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1 Introduction

The design of state and output feedback controllers for dynamic sys-
tems with the prescribed and desired properties is a key problem of
control theory. At the same time, the properties of control systems
such as asymptotic stability, robustness and optimality of the per-
formance indexes are in the foreground. The main problem in H∞-
control theory is connected with suppression of external and initial
perturbations (see, e.g., [1–5] as well as review papers [6, 7]).

It should be noted that the practical applications of many modern
methods for synthesis of control systems are based on the construction
and solution of linear matrix inequalities (LMI). For this purpose,
sufficiently effective computational algorithms and appropriate tools
are established in Matlab environment (see [8, 9]).

In this chapter, we consider classes of linear and nonlinear con-
trol systems for which closed loop systems can be represented in the
pseudolinear form

ẋ = M(x, t)x, x ∈ Rn, t ≥ 0,
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besides, a matrix function M(x, t) can contain uncertain quantities
belonging to certain sets. Matrix intervals, polytopes, affine sets of
matrices and other objects may serve as the uncertainty sets. To
define uncertainties and robust stability conditions for systems in
semiordered spaces one can use cone inequalities and intervals [5,10].
The applied control laws are of the form of static or dynamic output
feedback. It should be noted that at the solution of many control
problems the dynamic controllers have great potential as compared
with the static controllers.

Our consideration includes the following types of problems:

• output feedback stabilization of control systems (Section 2);

• robust stabilization and optimization of control systems with
polyhedral uncertainties (Section 3);

• robust stabilization and weighted suppression of perturbations
in control systems (Section 4).

Throughout the paper, the following notations are used: In is the
identity n × n matrix; 0n×m is the n ×m null matrix; X = X> > 0
(≥ 0) is the symmetric positive definite (semidefinite) matrix X;
i(X) =

{
i+, i−, i0

}
is the inertia of matrix X = X> consisting of the

numbers of positive, negative and zero eigenvalues; σ(A) and ρ(A)
are the spectrum and the spectral radius of A, respectively; λmax(X)
and λmin(X) are the maximum and the minimum eigenvalue of the
Hermitian matrix X, respectively; A+ is the pseudoinverse matrix;
WA is a matrix whose columns make up the bases of the kernel KerA;
‖x‖ denotes the Euclidean norm of the vector x ∈ Rn; ‖w‖P denotes
the weighted L2-norm of vector function w(t); Co

{
A1, . . . , Aν

}
stands

for a polytope in a matrix space described as a convex full of the set{
A1, . . . , Aν

}
, i. e.

Co
{
A1, . . . , Aν

}
=
{ ν∑
i=1

αiAi : αi ≥ 0, i = 1, ν,

ν∑
i=1

αi = 1
}
.

Note that matrix intervals and affine sets of matrices are described
in terms of polytopes.
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2 Output Feedback Stabilization of Nonlinear Systems

Consider the following affine nonlinear time-invariant control system

ẋ = A(x)x+B(x)u, y = C(x)x+D(x)u, (1)

where x ∈ Rn is state vector, u ∈ Rm and y ∈ Rl are input and out-
put vectors, respectively, A(x), B(x), C(x) and D(x) are continuous
matrix functions in some neighborhood S0 of the zero state x = 0.
We will assume that rankB(x) ≡ m and rankC(x) ≡ l in S0.

Along with (1), consider the linear system

ẋ = Ax+Bu, y = Cx+Du, (2)

where A = A(0), B = B(0), C = C(0) and D = D(0). Let B⊥ and
C⊥ be the orthogonal complements of B and C, respectively, i.e.

B>B⊥ = 0, det
[
B,B⊥

]
6= 0, C⊥C> = 0, det

[
C>, C⊥>

]
6= 0.

