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ELA

SPECTRUM LOCALIZATION OF REGULAR MATRIX

POLYNOMIALS AND FUNCTIONS∗

A.G. MAZKO†

Abstract. This paper is devoted to the spectrum localization problem for regular matrix

polynomials and functions. Sufficient conditions are proposed for spectrum placement in a wide

class of regions bounded by analytical curves. These conditions generalize the known linear matrix

inequalities (LMI) approaches to stability analysis and pole placement of polynomial matrices. In

addition, a method of robust spectrum placement is developed in the form of the LMI systems for a

parametric set of matrix polynomials.

Key words. Matrix polynomial, Eigenvalue, Spectrum localization, Linear matrix inequality,

Robust stability.

AMS subject classifications. 5A18, 15A22, 26C10.

1. Introduction. Many theoretical and applied problems are associated with

the analysis of spectral properties of matrix functions including polynomial matrices.

If direct evaluation of the eigenvalues does not leads to desirable outcomes, there

are problems of their estimation and localization with respect to certain regions of

a complex plane. Numerous works are devoted to solving these problems (see, e.g.,

[1]–[4]).

In this paper, we study the problem of spectrum localization for matrix poly-

nomials and functions. We establish sufficient conditions for checking location of all

eigenvalues of regular matrix functions in specified regions of the complex plane. The

results obtained essential complement and generalize the known approaches to pole

placement of polynomial matrices reduced to the LMI technics (see, e.g., [5] and [3,

Section 2.7]). Moreover, we expand the obtained results to a parametric set of matrix

polynomials in the form of the LMI systems.

Notation: ⊗, ∗, and T denote the matrix operations of the Kronecker pro-

duct, complex conjugation and transposition, respectively; In is the identity n × n

matrix; On and Onm denote the zero n × n and n × m matrix, respectively; the

matrix inequalities X > Y , X ≥ Y , and X � Y mean that the matrix X − Y is po-
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sitive definite, positive semidefinite, and nonzero positive semidefinite, respectively;

i(X) = {i+(X), i−(X), i0(X)} is the inertia of the Hermitian matrix X = X∗ consist-

ing of its numbers of positive (i+(X)), negative (i−(X)), and zero (i0(X)) eigenvalues

(taking into account the multiplicities); λmax(X) (λmin(X)) is the maximum (mini-

mum) eigenvalue of the Hermitian matrix X .

2. Matrix function and analytical regions. Consider the regular matrix

function

F (λ) =

m∑

i=0

fi(λ)Ai, detF (λ) 6≡ 0, λ ∈ C
1,(2.1)

where A0, . . . , Am ∈ Cn×n are n× n matrices. Let σ(F ) be a spectrum of the

matrix function that consists of all eigenvalues. Suppose that the scalar functions

f0(λ), . . . , fm(λ) are analytical in a neighbourhood of σ(F ) and let

zm(λ) = [f0(λ), . . . , fm(λ)] 6= 0, λ ∈ σ(F ).

We study a location of the spectrum with respect to regions in the complex plane

of the type

Ω =
{
λ ∈ C

1 : i+(V (λ, λ)) ≥ 1
}
, Ω̂ =

{
λ ∈ C

1 : V (λ, λ) ≤ 0
}
,(2.2)

where V (λ, λ) is a Hermitian matrix-valued function. It is obvious that Ω ∩ Ω̂ = ∅

and Ω ∪ Ω̂ = C1.

Let’s introduce the block matrices

A =




A0

...

Am


 , G =




G0

...

Gm


 , L =




L00 · · · L0m

...
. . .

...

Lm0 · · · Lmm


 , W =

[
L G

G∗ H

]
.

Here Ai, Gi, Lij , H are the n× n blocks, and the matrices L and W are Hermitian.

We define the matrix A⊥ = [B0, . . . , Bm]∗ of size n(m + 1) × nm as a basis for

the right null space of A∗. Then

A⊥∗A = 0, A+A = In, detT 6= 0, T = [A+∗, A⊥],(2.3)

where A+ = (A∗A)−1A∗ is the pseudoinverse matrix. Under regularity condition

of the matrix function F (λ), it is always possible to construct the matrix A⊥ with

specified properties.

Let the regions (2.2) be defined by

V (λ, λ) =

m∑

i,j=0

fi(λ)fj(λ)Lij .
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Lemma 2.1. If

[
In(m+1), A

]
W

[
In(m+1), A

]∗
> 0(2.4)

or

A⊥∗LA⊥ > 0,(2.5)

then σ(F ) ∩ Ω̂ = ∅, i.e. all the eigenvalues of F (λ) lie within Ω.

Proof. It is obvious that F (λ) = Zm(λ)A and V (λ, λ) = Zm(λ)LZ∗
m(λ), where

Zm(λ) = [f0(λ)In, . . . , fm(λ)In] = zm(λ) ⊗ In. We multiply (2.4) on the left and on

the right by Zm(λ) and Z∗
m(λ), respectively. Then we obtain

F (λ)G∗(λ) +G(λ)F ∗(λ) + F (λ)HF ∗(λ) + V (λ, λ) > 0,

where G(λ) is a matrix function. Let v∗0 6= 0 be the left eigenvector of the matrix

function F (λ) corresponding to an eigenvalue λ0 ∈ σ(F ). Multiplying the matrix

inequality on the left and on the right by v∗0 and v0, respectively, at λ = λ0, we have

v∗0V (λ0, λ0)v0 > 0, that means λ0 ∈ Ω.

