|
SIGMA 2 (2006), 090, 9 pages cond-mat/0609571
https://doi.org/10.3842/SIGMA.2006.090
Contribution to the Proceedings of the O'Raifeartaigh Symposium
Non-Commutative Mechanics in Mathematical & in Condensed Matter Physics
Peter A. Horváthy
Laboratoire de Mathématiques et de Physique
Théorique, Université de Tours, Parc de Grandmont, F-37200 Tours, France
Received September 25, 2006, in final form
November 27, 2006; Published online December 14, 2006
Abstract
Non-commutative structures were introduced,
independently and around the same time, in mathematical and in condensed matter physics
(see Table 1).
Souriau's construction applied to the two-parameter central
extension of the planar Galilei group leads to the ''exotic''
particle, which has non-commuting position coordinates. A
Berry-phase argument applied to the Bloch electron yields in turn
a semiclassical model
that has
been used to explain the anomalous/spin/optical Hall effects.
The non-commutative parameter is momentum-dependent in this case,
and can take the form of a monopole in momentum space.
Key words:
non-commutative mechanics; semiclassical models; Hall effect.
pdf (268 kb)
ps (269 kb)
tex (175 kb)
References
- Bargmann V., On unitary ray representations of continuous groups, Ann. Math., 1954, V.59, 1-46.
- Lévy-Leblond J.-M., Galilei group and Galilean invariance, in Group Theory and Its Applications,
Vol. 2, Editor E.M. Loebl, New York, Academic Press, 1971, 221-299.
- Duval C., Exotic Galilei group, IQHE and Chern-Simons
electrodynamics, 1995 (unpublished draft).
- Brihaye Y., Gonera C., Giller S., Kosi\'nski P., Galilean
invariance in 2+1 dimensions,
hep-th/9503046.
- Grigore D.R., Transitive symplectic manifolds in 1+2 dimensions,
J. Math. Phys., 1996, V.37, 240-253.
- Grigore D.R., The projective unitary irreducible representations
of the Galilei group in 1+2 dimensions, J. Math. Phys.,
1996, V.37, 460-473,
hep-th/9312048.
- Lukierski J., Stichel P.C., Zakrzewski W.J., Galilean-invariant
(2+1)-dimensional models with a Chern-Simons-like term and
d=2 noncommutative geometry, Ann. Phys., 1997, V.260,
224-249,
hep-th/9612017.
- Ballesteros A., Gadella M., del Olmo M., Moyal quantization of 2+1 dimensional Galilean systems,
J. Math. Phys., 1992, V.33, 3379-3386.
- Duval C., Horváthy P.A., The exotic Galilei group and the
"Peierls substitution", Phys. Lett. B, 2000, V.479,
284-290,
hep-th/0002233.
- Duval C., Horváthy P.A., Exotic Galilean symmetry in the
non-commutative plane, and the Hall effect, J. Phys. A:
Math. Gen., 2001, V.34, 10097-10108,
hep-th/0106089.
- Horváthy P.A., The non-commutative Landau problem, Ann. Phys., 2002, V.299, 128-140,
hep-th/0201007.
- Duval C., Horváthy P.A., Noncommuting coordinates, exotic
particles, & anomalous anyons in the Hall effect, Theoret.
and Math. Phys., 2005, V.144, 899-906,
hep-th/0407010.
- Souriau J.-M., Structure des systèmes dynamiques,
Paris, Dunod, 1970 (English transl.:
Structure of dynamical systems: a symplectic view of physics,
Dordrecht, Birkhäuser, 1997).
- Dixon W.G., On a classical theory of charged particles with spin
and the classical limit of the Dirac equation,
Il Nuovo Cimento, 1965, V.38, 1616-1643.
- Souriau J.-M., Modèle de particule à spin dans le champ
électromagnétique et gravitationnel,
Ann. Inst. H. Poincaré A, 1974, V.20, 315-364.
- Duval Ch., The general relativistic Dirac-Pauli particle: an
underlying classical model, Ann. Inst. H. Poincaré A,
1976, V.25, 345-362.
- Dunne G., Jackiw R., Trugenberger C.A., "Topological"
(Chern-Simons) quantum mechanics, Phys. Rev. D, 1990, V.41,
661-666.
- Dunne G., Jackiw R., "Peierls substitution" and Chern-Simons
quantum mechanics. Nuclear Phys. B Proc. Suppl., 1993, V.33,
114-118.
- Kirchhoff G., Vorlesungen über mathematischen Physik.
Mechanik, 3rd ed., Leipzig, G.B. Teubner, 1883, 251-272.
- Horváthy P., Noncommuting coordinates in the Hall effect and
in vortex dynamics, Talk given at the COSLAB-VORTEX-BEC 2000 and
Workshop Bilbao'03,
hep-th/0307175.
- Laughlin R.B., Anomalous quantum Hall effect: an Incompressible quantum fluid with
fractionally charged excitations, Phys. Rev. Lett., 1983, V.50,
1395-1398.
- Stone M. (Editor), Quantum Hall effect, Singapore, World
Scientific, 1992.