2.1 Static controllers

Formulate stabilizability conditions of the zero state x = 0 for systems
(1) and (2) through the static output-feedback controller

u = Ky, K ∈ KD, (3)

where KD =
{
K ∈ Rm×l : det(Im −KD) 6= 0

}
. Closed loop system

(2), (3) has the form

ẋ = Mx, M = A+BD(K)C, (4)

where D(K) = (Im − KD)−1K ≡ K(Il − DK)−1 is a nonlinear
operator with the following properties:
• if K ∈ KD, then Il +DD(K) ≡ (Il −DK)−1;
• if K1 ∈ KD and K2 ∈ KD1 , then K1 +K2 ∈ KD and

D(K1 +K2) = D(K1) + (Im −K1D)−1D1(K2) (Il −DK1)
−1, (5)

where D1(K2) = (Im −K2D1)
−1K2, D1 = (Il −DK1)

−1D;
• if −K0 ∈ KD, then K = −D(−K0) ∈ KD and D(K) = K0.
To achieve the desired properties and, in particular, to stabilize

system (4) it suffices to provide these properties for a system with
the matrix M∗ = A+BKC.
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Definition 2.1 System (4) is α-stable if the spectrum σ(M) lies
in the open left half-plane C−α = {λ : Reλ < −α}, where α ≥ 0.

Theorem 2.1 The following statements are equivalent:
1) There exists static controller (3) ensuring α-stability of system (4).
2) There exists matrix X = X> > 0 satisfying the relations

B⊥>(AX +XA> + 2αX)B⊥ < 0, (6)

i(∆) =
{
l, n, 0

}
, ∆ =

[
AX +XA> + 2αX XC>

CX 0

]
. (7)

3) There exist mutually inverse matrices X = X> > 0 and Y =
Y > > 0 satisfying (6) and

C⊥(A>Y + Y A+ 2αY )C⊥> < 0. (8)

When one of the statements 2 or 3 is true, then the controller

u = Ky, K = −D(−K0) ∈ KD, (9)

where K0 is a solution of the LMI

AX +XA> + 2αX +BK0CX +XC>K>0 B
> < 0, (10)

ensures α-stability of closed loop system (4).

For the equivalence of the statements 1 and 2 in Theorem 2.1, see
[5]. Equivalence of the statements 2 and 3 follows from the relations
(see [10, p. 147]) i±(∆) = i±(∆1) = i±(C⊥L1C

⊥>) + l, where

∆1 = R>∆R =

[
C⊥L1C

⊥> 0
0 S

]
, S =

[
0 Il
Il C+TL1C

+

]
,

L1 = A>Y+Y A+2αY, Y = X−1, R =

[
Y C⊥> 0 Y C+

−C+TL1C
⊥> Il 0

]
,

i(S) = {l, l, 0} and detR 6= 0. For the equivalence of the statements
1 and 3, see also [4].

Theorem 2.2 [11] Let one of the statements 2 or 3 of Theorem
2.1 holds for system (2). Then (9) and (10) determine static con-
troller ensuring asymptotic stability of the state x ≡ 0 and quadratic
Lyapunov function v(x) = x>Y x of nonlinear closed loop system (1),
(9).
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2.2 Dynamic controllers

The dynamic output feedback stabilization problem for system (1)
consists in finding, if possible, a dynamic control law described by

ξ̇ = Zξ + V y, u = Uξ +Ky, (11)

where ξ ∈ Rr, such that the zero state of closed loop system is asymp-
totically stable. Equations (1) and (11) may be represented by control
system in the extended phase space Rn+r with static controller:

˙̂x = Â(x̂)x̂+ B̂(x̂)û, ŷ = Ĉ(x̂)x̂+ D̂(x̂)û, û = K̂ŷ, (12)

x̂ =

[
x
ξ

]
, ŷ =

[
y
ξ

]
, û =

[
u

ξ̇

]
, K̂ =

[
K U
V Z

]
,

Â(x̂) =

[
A(x) 0n×r
0r×n 0r×r

]
, B̂(x̂) =

[
B(x) 0n×r
0r×m Ir

]
,

Ĉ(x̂) =

[
C(x) 0l×r
0r×n Ir

]
, D̂(x̂) =

[
D(x) 0l×r
0r×m 0r×r

]
.

