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WEIGHTED DAMPING OF EXTERNAL AND INITIAL DISTURBANCES
IN DESCRIPTOR CONTROL SYSTEMS

A. G. Mazko UDC 517.925.51; 681.5.03

We study the problem of generalized H1-control for a class of linear descriptor systems and suggest
a criterion and sufficient conditions for the existence of the laws of control guaranteeing that the closed-
loop system is regular, stable, and impulse-free and satisfies the desired estimate for the weighted level
of damping of the external and initial disturbances. The main computational procedures for the syn-
thesis of controllers are reduced to the solution of linear and quadratic matrix inequalities without rank
constraints. An example of robust stabilization of a hydraulic system with three vessels is presented.

1. Introduction

Modern directions of investigations in the control theory are formed by the methods of robust stabilization and
H

2

/H1-optimization guaranteeing the robust stability of equilibrium states and minimizing the negative influence
of external (exogenous) disturbances on the dynamics of controlled objects (see, e.g., [1–6]). To estimate and
weaken the influence of bounded disturbances in control systems, it is possible to apply the methods aimed at the
minimization of the characteristics used to describe the sizes of invariant sets of the vectors of state or output [6, 7].
A typical performance criterion in the problems of H1-optimization of continuous and discrete systems with zero
initial state is the level of damping of external disturbances corresponding to the maximal value of the ratio of
L
2

-norms of the vectors of the controlled output of the object and disturbances. Thus, for a class of linear systems

Eẋ = Ax+Bw, z = Cx+Dw, x(0) = x
0

, (1.1)

this characteristic coincides with the H1-norm of the matrix transfer function

kHk1 = sup

!2R

q
λ
max

(H>
(−i!)H(i!)), H(λ) = C(λE −A)−1B +D,

where x 2 Rn, z 2 Rk, and w 2 Rs are, respectively the vectors of state, controlled output, and input of system,
E, A, B, C, and D are constant matrices of the corresponding orders, and λ

max

(·) is the maximal eigenvalue of
the matrix.

In practice, it is reasonable to use weighted performance criteria for control systems of the form [8]

J = sup

(w,x0)2W

kzk
Qq

kwk2
P

+ x>
0

X
0

x
0

, (1.2)
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where

kzk2
Q

=

1Z

0

z>Qz dt, kwk2
P

=

1Z

0

w>Pw dt,

W is the set of admissible pairs (w, x
0

) of the system for which the inequality

0 < kwk2
P

+ x>
0

X
0

x
0

< 1

is true and P = P> > 0, Q = Q> > 0, and X
0

= X>
0

≥ 0 are given weight matrices (see also [9, 10]).
The quantity J characterizes the weighed level of damping of the external disturbances and also of the initial
disturbances caused by the nonzero initial vector. By using weight coefficients in these performance criteria, we
can establish priorities between the components of controlled output and the unknown disturbances in the control
system. Moreover, both the external disturbances acting upon the system and the errors of measured output can be
components of the unknown disturbances.

System (1.1) is a differential-algebraic (descriptor) system if the matrix of coefficients of the derivatives E

is degenerate. Descriptor systems are encountered in the design and investigation of the dynamics of controlled
objects of mechanics, electrical engineering, economics, etc. (see, e.g., [11–18]). In constructing the equations
of motion of these objects in terms of variables used to describe the actual physical processes, it is necessary to
take into account not only differential but also algebraic relations and restrictions in the phase space. Thus, under
general assumptions, the mechanical systems with constraints are described by the equations [13, 16]

A
2

q̈(t) +A
1

q̇(t) +A
0

q(t) = Uu(t) + V µ(t), G
1

q̇(t) +G
0

q(t) = 0, (1.3)

where q(t) 2 R⌫ is a position vector, u(t) 2 Rs is the vector of acting external forces, µ(t) 2 Rr is the vector
of Lagrange multipliers, A

2

is the matrix of inertial characteristics, A
1

is the matrix of damping (or of gyroscopic
characteristics), A

0

is the stiffness matrix, and V > is the Jacobian of the equation of constraints. The system of
equations (1.3) takes the standard form (1.1) if

E =

2

664

I
⌫

0 0

0 A
2

0

0 0 0

3

775, A =

2

664

0 I
⌫

0

−A
0

−A
1

V

G
0

G
1

0

3

775, B =

2

664

0

U

0

3

775, x =

2

664

q

q̇

µ

3

775,

C =

⇥
C
0

C
1

0

⇤
, D = 0, z = C

0

q + C
1

q̇.

The available methods of synthesis of the H1-control are based on the criteria of validity of the upper bounds
for the corresponding performance criteria established in terms of matrix equations and linear matrix inequalities [1,
2, 19]. For the class of linear descriptor systems, similar statements were established in [20–23]. For the available
methods of H1-optimization of these systems, see, e.g., [16, 20, 22, 24, 25].

In the present paper, we continue the investigations originated in [26, 27] and devoted to the problems of
synthesis of generalized H1-control for linear descriptor systems. We propose new necessary and sufficient con-
ditions for the existence of static and dynamic controllers guaranteeing the validity of the required estimate for
the weighted level of influence of bounded disturbances on the quality of transient processes in descriptor systems
with controlled and observed outputs. Practical applications of these conditions are reduced to solving linear and
quadratic matrix inequalities for parametrized matrices without additional rank restrictions. As a specific feature
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of the obtained results as compared with the known data, we can mention the use of weighted performance criteria,
which open new possibilities in the attainment of the required characteristics of descriptor control systems.