Let’s multiply the matrix inequality (2.4) on the left and on the right by T ∗ and

T , respectively, and use the known criterion of positive definiteness of a block matrix:

[
P N

N∗ Q

]
> 0 ⇐⇒ Q > 0, P > NQ−1N∗.(2.6)

In this case,

P = H +G∗A+∗ +A+G+A+LA+∗, Q = A⊥∗LA⊥, N = (G∗ +A+L)A⊥.

Since last inequality in (2.6) may be always satisfied by choosing H > 0, for

inequality performance (2.4), it is enough to demand that Q > 0. Therefore, the

inclusion σ(F ) ⊂ Ω also follows from (2.5).

Note that, in Lemma 2.1, it is necessary to have the inequalities

n(m+ 1) ≤ i+(W ) < n(m+ 2), 1 ≤ i+(L) < n(m+ 1).

As H , there may be any positive definite matrix, for example, H = In. If the

inequality (2.4) holds for H ≤ 0, then all the eigenvalues of the matrix function G(λ)

as well as the F (λ) should belong to Ω.

Supposing in Lemma 2.1 that L = Γ⊗X with the Hermitian matrices Γ and X of

sizes (m+1)×(m+1) and n×n, respectively, we obtain conditions when σ(F ) belongs

to a region Ω described by the scalar Hermitian function f(λ, λ) = zm(λ)Γz∗m(λ).
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Theorem 2.2. If

AG∗ +GA∗ +AHA∗ + Γ⊗X > 0, X � 0;(2.7)

or

m∑

i,j=0

γijBiXB∗
j > 0, X � 0;(2.8)

then all the eigenvalues of the matrix function F (λ) lie within the region

Ω =
{
λ ∈ C

1 : f(λ, λ) =
m∑

i,j=0

γijfi(λ)fi(λ) > 0
}
.

Let f0(λ) 6= 0 in a neighbourhood of σ(F ), and let regions Ω and Ω̂ be defined as

in (2.2) with

V (λ, λ) =

[
Ψ∗(λ)LΨ(λ) f0(λ)Ψ

∗(λ)G

f0(λ)G
∗Ψ(λ) f0(λ)f0(λ)H

]
, Ψ(λ) =




−f1(λ)In · · · −fm(λ)In
f0(λ)In · · · On

...
. . .

...

On · · · f0(λ)In


 .

Lemma 2.3. If

[A∗, In]W [A∗, In]
∗
> 0,(2.9)

then σ(F ) ∩ Ω̂ = ∅, i.e. all the eigenvalues of F (λ) lie within Ω.

Proof. Let v0 6= 0 be the right eigenvector of the matrix function F (λ) corre-

sponding to an eigenvalue λ0 ∈ σ(F ). Multiplying (2.9) on the left and on the right

by f0(λ0)v
∗
0 and f0(λ0)v0, respectively, and taking into account the relations

f0(λ0)A0v0 = −
m∑

i=1

fi(λ0)Aiv0, w∗
0 = [v∗0A

∗
1, . . . , v

∗
0A

∗
m, v∗0 ] 6= 0,

we have w∗
0V (λ0, λ0)w0 > 0, that means λ0 ∈ Ω.

Note that, in Lemma 2.3, it is necessary the inequality n ≤ i+(W ) < n(m+ 2).

Theorem 2.4. If

m∑

i,j=0

γijA
∗
iXAj > 0, X � 0,(2.10)
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then all the eigenvalues of the matrix function F (λ) lie within the region

Ω =
{
λ ∈ C

1 : i+(U(λ, λ)) ≥ 1
}
,

where

U(λ, λ) = Φ∗(λ)ΓΦ(λ), Φ(λ) =

[
−z(λ)

f0(λ)Im

]
, z(λ) = [f1(λ), . . . , fm(λ)].

Theorem 2.4 follows from Lemma 2.3 when G and H are zero, and L = Γ ⊗X .

Similar statement was formulated in [2] under weaker restrictions (controllability type)

to the matrix expressions in (2.10). Lemmas 2.1 and 2.3 develop and complement the

known approaches to pole placement of matrix functions (see [2, pp. 94–98] and [3,

Section 2.7]) by means of the LMI (2.4), (2.5), (2.9) and their special cases (2.7), (2.8)

and (2.10).

Remark 2.5. If we choose Γ in the form

Γ =




0 1 O1m−1

1 q O1m−1

Om−1 1 Om−1 1 −Q−1



 , Q = Q∗ > 0,

then Ω in Theorem 2.4 can be described by the scalar function:

Ω =
{
λ ∈ C

1 : f(λ, λ) = zm(λ)Γ̃z∗m(λ) > 0
}
, Γ̃ =




q −1 O1m−1

−1 0 O1m−1

Om−1 1 Om−1 1 Q


 .

