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WEIGHTED ESTIMATION AND REDUCTION OF THE INFLUENCE OF
BOUNDED PERTURBATIONS IN DESCRIPTOR CONTROL SYSTEMS

A. G. Mazko UDC 517.925.51; 681.5.03

For a class of linear descriptor systems, we establish new criteria for the existence of the regularities
of control guaranteeing the asymptotic stability and satisfying the required estimate for the weighted
level of decay of bounded disturbances. We propose a procedure of generalized H1-optimization of
the descriptor systems with controlled and observed outputs. The main computational procedures of the
suggested algorithm are reduced to the solution of linear and quadratic matrix inequalities with additional
rank constraints. We also present an example of descriptor control system intended for the stabilization
of an electric circuit.

1. Introduction

Descriptor control systems are encountered in the design and investigation of the dynamics of complex objects
in mechanics, electric engineering, economics, etc. (see, e.g., [1–6]). In the construction of the equations of
motion for objects of this kind in terms of variables that describe actual physical processes, it is necessary to take
into account not only differential but also algebraic relations and constraints in the phase space. For this reason,
descriptor systems are also called differential-algebraic or singular systems. Available methods for the construction
and investigation of solutions for the class of linear descriptor systems are based on the application of the theory
of canonical forms of matrix pencils and generalized inverse matrices [2, 7].

As modern directions of investigations in the control theory of both ordinary and descriptor systems, we can
mention the methods of robust stabilization and H

2

/H1-optimization guaranteeing the robust stability of equi-
librium states and minimization of the negative influence of external disturbances on the dynamics of controlled
objects. The role of a typical performance criterion in the problems of H1-optimization of continuous and discrete
systems with trivial initial state is the level of damping of the external disturbances corresponding to the maximal
value of the ratio of L

2

-norms of the vectors of controlled output of the object and disturbances (see, e.g., [8–11]).
More general performance criteria characterizing the weighted level of damping of external and initial disturbances
caused by the nonzero initial vector were used in [12–17]. By using the weighting coefficients appearing in these
performance criteria, we can establish priorities in the collection of components of the controlled output and un-
known disturbances in control systems. Moreover, the role of components of the unknown disturbances can be
played both by the external disturbances acting upon the system and by the errors of measured output.

The available methods of synthesis of the H1-control are based on the criteria of validity of the upper bounds
for the corresponding performance criteria established in terms of matrix equations and linear matrix inequalities [8,
18, 19]. For the class of linear descriptor systems, similar statements were established in [20–23]. For the known
methods of H1-optimization of these systems, see, e.g., [5, 20, 22, 24, 25].

In the present paper, we continue our investigations originated in [16, 17] and devoted to the problems of
synthesis of generalized H1-control for linear descriptor systems. We propose new criteria for the existence and
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algorithms of construction of static and dynamic regulators guaranteeing the required estimate for the weighted
level of influence of bounded disturbances on the quality of transient processes in descriptor systems with con-
trolled and observed outputs. The practical realization of these algorithms is reduced to the solution of linear and
quadratic matrix inequalities under additional rank restrictions. A typical specific feature of the obtained results as
compared with the known facts is connected with the use of weighted performance criteria, which enables one to
find the required characteristics of descriptor control systems. In Sec. 2, we also present a procedure of construction
of the worst disturbance and the worst initial vector for the weighted performance criteria. Our main statements
are formulated in Sec. 3 without additional restrictions imposed on the matrix coefficients of the controlled system
and its outputs, which were used in numerous works (see, e.g., [20, 22]).

We use the following notation:

I
n

is the identity matrix of order n;

0

n⇥m

is the n⇥m null matrix;

X = X> > 0 (≥ 0) is a positive-definite (nonnegative-definite) matrix X;

σ(A) (⇢(A)) is the spectrum (spectral radius) of a matrix A;

A−1

(A+

) is the inverse (pseudoinverse) matrix;

KerA is the kernel of the matrix A;

W
A

is a matrix whose columns form a basis in the kernel of matrix A;

Co{A
1

, . . . , A
⌫

} is a convex polyhedron (polytope) with vertices A
1

, . . . , A
⌫

in the space of matrices;

kxk is the Euclidean norm of the vector x,

and

kwk
P

=

✓Z 1

0

w>Pw dt

◆1
2

is the weighted L
2

-norm of a vector function w(t).

