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STABILITY OF POSITIVE AND MONOTONE SYSTEMS
IN A PARTIALLY ORDERED SPACE

A. G. Mazko UDC 517.983.27

We investigate properties of positive and monotone dynamical systems with respect to given
cones in the phase space.  Stability conditions for linear and nonlinear differential systems in a
partially ordered space are formulated.  Conditions for the positivity of dynamical systems with
respect to the Minkowski cone are established.  By using the comparison method, we solve the
problem of the robust stability of a family of systems. 

1.  Introduction

Numerous real systems possess the properties of positivity and monotonicity.  These properties are inherent
in certain classes of systems describing the motion and interaction of objects of different nature.  The positivity
(monotonicity) of a dynamical system is equivalent to the positivity (monotonicity) of a certain operator that de-
scribes its motion with respect to given cones in the phase space.  The Lyapunov and the Riccati differential
equations are examples of positive systems with respect to a cone of symmetric nonnegative-definite matrices.
Properties of positive systems are used in various problems of analysis and synthesis [1 – 4].  The investigation of
the stability of a class of linear positive systems reduces to the solution of algebraic equations defined by the op-
erator coefficients of given systems [3 – 8]. 

In the present work, we study properties of solutions of positive and monotone dynamical systems with
respect to given cones in a partially ordered phase space.  We present a generalized principle of comparison of
systems and conditions for the robust stability of a family of nonlinear systems.  We also consider multiply
connected systems, which can be used for the description of physical objects and processes in an inhomogeneous
medium. 

2.  Definitions and Auxiliary Facts

A convex closed set  K  of a real normed space  E  is called a cone if  K  ∩  – K = {0}  and  α  K + β  K ⊂ K
∀α, β ≥ 0.  The dual cone  K 

*  consists of linear functionals  ϕ ∈ E 
*  taking nonnegative values on the ele-

ments of  K .  In this case,  K  =  { X ∈ E :  ϕ ( X ) ≥ 0  ∀ϕ ∈ K 
*

 } . 

The space with a cone is partially ordered:  X ≤ Y  ⇔  Y – X ∈ K .  A cone  K  with the set of interior points

K 
0 = { X :  X > 0 } ≠ ∅  is solid.  A cone  K  is called normal if the relation  0 ≤ X ≤ Y  yields  || X || ≤ c || Y ||,

where  c  is a universal constant.  If  E = K – K ,  then  K  is a reproducing cone. 

Note that the property of the normality of a cone  K  is equivalent to the condition 

U  ≤  X  ≤  V   ⇒   || X ||  ≤  α || U ||  +  β || V ||, (1)

Institute of Mathematics, Ukrainian Academy of Sciences, Kiev.  Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 56, No. 4,

pp. 462 – 475, April, 2004.  Original article submitted March 4, 2003.

560 0041–5995/04/5604–0560      ©  2004    Springer Science+Business Media, Inc.



STABILITY OF POSITIVE AND MONOTONE SYSTEMS IN A PARTIALLY ORDERED SPACE 561

where  α > 0  and  β > 0  are universal constants.  Indeed, this condition coincides with the definition of the nor-
mality of a cone for  U = 0.  If the cone is normal, then the relation  0 ≤ X – U ≤ V – U  yields 

|| X ||  –  || U ||  ≤  || X – U ||  ≤  c || V – U ||  ≤  c || V ||  +  c || U ||,

and, in (1), in particular, we can set  α = c + 1  and  β = c,  where  c  is the normality constant of the cone  K . 

Assume that a Banach space  E 1 ( E 2 )  contains a cone  K 1 ( K 2 ) .  An operator  M :  E 1  → E  2  is called
monotone if  M  X ≥ M Y  for  X  ≥ Y.  The monotonicity of a linear operator is equivalent to its positivity:

X ≥ 0  ⇒  M X ≥ 0.  The operator inequality  M ≤ L  means that the operator  L – M  is positive.  If  M E 1 ⊂  K  2 ,
then the operator  M  is positive everywhere.  A linear operator  M  is called monotonically invertible if, for any

Y ∈ K 2,  the equation  M X = Y  has a solution  X ∈ K 1 .  If  K 2  is a normal reproducing cone and  M1 ≤ M ≤ M2 ,
then the monotone invertibility of  M1  and  M2  yields the monotone invertibility of the operator  M,  and, fur-

thermore,  M2
1–  ≤ M 

–
 
1 ≤ M1

1–   [1]. 

Consider the class of linear operators  M = L – P,  P K 1 ⊂ K 2 ⊂ L K 1 ,  where  K 2  is a normal reproducing

cone.  For such operators, a criterion for monotone invertibility is the inequality  ρ ( T ) < 1,  where  ρ  ( T )  is the

spectral radius of the pencil of operators  T ( λ ) = P – λ L.  If the cone  K 2  is solid, then the inequality indicated
is equivalent to the existence of elements  X ≥ 0  and  Y > 0  satisfying the equation  M  X = Y. 

Note that an arbitrary linear operator preserving the cone of Hermitian nonnegative-definite matrices is rep-
resentable in the form [6] 

M X  =  
k

k kA X A∑ *   +  
s

s
T

sB X B∑ * ,      Ak , Bs ∈ C 
n

 
×

 
n.

Let  M :  E → E  and let cones  K ,  K 1 = S K ,  and  K 2 = S 
–

 
1

 K  be given in the space  E  (here,  S  is an in-

vertible operator).  It is obvious that the relations  S K ⊂ K ,  S K 1 ⊂ K  1 ,  S K  2 ⊂  K  2 ,  and  K  1 ⊂  K ⊂  K  2  are
equivalent.  Using properties of functions of operators, one can establish that 

f ( M ) K  ⊂  K   ⇔   f ( M2 ) K 1  ⊂  K 1   ⇔   f ( M1 ) K 2  ⊂  K 2 ,

f ( M ) K 1  ⊂  K 1   ⇔   f ( M1 ) K  ⊂  K ,      f ( M ) K 2  ⊂  K 2   ⇔   f ( M2 ) K  ⊂  K ,

where  M1 = S 
–

 
1

 M S  and  M2 = S M S 
–

 
1.  The relations presented above can be useful in the investigation of sta-

bility conditions for a class of positive systems. 