If K ∈ KD, then linear closed loop system (2), (11) has the form

˙̂x = M̂ x̂, M̂ = Â+ B̂D̂(K̂)Ĉ, (13)

where Â = Â(0), B̂ = B̂(0), Ĉ = Ĉ(0), D̂ = D̂(0) and

D̂(K̂) =

[
D(K) (Im −KD)−1U

V (Il −DK)−1 Z + V D(Im −KD)−1U

]
,

M̂ =

[
M B(Im −KD)−1U

V (Il −DK)−1C Z + V D(Im −KD)−1U

]
.

Theorem 2.3 The following statements are equivalent:

1) There exists dynamic controller (11) of order r ≤ n ensuring α-
stability of closed loop system (13).

2) There exist matrices X and X0 satisfying (6) and

i(∆0) =
{
l, n, 0

}
, X ≥ X0 > 0, rank (X −X0) ≤ r, (14)
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where

∆0 =

[
AX0 +X0A

> + 2αX0 X0C
>

CX0 0

]
.

3) There exist matrices X and Y satisfying (6), (8) and

W =

[
X In
In Y

]
≥ 0, rankW ≤ n+ r. (15)

Proof of Theorem 2.3 follows from the corresponding statements
of Theorem 2.1 taking into account the structure of block matrices
in (13) (see [11]). In [11], a computation algorithm of finding a sta-
bilizing dynamic controller (11) for nonlinear systems (1) has been
proposed on the basis of Theorem 2.3.

Remark 2.1 Note, that matrices X and X0 in Theorem 2.3 sat-
isfy statement 2 iff matrices X and Y = X−10 satisfy statement 3.
From (15) it follows that matrices X and Y are positive definite.
The rank restriction in (15) always holds in case of full order r = n
dynamic regulator.

3 Robust Stabilization and Optimization of Nonlinear
Systems

We formulate an auxiliary statement that will be used in the proofs
of our main results. Consider the nonlinear operator

F(K) = W+U>D(K)V +V >D>(K)U+V >D>(K)RD(K)V (16)

with D(K) = (Im −KD)−1K and an ellipsoidal set of matrices

K = {K ∈ Rm×l : K>PK ≤ Q}, (17)

where P = P> > 0, Q = Q> > 0, R = R> ≥ 0, W = W>, U ,
V and D are matrices of suitable sizes. Matrix inequality in (17) is
equivalent to the following KQ−1K> ≤ P−1. Therefore, in case of
m = 1 the ellipsoid K is described by a scalar inequality.
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Lemma 3.1 [12] Suppose that the matrix inequalities

D>QD +R < P, Ω =

 W U> V >

U R− P D>

V D −Q−1

 ≤ 0 (< 0) (18)

hold. Then F(K) ≤ 0 (< 0) for any matrix K ∈ K.

In Lemma 3.1 letting D = 0, R = 0, P = εIm and Q = εIl,
ε > 0, we get the sufficiency statement of Petersen’s lemma on matrix
uncertainty [13].

Consider a nonlinear control system in the vector-matrix form

E(x)ẋ = A(x, t)x+B(x, t)u, y = C(x, t)x+D(x, t)u, (19)

where x ∈ Rn, u ∈ Rm, y ∈ Rl and t ≥ 0. We construct a set of the
static controllers

u = K(x, t) y, K(x, t) = K∗(x, t) + K̃(x, t), K̃(x, t) ∈ K, (20)

where K is an ellipsoidal set of matrices of the form (17). We assume
that the matrices E, A, B, C, D, K and K∗ continuously depend
on x and t and the equilibrium state x ≡ 0 is isolated, i.e., the
neighborhood S0 = {x ∈ Rn : ‖x‖ ≤ h} does not contain other
equilibrium states of this system. If K ∈ KD, then the closed loop
system (19), (20) can be represented as