2. Admissible Descriptor Systems with Disturbances

Consider a linear descriptor system

Eẋ = Ax+Bw, z = Cx+Dw, x(0) = x
0

, (2.1)

where x
0

is the initial vector and x 2 Rn, w 2 Rs, and z 2 Rk are, respectively, the vectors of state, external
disturbances, and output. All matrix coefficients in (2.1) are constant. Moreover, the matrix pencil F (λ) = A−λE

is regular, i.e., detF (λ) 6⌘ 0 (λ 2 C). In the case where ⇢ = rankE < n, system (2.1) can be rewritten in
the form

ẋ
1

= A
1

x
1

+B
1

w, Nẋ
2

= x
2

+B
2

w, z = C
1

x
1

+ C
2

x
2

+Dw, (2.2)

where

x = R

"
x
1

x
2

#
, x

0

= R

"
x
01

x
02

#
, LB =

"
B

1

B
2

#
, CR =

⇥
C
1

, C
2

⇤
,

x
1

2 Rr, x
2

2 Rn−r, and L and R are nonsingular matrices of reduction of the pair (A,E) to the canonical
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Weierstrass form [7]:

LAR =

"
A

1

0

0 I
n−r

#
, LER =

"
I
r

0

0 N

#
. (2.3)

The eigenvalues of the matrix A
1

form a finite spectrum σ(F ) = {λ
1

, . . . ,λ
r

} and N is a nilpotent ma-
trix of index ⌫. The first subsystem in (2.2) is dynamical and the second subsystem is algebraic. Moreover,
for ⌫ > 1, its solution contains impulsive components [5]. The matrix pencil F (λ) is called stable and not impul-
sive if σ(F ) ⇢ {λ : Reλ < 0} and N = 0, respectively. The descriptor system (2.1) is called admissible if the
corresponding matrix pencil F (λ) is regular, stable, and not impulsive. It is convenient to describe the introduced
properties of matrix pencils via the corresponding pairs of matrices (E,A). In particular, as a criterion of absence
of impulsive modes in system (2.1), we can use the following condition [3]:

rank

"
E 0

A E

#
= n+ ⇢.

Lemma 2.1 [16]. A pair of matrices (E,A) is not impulsive if and only if the system of matrix equations

AZE = EZA, Z = ZEZ, E = EZE

is consistent with respect to Z.

Lemma 2.2 [22]. System (2.1) is admissible if and only if the system of relations

A>X +X>A < 0, E>X = X>E ≥ 0

is consistent with respect to X.

Assume that the vector of disturbances w(t) in system (2.1) is bounded in the weighted L
2

-norm kwk
P

.

For this system, we introduce the following performance criterion [13]:

J = sup

(w,x0)2W

kzk
Qq

kwk2
P

+ x>
0

X
0

x
0

, (2.4)

where W is the set of pairs (w, x
0

) for which system (2.1) has a solution and the inequality

kwk2
P

+ x>
0

X
0

x
0

6= 0

is true, P = P> > 0, Q = Q> > 0, and X
0

= E>HE ≥ 0 are weight matrices (H = H> > 0). The value of J
characterizes the weighted level of the influence of external and initial disturbances on the output of system (2.1).
By applying the weighting matrix coefficients P, Q, and X

0

in (2.4), we can establish priorities in the influence
of components of the vectors w, z, and x

0

on the performance criterion J. It is reasonable to use this possibility,
e.g., in the case where the components of the vector w are not only external disturbances but also measurement
errors in the output of the system (see, e.g., [15]).

For x
0

2 KerE, we denote expression (2.4) by J
0

. It is clear that J
0

 J. For the identity matrices P = I
s

and Q = I
k

, the expression J
0

is a typical performance criterion used in the problems of H1-optimization of



WEIGHTED ESTIMATION AND REDUCTION OF THE INFLUENCE OF BOUNDED PERTURBATIONS 1745

systems and its value coincides with the H1-norm of the matrix transfer function [10]:

kG
zw

k1 = sup

!2R

q
λ
max

(G>
(−i!)G(i!)), G(λ) = C(λE −A)−1B +D.

In this case, all components of the vectors of disturbances and output of the system exert equivalent influence on
the value of the performance criterion J

0

.

The vector of disturbances w(t) and the initial vector x
0

are called the worst vectors in system (2.1) for the
performance criterion J if the supremum of (2.4), i.e.,

kzk2
Q

= J2

�
kwk2

P

+ x>
0

X
0

x
0

�
,

is attained on the values of these vectors. Methods for the determination of these vectors in some special cases
were proposed in [12, 15].

In the class of admissible systems (2.1), we establish necessary and sufficient conditions for the attainment of
the upper bounds J

0

< γ and J < γ for given γ > 0.