3.  Positive and Monotone Systems

Consider a dynamical system with continuous or discrete time  t ≥ θ  whose states in the phase space  E
are defined by the relations 

X ( t )  =  Ω ( t, t0 ) X0 ,      Ω ( t0 , t0 )  =  E,      t  ≥  t0  ≥  θ. (2)

Here,  Ω ( t, t0 ) :  E → E  is the operator that determines the transition from the initial state  X ( t0 ) = X0  to a state

X ( t )  for  t > t0 ,  and  E  is the identity operator.  If  Ω ( t, t0 ) 0 ≡ 0,  then  X  ( t ) ≡ 0  is the equilibrium state of the
system. 
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Assume that the space  E  contains cones  K  and  K 0 
.  In what follows, we use the order relations  ≤  and

≥  ( �  and  �  )  generated by the cone  K  ( K 0 ).  We define the following properties of system (2): 

Ω ( t, t0 ) K  ⊂  K    (positivity with respect to  K ),

Ω ( t, t0 ) K 0  ⊂  K    (positivity with respect to  K 0  and  K ),

X0  ≤  Y0   ⇒   X ( t )  ≤  Y ( t )    (monotonicity with respect to  K ),

X0  �    Y0   ⇒   X ( t )  ≤  Y ( t )    (monotonicity with respect to  K 0  and  K ),

0  ≤  X0  ≤  Y0   ⇒   X ( t )  ≤  Y ( t )    (monotonicity in  K ),

0  �  X0  �    Y0   ⇒   X ( t )  ≤  Y ( t )    (monotonicity in  K 0  with respect to  K ).

Here,  X ( t )  and  Y ( t )  are the states of the system for  t ≥ t0 ,  X ( t0 ) = X0 ,  and  Y ( t0 ) = Y0 . 
It is obvious that a continuous system possessing one of the properties indicated must satisfy the inclusion

K 0 ⊂ K .  Furthermore, the positivity (monotonicity) of a system with respect to  K 0  or  K   yields its positivity

(monotonicity) with respect to  K 0  and  K . 
Consider the differential system 

Ẋ   +  M ( t ) X  =  0, (3)

where  M  ( t ) :  E →  E   is a linear operator.  An arbitrary solution of system (3) has the form (2), where

Ω ( t, t0 ) = W ( t, t0 )  is a linear evolution operator.  The properties of positivity and monotonicity of system (3)

with respect to  K 0  and  K  are equivalent to the positivity of the evolution operator.  The positivity of the oper-

ator  W ( t, t0 )  for  t ≥ t0  is equivalent to the positivity of the exponential operator  e–
 
M

 
(

 
t

 
)

 
h  for  t ≥ 0  and  h ≥ 0.

If two systems of the form (3) with operators  M1( t )  and  M2 ( t )  are positive with respect to  K  0  and  K  ,  then
the system described by the operator  M1( t ) + M2 ( t )  possesses the same property [7, 9]. 

We generalize the differential system (3) as follows: 

Ẋ   +  M ( t ) X  =  G ( X, t ), (4)

where  G ( X, t )  is a nonlinear operator that guarantees the existence and uniqueness of a solution  X ( t ) ∈ E  for
t ≥ t0  and  X ( t0 ) = X0 .  Solutions of system (4) satisfy the integral equation 

X ( t )  =  W ( t, t0 ) X0  +  
t

t

W t s G X s s ds

0

∫ ( )( , ) ( ), ,

where  W ( t, s )  is the evolution operator of system (3).  This implies that system (4) is positive with respect to

K 0  and  K  if  W ( t, t0 ) K 0 ⊂ K  and the operator  W ( t, s ) G ( X, t )  is positive on the cone  K  for any  t ≥ s ≥ t0 . 
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Let us find conditions for the positivity and monotonicity of system (4) with respect to the cone  K   by

using the dual cone of linear functionals  K 
*.  Let  F0  and  F  denote the families of continuous operator func-

tions  F ( X, t )  satisfying, for  t ≥ θ,  the corresponding conditions 

X ∈ K ,   ϕ ∈ K 
*,   ϕ ( X )  =  0   ⇒   ϕ ( F ( X, t ) )  ≥  0,

X  –  Y ∈ K ,   ϕ ∈ K 
*,   ϕ ( X – Y )  =  0   ⇒   ϕ ( F ( X, t ) – F ( Y, t ) )  ≥  0.

Lemma 1.  If the cone  K  is solid, system (3) is positive with respect to  K  ,  and  G ∈  F0  (  G ∈  F ),
then system (4) is positive (monotone) with respect to  K .  If system (4) is positive (monotone) with respect to

K ,  then  F ∈ F0  ( F ∈ F ),  where  F ( X, t ) = G ( X, t ) – M ( t ) X. 

Proof.  Consider the auxiliary system 

Ż   =  F ( Z, t )  +  ε Q,

where  ε > 0  and  Q > 0  is an interior element of  K .  Let  Z ( t )  be its solution satisfying the condition  Z ( t0 ) =

Z0 ≥ 0  and let  Z ( t1 ) = Z1 ∈ ∂ K  be a point of the boundary of the cone  K  for some  t1  ≥ t0 .  Then  ϕ ( Z1 ) = 0

and  ϕ ( Q ) > 0  for some  ϕ ∈ K 
*,  and  ϕ ≠ 0.

It follows from the monotonicity of the exponential operator  e–
 
M

 
(

 
t

 
)

 
h  and the relation 

M ( t ) Z  =  lim ( )

h

M t h

h
Z e Z

→ +

−−( )
0

1

that  ϕ ( M ( t1 ) Z1 ) ≤ 0.  If, in addition,  G ∈ F0,  then  F ∈ F0 ,  and, under the continuity conditions, for a certain

δ > 0  we get 

ϕ ˙( )Z t1( )   =  ϕ ( F ( Z1 , t1 ) )  +  ε ϕ ( Q )  >  0,

t

t

Z t dt

1

1 +

∫ ( )
δ

ϕ ˙( )   =  ϕ ( Z ( t1 + δ ) )  >  0.