Example 2.6. Consider the regular matrix quasipolynomial

F (λ) = A0 + λA1 + e−λτ1A2 + · · ·+ e−λτm−1Am, τi ≥ 0, i = 1,m− 1.

If any numbers q, q1 > 0, . . . , qm−1 > 0 and matrixX � 0 satisfy the matrix inequality

A∗
0XA1 +A∗

1XA0 + qA∗
1XA1 −

m−1∑

i=1

1

qi
A∗

i+1XAi+1 > 0,(2.11)

then according to Theorem 2.4 all the eigenvalues of F (λ) lie within the region

Ω =
{
λ ∈ C

1 : λ+ λ < q +

m−1∑

i=1

qie
−(λ+λ)τi

}
.

If q ≤ −q1 − · · · − qm−1, then given region is located in the left half-plane. In this

case, we have sufficient stability conditions of quasipolynomial F (λ) in the form of

LMI (2.11) (see [2, 3]). This result can be used in the absolute stability analysis of

the linear time-delay control systems.
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3. Matrix polynomial and algebraic regions. Given the regular matrix

polynomial of size n× n and degree s

F (λ) = A0 + λA1 + · · ·+ λsAs, detF (λ) 6≡ 0, λ ∈ C
1,(3.1)

we consider the class of algebraic regions:

Λk =
{
λ ∈ C

1 : f(λ, λ) =

k∑

i,j=0

γijλ
iλ

j
> 0

}
,(3.2)

where γij are entries of the Hermitian matrix Γ, and s ≥ 1, k ≥ 1. We assume that

Λk 6= ∅ and Λk 6= C1, i.e. i±(Γ) 6= 0.

It is obvious that any region Λ1 is bounded by a line or a circle. In particular,

the matrices

Γ =

[
0 −1

−1 0

]
, Γ =

[
1 0

0 −1

]
,(3.3)

correspond to the left half-plane and the unit disk. The class Λ2 contains all the

regions bounded by algebraic curves of the second order.

Let m = max{s, k} and r = m− k. We construct the block matrices

A =




A0

...

Am


 , G =




G0

...

Gm


 , X =




X00 · · · X0r

...
. . .

...

Xr0 · · · Xrr


 ,

of sizes n(m+1)×n, n(m+1)×n and n(r+1)×n(r+1), respectively, and introduce

the linear operators

L(X) = C(Γ⊗X)CT , M(X) = D(Γ⊗X)D∗,(3.4)

where

C = R⊗ In = [C0, . . . , Ck], D = A⊥∗C = [D0, . . . , Dk],

R =
[
E,∆E, . . . ,∆kE

]
, ∆ =

[
O1m 0

Im Om1

]
, E =

[
Ir+1

Ok r+1

]
,

A⊥∗ = [B0, . . . , Bm] is the matrix defined by (2.3). In the case of k > s, the blocks Ai

(i > s) should be chosen in such a way that the spectrum of the matrix polynomial

Fm(λ) = A0 + λA1 + · · ·+ λmAm contains σ(F ). For example, we can suppose that

Ai = 0 for i > s.
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Let Λ̂k , C1\Λk be the closed complement of Λk, and let Λr(X) be the closed

region defined by the block Hermitian matrix X :

Λr(X) =
{
λ ∈ C

1 : Zr(λ)XZ∗
r (λ) =

r∑

i,j=0

λiλ
j
Xij ≥ 0

}
, Zr(λ) = [In, λIn, . . . , λ

rIn].

Theorem 3.1. Let for some matrices G, H = H∗, X = X∗, the inclusion

Λ̂k ⊆ Λr(X)(3.5)

and one of the matrix inequalities

AG∗ +GA∗ +AHA∗ + L(X) > 0(3.6)

or

M(X) > 0(3.7)

hold. Then all the eigenvalues of the matrix polynomial F (λ) lie within the region

Λk.

Proof. The matrix R of size (m+ 1)× (k + 1)(r + 1) has the following structure:

R =
[
E,∆E, . . . ,∆kE

]
=




Ir+1

O1 r+1

Ok−1 r+1

O1 r+1

Ir+1

Ok−1 r+1

· · ·

O1 r+1

Ok−1 r+1

Ir+1


 .

It is obvious that

Fm(λ) = Zm(λ)A, f(λ, λ) = zk(λ)Γz
∗
k(λ),

where Zm(λ) = zm(λ) ⊗ In, zm(λ) = [1, λ, . . . , λm]. Using the structure of matrix C

and the Kronecker products properties, we have

Zm(λ)C = (zm(λ)⊗ In)(R ⊗ In) = zm(λ)R ⊗ In =

= [zr(λ), λzr(λ), . . . , λ
kzr(λ)]⊗ In = zk(λ)⊗ zr(λ)⊗ In = zk(λ) ⊗ Zr(λ).

Multiplying (3.6) on the left and on the right by the full rank matrices Zm(λ)

and Z∗
m(λ), respectively, we obtain

Fm(λ)G∗
m(λ)+Gm(λ)F ∗

m(λ)+Fm(λ)HF ∗
m(λ)+ [zk(λ)⊗Zr(λ)](Γ⊗X)[z∗k(λ)⊗Z∗

r (λ)] =

= Fm(λ)G∗
m(λ) +Gm(λ)F ∗

m(λ) + Fm(λ)HF ∗
m(λ) + f(λ, λ)Zr(λ)XZ∗

r (λ) > 0,
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where Gm(λ) = G0 + λG1 + · · ·+ λmGm is a matrix polynomial.