We use the following notation: I
n

is the identity matrix of order n; 0

n⇥m

is the n ⇥ m null matrix;
X = X> > 0 (≥ 0) is a positive-definite (nonnegative-definite) symmetric matrix X; σ(A) is the spectrum
of the matrix A; A−1 (A+ ) is the inverse (pseudoinverse) matrix; KerA is the kernel of the matrix A; W

A

is the
matrix whose columns form a basis of the kernel KerA; Co{A

1

, . . . , A
⌫

} is a convex polyhedron (polytope) with
vertices A

1

, . . . , A
⌫

in the space of matrices; kxk is the Euclidean norm of a vector x, and kwk
P

is the weighted
L
2

-norm of a vector function w(t).

2. Definitions and Auxiliary Statements

We now consider the descriptor system (1.1), where rankE = ⇢ < n, and the performance criterion (1.2).
System (1.1) is called admissible if the pair of matrices (AE ) is regular, stable, and impulse-free [15], i.e., respec-
tively, detF (λ) 6⌘ 0, λ 2 C, Reλ

i

< 0, i = 1,↵, and ↵ = ⇢, where ⌃ = {λ
1

, . . . ,λ
↵

} is the finite spectrum of
the matrix pencil F (λ) = A− λE. The pair of matrices (E,A) is regular if and only if there exist nondegenerate
matrices L and R reducing it to the canonical Weierstrass form [28]

LAR =

"
A

1

0

0 I
n−↵

#
, LER =

"
I
↵

0

0 N

#
, (2.1)

where N is a nilpotent matrix of index ⌫ and the spectrum of the matrix A
1

coincides with ⌃. In particular, the
equality N = 0 is equivalent to the rank condition [13]

rank

"
E 0

A E

#
= n+ ⇢

and means that the pair of matrices (A,E ) is impulse-free.
In view of transformation (2.1), the admissible descriptor system (1.1) can be represented in the form

ẋ
1

= A
1

x
1

+B
1

w, z = C
1

x
1

+D
1

w, x
1

(0) = x
01

, (2.2)

where x
1

2 R↵, A
1

is the Hurwitz matrix, D
1

= D − C
2

B
2

,

x = R

"
x
1

x
2

#
, x

0

= R

"
x
01

x
02

#
, LB =

"
B

1

B
2

#
, and CR =

⇥
C
1

, C
2

⇤
.

Lemma 2.1 [22]. System (1.1) is admissible if and only if the system of relations

A>X +X>A < 0, E>X = X>E ≥ 0

is consistent for X.

Let J be the performance criterion (1.2) of system (1.1) with the weight matrix X
0

= E>HE, where H =

H> > 0 is a given matrix. For the admissible system,

x>
0

X
0

x
0

= x>
01

X
01

x
01

,
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where

X
01

= L>
1

HL
1

> 0, L
1

= L−1

⇥
I
↵

0

⇤>
,

and the value J coincides with a similar performance criterion J
1

of type (1.2) obtained for subsystem (2.2).

Lemma 2.2 [23]. Suppose that the system of equations

 (X) =

2

4
A>X +X>A+ C>QC X>B + C>QD

B>X +D>QC D>QD − γ2P

3

5 < 0, (2.3)

0  E>X = X>E  γ2X
0

, rank

⇣
E>X − γ2X

0

⌘
= ⇢, (2.4)

where γ > 0, is consistent for X. Then system (1.1) is admissible and the estimate J < γ holds. The converse
assertion is true under the condition

rank

⇥
E> C>QD

⇤
= ⇢. (2.5)

Under the conditions of Lemma 2.2, the null state of system (1.1) with structured indeterminacy of the vector

w =

1

γ
⇥z

for ⇥

>P⇥  Q is robustly stable with a common Lyapunov function v(x) = x>E>Xx. This statement is
a corollary of transformation (2.1) and the theorem on robust stabilization of the linear system [8] (Theorem 3.3.1).

Let E = E
l

E>
r

be the skeleton decomposition of the matrix E, where E
l

and E
r

are the matrices of full
rank ⇢ with respect to columns, and let W

E

and W
E

> be matrices whose columns form bases of the kernels of
the matrices E and E>, respectively.

Lemma 2.3. For the nondegenerate matrices X and Y connected by the equality

XY = γ2I
n

, (2.6)

the following assertions are equivalent:

(i) the system of relations (2.4) is true;

(ii) there exist matrices S = S> and G for which

X = SE +W
E

>G, 0 < E>
l

SE
l

< γ2E>
l

HE
l

; (2.7)

(iii) there exist matrices T = T> and F for which

Y = TE>
+W

E

F, E>
r

TE
r

>
⇣
E>

l

HE
l

⌘−1

. (2.8)
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Proof. It is clear that each matrix X in (2.7) satisfies relation (2.4) because

E>X = E>SE ≥ 0, E>X − γ2X
0

= E
r

⇣
E>

l

SE
l

− γ2E>
l

HE
l

⌘
E>

r

.

