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STABILITY OF LINEAR POSITIVE SYSTEMS

A. G. Mazko UDC 517:512

We establish criteria of asymptotic stability for positive differential systems in the form of conditions of
monotone invertibility of linear operators.  The structure of monotone and monotonically invertible op-
erators in the space of matrices is investigated. 

1.  Introduction

We consider the class of linear differential systems 

dH t
dt

( )  +  M H ( t )  =  G ( t ) ,      H ( 0 )  =  Y,      t ≥ 0, (1)

where  M :  � →  �  is a bounded operator.  The phase space  �,   where the operator  M   acts, is partially ordered

with the use of a certain cone  K ⊂ � .  This assumption enables us to use the theory of monotone and monotonically
invertible operators with respect to the cone for the investigation of system (1) [1 – 3]. 

For certain classes of operators  M  and cones  K ,  a condition for the stability of system (1) is presented in the
form of conditions for the solvability of the corresponding (algebraic) equation 

M X  =  Y (2)

on  K .  For example, the asymptotic stability of a matrix differential Lyapunov equation of the type (1) with the op-

erator  M X = – A X – X A∗  is equivalent to the existence of positive-definite matrices  X = X∗ > 0  and  Y  = Y∗ > 0
that satisfy the algebraic Lyapunov equation (2) and the monotone invertibility of the operator  M  with respect to
the cone of Hermitian nonnegative-definite matrices  K . 

In the present paper, we establish criteria of asymptotic stability in a Banach space for the class of positive sys-
tems (1) whose evolution operators are monotone with respect to the normal reproducing cone  K .  The solutions

H ( t )  of these systems belong to the cone  K   if  Y ∈ K  and  G  ( τ ) ∈  K  ,  0 ≤ τ ≤ t .  To deduce criteria we use the
integral representation of solutions of Eq. (2) and the Krein – Bonsall – Karlin theorems on the spectral radius of a
monotone operator [1].  We also present certain results of investigations concerning the description of the structure
of classes of monotone and monotonically invertible operators with respect to cones of nonnegative and nonnega-
tive-definite matrices. 

Note that the property of positivity of system (1) with respect to the cone of nonnegative matrices reduces to
conditions of off-diagonal nonpositivity of the matrix of the operator  M   [1, 4]. 

2.  Monotone and Monotonically Invertible Linear Operators

Let  M :  � →  �  be a linear operator acting in a certain semiordered space with a normal reproducing cone

K ⊂  � .  An operator  M  is called monotone if  X ≥ Y   yields  M X ≥ M  Y .  Here and below, the inequality  X ≥ Y

( X > Y )  means that  X – Y ∈ K  ( X – Y ∈ K0 ) ,  where  K0  is the set of interior points of the cone  K .  A monotone
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operator  M̂   is called a majorant (minorant) of the monotone operator  M   if the operator  M̂  – M   (  M – M̂ )  is

monotone.  A monotone operator  M  is called extremal if it cannot be represented in the form of a sum of linearly

independent minorants.  All minorants of the extremal operator  M  have the form  α  M ,  where  0 ≤  α  ≤ 1 .  An op-

erator  M  is called strictly monotone (strongly monotone) if  M X > M  Y  for  X > Y   (  X ≥ Y ,  X  ≠ Y ) .  Strongly
monotone (extremal) operators are interior (extreme) points of a solid cone of monotone operators [1].  An operator

M  is called monotonically invertible if it is invertible and the inverse operator  M 
–

 
1  is monotone.  The monotone

invertibility of an operator  M  is equivalent to the existence of a solution  X  ≥ 0  (  X > 0)  of Eq. (2) for any  Y ≥ 0

( Y > 0) . 
The classes of monotone, strictly monotone, strongly monotone, and monotonically invertible operators can be

described in the form of the corresponding inclusions 

M K  ⊂  K ,      M K0  ⊂  K0 ,      M K \ { 0 }  ⊂  K0 ,      K  ⊂  M K .

The continuity of the operator  M  implies that, for a closed solid cone  K ,  the inclusions  K  ⊂  M K  and  K0  ⊂
M K0  are equivalent. 