Let λ = λ0 ∈ σ(F ) be an arbitrary eigenvalue of F (λ). Also we assume that

λ0 6∈ Λk, i.e. λ0 ∈ Λ̂k. Then, according to (3.5), f(λ0, λ0)Zr(λ0)XZ∗
r (λ0) ≤ 0. Thus,

Fm(λ0)G
∗
m(λ0) +Gm(λ0)F

∗
m(λ0) + Fm(λ0)HF ∗

m(λ0) > 0.

However, this is not true, because σ(F ) ⊆ σ(Fm) and

v∗0 [Fm(λ0)G
∗
m(λ0) +Gm(λ0)F

∗
m(λ0) + Fm(λ0)HF ∗

m(λ0)]v0 = 0,

where v∗0 6= 0 is the left eigenvector of the matrix polynomial Fm(λ) corresponding

to λ0 ∈ σ(Fm). From this contradiction, it follows that, under conditions (3.5) and

(3.6), it should be λ0 ∈ Λk.

From (3.5) and (3.7), it also follows that σ(F ) ⊂ Ω. It is established by multi-

plying (3.6) on the left and on the right by T and T ∗, respectively, and applying the

criterion (2.6) (see the proof of Lemma 2.1).

Theorem 3.1 develops known approach for the spectrum localization of a matrix

polynomial proposed in [5] for the class of regions Λ1. We do not use any restrictions

to the order of the algebraic curves. In addition, condition (3.5) generally does not

demand the positive definiteness of solutions of the corresponding matrix inequalities.

The results obtained in [4] extend the approach of [5] by considering algebraic regions

D described by the quadratic matrix inequalities and involving the optimization algo-

rithms. Every D-region can always be written as a finite set of Ω-regions. However,

the converse procedure is nontrivial and unsolved problem for the present.

Remark 3.2. The proof of Theorem 3.1 can be obtained as a corollary of Lemma

2.1. Indeed, in the case of the matrix polynomial, we suppose that fi(λ) = λi for i =

0,m, and, in virtue of (3.5), Ω ⊆ Λk. The restriction (3.5) holds for arbitrary region

Λk when Λr(X) = C1. For example, we can find X as an algebraically nonnegative

defined matrix, in particular, nonnegative defined matrix in usual sense.

Definition 3.3. The block Hermitian matrix X is called algebraically positive

(nonnegative) defined if

Zr(λ)XZ∗
r (λ) =

r∑

i,j=0

λiλ
j
Xij > 0 (≥ 0), ∀λ ∈ C

1.

Note that all the matrices of the type

X =

[
Xp On(p+1) n(r−p)

On(r−p) n(p+1) On(r−p) n(r−p)

]
, Xp =




X00 · · · X0p

...
. . .

...

Xp0 · · · Xpp


 > 0,
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are algebraically positive defined. These matrices are positive defined when p = r.

Remark 3.4. If k ≥ s, then m = k, r = 0, and C = In(k+1). In this case, in

(3.6) and (3.7), we suppose L(X) = Γ ⊗X and M(X) = A⊥∗L(X)A⊥. In addition,

in Theorem 3.1, we use the inequality X = X∗ � 0 instead of (3.5).

Remark 3.5. Under certain restrictions, the proposed sufficient conditions for

spectrum inclusion σ(F ) ⊂ Λk can become necessary conditions. If the LMI (3.6)

holds, then i+(L(X)) ≥ nm, and consequently (see [3, Theorem 4.2.1]),

i+(Γ)i+(X) + i−(Γ)i−(X) ≥ nm.

This inequality is necessary also for feasibility of the LMI (3.7). Particularly, in the

case of k ≥ s and X > 0, it is necessary that i(Γ) = {k, 1, 0}. The necessary and

sufficient solvability conditions of (3.7) can be studied via the general theorems on

inertia of Hermitian solutions of transformable matrix equations [2, 3]. Especially,

such conditions are connected with constraints for the inertia i(Γ) and the property

of simultaneous reducibility of the matrix coefficients Di = A⊥∗Ci (i = 0, k) to

triangular form through common similarity transformation. When k = 1, the matrices

Di are quadratic (see, e.g., Theorem 3.7 and Example 3.8 below).

Notice that if detA0 6= 0, then in (2.3), A⊥∗ always can be chosen as

A⊥∗ =




Â1 In · · · On

...
...

. . .
...

Âm On · · · In


 , Âi =

{
−AiA

−1
0 , i ≤ s,

On, i > s.
(3.8)

When k = s, the operator M(X) in (3.7), in virtue of (3.8), has the block structure:

M(X) =




Y11(Z) · · · Y1s(Z)
...

. . .
...

Ys1(Z) · · · Yss(Z)


 , X = A0ZA∗

0,(3.9)

where Ypq(Z) = γ00ApZA∗
q − γp0A0ZA∗

q − γ0qApZA∗
0 + γpqA0ZA∗

0, p, q = 1, s.