Hence, the trajectory  Z ( t )  does not leave the cone  K  for  t > t1 ,  i.e.,  Z ( t ) ≥ 0  for  t1 ≤ t ≤ t1 + δ.  Otherwise,

the inequality  ϕ ( Z ( t1 + δ ) ) < 0  must be satisfied for some  ϕ ∈ K 
*  and  δ > 0.  By virtue of the closedness of

the cone, we get  Z ( t ) → X ( t ) ≥ 0  as  ε → 0  for any  Z0 = X0 ≥ 0  and  t ≥ t0 ,  i.e., system (4) is positive with

respect to  K . 

The fact that the condition  F ∈ F0  is necessary for system (4) positive with respect to  K  follows, for suf-

ficiently small  δ > 0,  from the relations 

ϕ ( X ( t1 + δ ) )  =  δϕ τ τF X( ),( )( ),      ϕ ( X1 )  =  0,

where  X ( t1 ) = X1 ∈ ∂ K ,  ϕ ∈ K 
*,  and  t1 ≤ τ ≤ t1 + δ. 
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By analogy, we establish the required necessary and sufficient conditions for the monotonicity of system

(4) with respect to  K . 
Lemma 1 is proved. 

In the case of the solid cone  K ,  the positivity (monotonicity) of the differential systems described by the

operators  F1 ( X, t )  and  F2 ( X, t )  with respect to  K  yields the positivity (monotonicity) of the differential sys-

tem described by the operator  F ( X, t ) = F1 ( X, t ) + F2 ( X, t )  with respect to  K.

Example 1.  The nonlinear differential system 

ẋ   +  A ( t ) x  =  g ( x, t ),      x ∈ R 

n,

where  A ( t )  is a matrix with nonpositive off-diagonal elements, is positive with respect to the cone of nonnega-

tive vectors  K  if the vector function  g ( x, t )  satisfies the conditions [10] 

x  ≥  0,   xi  =  0    ⇒    gi  ( x, t )  ≥  0,   t  ≥  θ,    i  =  1, n,

and is monotone with respect to  K  if  g ( x, t )  is quasimonotone and nondecreasing in  x  (the Wazewski condi-
tion), i.e., 

x  ≤  y,   xi  =  yi    ⇒    gi  ( x, t )  ≤  gi  ( y, t ),   t  ≥  θ,    i  =  1, n

If both restrictions are satisfied for  0 ≤ x ≤ y,  then the system considered is monotone in  K . 

Example 2.  Consider a nonlinear control system with dynamical feedback 

ẋ   =  f ( x, u, t ),      u̇   =  g ( x, u, t ),      x ∈ R 

n,    u ∈ R
 

1.

In the phase space  R
 

n
 

+
 

1,  we consider the circular Minkowski cone [11] 

K  =  z R z x u x un T T∈ = [ ] ≤{ }+1: , , .

This cone is normal, solid, and self-dual.  The last property means that  l 
T

 z ≥ 0  ∀x ∈ K  ⇔  l ∈ K .  Using Lem-

ma 1, we can represent the criterion for the positivity of the system with respect to  K  in the form 

|| y ||  =  1,   u  ≥  0    ⇒    y 
T

 f ( u y, u, t )  ≤  g ( u y, u, t )   ∀t  ≥  θ.

In the case of a linear system, we set  f ( x, u, t ) = A ( t ) x + b  ( t ) u  and  g  ( x, u, t ) = c ( t )
 

T
 
x + d ( t )

 
u.  In this

case, each of the conditions 

λmax ( ) ( )A t A t T+( )
2

  +  || b ( t ) – c ( t ) ||  ≤  d ( t ),
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− − −

−













A t A t c t b t

c t b t d t

T

T T

( ) ( ) ( ) ( )

( ) ( ) ( )2
  ≥  0,

where  λ max ( ⋅ )  is the maximum eigenvalue of the symmetric matrix, guarantees the positivity and monotonicity

of the system with respect to  K . 

Example 3.  The Lyapunov and the Riccati differential equations and the more general equation 

Ẋ   –  A ( t ) X  –  X A ( t )
 

T  –  
k

k k
TB t X B t∑ ( ) ( )   =  X C ( t ) X  +  D ( t ),

where  A ( t ),  Bk ( t ),  C ( t ) = C ( t )
 

T ≥ 0,  and  D ( t ) = D ( t )
 

T ≥ 0  are given matrices and  t ≥ θ,  are positive with

respect to the cone of symmetric nonnegative-definite matrices  K .  In the case where  C  ( t ) ∈ K ,  this equation

is also monotone with respect to  K .  In the example under consideration, we have  M ( t ) = L ( t ) – P ( t ),  where 

L ( t ) X  =  – A ( t ) X  –  X A ( t )
 

T,      P ( t ) X  =  
k

k k
TB t X B t∑ ( ) ( ) .

The evolution operator  WM ( t, t0 )  of the system is positive because 

WL ( t, t0 ) X  =  Ξ ( t, t0 ) X Ξ ( t, t0 )
 

T  ≥  0,      W– P ( t, t0 ) X  ≥  0   ∀  X  =  X
 

T  ≥  0,

where  Ξ ( t, t0 )  is the matrizant of the system  ẋ  = A ( t ) x,  t ≥ t0 ≥ θ. 
The matrix differential equation 

Ẋ   =  A ( t ) X  +  X A ( t )
 

T  +  
k

k k
TB t X B t∑ ( ) ( )

is known as the second-moment equation for the Itô stochastic system 

d x ( t )  –  A ( t ) x ( t ) d t  =  
k

k kB t x t dw t∑ ( ) ( ) ( ),

where  wk  are the components of a standard Wiener process.  This equation possesses the properties of positivity

and monotonicity with respect to  K  and is used in the theory of stability of stochastic systems. 
Note that if system (3) with a monotone operator  M  is positive with respect to the cone of nonnegative-

definite matrices, then this operator is representable in the form  M X = α  X,  where  α ≥ 0.  To prove the last
statement, it suffices to consider the case where  M X = A X

 
A

 

T  and establish that all eigenvalues of the matrix  A
are real and identical. 