Lemma 2.3 [23]. If there exist matrices X and S = S> ≥ 0 satisfying the system of linear matrix in-
equalities

2

4
S S − E>X

S −X>E 0

3

5 ≥ 0, (2.5)

 (X) =

2

4
A>X +X>A+ C>QC X>B + C>QD

B>X +D>QC D>QD − γ2P

3

5 < 0, (2.6)

then system (2.1) is admissible and J
0

< γ. The converse assertion is true provided that

rank

2

4
E

D>QC

3

5
= ⇢. (2.7)

Condition (2.5) means that S = E>X = X>E ≥ 0. It is possible to show that the linear matrix inequal-
ity (2.6) is consistent for X if and only if

D>QD < γ2P, D>
1

QD
1

< γ2P,

where D
1

= D − CA−1B. It follows from these relations and Lemma 2.3 that J
0

> γ
0

, where

γ
0

= max

�
γ : det

⇥
(D>QD − γ2P )(D>

1

QD
1

− γ2P )

⇤
= 0

 
.

Lemma 2.4 [23]. If the system of relations (2.5), (2.6) is consistent and

S  γ2X
0

, rank(S − γ2X
0

) = ⇢, (2.8)

then system (2.1) is admissible and J < γ. The converse assertion is true under condition (2.7).
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Under the conditions of Lemmas 2.3 and 2.4, the null state of system (2.1) with structured indeterminacy of
the vector of disturbances

w =

1

γ
⇥z, ⇥

>P⇥  Q,

is robustly stable with common Lyapunov function v(x) = x>Sx. This assertion follows from transformation (2.3)
and the theorem on robust stabilization of the linear system [13] (Theorem 3.3.1).

By using Lemmas 2.3 and 2.4, we obtain algorithms for finding the performance criteria J
0

and J for sys-
tem (2.1) on the basis of the solutions of the corresponding optimization problems. In particular, under the condi-
tions of Lemma 2.4, we find

J = inf

�
γ :  (X) < 0, 0  E>X = X>E  γ2X

0

 
.

Lemma 2.5. Suppose that system (2.1) is admissible and that the linear matrix inequalities (2.5) and (2.8)
and the following equality are true for some matrices X and S = S> ≥ 0 :

A>
1

X +X>A
1

+X>R
1

X +Q
1

= 0, (2.9)

where

A
1

= A+BR−1D>QC, R
1

= BR−1B>, Q
1

= C>�Q+QDR−1D>Q
�
C,

R = γ2P −D>QD > 0, and γ = J.

Then the structured vector of external disturbances in the form of a linear feedback by the state

w = K
0

x, K
0

= R−1

(B>X +D>QC), (2.10)

and an arbitrary initial vector x
0

2 Ker (S − J2X
0

) are the worst vectors for the performance criterion J for
system (2.1).

Proof. If S = E>X = X>E  γ2X
0

and  (X)  0, then

v̇(x) + z>Qz − γ2w>Pw =

⇥
x>, w>⇤

 (X)

"
x

w

#
 0, (2.11)

where v̇(x) is the derivative of the function v(x) = x>Sx by system (2.1). Integrating this expression from 0

to ⌧ and taking into account the fact that v(x(⌧)) ! 0 as ⌧ ! 1, we obtain

kzk2
Q

− γ2kwk2
P

 x>
0

Sx
0

 γ2x>
0

X
0

x
0

, (2.12)

i.e., J  γ. The validity of both equalities in (2.12) means that γ = J and, hence, the corresponding disturbance
vector w(t) and the initial vector x

0

are the worst vectors for the performance criterion J.

It is easy to see that the first equality in (2.12) is true if the structure of the disturbance vector w is described
by (2.10), where X is a solution of the matrix Riccati equation (2.9) and x(t) is a solution of the system

Eẋ = (A+BK
0

)x, x(0) = x
0

.
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Moreover, the right-hand side of relation (2.11) is equal to zero. The second equality in (2.12) is true for

x>
0

(S − γ2X
0

)x
0

= 0.

Under the condition S  γ2X
0

, the last equality means that x
0

2 Ker (S − γ2X
0

).

The lemma is proved.