If detA0 = 0, then we consider, instead of F (λ) and Λk, the matrix polynomial

and region, respectively, as follows:

Fα(λ) = F (λ+α) =

s∑

i=0

λiAαi, Λα
k =

{
λ ∈ C

1 : f(λ+α, λ+α) =

k∑

i,j=0

γα
ijλ

iλ
j
> 0

}
,

where Aα0 = F (α), detAα0 6= 0. Since F (λ) is a regular matrix polynomial, there

is α 6∈ σ(F ) with specified properties. Thus, σ(F ) ⊂ Λk ⇐⇒ σ(Fα) ⊂ Λα
k , and

σ(Fα) = σ(F ) − α.
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There are various methods of reduction of spectral problems for matrix polyno-

mials to similar problems for linear pencils of matrices (see, for example, [6]–[9]).

We use the method [9] based on applying the matrices of type A⊥ satisfying (2.3).

Using the block representation A⊥∗ = [B0, . . . , Bs], we construct the linear pencil of

matrices

D1 − λD0 = [B1, . . . , Bs]− λ [B0, . . . , Bs−1](3.10)

and consider the following relations

v∗F (λ) = 0, v 6= 0;(3.11)

u∗(D1 − λD0) = 0, u 6= 0;(3.12)

u∗A⊥∗ = v∗Zs(λ), v = B∗
0u 6= 0.(3.13)

The relations (3.11) and (3.12) define the eigenvalues and the corresponding left

eigenvectors of matrix polynomial (3.1) and pencil (3.10), respectively.

It is easy to establish equivalence of (3.12) and (3.13). On the other hand, from

definition of A⊥ and representations F (λ) = Zs(λ)A, it follows that (3.11) is equiv-

alent to (3.13) for certain vector u 6= 0. Hence, (3.11) and (3.12) are equivalent.

Additionally, identical fulfilment of one of equalities (3.11) or (3.12) at every λ ∈ C1

implies identical fulfilment of other of them. This means that regularity properties of

matrix polynomial (3.1) and pencil (3.10) are equivalent, too.

Lemma 3.6. Sets of all the various eigenvalues λi of matrix polynomial (3.1)

and pencil (3.10) coincide, and their corresponding left eigenvectors are related by

v∗i = u∗
iB0 (i = 1, l).

Now we formulate criteria of inclusion σ(F ) ⊂ Λ1. In this case,

E =

[
Is
O1s

]
, ∆ =

[
O1s 0

Is Os1

]
,

M(X) = γ00D0XD∗
0 + γ01D0XD∗

1 + γ10D1XD∗
0 + γ11D1XD∗

1 ,(3.14)

where D0 and D1 are matrices defined in (3.10). In particular, for matrix (3.8), we

have

D0 =




Â1 In · · · On

...
...

. . .
...

Âs−1 On · · · In
Âs On · · · On



, D1 = Ins.
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Considering Lemma 3.6 and general properties of positive invertible operators in

the space of the Hermitian matrices, it is possible to formulate the following statement

(see [2, 3]).

Theorem 3.7. The inclusion σ(F ) ⊂ Λ1 holds if and only if there exist Hermitian

matrices X and Y satisfying the relations

(a) M(X) = Y ≥ 0, D0XD∗
0 ≥ 0, rank [D1 − λD0, Y ] ≡ ns (λ ∈ Λ̂1).

If D0 is nonsingular, then (a) is equivalent to each of the following statements:

(b) the matrix inequality M(X) > 0 has a solution X > 0;

(c) given any Y > 0, the matrix equation M(X) = Y has a solution X > 0;

(d) operator M is positive invertible with respect to a cone of nonnegative definite

matrices.

The proof of sufficiency of the criterion (a) consists in the following. If we assume

that some eigenvalue λ ∈ Λ̂1, then, according to (3.12), for the corresponding left

eigenvector u∗, the inconsistent relations should be held true:

f(λ, λ) ≤ 0, u∗D0XD∗
0u ≥ 0, f(λ, λ) u∗D0XD∗

0u = u∗Y u > 0.

Provided that σ(F ) ⊂ Λ1, the matrices X and Y in criterion (a) always can be

constructed in the form [2]

X = ZX̂Z∗, Y = D0ZŶ Z∗D∗
0 , rank[D1Z,D0Z] = rank(D0Z).

This fact is established using the Kronecker canonical form of a regular matrix pencil

[11]. IfD0 is nonsingular, then the criteria (b), (c) and (d) follow from known theorems

on localization of eigenvalues by means of the generalized Lyapunov equation.

Example 3.8. Let F (λ) = A0 + λA1 be a regular pencil of n× n matrices, and

Λ1 be a region of the form (3.2). The matrix inequality (3.6) in Theorem 3.1 may be

expressed as
[

A0HA∗
0 +A0G

∗
0 +G0A

∗
0 + γ00X A0HA∗

1 +A0G
∗
1 +G0A

∗
1 + γ01X

A1HA∗
0 +A1G

∗
0 +G1A

∗
0 + γ10X A1HA∗

1 +A1G
∗
1 +G1A

∗
1 + γ11X

]
> 0.

