariant
differential operator for arbitrary pseudo-Riemannian manifolds,
Preprint, 1983.
- Struwe M., The existence of surfaces of constant mean
curvature with free boundaries, Acta Math.
160 (1988), 19-64.
- Struwe M., Variational methods. Applications to nonlinear
partial differential equations and Hamiltonian systems, 3rd
ed., Springer-Verlag, Berlin, 2000.
- Wei J., Xu X., On conformal deformations of metrics on
Sn, J. Funct. Anal 157 (1998), 292-325.
|
|