3. Linear Systems with Controlled and Observed Outputs

Consider a control system

Eẋ = Ax+B
1

w +B
2

u, x(0) = x
0

,

z = C
1

x+D
11

w +D
12

u, (3.1)

y = C
2

x+D
21

w +D
22

u,

where x 2 Rn, u 2 Rm, w 2 Rs, z 2 Rk, and y 2 Rl are the vectors of state, control, external disturbances,
and controlled and observed outputs, respectively, and all matrix coefficients of the corresponding dimensions are
constant. Moreover, the pair (E,A) is regular and rankE = ⇢  n. We are interested in the regularities of control
guaranteeing the required estimates for the performance criteria of type (2.4) for a closed system with respect to
the vector of controlled output z. The static and dynamic regulators minimizing the performance criterion J are
called J-optimal. The J

0

-optimal control for the identity weight matrices P and Q is called H1-optimal.
In the investigation of the class of systems (3.1), it is customary to use their properties of C-, R,- and

I-controllability, as well as the dual properties of their C-, R,- I-observability [5, 24]. In particular, for the
solvability of the generalized problems of H1-optimization, the triple of matrices (E,A,B

2

) must be stabilized
and I-controlled. This is equivalent to the requirement of existence of a matrix K such that the pair of matri-
ces (E,A + B

2

K) is stable and not impulsive, i.e., admissible. The roles of criteria of I-controllability of the
triple (E,A,B

2

) and I-observability of the triple (E,A,C
2

) are played by the equalities [26]

rank

"
E 0 0

A E B
2

#
= n+ ⇢ and rank

2

664

E A

0 E

0 C
2

3

775 = n+ ⇢.

3.1. Static Regulator. In the case where we use a static regulator of the observed output

u = Ky, det(I
m

−KD
22

) 6= 0, (3.2)

where K is the required matrix of gain factors, the closed system takes the form

Eẋ = A⇤x+B⇤w, z = C⇤x+D⇤w, x(0) = x
0

, (3.3)

where

A⇤ = A+B
2

K⇤C2

, B⇤ = B
1

+B
2

K⇤D21

, C⇤ = C
1

+D
12

K⇤C2

,

D⇤ = D
11

+D
12

K⇤D21

, K⇤ = (I
m

−KD
22

)

−1K.
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In order to get the required estimate J < γ, we use Lemma 2.4. We represent condition (2.6) for system (3.3)
in the form of a quadratic matrix inequality as follows:

W + U>K⇤V + V >K>
⇤ U + V >K>

⇤ RK⇤V < 0, (3.4)

where

W =

2

4
A>X +X>A+ C>

1

QC
1

X>B
1

+ C>
1

QD
11

B>
1

X +D>
11

QC
1

D>
11

QD
11

− γ2P

3

5,

U =

⇥
B>

2

X +D>
12

QC
1

, D>
12

QD
11

⇤
, V =

⇥
C
2

, D
21

⇤
, R = D>

12

QD
12

≥ 0.

We formulate a criterion of consistency for this inequality under the conditions that m < q and l < q

(q = n+ s), which are natural for system (3.1).

Lemma 3.1. The matrix inequality (3.4) possesses a solution K⇤ 2 Rm⇥l if and only if:

(a) W>
V

WW
V

< 0

and one of the following conditions is satisfied:

(b) R = 0, W>
U

WW
U

< 0;

(c) R > 0, W < U>R−1U ;

(d) R ≥ 0, 1  rankR < m, W>
U0

�
W − U>R+U

�
W

U0 < 0, U
0

= W>
R

U.

Proof. We now show that the proof of the indicated criteria of existence of the solution K⇤ of the quadratic
matrix inequality (3.4) for R ≥ 0 is reduced to the application of the known necessary and sufficient consistency
conditions for linear matrix inequalities (the projection lemma [18]). For R = 0, the matrix inequality (3.4) is
linear and the criterion of its consistency is given by conditions (a) and (b). For R > 0, by the Schur lemma,
the matrix inequality (3.4) can be rewritten in the form of a linear matrix inequality (see, e.g., [8, p. 8]):

"
W + U>K⇤V + V >K>

⇤ U V >K>
⇤

K⇤V −R−1

#
< 0 or cW +

bU>K⇤ bV +

bV >K>
⇤ bU < 0,

where

cW =

"
W 0

0 −R−1

#
, bU =

⇥
U I

m

⇤
, bV =

⇥
V 0

l⇥m

⇤
.