The matrix inequality (3.7) constructed for the linear pencil Fα(λ) = F (α) + λA1

and the regions Λα
1 = {λ ∈ C1 : f(λ + α, λ + α) > 0} in virtue of A⊥∗ = [B0, B1] =

[−A1F
−1(α), In] is reduced to the form

M(X) = γ00A1ZA∗
1 − γ10A0ZA∗

1 − γ01A1ZA∗
0 + γ11A0ZA∗

0 > 0,

where X = F (α)ZF ∗(α), α 6∈ σ(F ). The given inequality due to equivalence of the

inclusions σ(F ) ⊂ Λ1 and σ(Fα) ⊂ Λα
1 , we use in Theorems 3.1 and 3.7 for initial
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matrix pencil F (λ) and regions Λ1. In particular, existence of solutions Z = Z∗ > 0

of the matrix inequalities

A0ZA∗
1 +A1ZA∗

0 > 0, A1ZA∗
1 −A0ZA∗

0 > 0

is equivalent to location of the spectrum σ(F ) inside the left half-plane and the unit

disk, respectively.

Example 3.9. Let F (λ) = A0 + λA1 + λ2A2 be a quadratic pencil of n × n

matrices, and Λk be a region of the type (3.2) for k ≤ 2. Then the expression

AG∗ +GA∗ +AHA∗ in (3.6) has the block form




A0G

∗
0 +G0A

∗
0 +A0HA∗

0 A0G
∗
1 +G0A

∗
1 +A0HA∗

1 A0G
∗
2 +G0A

∗
2 +A0HA∗

2

A1G
∗
0 +G1A

∗
0 +A1HA∗

0 A1G
∗
1 +G1A

∗
1 +A1HA∗

1 A1G
∗
2 +G1A

∗
2 +A1HA∗

2

A2G
∗
0 +G2A

∗
0 +A2HA∗

0 A2G
∗
1 +G2A

∗
1 +A2HA∗

1 A2G
∗
2 +G2A

∗
2 +A2HA∗

2



 .

For the class of regions Λ1, we have 1 = k < s = 2, m = 2, r = 1,

E =




1 0

0 1

0 0


 , ∆ =




0 0 0

1 0 0

0 1 0


 , R =




1 0 0 0

0 1 1 0

0 0 0 1


 , X =

[
X00 X01

X10 X11

]
,

L(X) =




γ00X00 γ00X01 + γ01X00 γ01X01

γ00X10 + γ10X00

1∑
i,j=0

γijX1−i1−j γ01X11 + γ11X01

γ10X10 γ10X11 + γ11X10 γ11X11


 .

For the class of regions Λ2, in (3.6) and (3.9), we use the operators

L(X) =




γ00X γ01X γ02X

γ10X γ11X γ12X

γ20X γ21X γ22X


 , M(X) =

[
Y11(Z) Y12(Z)

Y21(Z) Y22(Z)

]
,

where

Y11(Z) = γ00A1ZA∗
1 − γ10A0ZA∗

1 − γ01A1ZA∗
0 + γ11A0ZA∗

0,

Y12(Z) = γ00A1ZA∗
2 − γ10A0ZA∗

2 − γ02A1ZA∗
0 + γ12A0ZA∗

0,

Y22(Z) = γ00A2ZA∗
2 − γ20A0ZA∗

2 − γ02A2ZA∗
0 + γ22A0ZA∗

0.

Example 3.10. Let F (λ) = a0 + λa1 + · · · + λsas be a scalar polynomial of

degree s. The matrix inequality (3.6) has the form

ag∗ + ga∗ + haa∗ + L(X) > 0,(3.15)

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 20, pp. 333-350, July 2010

http://math.technion.ac.il/iic/ela



ELA

Spectrum Localization of Regular Matrix Polynomials and Functions 345

where a = [a0, . . . , as]
∗, h ∈ R1, g ∈ Cs+1. Specifying L(X) for the class of regions

Λ1, we use the matrices

E =

[
Is
O1s

]
, ∆ =

[
O1s 0

Is Os1

]
, R =

[
Is
O1s

O1s

Is

]
, X = ‖xij‖

s−1
i,j=0.

In particular, for the left half-plane and the unit disk defined by corresponding ma-

trices (3.3), we have

L(X) = −




0 x00 · · · x0s−2 x0s−1

x00 x01 + x10 · · · x0s−1 + x1s−2 x1s−1

...
...

. . .
...

...

xs−20 xs−10 + xs−21 · · · xs−1s−2 + xs−2s−1 xs−1s−1

xs−10 xs−11 · · · xs−1s−1 0




and

L(X) =




x00 x01 · · · x0s−1 0

x10 x11 − x00 · · · x1s−1 − x0s−2 −x0s−1

...
...

. . .
...

...

xs−10 xs−11 − xs−20 · · · xs−1s−1 − xs−2s−2 −xs−2s−1

0 −xs−10 · · · −xs−1s−2 −xs−1s−1



.

The operator L(X) = xΓ is a matrix-valued function of scalar argument X = x

for any region Λk at k ≥ s.