Let L and R be nondegenerate matrices such that

E = L−1

"
I
⇢

0

0 0

#
R−1, E

l

= L−1

"
I
⇢

0

#
, E

r

= R−1>

"
I
⇢

0

#
,

W
E

= R

"
0

I
n−⇢

#
, W

E

> = L>

"
0

I
n−⇢

#
.

Each matrix X in (2.4) has the following structure:

X = L>

"
X

1

0

X
2

X
3

#
R−1, 0 < X

1

= X>
1

< γ2E>
l

HE
l

. (2.9)

Relations (2.9) take the form (2.7) if

S = L>

"
S
1

S>
2

S
2

S
3

#
L, G =

⇥
G

1

G
2

⇤
R−1,

where S
1

= X
1

, S
2

= X
2

− G
1

, G
2

= X
3

, and G
1

and S
3

= S>
3

are arbitrary matrices of the corresponding
dimensions. Thus, assertions (i) and (ii) are equivalent.

We now establish the equivalence of assertions (i) and (iii). We rewrite relations (2.4) in terms of the matrix
Y = γ2X−1. To this end, we multiply the expressions from the left and from the right by X−1> and X−1,

respectively:

0  EY = Y >E>  Y >X
0

Y, rank

⇣
EY − Y >X

0

Y
⌘
= ⇢. (2.10)

Each matrix Y in (2.8) satisfies relation (2.10) because

EY = ETE> ≥ 0, EY − Y >X
0

Y = E
l

T
1

⇣
T−1

1

− E>
l

HE
l

⌘
T
1

E>
l

,

where T
1

= E>
r

TE
r

. Moreover, T−1

1

< E>
l

HE
l

if and only if the matrix inequality in (2.8) holds.
Assume that relations (2.4) are true. By using (2.9) and computing the inverse matrix X−1, we arrive at the

relation

Y = γ2R

2

4
X−1

1

0

−X−1

3

X
2

X−1

1

X−1

3

3

5L−1>.
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Further, setting

T = R

"
T
1

T>
2

T
2

T
3

#
R>, F =

⇥
F
1

F
2

⇤
L−1>,

where

T
1

= E>
r

TE
r

= γ2X−1

1

, T
2

= −F
1

− γ2X−1

3

X
2

X−1

1

, F
2

= γ2X−1

3

,

and F
1

and T
3

= T>
3

are arbitrary matrices of the corresponding sizes, and taking into account the equivalence of
the inequalities

X
1

< γ2E>
l

HE
l

and γ2X−1

1

> (E>
l

HE
l

)

−1,

we arrive at relations (2.8). Thus, assertions (i) and (iii) are equivalent.
Lemma 2.3 is proved.

The vector of disturbance w(t) and the initial vector x
0

are called the worst vectors in system (1.1) for the
performance criterion J if the supremum is attained on their values in (1.2), i.e.,

kzk2
Q

= J2

⇣
kwk2

P

+ x>
0

X
0

x
0

⌘
.

The methods aimed at the determination of these vectors in special cases were proposed in [9, 29].

Lemma 2.4 [26]. Suppose that system (1.1) is admissible and, for some matrix X, the following relations
are true:

A>
1

X +X>A
1

+X>R
1

X +Q
1

= 0,

0  E>X = X>E  γ2X
0

,

where

A
1

= A+BR−1D>QC, R
1

= BR−1B>, Q
1

= C>
⇣
Q+QDR−1D>Q

⌘
C,

R = γ2P −D>QD > 0, and γ = J.

Then the structured vector of external disturbances in the form of a linear inverse (with respect to the state)
relationship

w = K
0

x, K
0

= R−1

⇣
B>X +D>QC

⌘
,

and an arbitrary initial vector x
0

2 Ker

�
E>X − J2X

0

�
are the worst vectors for the performance criterion J

of system (1.1).

We now reformulate the consistency criterion for the quadratic matrix inequalities of the form

A+B>XC + C>X>B + C>X>RXC < 0 (2.11)

obtained in [26], where A = A> 2 Rn⇥n, B 2 Rp⇥n, C 2 Rq⇥n, and R = R> 2 Rp⇥p.
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Lemma 2.5. If rankB < n, rankC < n, and R ≥ 0, then the matrix inequality (2.11) possesses a solution
X 2 Rp⇥q if and only if the following conditions are satisfied:

W>
C

AW
C

< 0, ∆

>
⇣
A−B>R+B

⌘
∆ < 0, ∆ =

8
>>>><

>>>>:

W
B

, r = 0,

I
n

, r = p,

W
B0 , 1  r < p,

where B
0

= W>
R

B, R+ is a pseudoinverse matrix, and r = rankR .

3. Main Results

Consider a descriptor control system

Eẋ = Ax+B
1

w +B
2

u, x(0) = x
0

,

z = C
1

x+D
11

w +D
12

u, (3.1)

y = C
2

x+D
21

w +D
22

u,

where x 2 Rn, u 2 Rm, w 2 Rs, z 2 Rk, and y 2 Rl are the vectors of state, control, external disturbances,
and controlled and observed outputs, respectively. All matrix coefficients in (3.1) are constant. Moreover, the pair
(E,A) is regular and rankE = ⇢  n. We are interested in the regularities of control guaranteeing the required
estimate J < γ for the performance criterion (1.2) of a closed system with respect to the controlled output z.
The static and dynamic controllers minimizing the performance criterion J are called J-optimal.

3.1. Static Controller. By using the static controller

u = Ky, det(I
m

−KD
22

) 6= 0, (3.2)

we arrive at the closed system

Eẋ = A⇤x+B⇤w, z = C⇤x+D⇤w, (3.3)

where

A⇤ = A+B
2

K⇤C2

, B⇤ = B
1

+B
2

K⇤D21

, C⇤ = C
1

+D
12

K⇤C2

,

D⇤ = D
11

+D
12

K⇤D21

, and K⇤ = (I
m

−KD
22

)

−1K.