4.  Stability of Systems in a Partially Ordered Space

In the phase space  E,  we consider a dynamical system whose states are described by continuous differen-

tiable functions  X ( t )  of the form (2).  Let  Ω ( t, t0 ) 0 ≡ 0  and  K 0 ⊂ K ,  where  K  is a normal cone and  K 0  is a

reproducing cone, which generate the corresponding order relations in  E. 
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The state  X ≡ 0  of system (2) is called stable from  K 0  into  K   if, for any  ε > 0  and  t0 ≥ θ,  one can in-

dicate  δ > 0  such that the relations  || X 0 || ≤ δ  and  X 0 � 0  yield  || X ( t ) || ≤ ε  and  X ( t ) ≥ 0  for  t > t0 .  If, in

addition, for some  δ0 > 0  the relation  || ||X0  ≤ δ0  implies that  || ||( )X t  → 0  as  t → ∞,  then the solution  X ≡  0

is asymptotically stable from  K 0  into  K .  If the solution  X ≡ 0  of system (2) positive with respect to  K  0  and

K    is Lyapunov stable (asymptotically Lyapunov stable), then it is stable (asymptotically stable) from  K  0

into  K 0 . 

Lemma 2.  Suppose that the states of system (2) satisfy the conditions 

X0  �  0   ⇒   X ( t )  ≥  0,    ˙ ( )X t   ≤  0, (5)

X0  =  X+  –  X–   ⇒   –X – ( t )  ≤  X ( t )  ≤  X+ ( t ), (6)

where  X±  �  0,  X± ( t ) = Ω ( t, t0 ) X± ,  and  t > t0 .  Then the state  X ≡ 0  of this system is Lyapunov stable. 

Proof.  A.  X0 ∈ K 0 .  According to the Lagrange theorem, we have 

X ( t )  –  X ( t0 )  =  ˙ ( )( )X t tξ − 0 ,      ξ ∈ ( t, t0 ),      t  >  t0 .

In view of (5), this yields  0 ≤ X ( t ) ≤ X0,  whence  || X ( t ) || ≤ c || X0 ||,  where  c  is the normality constant of the

cone  K .  Therefore, for any  ε > 0,  the relation  || X0 ||  ≤  δ  =  ε / c  yields  || X ( t ) ||  ≤  ε. 

B.  X0 ∈ E.  The reproducing cone  K 0  is unflattened [1], i.e.,  X0  =  X+ – X–  and  || X± ||  ≤  γ || X0 ||,  where

γ > 0  is a universal constant. 

Let  ε > 0.  We choose  δ±  according to step A so that the relation  || X± || ≤ δ±  yields  || ||+( )X t  ≤ ε / ( 2 β )

and  || ||−( )X t  ≤ ε  / ( 2 α ).  To this end, we set  δ+ =  ε / ( 2 β c  )  and  δ– = ε / ( 2 α c  ).  If  || X0 || ≤ δ,  where  δ =

min { δ+ , δ– } / γ,  then, using (1) and (6), we get 

|| X ( t ) ||  ≤  α || X– ( t ) ||  +  β || X+ ( t ) ||  ≤  ε.

This means that the zero state of system (2) is stable. 
Lemma 2 is proved. 

Condition (5) guarantees the stability of the zero state of system (2) from  K 0  into  K .  Condition (6) is al-

ways satisfied, e.g., for the class of systems positive with respect to  K  0  and  K   with the linear operator

 Ω ( t, t0 ) .  Condition (6) is also satisfied if the operator  Ω  ( t, t0 )  is monotone and the operator  ˆ ( , )Ω t t X0  =

Ω ( t, t0 ) X + Ω ( t, t0 ) ( – X )  is positive with respect to the cones  K 0  and  K   for  t ≥ t0 . 

Lemma 3.  The state  X  ≡  0  of system (2) monotone with respect to  K  0  and  K  is Lyapunov stable if
˙ ( )X t  ∈   ∓  K  for any  X0 ∈ ± K 0  and  t > t0 . 



STABILITY OF POSITIVE AND MONOTONE SYSTEMS IN A PARTIALLY ORDERED SPACE 567

Proof.  It follows from the monotonicity of the operator  Ω ( t, t0 )  and the condition  Ω  ( t, t0 ) 0 ≡ 0  that

X ( t ) ∈ ± K  for any  X0 ∈ ± K 0 .  If  X0 ∈ K 0 ,  then  0 ≤ X ( t ) ≤ X0  and, hence,  || X ( t ) || ≤ c || X0 ||  (see the proof

of Lemma 2).  This estimate is also satisfied in the case where  X0 ∈  – K 0  because  0 ≤ – X ( t ) ≤ – X0 .  In the

general case,  X0 = X+ – X– ∈ E,  and, by virtue of the monotonicity of the system with respect to  K  0  and  K  ,

we get  Ω ( t, t0 ) ( – X– )  ≤  X ( t )  ≤  Ω ( t, t0 ) X+ ,  where  X± ∈ K 0 .  Hence, with regard for relation (1) and the fact

that the reproducing cone  K 0  is unflattened, we obtain the estimate  || X ( t ) ||  ≤  c γ ( α + β  ) || X0 || ,  which yields

the stability of the state  X ≡ 0  of system (2). 

Lemma 3 is proved. 

Under the conditions of Lemma 3, the state  X ≡ 0  of system (2) monotone with respect to  K  0  and  K    is

stable from  K 0  into  K   and from  – K 0  into  – K .  This guarantees the Lyapunov stability of the state  X ≡ 0  of

the system considered.  For linear systems, the stability of the zero state from  K 0  into  K    is equivalent to its

stability from  – K 0  into  – K . 

Lemma 3 can be used for the construction of stability conditions for the classes of monotone differential
systems (3) and (4) in terms of the operators  M ( t )  and  G ( X, t ).  For system (4), the conditions of Lemma 3
mean that the inequalities  G ( X, t ) ≤ M ( t ) X  and  G ( X, t ) ≥ M ( t ) X  are satisfied for its solutions with initial

values from   K 0  and  – K 0 ,  respectively. 