Note that in [10, Theorem 1], it is obtained a LMI characterization of the roots

of polynomials inclusion into regions Λ1, which is similar to (3.15) with other form of

the operator L(X).

4. Robust spectrum localization. In applications, the robust stability and

the robust spectrum localization problems formulated for dynamic systems with para-

metric uncertainty are very important (see, for example, [12]–[14]). Solving these

problems, there can be useful results formulated above for matrix functions.

As an example, we consider the parametric set of regular matrix polynomials:

F (λ, p) = A0(p0) + λA1(p1) + · · ·+ λsAs(ps), detF (λ, p) 6≡ 0, λ ∈ C
1,(4.1)

The values of coefficient matrices Ai(pi) depending on vector parameters

pi = [pi1, . . . , piνi ]
T ∈ Pνi ,

{
q ∈ R

νi : q1 ≥ 0, . . . , qνi ≥ 0,

νi∑

j=1

qj = 1
}
,
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constitute a set of the matrix polytopes

Ai =
{
A ∈ C

n×n : A =

νi∑

j=1

pijAij , pi ∈ Pνi

}
, i = 0, s.

The general vector of parameters p = [pT0 , . . . , p
T
s ]

T ∈ P = Pν0 × · · · × Pνs has order

ν = ν0 + · · ·+ νs.

We specify all the ν0 · · · νs polynomial matrix vertices as follows:

Ft0···ts(λ) = A0t0 + λA1t1 + · · ·+ λsAsts , ti ∈ {1, . . . , νi}, i = 0, s.

If νi = 1 for some i, then ti = 1, and Ai in (4.1) does not depend on pi.

Lemma 4.1. If p ∈ Pν , then ppT ≤ P = diag{p1, . . . , pν}.

Proof. For any vector x ∈ Rν , we have

xT (P − ppT )x =

ν∑

i=1

pix
2
i −

( ν∑

i=1

pixi

)2

=
( ν∑

i=1

pix
2
i

)( ν∑

j=1

pj

)
−
( ν∑

i=1

pixi

)2

=

=
∑

i6=j

pipjx
2
i −

∑

i6=j

pipjxixj =
∑

i<j

pipj(xi − xj)
2 ≥ 0.

Hence, ppT ≤ P .

Theorem 4.2. Let G, H = H∗ ≤ 0 and Xt0···ts = X∗
t0···ts

satisfy (3.5) and the

system of matrix inequalities

At0···tsG
∗ +GA∗

t0···ts
+At0···tsHA∗

t0···ts
+ L(Xt0···ts) > 0,(4.2)

where

At0···ts =




A0

...

Am


 , Ai =

{
Aiti , i ≤ s

On, i > s
, ti ∈ {1, . . . , νi}, i = 0, s.

Then for any p ∈ P, all the eigenvalues of F (λ, p) belong to region (3.2).

Proof. We show that for any p ∈ P ,

A(p)G∗ +GA(p)∗ +A(p)HA(p)∗ + L(X(p)) > 0,(4.3)

where

A(p) =




A0

...

Am


 , Ai =

{
Ai(pi), i ≤ s

On, i > s
, ti ∈ {1, . . . , νi}, i = 0, s,
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X(p) is a nonnegative linear combination of the matrices Xt0···ts satisfied (3.5).

The inequalities (4.2) are ordered by sets of indexes {t0 · · · ts}. We specify the

indexes i = 0 and tj ∈ {1, . . . , νj}, j 6= 0, and multiply the ν0 inequalities (4.2)

corresponding to the sets of indexes {1, t1 · · · ts}, . . . , {ν0, t1 · · · ts} accordingly to

p01, . . . , p0ν0 and summarize them in consideration of p0 = [p01, . . . , p0ν0 ]
T ∈ Pν0 .

For various combinations of indexes tj ∈ {1, . . . , νj}, j 6= 0, we will perform the same

operations. We will use the received inequalities in (4.2) instead of already considered

inequalities. Thus, all the inequalities of the given system can be ordered by sets of

indexes {t1 · · · ts}, where tj ∈ {1, . . . , νj}, j = 1, s. We will perform similar procedure

for every i = 1, s using the vectors pi = [pi1, . . . , piνi ]
T ∈ Pνi . Finally, we will receive

one block inequality and put the corresponding expressions Ai(pi)HAi(pi)
∗ in the

first s+ 1 diagonal blocks. As a result, we will obtain

A(p)G∗ +GA(p)∗ +A(p)HA(p)∗ + S(p) + L(X(p)) > 0,

where S(p) is a block-diagonal matrix with the diagonal blocks

Si =





νi∑
j=1

pijAijHA∗
ij −Ai(pi)HAi(pi)

∗, i ≤ s

On, i > s

, i = 1,m.

Note that for i ≤ s, we have

Si = Wi

[
(Pi − pip

T
i )⊗H

]
W ∗

i , Wi = [Ai1, . . . , Aiνi ], Pi = diag{pi1, . . . , piνi}.