It is known [30] that there exists a matrix of controller K for which system (3.3) is admissible and has the perfor-
mance criterion J < γ if the system of relations (2.4), (2.6) is consistent for X and Y and

W>
R

2

4
A>X +X>A+ C>

1

QC
1

X>B
1

+ C>
1

QD
11

B>
1

X +D>
11

QC
1

D>
11

QD
11

− γ2P

3

5W
R

< 0, (3.4)
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W>
L

2

4
AY + Y >A>

+B
1

P−1B>
1

Y >C>
1

+B
1

P−1D>
11

C
1

Y +D
11

P−1B>
1

D
11

P−1D>
11

− γ2Q−1

3

5W
L

< 0, (3.5)

where W
R

and W
L

are the matrices whose columns form bases for the kernels of the matrices R =

⇥
C
2

D
21

⇤

and L =

⇥
B>

2

D>
12

⇤
, respectively. Moreover, the rank condition (2.5) for system (3.3) guarantees the validity of

the converse assertion, i.e.,

rank

⇥
E> C>

⇤ QD⇤
⇤
= ⇢, (3.6)

and the required matrix K can be constructed in the form K = K⇤(I
l

+D
22

K⇤)
−1 by solving the linear matrix

inequality for K⇤

2

664

AT

⇤ X +X>A⇤ X>B⇤ C>
⇤

B>
⇤ X −γ2P D>

⇤

C⇤ D⇤ −Q−1

3

775 =

bL>K⇤ bR+

bR>K>
⇤ bL+

b
⌦ < 0, (3.7)

where

bR =

⇥
R 0

l⇥k

⇤
, bL =

⇥
L 0

m⇥s

⇤ eX,

eX =

2

664

X 0 0

0 0 I
k

0 I
s

0

3

775, b
⌦ =

2

664

A>X +X>A X>B
1

C>
1

B>
1

X −γ2P D>
11

C
1

D
11

−Q−1

3

775.

By the Schur lemma, the matrix inequalities (2.3) and (3.7) for system (3.3) are equivalent. Condition (3.6) is
independent of K and is satisfied, e.g., in the following cases:

D
11

= 0, D
21

= 0, (3.8)

D
12

= 0, rank

⇥
E> C>

1

QD
11

⇤
= ⇢. (3.9)

The difficulties encountered in the application of this criterion may appear due to the presence of matrix
inequalities in system (2.4), (2.6), (3.4), and (3.5) that should be solved. By using Lemma 2.3, we can remove
these difficulties in the application of the static controller of state.

Theorem 3.1. Suppose that the conditions

C
2

= I
n

, D>
11

QD
11

< γ2P, D
21

= 0, D
22

= 0 (3.10)

are satisfied. Then, for system (3.1), there exists a static controller of state u = Kx for which the closed
system (3.3) is admissible and has the performance criterion J < γ if the system of linear matrix inequali-
ties (2.8) and (3.5) with nondegenerate matrix Y is consistent with T = T> and F. The converse assertion is true
if conditions (3.8) or (3.9) are satisfied together with (3.10).
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Proof. Under conditions (3.10), we have y ⌘ x, W
R

=

⇥
0

s⇥n

, I
s

⇤>
, and the matrix inequality (3.4) is

true and independent of X. In this case, in view of Lemma 2.2 and the equivalence of assertions (ii) and (iii)
in Lemma 2.3, the role of sufficient conditions for the existence of the matrix of controller K is played by the
consistency of relations (2.8) and (3.5) for T = T> and F. Moreover, the matrix K = K⇤ of this controller can
be found as a solution of the linear matrix inequality (3.7), where X = γ2Y −1.

Under conditions (3.10), we have C⇤ = C
1

+ D
12

K and D⇤ = D
11

in (3.6). Hence, if one of the condi-
tions (3.8) or (3.9) is satisfied together with (3.10), then the rank condition (3.6) is also true and, by Lemma 2.2,
we obtain necessary and sufficient conditions for the existence of a static controller of state solely in terms of the
linear matrix inequalities (2.8) and (3.5).

Theorem 3.1 is proved.

3.2. Dynamic Controller. Consider the control system (3.1) and the dynamic controller with zero initial
vector

˙⇠ = Z⇠ + V y, u = U⇠ +Ky, ⇠(0) = 0, (3.11)

where ⇠ 2 Rp, Z, V, U, and K are the required matrices of the corresponding sizes. We can rewrite this system
in the extended phase space Rn+p as follows:

bE ˙bx =

bAbx+

bB
1

w +

bB
2

bu, bx(0) = bx
0

,

z =

bC
1

bx+

bD
11

w +

bD
12

bu, (3.12)

by =

bC
2

bx+

bD
21

w

by using a static controller of the controlled output

bu =

bK⇤by, det(I
m

−KD
22

) 6= 0, (3.13)

where

bx =

"
x

⇠

#
, bx

0

=

"
x
0

0

#
, by =

"
y −D

22

u

⇠

#
, bu =

"
u

˙⇠

#
, bE =

"
E 0

n⇥p

0

p⇥n

I
p

#
,

bA =

"
A 0

n⇥p

0

p⇥n

0

p⇥p

#
, bB

1

=

"
B

1

0

p⇥s

#
, bB

2

=

"
B

2

0

n⇥p

0

p⇥m

I
p

#
,

bC
1

=

⇥
C
1

0

k⇥p

⇤
, bD

11

= D
11

, bD
12

=

⇥
D

12

0

k⇥p

⇤
, (3.14)

bC
2

=

"
C
2

0

l⇥p

0

p⇥n

I
p

#
, bD

21

=

"
D

21

0

p⇥s

#
, bK⇤ =

"
K⇤ U⇤

V⇤ Z⇤

#
= (I

m+p

− bK bD
22

)