The necessary and sufficient conditions for the consistency of the last inequality are the inequalities

W>
b
U

cWWb
U

< 0 and W>
b
V

cWWb
V

< 0,

i.e., the conditions (a) and (c), because

Wb
U

=

"
I
q

−U

#
and Wb

V

=

"
W

V

0

0 I
m

#
.
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Now let R = LL> ≥ 0, L 2 Rm⇥r, and r = rankR = rankL < m. Without loss of generality, we seek
the solution of (3.4) in the form

K⇤ = L+>K
1

+ L?K
2

, L+

= (L>L)−1L>, L?
= W

L

> = W
R

2 Rm⇥m−r,

where K
1

2 Rr⇥l and K
2

2 Rm−r⇥l are unknown matrices. By using the equality K>
⇤ RK⇤ = K>

1

K
1

, we get
the following linear matrix inequality for K

1

:

W
1

+ U>
1

K
1

V + V >K>
1

U
1

+ V >K>
1

K
1

V < 0,

where

W
1

= W + U>
0

K
2

V + V >K>
2

U
0

and U
1

= L+U.

As shown above, the consistency criterion for this inequality has the form of inequalities

W
1

< U>
1

U
1

and W>
V

W
1

W
V

< 0,

i.e.,

W − U>R+U + U>
0

K
2

V + V >K>
2

U
0

< 0 and W>
V

WW
V

< 0.

By using the consistency criterion for the first linear matrix inequality for K
2

once again, we arrive at the
conditions (a) and (d).

The lemma is proved.

Thus, by virtue of Lemmas 2.4 and 3.1, we get the following assertion:

Theorem 3.1. Suppose that the conditions

R
0

= D>
12

QD
12

> 0, R
1

= γ2P −D>
11

Q
1

D
11

> 0, Q
1

= Q−QD
12

R−1

0

D>
12

Q (3.5)

are satisfied and the system of relations (2.5), (2.8), and

W>
V

2

4
A>X +X>A+ C>

1

QC
1

X>B
1

+ C>
1

QD
11

B>
1

X +D>
11

QC
1

D>
11

QD
11

− γ2P

3

5W
V

< 0, (3.6)

A>
2

X +X>A
2

+X>R
2

X +Q
2

< 0, (3.7)

where

V =

⇥
C
2

, D
21

⇤
, A

2

= A
1

+B
11

R−1

1

D>
11

Q
1

C
1

, A
1

= A−B
2

R−1

0

D>
12

QC
1

,

R
2

= B
11

R−1

1

B>
11

−B
2

R−1

0

B>
2

, B
11

= B
1

−B
2

R−1

0

D>
12

QD
11

,

Q
2

= C>
1

(Q
1

+Q
1

D
11

R−1

1

D>
11

Q
1

)C
1

,
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is consistent for X and S. Then there exists a static regulator (3.2) for which the closed system (3.3) is admissible
and has the performance criterion J < γ. The matrix of this regulator can be constructed in the form

K = K⇤(I
l

+D
22

K⇤)
−1, det

�
I
l

+D
22

K⇤
�
6= 0,

where K⇤ is the solution of the matrix inequality (3.4).

The generalized lemma on matrix indeterminacy enables one to construct a family of regulators (3.2) with
ellipsoidal set of feedback matrices, i.e., to determine the guaranteed limits of robustness of the required static
regulator.

Lemma 3.2 [13]. Suppose that the following matrix inequality is true:

⌦ =

2

664

W U> V >

U R− P
0

D>

V D −Q−1

0

3

775< 0,

where W = W> < 0, U, V,D,R = R> ≥ 0, P
0

= P>
0

> 0, and Q
0

= Q>
0

> 0 are matrices of the
corresponding orders. Then, for any matrix K that belongs to the ellipsoid K

0

=

�
K : K>P

0

K  Q
0

 
,

the relations ⇢(KD) < 1 and

W + U>D(K)V + V >D>
(K)U + V >D>

(K)RD(K)V < 0,

where D(K) = (I −KD)

−1K, are true.

By using Lemmas 2.4 and 3.2 and condition (3.4) for a closed system, we arrive at the following assertion:

Theorem 3.2. Suppose that there exist matrices X, S = S> ≥ 0, P
0

= P>
0

> 0, and Q
0

= Q>
0

> 0

satisfying the system of relations (2.5), (2.8), and

⌦(X,P
0

, Q
0

) =

2

664

⌦

1

⌦

2

⌦

3

⌦

>
2

⌦

4

⌦

5

⌦

>
3

⌦

>
5

⌦

6

3

775< 0,

where

⌦

1

= A>X +X>A+ C>
1

QC
1

+ C>
2

Q
0

C
2

, ⌦

2

= X>B
1

+ C>
1

QD
11

+ C>
2

Q
0

D
21

,

⌦

3

= X>B
2

+ C>
1

QD
12

+ C>
2

Q
0

D
22

, ⌦

4

= D>
11

QD
11

+D>
21

Q
0

D
21

− γ2P,

⌦

5

= D>
11

QD
12

+D>
21

Q
0

D
22

, ⌦

6

= D>
12

QD
12

+D>
22

Q
0

D
22

− P
0

.