E(x)ẋ = M(x, t)x, M(x, t) = A+BD(K)C. (21)

Let the zero state of this system for K ≡ K∗ be asymptotically
stable. When looking for the stabilizing matrix K∗ in the class of
autonomous systems (1), one can use Theorem 2.1 and its special
cases. The problem is to construct conditions under which the zero
state of system (21) is Lyapunov asymptotically stable for every ma-
trix K̃(x, t) ∈ K. We find a solution for our problem in terms of a
quadratic Lyapunov function (see [5, 12]).

Theorem 3.1 Let for some matrix functions X(t) = X>(t) and
K∗(x, t) at x = 0 and t ≥ 0 the relations

ε1In ≤ X(t) ≤ ε2In, 0 < ε1 ≤ ε2, (22)
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B>∗ XE −P D>∗
C∗ D∗ −Q−1

 < 0,

(23)
hold with ε0 > 0, M∗ = A+BD(K∗)C, B∗ = B(Im −K∗D)−1,
C∗ = (Il −DK∗)−1C, D∗ = D(Im −K∗D)−1. Then any control (20)
ensures asymptotic stability of the zero state x ≡ 0 for system (21)
and a common Lyapunov function v(x, t) = x>E>0 X(t)E0x, where
E0 = E(0).

Consider control system (19) with quadratic quality functional

J(u, x0) =

∫ ∞
0

ϕ(x, u, t) dt, (24)

where

x0 = x(0), ϕ(x, u, t) =
[
x>, u>

]
Φ(t)

[
x
u

]
, Φ(t) =

[
S N
N> R

]
,

R > 0, S ≥ NR−1N> + η In, η > 0 and t ≥ 0.

Theorem 3.2 Let for some matrix functions X(t) = X>(t) and
K∗(x, t) at x = 0 and t ≥ 0 the relations (22) and W(X) U>(X) C>∗

U(X) R∗ − P D>∗
C∗ D∗ −Q−1

 < 0, (25)

hold with ε0 > 0, W(X) = E>ẊE + M>∗ XE + E>XM∗ + Φ∗ +
ε0In, U(X) = B>∗ XE + N>∗ + R∗K∗C, Φ∗ = L>∗ ΦL∗, M∗ = A +
BD(K∗)C, B∗ = B(Im − K∗D)−1, C∗ = (Il − DK∗)

−1C, D∗ =
D(Im − K∗D)−1, R∗ = (Im − K∗D)−1>R (Im − K∗D)−1, N∗ =
N(Im − K∗D)−1, L>∗ =

[
In, C

>D>(K∗)
]
. Then any control (20)

ensures asymptotic stability of the zero state x ≡ 0 for system (21),
a common Lyapunov function v(x, t) = x>E>0 X(t)E0x, where E0 =
E(0), and evaluation J(u, x0) ≤ v(x0, 0).
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Corollary 3.1 Let for some matrices X = X> > 0 and K∗ the
matrix inequalities Wijk(X) U>jks(X) C>∗k

Ujks(X) R∗ − P D>∗
C∗k D∗ −Q−1

 < 0, (26)

holds with Wijk(X) = M>∗ijkXEs+E
>
s XM∗ijk+L

>
∗kΦL∗k, Ujks(X) =

B>∗jXEs + N>∗ + R∗K∗Ck, M∗ijk = Ai + BjD(K∗)Ck, B∗j =

Bj(Im − K∗D)−1, C∗k = (Il − DK∗)−1Ck, D∗ = D(Im − K∗D)−1,
R∗ = (Im − K∗D)−1>R (Im − K∗D)−1, N∗ = N(Im − K∗D)−1,
L>∗k =

[
In, C

>
k D>(K∗)

]
, i = 1, α, j = 1, β, k = 1, γ, s = 1, δ. Then

any control (20) ensures asymptotic stability of the zero state x ≡ 0
for system (21) with uncertainties (robust stability)

A(0, t) ∈ Co{A1, . . . , Aα}, B(0, t) ∈ Co{B1, . . . , Bβ},

C(0, t) ∈ Co{C1, . . . , Cγ}, E(0) ∈ Co{E1, . . . , Eδ},
(27)

and evaluation J(u, x0) ≤ ω = max
1≤s≤δ

x>0 E
>
s XEsx0.