−1 bK,

bK =

"
K U

V Z

#
= (I

m+p

+

bK⇤ bD22

)

−1 bK⇤, bD
22

=

"
D

22

0

l⇥p

0

p⇥m

0

p⇥p

#
.
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The closed system takes the form

bE ˙bx =

bA⇤bx+

bB⇤w, z =

bC⇤bx+

bD⇤w, bx(0) = bx
0

, (3.15)

where

bA⇤ = bA+

bB
2

bK⇤ bC2

, bB⇤ = bB
1

+

bB
2

bK⇤ bD21

,

bC⇤ = bC
1

+

bD
12

bK⇤ bC2

, and bD⇤ = bD
11

+

bD
12

bK⇤ bD21

.

Let bJ be a performance criterion of the form (1.2) for system (3.15) with weight matrices

P = P> > 0, Q = Q> > 0, bX
0

=

bE> bH bE, bH =

"
H H>

1

H
1

H
2

#
> 0.

Since ⇠
0

= 0, the criterion bJ is independent of H
1

and H
2

and its value coincides with J.

Theorem 3.2. Suppose that the conditions

R
0

= D>
12

QD
12

> 0, R
1

= γ2P −D>
11

Q
1

D
11

> 0 (3.16)

are satisfied. If the system of equations (3.4) is consistent for ⇥ = ⇥

> ≥ 0, S = S>, and G and, in addition,

E>
l

⇥E
l

< E>
l

SE
l

< γ2E>
l

HE
l

, (3.17)

A>
2

eX +

eX>A
2

+

eX>R
2

eX +Q
2

< 0, (3.18)

where

X = SE +W
E

>G, eX = (S −⇥)E +W
E

>G,

A
2

= A
1

+B
11

R−1

1

D>
11

Q
1

C
1

, A
1

= A−B
2

R−1

0

D>
12

QC
1

,

R
2

= B
11

R−1

1

B>
11

−B
2

R−1

0

B>
2

, B
11

= B
1

−B
2

R−1

0

D>
12

QD
11

,

Q
1

= Q−QD
12

R−1

0

D>
12

Q, Q
2

= C>
1

⇣
Q

1

+Q
1

D
11

R−1

1

D>
11

Q
1

⌘
C
1

,

then, for system (3.1), there exists the dynamic controller (3.11) of order p = rank⇥ for which the closed sys-
tem (3.15) is admissible and possesses the performance criterion J < γ.

Proof. By using the representation of system (3.12) and Lemmas 2.2 and 2.3, we now present the relations
guaranteeing the existence of the static controller (3.13) for which the closed system (3.15) is admissible and
its performance criterion bJ = J < γ. We rewrite the matrix inequality (2.3) for system (3.15) in the form of
a quadratic matrix inequality for bK⇤ :

bA
0

+

bB>
0

bK⇤ bC0

+

bC>
0

bK>
⇤ bB

0

+

bC>
0

bK>
⇤ bR

0

bK⇤ bC0

< 0, (3.19)
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where

bA
0

=

2

4
bA> bX +

bX> bA+

bC>
1

Q bC
1

bX> bB
1

+

bC>
1

QD
11

bB>
1

bX +D>
11

Q bC
1

D>
11

QD
11

− γ2P

3

5, bX =

"
X X

3

X
1

X
2

#
,

bB
0

=

h
bB>
2

bX +

bD>
12

Q bC
1

bD>
12

QD
11

i
, bC

0

=

h
bC
2

bD
21

i
, bR

0

=

bD>
12

Q bD
12

.

Further, instead of conditions (2.4), for the block matrix bX, we consider the relations

bX =

bS bE +W b
E

>
bG, 0 < bE>

l

bS bE
l

< γ2 bE>
l

bH bE
l

, (3.20)

where

bS =

"
S S>

1

S
1

S
2

#
, bG =

⇥
G G

1

⇤
, W b

E

> =

"
W

E

>

0

#
, bE

l

=

"
E

l

0

0 I
p

#
.

It can be shown that, under these conditions, the matrix bX and its diagonal blocks X and X
2

= S
2

are
nondegenerate. By Lemma 2.5, we get the following consistency criterion for the quadratic inequality (3.19):

W>
b
C0

bA
0

W b
C0

< 0, W>
e
B0

⇣
bA
0

− bB>
0

bR+

0

bB
0

⌘
W e

B0
< 0, (3.21)

where eB
0

= W>
b
R0

bB
0

. The first inequality in (3.21) is reduced to (3.4) because

bC
0

=

"
C
2

0

l⇥p

D
21

0

p⇥n

I
p

0

p⇥s

#
, W b

C0
=

2

664

I
n

0

n⇥s

0

p⇥n

0

p⇥s

0

s⇥n

I
s

3

775WR

.