Then, for any control (3.2) with K 2 K
0

, the closed system (3.3) is admissible and has the performance
criterion J < γ.
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Let K = K
1

be the matrix of regulator (3.2) obtained according to Theorem 3.1. Substituting the expression
u = K

1

y + v in Eq. (3.1), we arrive at a similar system with new control vector v. We apply Theorem 3.2 to this
system. As a result, for system (3.1), we obtain a family of regulators (3.2) with ellipsoidal set of feedback matrices

K
1

=

�
K : (K −K

1

)

>P
0

(K −K
1

)  Q
0

 

for which the closed system is admissible and has the performance criterion J < γ.

3.2. Dynamic Regulator. Consider system (3.1) with a dynamic regulator

˙⇠ = Z⇠ + V y, u = U⇠ +Ky, ⇠(0) = 0, (3.8)

where ⇠ 2 Rp, p is the order of the regulator, and Z, V, U, and K are matrices that should be determined.
The combined system (3.1), (3.8) can be rewritten in the form of a similar system in the extended phase
space Rn+p :

bE ˙bx =

bAbx+

bB
1

w +

bB
2

bu, bx(0) = bx
0

,

z =

bC
1

bx+

bD
11

w +

bD
12

bu, (3.9)

by =

bC
2

bx+

bD
21

w

by using a static regulator

bu =

bK⇤by, det(I
m

−KD
22

) 6= 0, (3.10)

where

bx =

"
x

⇠

#
, bx

0

=

"
x
0

0

#
, by =

"
y −D

22

u

⇠

#
, bu =

"
u

˙⇠

#
, bE =

"
E 0

0 I
p

#
,

bA =

"
A 0

n⇥p

0

p⇥n

0

p⇥p

#
, bB

1

=

"
B

1

0

p⇥s

#
, bB

2

=

"
B

2

0

n⇥p

0

p⇥m

I
p

#
,

bC
1

=

⇥
C
1

, 0
k⇥p

⇤
, bD

11

= D
11

, bD
12

=

⇥
D

12

, 0
k⇥p

⇤
,

bC
2

=

"
C
2

0

l⇥p

0

p⇥n

I
p

#
, bD

21

=

"
D

21

0

p⇥s

#
, bK⇤ =

"
K⇤ U⇤

V⇤ Z⇤

#
= (I

m+p

− bK bD
22

)

−1 bK,

bK =

"
K U

V Z

#
= (I

m+p

+

bK⇤ bD22

)

−1 bK⇤, bD
22

=

"
D

22

0

l⇥p

0

p⇥m

0

p⇥p

#
. (3.11)

In this case, the closed system (3.9), (3.10) takes the form

bE ˙bx =

bA⇤bx+

bB⇤w, z =

bC⇤bx+

bD⇤w, bx(0) = bx
0

, (3.12)
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where

bA⇤ = bA+

bB
2

bK⇤ bC2

, bB⇤ = bB
1

+

bB
2

bK⇤ bD21

,

bC⇤ = bC
1

+

bD
12

bK⇤ bC2

, bD⇤ = bD
11

+

bD
12

bK⇤ bD21

.

Since ⇠
0

= 0, its performance criterion bJ of type (2.4) with weight matrix

bX
0

=

bE> bH bE, bH =

"
H H>

1

H
1

H
2

#
> 0,

is independent of H
1

and H
2

and its value coincides with J.

Theorem 3.3. Suppose that conditions (3.5) are satisfied and the system of relations (2.5), (2.8), (3.6), and

A>
2

G+G>A
2

+G>R
2

G+Q
2

< 0, (3.13)

X −G = ⇥E, ⇥ = ⇥

> ≥ 0, rank⇥  p, (3.14)

where the matrices A
2

, R
2

, and Q
2

are given by (3.7), is consistent with respect to X, G, S, and ⇥ . Then there
exists a dynamic regulator (3.8) for which the closed system (3.12) is admissible and possesses the performance
criterion J < γ.