Note that the proof of Theorems 3.1 and 3.2 follows directly from
Lemma 3.1 and Lyapunov theorem on asymptotic stability taking
into account representation of derivative of Lyapunov function v(x, t)
with respect to system (21) in the form of a quadratic function with
matrix of the form (16) and application of formula (5) (see [5, 12]).

4 Generalized H∞-Control

4.1 Weighted level of perturbation suppression

Consider a dynamical system with external perturbations

ẋ = f(x,w, t), y = g(x,w, t), x(0) = x0, t ≥ 0, (28)

where x ∈ Rn, w ∈ Rs and y ∈ Rl are the state, the norm-limited
external perturbations and the output vector, respectively.
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Definition 4.1 The system (28) is called nonexpansive, if∫ τ

0
y(t)>Qy(t)dt ≤

∫ τ

0
w(t)>Pw(t)dt+ x>0 X0x0

for all square-integrable functions w(t) and τ > 0, where Q, P and
X0 are weight symmetric positive definite matrices.

We introduce the performance criterion of system (28) with respect
to observable output y:

J = sup
0<‖w‖2P+x>0 X0x0<∞

ϕ(w, x0), ϕ(w, x0) =
‖y‖Q√

‖w‖2P + x>0 X0x0

,

(29)
where ‖y‖Q and ‖w‖P are weighted L2-norms of y and w, respectively,

‖y‖2Q =

∫ ∞
0

y>Qydt, ‖w‖2P =

∫ ∞
0

w>Pwdt.

In case of x0 = 0, we denote J by J0. It is obvious, that J0 ≤ J
and J ≤ 1 for a nonexpansive system. The value J describes the
weighted damping level of external and initial perturbation in system
(28). A pair (w, x0) is the worst for system (28) with respect to the
performance criterion J , if in (29) a supremum is reached. If P = Is,
Q = Il and X0 = ρIn, then J coincides with known performance
criterion of systems [14]. In this case, the value J0 for a class of
linear systems

ẋ = Ax+Bw, y = Cx+Dw, (30)

with zero initial vector coincides with H∞-norm of the transfer matrix
function H(λ) = C(λIn −A)−1B +D (see, e.g., [3]).

Lemma 4.1 Let A be a Hurwitz matrix. Then J0 < γ for system
(30) iff the LMI

Φ =

[
A>X +XA+ C>QC XB + C>QD

B>X +D>QC D>QD − γ2P

]
< 0 (31)

has a solution X = X> > 0. Moreover, J < γ iff the LMI (31) has a
solution X such that

0 < X < γ2X0. (32)
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Proof. Sufficiency. Construct the quadratic Lyapunov function
v(x) = x>Xx for system (30) and evaluate the expression

v̇(x) + y>Qy − γ2w>Pw = [x>, w>]Φ

[
x
w

]
,

where v̇(x) is the derivative of v(x) with respect to the system. Inte-
grating given expression and in view of (29) and (31), we have

‖y‖2Q ≤ γ2(‖w‖2P + x>0 X0x0), ϕ(w, x0) ≤ γ.

The strict matrix inequalities (31) and (32) hold if we replace γ by
γ − ε for some small ε > 0. Therefore, ϕ(w, x0) ≤ γ − ε and J < γ.
In particular, in case of x0 = 0 the inequality J0 < γ holds.