By using the relations

W b
R0

=

"
0

m⇥p

I
p

#
, W e

B0
=

2

664

I
n

0

n⇥s

−X−1

2

X
1

0

p⇥s

0

s⇥n

I
s

3

775, eB
0

=

⇥
X

1

X
2

0

p⇥s

⇤
,

bR+

0

=

"
R−1

0

0

k⇥p

0

p⇥k

0

p⇥p

#
, bB

0

W e
B0

=

"
B>

2

eX +D>
12

QC
1

D>
12

QD
11

0

p⇥n

0

p⇥s

#
,

W>
e
B0

bA
0

W e
B0

=

2

4
A> eX +

eX>A+ C>
1

Q
1

C
1

eX>B
1

+ C>
1

QD
11

B>
1

eX +D>
11

QC
1

D>
11

QD
11

− γ2P

3

5,

where eX = X −X
3

X−1

2

X
1

and X
1

= X>
3

E = S
1

E, we can transform the second inequality in (3.21).
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Let X
2

= S
2

= I
p

and let X
3

2 Rn⇥p be a factor in the decomposition of the nonnegative-definite matrix
⇥ = X

3

X>
3

≥ 0. Then eX = X −⇥E and, by virtue of (3.16), the second inequality in (3.21) takes the form

2

4
A>

1

eX +

eX>A
1

+ C>
1

Q
1

C
1

− eX>B
2

R−1

0

B>
2

eX eX>B
11

+ C>
1

Q
1

D
11

B>
11

eX +D>
11

Q
1

C
1

−R
1

3

5 < 0.

By the Schur lemma, this inequality is equivalent to (3.18).
In order that relations (3.20) be true under conditions (3.17), it is sufficient to set

S
1

= X>
3

−G>
1

W>
E

> and H
1

= γ−2S
1

and to choose arbitrary matrices G
1

and H
2

> γ−2I
p

. In this case,

E>
l

SE
l

> E>
l

S>
1

S
1

E
l

= E>
l

⇥E
l

.

Theorem 3.2 is proved.

Remark 3.1. The assertion converse to Theorem 3.2 on consistency conditions for the system of equa-
tions (3.4), (3.17), and (3.18) can be established by applying Lemma 2.2 to the closed system (3.15) and using the
additional assumption (3.6) or, in particular, conditions (3.8) or (3.9).

On the basis of Theorem 3.2, we propose an algorithm for the construction of the required dynamic con-
troller (3.11):

(i) to find the matrices ⇥ = ⇥

> ≥ 0, S = S>, and G satisfying the system of equations (3.4), (3.17), and
(3.18);

(ii) to construct the spectral decomposition of the nonnegative-definite matrix ⇥ = T⇤T>, where T 2 Rn⇥r,

⇤ = diag{✓
1

, . . . , ✓
r

} > 0, and r = rank⇥;

(iii) to form the complementary blocks X
1

= T>E, X
2

= ⇤

−1, and X
3

= T of the matrix bX for p = r;

(iv) to solve the matrix inequality (3.19) for bK⇤;

(v) to compute the matrix coefficients of controller (3.11) by using relations (3.14).

Remark 3.2. For ⇥ = 0, the conditions of Theorem 3.2 guarantee the existence of the static controller (3.2)
for which the closed system (3.3) is admissible and the estimate J < γ holds (see [27], Theorem 3.1). Thus, if the
system of equations (3.4), (3.17), and (3.18) is solved for S = S> and G with ⇥ = 0 , then the matrix of the
required static controller can be found in the form K = K⇤(I

l

+D
22

K⇤)
−1, where K⇤ is the solution of the linear

matrix inequalities (3.7) for X = SE +W
E

>G.

Remark 3.3. Theorems 3.1 and 3.2 can be extended to the class of systems (3.1) under the conditions of
polyhedral indeterminacy of the matrix coefficients

A 2 Co {A
1

, . . . , A
⌫1} , B

1

2 Co

�
B1

1

, . . . , B⌫2
1

 
,

C
1

2 Co

�
C1

1

, . . . , C⌫3
1

 
, D

11

2 Co

�
D1

11

, . . . , D⌫4
11

 
.
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To this end, instead of (3.4), (3.5), and (3.18), it is necessary to apply the corresponding systems of matrix inequal-
ities formed for all possible collections of vertices of the given polytopes. Note that the matrix intervals and affine
sets can be described in the form of polytopes. Thus, the matrix interval

A =

�
A 2 Rn⇥m : A  A  A

 
,

where

A = ka
ij

kn,m
i,j=1

, A = ka
ij

kn,m
i,j=1

,

and  is the sign of inequality for a cone of nonnegative matrices, describes a polytope with ⌫ = 2

nm vertices:

Co {A
1

, . . . , A
⌫

} =

(
⌫X

k=1

a
k

A
k

: a
k

≥ 0, k = 1, ⌫,

⌫X

k=1

a
k

= 1

)
,

A
k

=

���ak
ij

���
n,m

i,j=1

, ak
ij

2
�
a
ij

, a
ij

 
, i = 1, n, j = 1,m, k = 1, ⌫.