In the investigation of the stability of the state  X ≡ 0  of system (2), one can use various estimates for  X ( t )

or  Ω ( t, t0 )  with respect to the cones  K 0  and  K .  For example, if, for any  X0 = X+ – X– ∈ E,  one has 

– ∆– ( t, t0 ) | X0 |  ≤  X ( t )  ≤   ∆+ ( t, t0 ) | X0 |,      t  ≥  t0, (7)

where  | X0 | = X+ + X– ,  X± ∈ K 0 ,  and  ∆± ( t, t0 )  are uniformly bounded linear operators, then the stability of the

state  X ≡ 0  follows from the estimate 

|| X ( t ) ||  ≤  2 γ ( α ν– + β  ν+ ) || X0 ||,       ν±  =  sup || ∆± ( t, t0 ) ||  <  ∞,

which is established with the use of relations (1) and (7) and the assumptions concerning the cones  K  0  and  K  .
An analogous statement is valid under the condition 

– ∆– ( t, t0 ) X+  –  ∆+ ( t, t0 ) X–  ≤  X ( t )  ≤  ∆+ ( t, t0 ) X+  +  ∆– ( t, t0 ) X– , (8)

which, in the case of a linear system, is equivalent to the two-sided estimate 

– ∆– ( t, t0 )  ≤  Ω ( t, t0 )  ≤  ∆+ ( t, t0 ),      t  ≥  t0 .

Note that, under the condition of the positivity of  ∆± ( t, t0 ) K 0 ⊂ K ,  the operators  ∆± ( t, t0 )  in (7) and (8)
should be bounded in norm [2]. 

Below, we formulate a corollary of Lemmas 2 and 3 for system (3) in terms of the evolution operator
W ( t, t0 ). 
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Theorem 1.  If the evolution operator  W ( t, t0 )  of the differential system (3) satisfies the conditions 

W ( t, t0 ) K 0 ⊂ K ,      M ( t ) W ( t, t0 ) K 0 ⊂ K ,      t  >  t0 , (9)

then this system is stable. 

Consider the class of linear stationary systems 

Ẋ   +  M X  =  0. (10)

In this case, we have  W ( t, t0 ) = e M t t− −( )0 ,  and the positivity of system (10) with respect to  K  0  and  K    is

equivalent to the condition  e
 

–
 
M

 
t

 K 0 ⊂ K ,  t ≥ 0.  The following statement is true [5, 7]: 

Theorem 2.  If system (10) is positive with respect to  K ,  then it is exponentially stable iff the operator

M  is monotonically invertible, i.e.,  K ⊂ M  K .  If the operator  M  + γ I  is monotonically invertible for any
γ ≥ 0,  then system (10) is positive with respect to  K  and exponentially stable. 

Note that if conditions (9) are satisfied,  M ( t ) ≡ M,  and  K ⊂  M  K 0 ,  then the following systems of inclu-
sions are true: 

(a) K 0 ⊂ M K 0 ,  e
 

–
 
M

 
t

 K 0 ⊂ K 0,  t > 0,

(b) K ⊂ M K ,  e
 

–
 
M

 
t

 K ⊂ K ,  t > 0.

Each of these systems guarantees the exponential stability of system (10).  If  M K 0 ⊂  K  ,  then condi-
tions (9) follow from inclusions (a) or (b). 

In [7, 9], analogous conditions for the exponential stability of certain classes of nonstationary systems (3)
were established. 

5.  Positivity and Stability of Discrete Systems

Consider the discrete system 

Xk + 1  =  Mk Xk  +  G ( Xk , k ),      k  =  0, 1, … , (11)

where  Mk :  E → E  is a linear operator,  G ( X, k )  is a nonlinear operator function, and  E  is a Banach space

with cones  K 0  and  K .  If the inclusion  X0 ∈  K 0  yields  Xk ∈  K  for any  k  =  0, 1, … ,  then system (11) is

positive with respect to  K 0  and  K . 
Every solution of system (11) satisfies the relation 

Xk + 1  =  Wk 0 X0  +  
s

k

ks sW G X s
=

+∑
0

1 ( , ),
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where  Wk k + 1 = E  and  Wk s = Mk … Ws  ,  k ≥ s.  Therefore, system (11) is positive with respect to  K 0  and  K   if

Wk 0 K 0 ⊂ K  and the operator functions  Wk s + 1G ( X, s )  are positive on  K   for  k ≥ s ≥ 0.  In the general case,

these conditions are not necessary for positivity with respect to  K 0  and  K .  If  G ( X, k ) ≡ 0,  then the positivity

of system (11) with respect to  K 0  and  K  is equivalent to the positivity of all operators  Wk 0 ,  k ≥ 0. 

Example 4.  Consider the discrete control system with dynamical feedback 

xk + 1  =  A xk  +  b uk ,      uk + 1  =  c  
T

 xk  +  d uk ,      k  =  0, 1, … , (12)

where  xk  is the state vector and  uk  is a control.  We rewrite this system in the form 

zk + 1  =  M zk ,      M  =  
A b

c dT









,      zk  =  

x

u

k

k













and consider a Minkowski cone  K  (see Example 2) in the phase space.  The positivity of system (12) with re-

spect to  K  is equivalent to the inclusion  M K ⊂ K ,  and, in view of the fact that the cone is self-dual, it reduces

to the inequality  l 
T

 M z ≥ 0,  which must be satisfied for any  l, z ∈ K .  Using the Cauchy inequality, we obtain a

sufficient condition for the positivity of system (12) with respect to  K : 

λmax ( )A AT   +  || b ||  +  || c ||  ≤  d.

The fact that a vector  z  belongs to the cone  K  can be described in terms of nonnegative-definite matrices
as follows: 

z  =  
x

u









  ∈ K   ⇔   u  ≥  0,      u 

2
 I  ≥  x x 

T   ⇔   Sz  =  
uI x

x uT









   ≥  0.

Therefore, the positivity of system (12) with respect to  K  is equivalent to the condition 

Sz  ≥  0   ⇒   SMz  =  
( )c x du I Ax bu

x A ub c x du

T

T T T T

+ +

+ +












  ≥  0.