We consider the class of linear operators that can be represented in the form 

M  =  L – P ,      P K  ⊂  K  ⊂  L K , (3)

where the operators  P  and  L  are monotone and monotonically invertible, respectively. 

Lemma 1.  The monotone invertibility of operator (3) is equivalent to the inequality  ρ  ( T ) < 1,  where  ρ  ( T )
is the spectral radius of the pencil of operators   T  ( λ ) = λ  L – P .  For a solid cone  K ,  operator (3) is monotoni-

cally invertible if and only if there exist  X ∈ K0  and  Y ∈ K0   satisfying Eq. (2). 

To prove Lemma 1, we use Theorems 25.1 and 25.4 from [1, pp. 199 – 201] and the relation 

L M 
–

 
1  =  P M 

–
 
1  +  I  =  ( I – S ) 

–
 
1  =  Sk

k =

∞
∑

0
,

where  I  is the identity operator and  S = P  L–1  is a monotone operator whose spectral radius coincides with

ρ  ( T ) < 1. 

Note that an operator  M  is monotone with respect to a cone  K  in a Hilbert space if and only if the adjoint op-

erator  M*  is monotone with respect to the dual cone  K 
*  ⊂   �*.  The conditions of strict and strong monotonicity

are also simultaneously satisfied or not satisfied for the operators  M  and  M*. 

3.  Stability of Linear Positive Systems

Let  K  be a normal reproducing cone of the space  � .  The differential system (1) is called positive if  H ( t ) ≥
0  under the conditions  Y ≥ 0  and  G ( τ ) ≥ 0,  0 ≤ τ ≤ t .  It follows from the representation of a solution of system
(1) in the form 

H ( t )  =  Wt  Y  +  W G dt

t

– ( )τ τ τ
0
∫ ,      Wt  =  e 

–
 
M

 
t  ≡  

( – )
!
t

k
M

k
k

k=

∞
∑

0



370 A. G. MAZKO

that, for a positive system, the exponential operator  Wt  must be monotone with respect to the cone  K  for all  t ≥ 0.

Conversely, if  Y ≥ 0,  G ( τ ) ≥ 0,  and the operator  Wt  is monotone, then  H ( t ) ≥ 0  for any  t ≥ 0.  For this reason,
the property of positivity of system (1) with respect to the cone  K  can be described in the form of inclusions

Wt  K  ⊂  K  or  K  ⊂  W– t  K  for every  t ≥ 0. 

Theorem 1.  A positive system (1) is asymptotically stable if and only if the operator  M   is monotonically in-
vertible. 

Proof.  Consider the homogeneous system 

dZ t
dt
( )   +  M Z ( t )  =  0,      Z ( 0 )  =  Y ,    t ≥ 0. (4)

The conditions of asymptotic stability for systems (1) and (4) coincide.  Integrating system (4) with regard for the

condition  Z ( ∞ ) = 0,  we obtain 

dZ t
dt

dt( )

0

∞

∫   +  M Z t dt( )
0

∞

∫   =  – Y  +  M X  =  0,

where 

X  =  Z t dt( )
0

∞

∫ ,      Z ( t )  =  Wt  Y. (5)

Therefore, for an asymptotically stable system (1), integral (5) is a solution of Eq. (2).  In this case, it follows from
the positivity condition that  X ≥ 0  for  Y ≥ 0. 

By using spectral properties of monotone operators and functions of operators, we show the validity of the con-

verse statement.  It follows from the monotonicity of the operators  Wt  and  M 
–

 
1  that their product  Vt = Wt  M 

–
 
1  is

monotone.  The spectra of the operators  Wt  and  Vt  are formed of the corresponding numbers  e 
–

 
λ

 
t  and  e  

–
 
λ

 
t

 / λ

for  λ ∈ σ ( M ) .  By virtue of the Krein – Bonsall – Karlin theorems [1], the spectral radius of a monotone operator is

a point of its spectra.  Therefore, for any  λ ∈ σ ( M ) ,  the following inequalities are true: 

e 
–

 
R

 
e

 
λ

 
t ≤ e 

–
 
α

 
t  =  ρ  ( Wt  ) ,      e t– Reλ

λ| |
  ≤  e t–β

β
  =  ρ  ( Vt ) ,

where  α  and  β  are certain points of the spectrum of the operator  M .  The right-hand sides of these inequalities

take real positive values for  t ≥ 0.  For sufficiently small  t < 2 π  / ρ ( M ) ) ,  the first inequality implies that  α  is a

real point of the spectrum of the operator  M  such that  Re λ ≥ α   for any  λ ∈  σ ( M ) .  In order that the second in-

equality be valid for an arbitrarily large value of  t  and any  λ ∈ σ ( M ) ,  it is necessary to set  β = α > 0.  Therefore,