Necessity. Use the Cholesky decompositions Q = Q̃>Q̃, P =
P̃>P̃ , X0 = X̃>0 X̃0 and transform system (30):

˙̃x = Ãx̃+ B̃w̃, ỹ = C̃x̃+ D̃w̃, x̃(0) = x̃0,

where x̃ = X̃0x, ỹ = Q̃y, w̃ = P̃w, Ã = X̃0AX̃
−1
0 , B̃ = X̃0BP̃

−1,

C̃ = Q̃CX̃−10 and D̃ = Q̃DP̃−1. Then

J = J̃ = sup
0<‖w̃‖2Is+x̃

>
0 x̃0<∞

‖ỹ‖Il√
‖w̃‖2Is + x̃>0 x̃0

.

If J̃ < γ, then for some matrix X̃ = X̃> (see [14, Theorem 1])

0 < X̃ < γ2In, Ω̃ =

 Ã>X̃ + X̃Ã X̃B̃ C̃>

B̃>X̃ −γ2Is D̃>

C̃ D̃ −Il

 < 0,

0 < X < γ2X0, Ω = S>Ω̃S =

 A>X +XA XB C>

B>X −γ2P D>

C D −Q−1

 < 0,

where X = X̃>0 X̃X̃0, S = diag
{
X̃0, P̃ , Q̃

−1>}. By Schur comple-
ment, the last matrix inequality reduces to the form (31) 2.

It follows from Lemma 4.1 that the values J and J0 for system (30)
can be computed from the corresponding optimization problems:

J0 = inf
{
γ : Φ < 0, X > 0

}
, J = inf

{
γ : Φ < 0, 0 < X < γ2X0

}
.
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Remark 4.1 If Φ < 0, then system (30) with a structurally un-
certain input

w =
1

γ
Θy, Θ>PΘ ≤ Q, (33)

is robust stable with a common Lyapunov function v(x) = x>Xx (see
[12, Theorem 1]). Note that (33) implies ϕ(w, 0) ≥ γ and ϕ(w, 0) = γ,
if Θ>PΘ = Q.

Remark 4.2 By Schur complement, Φ < 0, if and only if

A>1 X +XA1 +XR1X +Q1 < 0, (34)

where A1 = A + BR−1D>QC, Q1 = C>
(
Q + QDR−1D>Q

)
C,

R1 = BR−1B> and R = γ2P − D>QD > 0. If the pair (A,B)
is controllable, the pair (A,C) is observable and J0 < γ, then the
Riccati equation

A>1 X +XA1 +XR1X +Q1 = 0 (35)

has solutions X± such that σ(A1 + R1X±) ⊂ C±, X− < X+ and
X− < X < X+ for any solution X of (34) [1, 2]. Moreover, if J < γ
and X satisfies (35), then X < γ2X0. Indeed, setting v(x) = x>Xx
and

w = K0x, K0 = R−1(B>X +D>QC), (36)

we have

v̇(x)+y>Qy−γ2w>Pw = 0, ‖y‖2Q−γ2‖w‖2P = x>0 Xx0 < γ2x>0 X0x0,

for x0 6= 0. If J = γ, then considering (35) and (36) we have x>0 Xx0 =
γ2x>0 X0x0 and (X−γ2X0)x0 = 0 for some x0 6= 0. Moreover, ‖y‖2Q =

J2(‖w‖2P + x>0 X0x0), i.e. in (29) a supremum is reached. Therefore,
the expression (36) and any vector x0 ∈ Ker (X−γ2X0) corresponding
to the stabilizing solution of Riccati equation (35) represent the worst
external and initial perturbations in system (30).

Consider the affine system with bounded external perturbations

ẋ = A(x)x+B(x)w, y = C(x)x+D(x)w, x(0) = x0, (37)
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where A(x), B(x), C(x) and D(x) are continuous matrix functions
in some neighbourhood S0 of the point x = 0. We can formulate the
following lemma for local characteristics J0 and J of system (37) (see
the proof of sufficiency statement of Lemma 4.1).