- Chang M.C., Niu Q., Berry phase, hyperorbits, and the hofstadter spectrum,
Phys. Rev. Lett, 1995, V.75, 1348-1351.
- Bohm A., Mostafazadeh A., Koizumi H., Niu Q., Zwanziger J., The
geometric phase in quantum systems, Chapter 12, Springer Verlag,
2003.
- Duval C., Horváth Z., Horváthy P.A., Martina L., Stichel P.,
Berry phase correction to electron density in solids and exotic dynamics
Modern Phys. Lett. B, 2006, V.20, 373-378,
cond-mat/0506051.
- Duval C., Horváth Z., Horváthy P.A., Martina L., Stichel P.,
Comment on "Berry phase correction to electron density in
solids" by Xiao et al., Phys. Rev. Lett., 2006, V.96,
099701, 2 pages,
cond-mat/0509806.
- Xiao D., Shi J., Niu Q., Berry phase correction to electron
density of states in solids, Phys. Rev. Lett., 2005, V.95,
137204, 4 pages,
cond-mat/0502340.
- Stone M., Urbana lectures, 2005, available from
http://w3.physics.uiuc.edu/~m-stone5/mmb/mmb.html.
- Bliokh K.Yu., On the Hamiltonian nature of semiclassical equations
of motion in the presence of an electromagnetic field and Berry
curvature, Phys. Lett. A, 2006, V.351, 123-124,
cond-mat/0507499.
- Ghosh S. A novel "magnetic" field and its dual non-commutative phase space,
hep-th/0511302.
- Gosselin P., Menas F., Bérard A., Mohrbach H.,
Semiclassical dynamics of electrons in magnetic Bloch bands: a Hamiltonian approach,
cond-mat/0601472.
- Olson J., Ao P., Nonequilibrium approach to Bloch-Peierls-Berry
dynamics,
physics/0605101.
- Jungwirth T., Niu Q., MacDonald A.H.,
Anomalous Hall effect in ferromagnetic semiconductors,
Phys. Rev. Lett., 2002, V.90, 207208, 4 pages,
cond-mat/0110484.
- Culcer D., MacDonald A.H., Niu Q., Anomalous Hall effect in paramagnetic two dimensional systems,
Phys. Rev. B, 2003, V.68, 045327, 9 pages,
cond-mat/0311147.
- Fang Z., Nagaosa N., Takahashi K.S., Asamitsu A., Mathieu R., Ogasawara T., Yamada H.,
Kawasaki M., Tokura Y., Terakura K., Anomalous Hall effect and
magnetic monopoles in momentum-space, Science, 2003, V.302,
92-95,
cond-mat/0310232.
- Murakami S., Nagaosa N., Zhang S.-C., Dissipationless quantum spin current at room temperature,
Science, 2003, V.301, 1348-1351,
cond-mat/0308167.
- Sinova J., Culcer D., Niu Q., Sinitsyn N.A., Jungwirth T.,
MacDonald A.H., Universal intrinsic spin-Hall effect, Phys.
Rev. Lett., 2004, V.92, 126603, 4 pages.
- Murakami S., Intrinsic spin Hall effect, Adv. in Solid
State Phys., 2005, V.45, 197-209,
cond-mat/0504353.
- Karplus R., Luttinger J.M., Hall effect in ferromagnetics,
Phys. Rev., 1954, V.95, 1154-1160.
- Kats Y., Genish I., Klein L., Reiner J.W., Beasley M.R., Testing
the Berry phase model for extraordinary Hall effect in SrRuO3,
Phys. Rev. B, 2004, V.70, 180407, 4 pages,
cond-mat/0405645.
- Bérard A., Mohrbach H.,
Monopole and Berry phase in momentum space in noncommutative quantum mechanics,
Phys. Rev. D, 2004, V.69, 127701, 4 pages,
hep-th/0310167.
- Horváthy P.A.,
Anomalous Hall effect in non-commutative mechanics, Phys.
Lett. A, 2006, V.359, 705-706,
cond-mat/0606472.
- Onoda M., Murakami S., Nagaosa N., Hall effect of light,
Phys. Rev. Lett., 2004, V.93, 083901,
4 pages, cond-mat/0405129.
- Liberman V.S., Zeldovich B.Ya.,
Spin-orbit interaction of a photon in an inhomogeneous medium,
Phys. Rev. A, 1992, V.46, 5199-5207.
- Bliokh K.Yu., Bliokh Yu.P.,
Topological spin transport of photons: the optical Magnus effect and Berry phase,
Phys. Lett. A, 2004, V.333, 181-186,
physics/0402110.
- Bérard A., Mohrbach H., Spin Hall effect and Berry phase of spinning particles,
Phys. Lett. A, 2006, V.352, 190-195,
hep-th/0404165.
- Duval C., Horváth Z., Horváthy P.A.,
Geometrical spinoptics and the optical Hall effect, J.
Geom. Phys., 2007, V.57, 925-941,
math-ph/0509031.
- Duval C., Horváth Z., Horváthy P.A., Fermat principle for
polarized light and the optical Hall effect, Phys. Rev. D,
2006, V.74, 021701, 5 pages,
cond-mat/0509636.
|
|