Re λ ≥ α > 0  for every  λ ∈ σ ( M ) ,  i.e., system (1) is asymptotically stable.  The theorem is proved. 

Remark 1.  The property of positivity of system (4) is equivalent to the monotone invertibility of the family of

operators  Mc = M – c I,  c < α  ,  where  α = inf { Re λ :  λ ∈ σ ( M ) }  [3].  In this case,  α  ∈  σ ( M )  if  σ  ( M ) ≠ ∅.  If

the operators  M  and  Mc  are monotonically invertible for  c < α,  then  α > 0.  Otherwise, the bilateral operator es-
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timate  M ≤ Mα ≤ Mc  is true and the operator  Mα  must be monotonically invertible, which contradicts the condi-

tion  α ∈ σ ( M )  [1].  Therefore,  α > 0  if  Mc
–1 ≥ 0  for any  c ≤ 0.  If  0 < c < α  ,  then an arbitrary solution of

system (4) satisfies the estimate 

|| Z ( t ) ||  ≤  q e 
–

 
c

 
t
 || Y || ,      t ≥ 0,    q > 0,

i.e., system (4) is exponentially stable.  If  α  is an eigenvalue of the operator  M ,  then system (4) has a partial solu-

tion of the form  Z ( t ) = e 
–

 
α

 
t

 Y,  Y ≠ 0.  Therefore, for system (4), which is positive with respect to the cone  K ,  the

relations  α > 0  and  K  ⊂  M K   are equivalent and can be regarded as criteria for its exponential stability.  If  K  ⊂ 

Mc K   for  c ≤ 0,  then system (4) is positive and exponentially stable. 

To use Theorem 1, it is necessary to establish the property of positivity of system (1). 

Lemma 2.  If two systems of the type (1) corresponding to operators  M1  and  M2  are positive, then system
(1) with the operator  M1 + M2  is also positive. 

To prove this statement, we use the relations 

e M M t– ( )1 2+   =  E ( t ) + t 
3

 R ( t )  =  lim
k

k
E t

k→∞












,

E ( t )  =  1
2

1 2 2 1e e e eM t M t M t M t– – – –+( ) ,

where  R ( t )  is a certain entire operator function, and the property of closedness of the cone of monotone operators

[5].  For commuting operators  M1  and  M2 
,  we have 

e M M t– 1 2+( )   =  e eM t M t– –1 2
 ,      t ≥ 0.

Consider the class of operators (3).  It follows from the monotonicity of the operator  P  that the operator func-

tion  e 
P

 
t
 ,  t ≥ 0,  is monotone.  By virtue of Lemmas 1 and 2 and Theorem 1, we obtain the following statement: 

Theorem 2.  Suppose that  M  is an operator of the type (3) and, for any   t ≥ 0,  the operator  e  
–

 
L

 
t  is mono-

tone with respect to the normal solid cone  K .  In this case, the following assertions are equivalent: 

(i) system (1) is asymptotically stable; 

(ii) the operator  M  is monotonically invertible; 

(ii) there exist  X > 0  and  Y > 0  satisfying Eq. (2); 

(iv) ρ  ( T ) < 1,  where  T ( λ ) = λ  L – P. 