In this case, for any vectors  z ∈ K  and  v ∈ R 

n
 

+
 

1,  the following inequality must be satisfied: 

v 
T

 SMz v  =   l zT
v   ≥  0,

where 

lv  =  

v v

v v

v v

T
g

T
g

T
g

S

S

S

n

1

�























,      Sgi
  =  

c I a

a c

i i

i
T

i












,      Sg  =  

d I b

b dT









 ,
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 gi  =  
a

c

i

i












,      g  =  

b

d









 ,

ai  are the columns of the matrix  A,  and  ci  are the elements of the vector  c,  i = 1, n.  The condition  lv ∈  K ,
which is equivalent to the inequality  

 
Slv

 ≥ 0,  is satisfied if 

S  =  

  

S S

S S

S S S

g g

g g

g g g

n

n

�

� � � �

�

�

0

0

1

1























  ≥  0. (13)

If  g > 0  is an interior point of the cone  K ,  then conditions for the positivity of system (12) with respect to  K
have the form 

Sg  >  0,      Sg  ≥  
i

g g gS S S
i i∑ –1 . (14)

The condition  g > 0  means that  d > b bT .  If  d = b bT  > 0,  then it is necessary that  A = d  
–1

 b c  
T  for the

positivity of system (12) with respect to  K . 
The asymptotic stability of system (12) is equivalent to each of the following conditions: 

(a) | λ | < 1,  λ ∈ σ ( M ) ; 

(b) M 

k → 0,  k → ∞. 

If inequality (13) or (14) is satisfied, then the following conditions may also serve as criteria for the asymp-
totic stability of system (12): 

(c) the matrix  I – M  is asymptotically invertible ; 

(d) for some  w > 0,  the equation  z – Mz = w  has a solution  z ≥ 0. 

These conditions can be used for the determination of the parameters  c  and  d  of a dynamical compen-
sator that stabilizes system (12). 

6.  Comparison Systems

Comparison methods based on the mapping of the space of states of a system under study into the spaces of
states of auxiliary systems are used in various applied and theoretical investigations.  In the analysis of stability
problems, it is reasonable to use classes of positive and monotone systems with respect to appropriate cones and
nonlinear systems satisfying the conditions of Chaplygin-type and Wazewski-type theorems [12, 13] as com-
parison systems. 
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Consider the differential system 

ẋ   =  f ( x, t ),      x ∈ X,    t ≥ t0 , (15)

where  f  is an operator that guarantees the existence of a unique solution  x ( t )  with values in a Banach phase

space  X .  Let  E  be a Banach space partially ordered by a normal cone  K ⊂ E.  In the space  E ,  we construct
classes of differential systems 

Ẋ   =  F ( X, t ),      X ∈ E,    t ≥ t0 , (16)

which are used as comparison systems for system (15).  In  E,  inequalities for the values of functions at the ini-

tial time  t0  will be defined with respect to a certain reproducing cone  K 0 ⊂ K .

Let  Σ+  denote the class of systems (16) whose solutions can be associated with the solutions of the corre-
sponding differential inequalities 

Ż   ≤  F ( Z, t ),      Z ∈ E,    t  ≥  t0, (17)

so that the relation  Z ( t0 ) � X ( t0 )  yields  Z ( t ) ≤ X ( t )  for  t > t0 .  It is obvious that every system of the class  Σ+

is monotone with respect to  K 0  and  K .  If  F ( 0, t ) ≥ 0,  then system (16) of the class  Σ+  is positive and mono-

tone with respect to  K 0  and  K . 

Let  V ( x, t )  be an operator continuously mapping a certain neighborhood of the point  0 ∈ X  for  t ≥ t0
into the space  E .  If  V ( x, t )  and its generalized derivative along solutions of system (15) satisfy the relation 

Dt  V ( x, t ) | (15)  ≤  F ( V ( x, t ), t ) , (18)

then system (16) of the class  Σ+  is an upper comparison system, i.e., 

V ( x ( t0 ), t0 )  �  X ( t0 )   ⇒   V ( x ( t ), t )  ≤  X ( t ),      t  >  t0 . (19)

In (18), the derivative along solutions of system (15) can be defined as follows: 

Dt  V ( x, t ) | (15)  =  limsup ( , ), ( , )
h h

V x h f x t t h V x t
→ +

+ +( ) −[ ]
0

1
.

By analogy, we introduce the class of systems  Σ–  and the lower comparison systems (16) for system (15).

In this case, all inequality signs in (17) – (19) defined by the cones  K 0  and  K   in the space  E  are replaced by
the opposite ones. 

Let  F ±  denote the families of operators  F  ( X, t )  describing the corresponding classes of systems  Σ±  of

the form (16).  If  F ∈ F+  or  F ∈ F– ,  then system (16) is monotone with respect to  K 0  and  K . 
If the equality 

Dt  V ( x, t ) | (15)  =  F ( V ( x, t ), t ) (20)



572 A. G. MAZKO

is satisfied instead of (18), then it follows from the definition of the monotonicity of system (16) with respect to

K 0  and  K  that 

X1 ( t0 )  �  V  ( x ( t0 ), t0 )  �  X2 ( t0 )   ⇒   X1 ( t )  ≤  V ( x ( t ), t )  ≤  X2 ( t )      ∀  t  ≥  t0 , (21)

where  X1 ( t )  and  X2 ( t )  are certain solutions of system (16).  Therefore, relation (20) defines the class of sys-

tems (16) monotone with respect to  K  0  and  K  that are simultaneously lower and upper comparison systems
for system (15). 

Estimates (19) and (20) can be used for the comparison of dynamical properties of systems (15) and (16)
and for the construction of the attraction region in the phase space of system (15).  For example, if the operator

V  is chosen so that the inequality  V ( x, t ) ≤ 0  is possible only for  x = 0,  then we get  x (  t ) → 0,  t →  ∞ ,  pro-
vided that conditions (19) are satisfied and  X ( t ) → 0. 