According to Lemma 4.1, Pi ≥ pip
T
i for pi ∈ Pi. Using the following property of the

Kronecker product

P = P ∗ ≥ 0, Q = Q∗ ≤ 0 =⇒ P ⊗Q ≤ 0,

we get that S(p) ≤ 0 for p ∈ P . Hence, the matrix inequality (4.3) holds, and

according to Theorem 3.1, all the eigenvalues of the matrix polynomial (4.1) lie in the

region (3.2) for any p ∈ P .

Remark 4.3. If (4.2) holds for H = H∗ ≤ 0, then it is true for H = On

also. Therefore, we can suppose that H = On always when Theorem 4.2 is used. If

H = H∗ < 0, then (4.3) is equivalent to the block inequality

[
A(p)G∗ +GA(p)∗ + L(X(p)) A(p)

A(p)∗ −H−1

]
> 0.(4.4)

The inequalities (4.2) are represented in similar form. Dependence on vector param-

eter p in (4.4) is linear. Therefore, in this case, it is possible to prove Theorem 4.2

without usage of Lemma 4.1.
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Theorem 4.2 can be used for parametrical and interval sets of regular matrix

polynomials of the type

F (λ, p) =

ν∑

i=1

pi(A0i + λA1i + · · ·+ λsAsi), p ∈ Pν , λ ∈ C
1,(4.5)

F (λ) = A0 + λA1 + · · ·+ λsAs, Ai ≤ Ai ≤ Ai, i = 0, s, λ ∈ C
1.(4.6)

The set (4.1) is reduced to the form (4.5) when all the vectors pi ∈ Pνi have the

same dimension ν and coincide. In this case, the system (4.2) consists from ν matrix

inequalities. The interval set (4.6) is used most often in applications. It is described

in the form (4.1) also. Indeed, for this purpose in (4.1), it is necessary to suppose

that

Ai = Ai(pi) =

νi∑

j=1

pijAij , Aij = ‖aijtτ‖
n
t,τ=1, aijtτ ∈

{
aitτ , a

i
tτ

}
, νi = 2n

2

,

Ai = ‖aitτ‖
n
t,τ=1, Ai = ‖aitτ‖

n
t,τ=1, pi = [pi1, . . . , piνi ]

T ∈ Pνi , i = 0, s.

Then the system (4.2) includes 2(s+1)n2

matrix inequalities.

Note that, using Lemmas 2.1 and 2.3, we can obtain the generalizations and

analogues of Theorem 4.2 for a parametric set of regular matrix functions of the type

F (λ, p) =

m∑

i=0

fi(λ)Ai(pi), detF (λ, p) 6≡ 0, λ ∈ C
1, p = [pT0 , . . . , p

T
s ]

T ∈ P

with the corresponding class of regions Ω.

Example 4.4. Consider the mechanical system in Figure 4.1 studied in [14]. The

system is described by the following differential equations:

{
m1ẍ1 + d1ẋ1 + (c1 + c12)x1 − c12x2 = 0,

m2ẍ2 + d2ẋ2 + (c2 + c12)x2 − c12x1 = u.
(4.7)

In [5], the robust stability analysis of the system was carried out with the root-locus

inclusion demands in the disk of radius 12 centered at (-12,0) for all admissible interval

uncertainty of parameters a ≤ a = [c1, c2, d1, d2,m1,m2] ≤ a.

We choose the stability region located in the left half plane:

Λ2 = {λ ∈ C
1 : z(λ)Γz∗(λ) > 0},(4.8)
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Fig. 4.1. The mechanical system. Fig. 4.2. The stability region Λ2.

where

z(λ) = [1, λ, λ2], Γ = −




9
16α

4 7
4α

3 9
4α

2

7
4α

3 3α2 3α

9
4α

2 3α 1


 , α > 0.

A boundary of Λ2 is the 4-th order curve called as the Pascal’s limacon (see Figure

4.2) and defined by the equation

[(x+ h)2 + y2 + 2α(x+ h)]2 − β2[(x + h)2 + y2] = 0,

where β = 2α and h = α/2. We set

α = 1.3, a = [5, 6, 6, 9, 2, 4], a = [6, 7, 7, 10, 4, 7], c12 = 1.

Then the interval matrix polynomial (4.6) corresponding to the open-loop system is

given by F (λ) = A0 + λA1 + λ2A2, where

A0 =

[
6 −1

−1 7

]
≤ A0 =

[
c1 + 1 −1

−1 c2 + 1

]
≤ A0 =

[
7 −1

−1 8

]
,

A1 =

[
6 0

0 9

]
≤ A1 =

[
d1 0

0 d2

]
≤ A1 =

[
7 0

0 10

]
,

A2 =

[
2 0

0 4

]
≤ A2 =

[
m1 0

0 m2

]
≤ A2 =

[
4 0

0 7

]
.
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The system (4.2) to be solved with respect to Xt0t1t2 (t0, t1, t2 ∈ {1, . . . , 4}), G

and H consists of the 64 matrix inequalities. Assuming that G = (A + A)/2 and

H = 0, with the help of MATLAB, we find this system feasible. Hence, all the

eigenvalues of the stable open-loop mechanical system remain in the domain (4.8)

for the specified interval uncertainties. Figure 4.2 shows the roots location of the 64

matrix polynomials Ft0t1t2(λ) with respect to the Pascal’s limacon.
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