By using normal solid cones of nonnegative and nonnegative-definite matrices, we now formulate corollaries of
the presented results for matrix equations. 
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Corollary 1.  Suppose that  K   ⊂   R 
n × m  is a cone of  n ×  m   matrices with nonnegative elements and the op-

erator 

M  =  A XBk k
k
∑ ,      Ak ∈ R 

n
 
×

 
n

 ,      Bk ∈ R 
m

 
×

 
m

 , (6)

acts in the space  R 
n × m.  Furthermore, all off-diagonal elements of the matrix 

C  =  A Bk k
T

k
⊗∑ ,

where  ⊗  denotes the Kronecker product, are nonpositive.  Then, the following assertions are equivalent: 

(i) system (1) is asymptotically stable; 

(ii) for any positive matrix  Y > 0,  Eq. (2) has a positive solution  X > 0 ; 

(iii) there exist matrices  X > 0  and  Y > 0  satisfying Eq. (2); 

(iv) for certain  α > 0,  the operator  P = α  I – M  is monotone and  ρ ( P ) < α .

This statement is a corollary of Theorem 2 and known properties of  M-matrices.  Indeed, the matrix equations
(1) and (2) can be represented in the form 

dh t
dt
( )   +  C h ( t )  =  g ( t ) ,      C x  =  y ,

where  h ( t ) ,  g  ( t ) ,  x,  and  y  are vectors composed of the transposed rows of the corresponding matrices  H ( t ) ,

G ( t ) ,  X,  and  Y  [6].  For this reason, the property of positivity of system (1) is equivalent to the condition of off-

diagonal nonpositivity of the elements of the matrix  C  [1, 4].  In this case, the monotone invertibility of the opera-

tor  M  is equivalent to the nonnegativity of the matrix  C 
–

 
1  and, according to [4], to the location of the spectrum of

the matrix  C  in the half-plane  Re λ > 0,  and also to the representation  C = α  I – S,  where  S ≥ 0  and  ρ ( S ) < α .

Note that, under the conditions of Corollary 1, the inequality  C 
–

 
1 ≥ 0  is equivalent to the positivity of all prin-

cipal minors of the matrix  C  [4, 7]. 

Corollary 2.  Suppose that  K  ⊂  C 
n
 
×

 
n  is a cone of Hermitian nonnegative-definite matrices and the operator

M  =  L  –  P ,      L X  =  – A∗
 X  –  X A ,      P X  =  A XAk k

k

∗∑ , (7)

where  A , Ak ∈ C 
n

 
×

 
n
 ,  acts in the space  C 

n
 
×

 
n.  Then the following assertions are equivalent: 

(i) system (1) is asymptotically stable; 

(ii) for any positive-definite right-hand side  Y = Y∗ > 0,  the matrix equation (2) has a positive-definite so-

lution  X = X∗ > 0; 
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(iii) there exist matrices  X = X∗ > 0  and  Y = Y∗ > 0  satisfying Eq. (2); 

(iv) the real parts of all eigenvalues of the matrix  A  are negative and  ρ  ( T ) < 1,  where  T ( λ ) = λ  L – P. 

The assertions of Corollary 2 follow from Lemma 2 and Theorem 2.  Indeed, the operator functions 

e 
–

 
L

 
t

 X  =   e XeA t At∗
,      e 

P
 
t
 X  =   

t
k

P X
k

k

k !=

∞
∑

0
 ,      t ≥ 0,

are monotone and, by virtue of Lemma 2, system (1) with operator (7) is positive.  By virtue of Theorem 2, asser-
tions (i) – (iv) are equivalent.  Here, one should take into account that the monotone invertibility of the operator  L  is
equivalent to the location of the spectrum of the matrix  A  to the left of the imaginary axis (the Lyapunov theorem). 

Note that a solution of system (4) with operator (7) can be regarded as the matrix of second moments for the Itô
stochastic system 

d x ( t )  =  A x ( t ) d t  +  A x t dw tk k
k

( ) ( )∑ ,

where  wk  are the components of the standard Wiener process (see, e.g., [8 – 10]).  In this case, the asymptotic stabil-
ity of system (4) is equivalent to the mean-square asymptotic stability of the trivial solution of this stochastic system
[8].  For  P = 0,  relations (1) and (2) with operator (7) are, respectively, the differential and the algebraic Lyapunov
equations, for which all propositions of Corollary 2 are known. 