In the space  E,  we consider two systems

Ẋ1  =  F1 ( X1 , t ),      X1 ∈ E ,      t  ≥  t0 , (22)

Ẋ2   =  F2 ( X2 , t ),      X2 ∈ E ,      t  ≥  t0 , (23)

of the classes  Σ–  and  Σ+ ,  respectively.  Assume that 

F1 ( V ( x, t ), t )  ≤  Dt  V ( x, t ) | (15)  ≤  F2 ( V ( x, t ), t ),      t  ≥  t0 . (24)

Then a solution of the original system (15) satisfies estimate (21), where  X1 ( t )  and  X2 ( t )  are solutions of the
corresponding systems (22) and (23). 

Assume that the original system (15) and the comparison systems (22) and (23) have isolated equilibrium

states, i.e.,  f ( 0, t ) ≡ 0,  F1( 0 , t ) ≡ 0,  and  F2( 0 , t ) ≡ 0.  Also assume that the operator  V  possesses the follow-
ing properties: 

V ( 0 , t )  ≡  0,      V ( x , t )  ≠  0,      x  ≠  0,      t  ≥  t0 . (25)

Theorem 3.  Suppose that  F1 ∈  F– 
,  F2 ∈  F+ ,  and the operator  V  satisfies relations (24) and (25).

The zero solution of system (15) is Lyapunov stable (asymptotically Lyapunov stable) if the zero solutions of
systems (22) and (23) are stable (asymptotically stable) from  –K 0  to  –K   and from  K  0  to  K  ,  respec-
tively. 

Proof.  Since the cone  K 0  is reproducing and unflattened, we get 

– X −
0  �  V ( x0 , t0 )  =  X +

0  –  X −
0  �  X +

0,      X±
0   ≤  γ || V ( x0 , t0 ) ||,

where  X ±
0 ∈ K 0  and  γ > 0  is a universal constant. 

Let  X1 ( t )  and  X2 ( t )  be solutions of systems (22) and (23) with the initial conditions  X1 ( t0 ) = – X −
0  and

X2 ( t0 ) = X +
0.  Since  F1 ∈ F –  and  F2 ∈ F + ,  we get  X1 ( t ) ≤ 0  and  X2 ( t ) ≥ 0  for  t ≥ t0 .  Taking into account

relation (21) and the normality of the cone  K ,  we get 
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|| V ( x ( t ), t ) ||  ≤  α || X1 ( t ) ||  +  β || X2 ( t ) || ,      t  >  t0 ,

where  α > 0  and  β > 0  are universal constants. 

It follows from the continuity of the function  V ( x , t )  and conditions (25) that, for any  ε > 0,  there exists

δ0 > 0  such that  || x ( t ) || ≤ ε  whenever  || V ( x ( t ), t ) || ≤ δ0 .  We now use the property of stability of the zero so-

lutions of systems (22) and (23) from  –K 0  to  –K  and from  K 0  to  K ,  respectively.  We choose  δ1 > 0  and

δ2 > 0  so that the inequalities  X−
0  ≤ δ1  and  X+

0  ≤ δ2  yield 

|| X1 ( t ) ||  ≤  
δ
α
0

2
,      || X2 ( t ) ||  ≤  

δ
β
0

2
,      t  >  t0 .

Finally, we choose  δ > 0  so that  || x0 || ≤ δ  yields  || V ( x0 , t0 ) || ≤ min { δ1 , δ2 } / γ.  Then, with regard for the

arguments presented above, we get  || ||( )x t  ≤ ε  for  t > t0 ,  i.e., the zero solution of system (15) is Lyapunov

stable.  Moreover,  || x ( t ) || → 0  if  || X1 ( t ) || → 0  and  || X2 ( t ) || → 0  as  t → ∞. 
Theorem 3 is proved. 

The analysis of the stability of the zero solution of system (15) can be carried out on the basis of the con-
struction of only upper comparison systems under certain additional restrictions on the operator  V. 

Theorem 4.  Suppose that  F ∈  F + ,  the operator  V  satisfies relations (18) and (25), and  V  ( x, t  ) ≥ 0

for  x ∈ X  and  t ≥ t0  .  Then the zero solution of system (15) is Lyapunov stable (asymptotically Lyapunov

stable) if the zero solution of system (16) is stable (asymptotically stable) from  K 0  to  K . 

The proofs of Theorems 3 and 4 are analogous. 

Remark 1.  Under the conditions of Theorem 4, the comparison system (16) must be positive with respect

to  K 0  and  K .  In the construction of the upper comparison systems (16) positive or monotone with respect to

K 0  and  K ,  the operator  V  can be chosen from the class of positive operators.  Theorem 4 remains true if the

condition  V ( x, t ) ≥ 0  is replaced by the weaker requirement that  ϕ0  ( V ( x, t ) ) > 0,  x ≠ 0,  t ≥ t0 ,  in a certain

neighborhood of the point  x = 0  for some  ϕ0 ∈ K 
*. 

As an example, for the linear system  ẋ  = A ( t ) x,  x ∈ R 
n,  we present the upper matrix comparison system 

Ẋ   =  A ( t ) X  +  X A ( t ) 
T  +  P ( t ) X  +  Y ( t ),      X ∈ R 

n
 
×

 
n, (26)

which is constructed on the basis of (18) with the operator  V  ( x  ) = x x 
T.  Here,  P  ( t )  is a linear operator mono-

tone with respect to the cone of symmetric nonnegative-definite matrices  K  and  Y ( t ) = Y ( t ) 
T ≥ 0.  Equation

(26) is a system of the class  Σ+   positive with respect to  K .  The asymptotic stability of Eq. (26) yields the
asymptotic stability of the original system. 

Note that the upper and lower comparison systems for system (15) can be constructed in different partially

ordered spaces  E 1  and  E 2 .  In this case, the properties of the corresponding operators  V1 ( x  , t )  and  V2 ( x , t )

and the order relations defined by the cones  K 1 ⊂ E 1  and  K 2 ⊂ E 2  in the relations 
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V1 ( x ( t ), t )  ≥  X1 ( t ),      V2 ( x ( t ), t )  ≤  X2 ( t ),      t  ≥  t0 ,

must be coordinated for the investigation of certain characteristics of the original system (15).  For example, one
can require that the system of inequalities  V1 ( x  , t ) ≥ 0  and  V2 ( x  , t ) ≤ 0  be satisfied only for  x = 0.  In this

case, one may expect that  x ( t ) → 0  as  t → ∞  if  X1 ( t ) → 0  and  X2 ( t ) → 0,  where  X1 ( t  )  ( X2 ( t ) )  is a solu-
tion of the lower (upper) comparison system. 