4. Example. Robust Stabilization of a Hydraulic System

Consider a linearized model of hydraulic systemwith three vessels connected in series. This model is described
by the descriptor control system (3.1) with the following matrices [31]:

E =

2

664

1 0 0

0 1 0

0 0 0

3

775, A =

2

664

−k
1

0 0

k
1

−k
2

0

1 1 1

3

775, B
1

=

2

664

1 0

0 0

0 0

3

775, B
2

=

2

664

1

0

0

3

775,

C
1

=

⇥
0 0 1

⇤
, D

11

= 0

1⇥2

, D
12

= 1,

C
2

=

"
1 0 0

0 1 0

#
, D

21

=

"
0 0

0 1

#
, D

22

= 0

2⇥1

.

The components of the vector of state x =

⇥
x
1

, x
2

, x
3

⇤> determine the levels of liquid in the corresponding

vessels, the vector w =

⇥
w
1

, w
2

⇤> is formed by the uncontrolled disturbances w
1

and the error w
2

of measure-

ments y =

⇥
x
1

, x
2

+ w
2

⇤>
, the controlled output z = x

3

+ u, and the role of control u regulating the level of
liquid in the first two vessels is played by the debit (flow) of liquid through the pump from the third vessel into the
first vessel (Fig. 1).

In this example, n = 3, m = 1, k = 1, s = 2, l = 2, the couple of matrices (E,A) is admissible, and
system (3.1) is impulsively controlled and impulsively observed. The system without control has the following
performance criterion: J = 7.66027.

We choose the weight matrices of the performance criterion (1.2) as follows: P = diag {2, 1}, Q = 1,

X
0

= diag {1, 1, 0}, and H = I
3

. The admissible values of the parameters are chosen as

k
1

= 0.01  k
1

 0.1 = k
1

, k
2

= 0.1  k
2

 1.2 = k
2

. (4.1)
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Fig. 1. Hydraulic system with three vessels.

By using the Mathcad Prime software, for γ = 2.2 and ⇥ = 0, we obtain the matrices

S =

2

664

2.75851 1.86824 0.02321

1.86824 3.15258 0.19783

0.02321 0.19783 0.23992

3

775, G =

⇥
0.80714 0.64032 −0.85066

⇤
,

satisfying relation (3.17) and the system of eight matrix inequalities formed according to (3.4) and (3.18) for the
following values of the pair (k

1

, k
2

): (k
1

, k
2

), (k
1

, k
2

), (k
1

, k
2

), (k
1

, k
2

). Further, we determine the matrix of
the static controller (3.2):

K =

⇥
−1.12507 −0.76271

⇤

as a solution of the system of linear matrix inequalities (3.7) for the indicated values of the pair (k
1

, k
2

) and the
matrix

X = SE +W
E

>G =

2

664

2.75851 1.86824 0

1.86824 3.15258 0

0.83034 0.83815 −0.85066

3

775.

In this case, the closed system (3.3) is admissible and its performance criterion J = 1.67775 < γ for all values of
parameters (4.1) (see Remarks 3.2 and 3.3).

Further, for the closed system with k
1

= 0.1 and k
2

= 1.2, we construct the worst disturbance

w = K
0

x, K
0

=

"
0.41169 0.17803 0

−0.40743 −0.08191 −0.34139

#
(4.2)

and the worst initial vector

x
0

=

⇥
0.53574 0.26573 −0.80148

⇤>
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Fig. 2. Behavior of the closed system.

for the performance criterion J (see Lemma 2.4). The behavior of the solution of the closed system for the worst
disturbance

Eẋ = A
0

x, A
0

= A+B
2

KC
2

+B
1

K
0

, x(0) = x
0

, (4.3)

is shown in Fig. 2. For this disturbance, function (4.2) is depicted in Fig. 3. System (4.3) is admissible and has the
finite spectrum

⌃ = {−0.98151± 0.17470 i}.

Its solution is constructed in the form x(t) = T ex(t), where T is the matrix of complete rank for which the
following relations are true:

A
0

T = ET⇤ and rankT = rank (ET ) = rankE,

and ex(t) is the solution of the ordinary system ˙ex = ⇤ex. Moreover,

σ(⇤) = ⌃ and x
0

= T ex
0

.

Similar calculations were also performed for this system in order to find the dynamic controller (3.11).
By using the algorithm presented above, we construct the dynamic controller of the first order with the follow-
ing matrices:

K =

⇥
−0.95250 −1.09756

⇤
, U = −0.31040,

V =

⇥
−0.73469 −1.28101

⇤
, Z = −0.72267.
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Fig. 3. The worst disturbance for the performance criterion J.

For this controller, the closed system (3.15) is admissible and the estimate J < γ = 2.2 is true for all values of
parameters (4.1). In particular, for k

1

= 0.1 and k
2

= 1.2, system (3.15) possesses the finite spectrum

⌃ = {−0.37981;−1.29769± 0.32064 i}

and J = 1.75205.

REFERENCES

1. S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishman, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia
(1994).

2. P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H1 control,” Intern. J. Robust Nonlin. Control, 4, 421–448
(1994).