4. Structure of Monotone and Monotonically Invertible Operators
with Respect to the Cone of Nonnegative-Definite Matrices

In the investigation and application of matrix equations, various representations of linear operators play an im-
portant role.  In particular, 

M X  =  γ ij i j
i j

k
A XA∗

=
∑
, 1

  ≡  x Hpq
p q

n

pq
, =
∑

1
  ≡  σs s s

s

r
D XD∗

=
∑

1
, (8)

where 

Γ  =  Γ∗
 ,      Hp q  =  B Bp qΓ ∗

 ,      Bp  =  a p
i

i

m k
ξ ξ,

,

=1
 ,      hpq

ξη   =  σ
τ

ξ ηs
s

p
s

q
sd d

=
∑

1

( ) ( ) ,

and  σ1 , … , σr  are nonzero eigenvalues of the block matrix  H  [11 – 13].  For the indices of inertia of Hermitian

matrices  H  and  Γ,  we have  i H±( ) ≤ i±( )Γ ,  where  i± ⋅( )  are the numbers of positive and negative eigenvalues of
a matrix, counting multiplicity.  Note that the equality takes place in the case of linear independence of the matrix

coefficients  A1 , … , Ak ∈ C 
m

 
×

 
n
 .  The matrices  D1 , … , Dr  in (8) are orthonormal, i.e.,  ( Ds  , Dg ) = δs  g ,  where  (  P ,

Q ) = tr ( Q P∗
 )  is the scalar product. 

The linear independence of the matrices  A1 , … , Ak  is equivalent to the linear independence of the family of

operators  A XAi j
∗ .  Therefore, we can represent an arbitrary linear operator  M :  C 

n
 
×

 
n →  C 

m
 
×

 
m  in the form (8) and,

furthermore,  M Hn  ⊂  Hm ,  where  Hn  is the space of Hermitian matrices of order  n .  In this case, the adjoint oper-
ator has the form 
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M∗
 Y  =  γ ij i j

i j

k
A YA∗

=
∑
, 1

.

Let  K  ⊂  Hn  be a cone of nonnegative-definite Hermitian matrices of order  n .  We investigate the classes of

monotone and monotonically invertible operators of the type (8) under the assumption that  n = m  .  For  n ≠ m,  all
constructions and conclusions are analogous. 

In terms of real matrices, we describe the class of monotone operators (8) as follows:

σs s s
T

s

r
D XD˜ ˜ ˜

=
∑

1
  ≥  0      ∀X̃   =  

S K

K S–









   ≥  0,      D̃s   =  

R G

G R

s s

s s–









  ,

X  =  S  +  i K ,      Ds  =  Rs  +  i Gs  ,      S 
T  =  S ,      K 

T  =  – K ,      s = 1 , … , r.

This follows from the equivalence of the matrix inequalities  X ≥ 0  and  X̃  ≥ 0. 

If  H ≥ 0  (in particular,  Γ ≥ 0 ) ,  then the operator  M  is monotone.  However, the operator  M  can be mono-

tone even for  i – ( H ) ≠ 0  or  i – ( Γ ) ≠ 0.  The simplest example of such an operator is the transposition operator 

X 
T  =  x Epq pq

p q

n

, =
∑

1
 ,      E  =  

E E

E E

n

n nn

11 1

1

L

M O M

L

















 ,    i E±( )  = 
n n( )± 1

2
,

where  Epq  are elements of the unit basis of the space  C 
n

 
×

 
n
 .  If, for a certain vector  x ∈ C 

n
   ( z ∈ C 

n
 ),  the equality 

rang [ A1 x , … , Ak x ]  =  k      
  
rang B z B z kn1

∗ ∗[ ] =( ), ,K

is satisfied, then the inequality  Γ ≥ 0  is equivalent to the monotonicity of the operator  M . 

We define the property of monotonicity of an operator  M  as follows: 

Gz  =  z H zpq
n∗
1

  ≥  0      ∀z ∈ C 
n
 . (9)

In this case, the conditions of strict (strong) monotonicity are equivalent to the relations  Gz ≥ 0  and  Gz ≠ 0  ∀z ≠ 0

( Gz > 0  ∀z ≠ 0 ) .  Determining the principal minors of matrix (9) that correspond to given collections of the num-

bers of rows and columns  p ,  we obtain the following algebraic conditions for the monotonicity of the operator  M : 