7.  Robust Stability of a Family of Systems

In applied studies, one encounters the problem of the stability of a given family of systems described by
differential or difference equations with uncertain parameters (the problem of robust stability).  Below, we de-
scribe a method for the analysis of the robust stability of the family of systems 

Ẋ   =  F ( X, t ),     F ( 0, t )  ≡  0, (27)

F X t( , )  ≤  F ( X, t )  ≤  F X t( , ),      X ⊂ E,    t ≥ t0 , (28)

where the inequalities are defined by a normal cone  K ⊂  E .  The inequalities for the values of the functions at

initial time  t0  are defined, as above, with respect to the reproducing cone  K 0 ⊂ K . 
We select the following two systems in family (27), (28): 

Ẋ   =  F X t,( ),      F t( , )0   ≡  0, (29)

˙
X   =  F X t,( ) ,      F t0,( )   ≡  0. (30)

If  F  ∈  F–  and  F  ∈  F+ ,  then the solutions of every system of the given family are bounded by the corre-
sponding solutions of systems (29) and (30), i.e., 

X t( )0   �  X ( t0 )  �  X t( )0    ⇒   X t( )  ≤  X ( t )  ≤  X t( )   ∀  t ≥ t0 . (31)

Therefore, systems (29) and (30) can be regarded as, respectively, the lower and the upper comparison systems

for system (27).  By setting  V ( X, t ) ≡ X  in Theorem 3, we obtain the following conditions for the robust stabil-
ity of the family of systems (27), (28): 

Theorem 5.  If  F  ∈ F– ,  F  ∈ F+ ,  and the zero solutions of systems (29) and (30) are stable (asymptot-

ically stable) from  – K  0  to  – K    and from  K  0  to  K  ,  respectively, then the zero solution of every system
of family (27), (28) is Lyapunov stable (asymptotically Lyapunov stable). 

In using Theorems 3 – 5, it is necessary to establish that operators belong to the classes  F±.  If  E  = R  
n,

then the classes  F±   defined with the use of the cone of nonnegative vectors contain functions satisfying the

Wazewski conditions.  The generalized property of quasimonotonicity with respect to a cone  K ⊂ E   is pos-

sessed by operator functions  F ∈ F  (see Sec. 3). 
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Lemma 4.  If a cone  K  is solid, then  F ⊂ F+  ∩ F– . 

Proof.  We proceed by analogy with the proof of Lemma 1.  Assume that  F ∈ F,  the functions  Y ( t )  and
Z ( t )  satisfy the relations 

Ẏ   =  F ( Y, t )  +  ε Q,      Ż   ≤  F ( Z, t ),      t  ≥  t0 ,

where  ε > 0  and  Q > 0,  and, furthermore, for some  ϕ ∈ K 
*  and  τ ≥ t0 ,  we have 

Z ( τ )  ≤  Y ( τ ),      ϕ ( Z ( τ ) )  =  ϕ ( Y ( τ )),

ϕ ( Z ( t ) )  >  ϕ ( Y ( t )),      τ  <  t  ≤  τ  +  δ.

Taking into account the assumptions made, we get 

˙( )Y τ   –  ˙( )Z τ   ≥  F ( Y ( τ ), τ )  –  F ( Z ( τ ), τ )  +  ε Q,

ϕ τ τ˙( ) ˙( )Y Z−( )   ≥  ε ϕ ( Q )  >  0.

Therefore, for some  δ > 0,  we obtain 

τ

τ δ
ϕ

+

∫ −( )˙( ) ˙( )Y t Z t dt   =  ϕ ( Y ( τ + δ ) )  –  ϕ ( Z ( τ + δ ) )  ≥  0,

which contradicts the assumption. 

Consequently,  Z ( t )  ≤  Y ( t ).  As  ε → 0,  we get  Z ( t )  ≤  X  ( t ),  where  X  ( t )  is a solution of system (27),

i.e.,  F ⊂ F+ .  In this case, the inequality  Z ( t0 ) �  X  ( t0 )  can be considered with respect to an arbitrary cone

K 0 ⊂ K .  Similarly,  F ⊂ F– . 
Lemma 4 is proved. 

8.  Multiply Connected Systems

The operation of interrelated objects combined in a large-scale system can be described as follows: 

Ẋi   +  Ai ( t ) Xi  =  Gi  ( X, t ),      t  ≥  t0 ,      i  =  1, s , (32)

where  Xi ∈ E i  are the states of subsystems forming a phase vector  X ∈  E ,  Ai ( t )  are given operators, and  Gi

are coupling functions.  In the investigation of stability conditions for solutions of such systems, it is necessary

to take into account the structure of the phase space  E ,  which can be inhomogeneous by virtue of physical
properties of the components of subsystems (see, e.g., [14, 15]. 
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Assume that  E i = Rni   and a dominant subsystem with vector  Xs = U  is selected in system (32) in the

sense that, for  t > t0 ,  the inclusion  X ( t0 ) ∈ K 0  yields 

X ( t ) ∈ K α  =  X R X un

i s
i

j n
j

s

∈ ≤ +





≤ ≤ − ≤ ≤

: max ( ) min
1 1 1

1 α , (33)

where  α ≥ 0,  n = n1 + … + ns ,  and  uj  are the components of the vector  U.  As  U ,  one can take, e.g., the

control vector.  One can show that the set  K α  is a normal solid cone in  E.  Therefore, condition (33) expresses

the property of the positivity of a system with respect to  K 0  and  K α . 
In using Lemma 2, it is necessary that, along with (33), the following condition be satisfied: 

max ( ) ( , )
1 1≤ ≤ −

−
i s

i i iA t X G X t   ≤  min ( ) ( , )( )

1 ≤ ≤
∑ −



j n k

jk
s

k sj
s

a t u g X t ,

where  a tjk
s( )( )   are the elements of the matrix  As ( t ).  If system (33) is monotone with respect to  K 0  and  K  α ,

then the stability of its solutions can be established by using Lemma 3. 
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