Proof. We rewrite conditions (2.5), (2.6), and (2.8) for system (3.12) in the form

0  bE> bX =

bX> bE  γ2 bX
0

, rank

� bE> bX − γ2 bX
0

�
= ⇢+ p, (3.15)

cW +

bU> bK⇤ bV +

bV > bK>
⇤ bU +

bV > bK>
⇤ bR bK⇤ bV < 0, (3.16)

where

cW =

2

4
bA> bX +

bX> bA+

bC>
1

Q bC
1

bX> bB
1

+

bC>
1

Q bD
11

bB>
1

bX +

bD>
11

Q bC
1

bD>
11

Q bD
11

− γ2P

3

5, bX =

"
X X

3

X
1

X
2

#
,

bU =

⇥ bB>
2

bX +

bD>
12

Q bC
1

, bD>
12

Q bD
11

⇤
, bV =

⇥ bC
2

, bD
21

⇤
, bR =

bD>
12

Q bD
12

≥ 0.

It is easy to see that, under these conditions, the matrix bX and its diagonal blocks must be nonsingular and,
in addition,

X
1

= X>
3

E and X
2

= X>
2

> 0.

We use the conditions (a) and (d) of Lemma 3.1 for the consistency of the matrix inequality (3.16):

W>
b
V

cWWb
V

< 0, W>
b
U0

�cW − bU> bR+ bU
�
Wb

U0
< 0, bU

0

= W>
b
R

bU. (3.17)
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The first matrix inequality in (3.17) takes the form (3.6) because

bV =

"
C
2

0

l⇥p

D
21

0

p⇥n

I
p

0

p⇥s

#
, Wb

V

=

2

664

I
n

0

n⇥s

0

p⇥n

0

p⇥s

0

s⇥n

I
s

3

775WV

, V =

⇥
C
2

D
21

⇤
.

We transform the second matrix inequality in (3.17) by using the relations

W b
R

=

"
0

m⇥p

I
p

#
, Wb

U0
=

2

664

I
n

0

n⇥s

−X−1

2

X
1

0

p⇥s

0

s⇥n

I
s

3

775, bU
0

=

⇥
X

1

X
2

0

p⇥s

⇤
,

bR+

=

"
R−1

0

0

k⇥p

0

p⇥k

0

p⇥p

#
, bUWb

U0
=

"
B>

2

G+D>
12

QC
1

D>
12

QD
11

0

p⇥n

0

p⇥s

#
,

W>
b
U0

cWWb
U0

=

2

4
A>G+G>A+ C>

1

Q
1

C
1

G>B
1

+ C>
1

QD
11

B>
1

G+D>
11

QC
1

D>
11

QD
11

− γ2P

3

5,

where

G = X −X
3

X−1

2

X
1

= X −⇥E and ⇥ = ⇥

>
= X

3

X−1

2

X>
3

≥ 0.

As a result, we obtain relation (3.14) and the matrix inequality

2

4
A>

1

G+G>A
1

+ C>
1

Q
1

C
1

−G>B
2

R−1

0

B>
2

G G>B
11

+ C>
1

Q
1

D
11

B>
11

G+D>
11

QC
1

−R
1

3

5< 0.

By the Schur lemma, this inequality is equivalent to inequality (3.13).
If we find the matrices X, G, S, and ⇥ under the indicated conditions of the theorem, then we can determine

the complementary blocks X
1

, X
2

, and X
3

of the matrix bX by using the spectral decomposition of the matrix
⇥ = ⇥

> ≥ 0 and the dependence X
1

= X>
3

E. In this case, the rank of the matrix ⇥ gives the least order of the
required dynamic regulator. To satisfy the rank condition in (3.15), we can set

H
1

= γ−2X>
3

and H
2

= γ−2X
2

+ I
p

.

The theorem is proved.

Remark 3.1. It is possible to show that, under appropriate conditions, the matrix X in the formulations of
Lemma 2.4 and Theorems 3.1–3.3 can be constructed in the form

X = S
0

E + E
0

F,

where 0 < S
0

= S>
0

< γ2H, E
0

= W
E

> , and F 2 R(n−⇢)⇥n. Furthermore,

S = E>S
0

E ≥ 0 and S − γ2X
0

= E>
(S

0

− γ2H)E  0.
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Fig. 1. Electric circuit.