Θ p  =  Θij
p( )   ≥  0 ,      Θij

p( )  =  det
,

h h

h h

p p p p

p p p p

1 1
1 1

1
1

1
1

ξ η ξ η

ξ η ξ ηξ η

ν
ν

ν
ν

ν ν
ν ν

L

M O M

L

















∑  ,

p  =  { p1 , … , pν } ,      1 ≤ p1 < … < pν ≤ n ,    ν = 1, n ,

ξ  =  { ξ1 , … , ξν } ,      i  =  { i1 , … , iν } ,    1 ≤ i1 ≤ … ≤ iν ≤ n ,

η  =  { η1 , … , ην } ,      j  =  { j1 , … , jν } ,    1 ≤ j1 ≤ … ≤ jν ≤ n.
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Here, the summation is carried out over all collections of indices  ξ ( η )  that coincide with  i ( j )  after ordering, and

the rows (columns) of the matrix  Θ p  that correspond to the collections of indices  i ( j )  are arranged in the lexico-
graphic order. 

By using the spectral decomposition of nonnegative-definite matrices, one can show that conditions (9) are sat-
isfied if and only if the blocks of the matrix  H  can be represented in the form [11] 

Hpq  =  U Up q
∗   +  V Vq p

∗,      p, q  =  1, n. (10)

The general representation of a monotone operator follows from relations (8) and (10). 

Lemma 3.  A linear operator  M   is monotone with respect to a cone of nonnegative-definite Hermitian ma-
trices if and only if it can be represented in the form 

M X  =  A XAi
i

i∑ ∗   +  B X Bj
T

j
j

∗∑ . (11)

One can show that operators of the type  A X A∗  and  B  X  
T

 B∗  are extremal.  Therefore, according to Lemma 4,
monotone operators can be represented as a sum of their extremal minorants.  The number of extremal minorants in
relation (11) can be decreased if some of them can be linearly represented in terms of the other, in particular, if the

matrices  Ai  (or  Bj )  are linearly dependent. 

A monotone operator  M  is strictly monotone if and only if, for a certain matrix  X0 ≥ 0,  we have  M X0 > 0.

Indeed, for any matrix  X > 0,  there exists  ε > 0  such that  X ≥ ε X0  and, hence,  M X ≥ ε M X0 > 0. 

A strictly monotone operator can be non-invertible.  For example, the Schur operator  M X = A �⋅  X  is strictly
monotone if and only if  A ≥ 0  and  aii > 0  for any  i ,  whereas a criterion for its invertibility is the validity of the

inequality  aij ≠ 0  for any  i   and  j .  The linear operator  M X = ( tr X ) I  is strictly monotone but not invertible. 
We now pass to the description of the class of monotonically invertible operators.  Taking the structure of the

monotone operator (11) into account, we set 

M X  =  M0 X  –  M1 X  – … –  Mr  X ,      Mj  X  =  
A XA j J

A X A j J

j j

j
T

j

∗

∗

∈

∈







, ,

, ,

1

2

(12)

where  Aj ∈ C 
n

 
×

 
n  and  J1  and  J2  are certain subsets of indices.  Lemma 1 yields the following statement: 

Lemma 4.  A linear operator (12) is monotonically invertible if and only if 

ρ  ( T ) < 1,      T ( λ )  =  λ  T0  –  T1  – … –  Tr  ,      det A0  ≠  0 , (13)

Tj  =  
A A j J

A A E j J

j j

j j

⊗ ∈

⊗( ) ∈







, ,

, ,

1

2

      E  =  E Eti
t i

n

it
, =
∑ ⊗

1

, (13)

where  ρ ( T )  is the spectral radius of the pencil of matrices  T ( λ ) . 

Operators of the form (12) with linearly independent matrix coefficients  Aj  are not monotone.  If an operator is

simultaneously monotone and monotonically invertible, then it is an extremal operator of the type  A  X  A∗  or
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A X 
T

 A∗,  where  A  is a certain matrix of full rank.  Conditions (13) can be generalized to the case of rectangular ma-
trix coefficients under the restriction  rang A0 = m  < n.  It is easy to give an example of a monotonically invertible
operator that cannot be represented in the form (12).  The general representation of linear monotonically invertible
operators has not yet been established. 
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