3. G. E. Dullerud and F. G. Paganini, A Course in Robust Control Theory. A Convex Approach, Springer, Berlin (2000).
4. B. T. Polyak and P. S. Shcherbakov, Robust Stability and Control [in Russian], Nauka, Moscow (2002).
5. D. V. Balandin and M. M. Kogan, Synthesis of Control Laws on the Basis of Linear Matrix Inequalities [in Russian], Fizmatlit,

Moscow (2007).
6. B. T. Polyak, M. V. Khlebnikov, and P. S. Shcherbakov, Control of Linear Systems under External Perturbations. Technique of Linear

Matrix Inequalities [in Russian], Lenand, Moscow (2014).
7. V. M. Kuntsevich, “Estimates of the influence of bounded disturbances on nonlinear discrete systems and their minimization,” Av-

tomat. Telemekh., No. 9, 25–44 (2019).
8. A. G. Mazko, Robust Stability and Stabilization of Dynamical Systems. Methods of Matrix and Conic Inequalities [in Russian], Proc.

of the Institute of Ukraine, 102, Kiev (2016).
9. D. V. Balandin and M. M. Kogan, “GeneralizedH1-optimal control as a compromise betweenH1-optimal and γ-optimal controls,”

Avtomat. Telemekh., No. 6, 20–38 (2010).
10. Z. Feng, J. Lam, S. Xu, and S. Zhou, “H1 control with transients for singular systems,” Asian J. Control, 18, No. 3, 817–827 (2016).
11. S. Campbell, A. Ilchmann, V. Mehrmann, and T. Reis (editors), Applications of Differential-Algebraic Equations: Examples and

Benchmarks, Springer Nature, Switzerland AG (2019).
12. A. Ilchmann and T. Reis (editors), Surveys in Differential-Algebraic Equations III, Springer Internat. Publ., Switzerland (2015).



1606 A. G. MAZKO

13. G.-R. Duan, Analysis and Design of Descriptor Linear Systems, Springer, New York (2010).
14. R. Riaza, Differential-Algebraic Systems. Analytical Aspects and Circuit Applications, World Sci. Publ., Singapore (2008).
15. L. Dai, Singular Control Systems, Springer, New York (1989).
16. A. A. Belov and A. P. Kurdyukov, Descriptor Systems and Control Problems [in Russian], Fizmatlit, Moscow (2015).
17. A. M. Samoilenko, M. I. Shkil’, and V. P. Yakovets’, Linear Systems of Differential Equations with Degenerations [in Ukrainian],

Vyshcha Shkola, Kyiv (2000).
18. A. A. Boichuk, A. A. Pokutnyi, and V. F. Chistyakov, “Application of perturbation theory to the solvability analysis of differential

algebraic equations,” Comput. Math. Math. Phys., 53, No. 6, 777–788 (2013).
19. S. Xu, J. Lam, and Y. Zou, “New versions of bounded real lemmas for continuous and discrete uncertain systems,” Circuits, Systems

Signal Process, 26, 829–838 (2007).
20. M. Chadli, P. Shi, Z. Feng, and J. Lam, “New bounded real lemma formulation and H1 control for continuous-time descriptor

systems,” Asian J. Control, 20, No. 1, 1–7 (2018).
21. F. Gao, W. Q. Liu, V. Sreeram, and K. L. Teo, “Bounded real lemma for descriptor systems and its application,” in: IFAC 14th

Triennial World Congress, Beijing, P. R. China (1999), pp. 1631–1636.
22. I. Masubushi, Y. Kamitane, A. Ohara, and N. Suda, “H1 control for descriptor systems: a matrix inequalities approach,” Automatica,

33, No. 4, 669–673 (1997).
23. A. G. Mazko, “Evaluation of the weighted level of damping of bounded disturbances in descriptor systems,” Ukr. Mat. Zh., 70, No. 11,

1541–1552 (2018); English translation: Ukr. Math. J., 70, No. 11, 1777–1790 (2019).
24. Yu Feng and M. Yagoubi, Robust Control of Linear Descriptor Systems, Springer Nature, Singapore (2017).
25. M. Inoue, T. Wada, M. Ikeda, and E. Uezato, “Robust state-space H1 controller design for descriptor systems,” Automatica, 59,

164–170 (2015).
26. A. G. Mazko and T. O. Kotov, “Robust stabilization and weighted damping of bounded disturbances in descriptor control systems,”

Ukr. Mat. Zh., 71, No. 10, 1374–1388 (2019); English translation: Ukr. Math. J., 71, No. 10, 1572–1589 (2020).
27. A. G. Mazko, “Weighted estimation and reduction of the influence of bounded perturbations in descriptor control systems,” Ukr. Mat.

Zh., 72, No. 11, 1510–1523 (2020); English translation: Ukr. Math. J., 72, No. 11, 1742–1757 (2021).
28. F. R. Gantmakher, Theory of Matrices [in Russian], Nauka, Moscow (1988).
29. O. H. Mazko and S. M. Kusii, “Weighted damping of bounded disturbances in an airplane control system in the landing mode,”

in: Proc. of the Institute of Mathematics, National Academy of Sciences of Ukraine [in Ukrainian], 15, No. 1 (2018), pp. 88–99.
30. O. H. Mazko and T. O. Kotov, “Stabilization and damping of bounded disturbances in descriptor control systems,” in: Proc. of the

Institute of Mathematics, National Academy of Sciences of Ukraine [in Ukrainian], 15, No. 1 (2018), pp. 65–87.
31. J. M. Araujo, P. R. Barros, and C. E. T. Dorea, “Design of observers with error limitation in discrete-time descriptor systems: a case

study of a hydraulic tank system,” IEEE Trans. Control Syst. Technol., 20, No. 4, 1041–1047 (2012).


	Abstract
	1. Introduction
	2. Definitions and Auxiliary Statements
	3. Main Results
	4. Example. Robust Stabilization of a Hydraulic System
	REFERENCES