The proof of Theorem 3.3 gives the following algorithm for the construction of the dynamic regulator (3.8):

(1) determination of the matrices X, G, S, and ⇥ from the system of relations (2.5), (2.8), (3.6), (3.13),
and (3.14);

(2) construction of the spectral decomposition of the nonnegative-definite matrix ⇥ = T⇤T>, where
T 2 Rn⇥r, ⇤ = diag{✓

1

, . . . , ✓
r

} > 0, and r = rank⇥;

(3) formation of the complementary blocks X
1

= T>E, X
2

= ⇤

−1, and X
3

= T of the matrix bX
for p = r;

(4) solution of the matrix inequality (3.16) for bK⇤ and determination of the matrix coefficients of regula-
tor (3.8) by using relation (3.11).

4. Example

Consider an electric circuit depicted in Fig. 1 and a control system for this system of the form (3.1) with
matrices [27]

E =

2

664

L 0 0

0 C 0

0 0 0

3

775, A =

2

664

−R
1

−1 1

0 −1/R
2

0

1 0 0

3

775, B
1

= B
2

=

2

664

0

1

−1

3

775,

C
1

=

"
0 1 0

0 0 ↵

#
, C

2

=

"
0 1 0

0 0 1

#
, D

12

=

"
0

1

#
, D

11

= D
21

= D
22

=

"
0

0

#
,

where

x =

⇥
i v

2

v
1

⇤>
, z =

⇥
v
2

u+ ↵ v
1

⇤>
, y =

⇥
v
2

v
1

⇤>
,

L = 3 is the inductance, C = 2 is the capacitance, R
1

= 2 and R
2

= 1 are the resistances, i is a current,
v
1

and v
2

are voltages, u is a control signal of the current source with bounded disturbances w, and ↵ = 1 is
a parameter (see Fig. 1). In this system, the pair of matrices (E,A) is impulsive and the triples (E,A,B

2

) and
(E,A,C

2

) are I-controlled and I-observed, respectively.
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We choose the following weight matrices of the performance criterion (2.4):

P = 1, Q = I
2

, and X
0

= E>E.

By using the Mathcad Prime software, for γ = 0.7, we obtain the matrix

X =

2

664

0.53135 0.00692 0

0.01038 0.97992 0

−0.15290 0.03987 −0.88512

3

775,

satisfying the system of relations (2.5), (2.8), (3.6), and (3.7), and the matrix of the static regulator (3.2)

K
1

= −
⇥
0.89374 1.00974

⇤

for which the closed system (3.3) is admissible and possesses the performance criterion J = 0.59259 < γ.

In this case, J
0

= kG
zw

k1 = 0.27633. The results of numerical experiments demonstrate that a decrease in
the parameter ↵ on the segment [0, 1] leads to the elevation of the minimal possible characteristics J

0

and J

of the closed system in the case of application of static regulators of type (3.2).
By using Theorem 3.2, we construct an ellipsoidal set of matrices of regulator (3.2) of the form

K
1

=

�
K : (K −K

1

)Γ (K −K
1

)

>  1

 
, Γ =

2

4
27.11679 −0.09483

−0.09483 27.36519

3

5,

for which the closed system (3.3) is admissible and has the performance criterion J < γ.

Further, for the closed system with regulator matrix K
1

, we construct the worst disturbance

w = K
0

x, K
0

=

⇥
0.18527 0.38263 0.00013

⇤
(4.1)

and the worst initial vector x
0

=

⇥
0.04910 0.38187 −0.23294

⇤> for the performance criterion J (see Lemma 2.5).
The behavior of the solution of the closed system with the worst disturbance

Eẋ = A
0

x, x(0) = x
0

, (4.2)

where

A
0

= A+B
2

K
1

C
2

+B
1

K
0

,

is shown in Fig. 2. The function of this disturbance (4.1) is depicted in Fig. 3. System (4.2) is admissible and has
a finite spectrum σ(F

0

) =

�
−0.71783± 0.45121 i

 
. Its solution has the form

x(t) = T ex(t),

where T is a matrix of full rank satisfying the relations

A
0

T = ET⇤ and rankT = rank(ET ) = rankE

and ex(t) is the solution of the ordinary system ˙ex = ⇤ex. Moreover, σ(⇤) = σ(F
0

) and x
0

= T ex
0

.
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Fig. 2. Behavior of the closed system.

Fig. 3. Worst disturbance for the performance criterion J.

By using Theorem 3.3, we also determine the matrices of the dynamic regulator (3.8)

Z =

"
−0.38338 −0.00721

0.08507 −0.41471

#
, V =

"
−0.03600 −0.07555

−0.00232 −0.00068

#
,

U =

⇥
0.57234 2.61512

⇤
, K =

⇥
−0.08957 −0.96093

⇤
,

for which the closed system (3.12) is admissible and has the performance criterion J = 0.47138.
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