Lemma 4.2 Suppose that there exists a matrix X = X> > 0
satisfying the matrix inequality[
A>(x)X +XA(x) + C>(x)QC(x) XB(x) + C>(x)QD(x)

B>(x)X +D>(x)QC(x) D>(x)QD(x)− γ2P

]
< 0

for all x ∈ S0. Then J0 ≤ γ and the zero state x ≡ 0 of system
(37) with uncertainty (33) is robust stable with a common Lyapunov
function v(x) = x>Xx. In addition, if 0 < X ≤ γ2X0, then J ≤ γ.

4.2 Static controllers with perturbations

Consider control systems (1), (2) and the performance criteria J and
J0 of the form (29). We are interested in control laws that ensure
nonexpansivity property of closed loop system and minimize J and
J0. A control law is said to be J-optimal , if corresponding closed loop
system has minimum performance criteria J . An J0-optimal control
law is H∞-optimal in case of the identity weight matrices P and Q.

Primarily, we consider the static output-feedback controller

u = Ky + w, (38)

where w ∈ Rm is a vector of bounded perturbations and K ∈ KD is
an unknown matrix. Assuming that det

[
Im −KD(x)

]
6= 0, x ∈ S0,

we rewrite the corresponding closed loop systems in the form

ẋ = M(x)x+N(x)w, z = F (x)x+G(x)w, x(0) = x0, (39)

ẋ = Mx+Nw, y = Fx+Gw, x(0) = x0, (40)

where M(x) = A(x) + B(x)
[
Im − KD(x)

]−1
KC(x), N(x) =

B(x)
[
Im − KD(x)

]−1
, F (x) =

[
Il − D(x)K

]−1
C(x), G(x) =

[
Il −

D(x)K
]−1

D(x), M = M(0), N = N(0), F = F (0), G = G(0).
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Theorem 4.1 [16] For linear system (2), there exists an output-
feedback controller (38) such that J < γ iff the following relations are
feasible:

W>R

[
A>X +XA+ C>QC XB + C>QD

B>X +D>QC D>QD − γ2P

]
WR < 0, (41)

W>L

[
AY + Y A> +BP−1B> Y C> +BP−1D>

CY +DP−1B> DP−1D> − γ2Q−1
]
WL < 0, (42)

0 < X < γ2X0, XY = γ2In, (43)

where R = [C,D], L = [B>, D>]. The gain matrix K of the controller
may be constructed in the form K = K0(Il +DK0)

−1, where K0 is a
solution of the LMI

L>0 K0R0 +R>0 K
>
0 L0 + Ω < 0 (44)

with R0 =
[
R, 0l×l

]
, L0 =

[
L, 0m×m

]
X̃ and

X̃ =

 X 0 0
0 0 Il
0 Im 0

 , Ω =

 A>X +XA XB C>

B>X −P D>

C D −Q−1

 .
Lemma 4.3 (Projection Lemma [15]) LMI (44) has a solution

K0 if and only if

W>L0
ΩWL0 < 0, W>R0

ΩWR0 < 0, (45)

where WL0 (WR0) is a matrix whose columns make up the bases of
the kernel KerL0 (KerR0).

4.3 Dynamic controllers with perturbations

Consider control systems (1) and (2) with the dynamic output-
feedback controller

ξ̇ = Zξ + V y, u = Uξ +Ky + w, ξ(0) = 0, (46)
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where w ∈ Rm is a vector of bounded perturbations, Z, V , U and K
are unknown coefficient matrices. If K ∈ KD, then linear closed loop
system (2), (46) reduces to the form

˙̂x = M̂x̂+ N̂w, y = F̂ x̂+ Ĝw, x̂(0) = x̂0, (47)

where

x̂ =

[
x
ξ

]
, x̂0 =

[
x0
0

]
, M̂ =

[
A+BK0C BU0

V0C Z0

]
, N̂ =

[
B+BK0D

V0D

]
,

F̂ =
[
C +DK0C,DU0

]
, Ĝ = D +DK0D, K0 = D(K),

U0 = (Im−KD)−1U, V0 = V (Il−DK)−1, Z0 = Z+V D(Im−KD)−1U.

We give the following auxiliary statement (see [14] in case of γ = 1).

Lemma 4.4 Gain matrices X > 0, Y > 0 and a scalar γ > 0,
there are matrices X1 ∈ Rr×n, X2 ∈ Rr×r, Y1 ∈ Rr×n and Y2 ∈ Rr×r
such that

X̂ =

[
X X>1
X1 X2

]
> 0, Ŷ =

[
Y Y >1
Y1 Y2

]
> 0, X̂Ŷ = γ2In+r, (48)

if and only if

W =

[
X γIn
γIn Y

]
≥ 0, rankW ≤ n+ r. (49)

Applying Lemmas 4.3, 4.4 and Theorem 4.1 to system (47), we
get the following result.

Theorem 4.2 [16] There exists a dynamic controller (46) such
that the evaluation J < γ holds for linear closed loop system (47), iff
the LMI system (32), (41), (42) and (49) is solvable with respect to
X = X> > 0 and Y = Y > > 0.

The coefficient matrices of the controller (46) in Theorem 4.2 may
be constructed in the form

K = (Im +K0D)−1K0, U = (Im +K0D)−1U0,

V = V0(Il +DK0)
−1, Z = Z0 − V0D(Im +K0D)−1U0,

(50)
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by solving the LMI

L̂>K̂0R̂+ R̂>K̂>0 L̂+ Ω̂ < 0, (51)

where

Ω̂ =


A>X +XA A>X>1 XB C>

X1A 0 X1B 0
B>X B>X>1 −P D>

C 0 D −Q−1

 , L̂> =


XB X>1
X1B X2

0 0
D 0

 ,

R̂ =

[
C 0 D 0
0 Ir 0 0

]
, K̂0 =

[
K0 U0

V0 Z0

]
.

Here X, X1 and X2 are blocks of matrix X̂ in (48).
If K ∈ KD, then det

[
Im − KD(x)

]
6= 0 for all x ∈ S0, and

nonlinear closed loop system (1), (46) reduces to the form

˙̂x = M̂(x̂)x̂+ N̂(x̂)w, y = F̂ (x̂)x̂+ Ĝ(x̂)w, x̂(0) = x̂0, (52)

where all coefficient matrices are continuous in S0. Therefore, the
dynamic controller (46) with (50) ensures robust stability of the zero
state x̂ ≡ 0 of system (52) with structured uncertainty (33) and a
common Lyapunov function v(x̂) = x̂>X̂x̂. To evaluate local charac-
teristics J0 and J of system (52), we can apply Lemma 4.2.

4.4 Control systems with controlled and observed outputs

Consider the control system

ẋ = Ax+B1w +B2u, x(0) = x0,
z = C1x+D11w +D12u,
y = C2x+D21w +D22u,

(53)

where x ∈ Rn, u ∈ Rm, w ∈ Rs, z ∈ Rk and y ∈ Rl are the state,
the control, the norm-limited external perturbations, the controlled
and observed outputs, respectively. We are interested in static and
dynamic control laws that ensure nonexpansivity property of closed
loop system and minimize the performance criteria J and J0 of the
form (29) with respect to controlled output z.
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4.4.1 Static controllers

If we use the static output feedback controller

u = Ky, det
(
Im −KD22

)
6= 0, (54)

then closed loop system (53), (54) has the form

ẋ = Mx+Nw, z = Fx+Gw, x(0) = x0, (55)

where M = A+B2K0C2, N = B1 +B2K0D21, F = C1 +D12K0C2,
G = D11 + D12K0D21, K0 = (Im − KD22)

−1K. To formulate an
analog of Theorem 4.1 we construct the following LMI

W>R

[
A>X +XA+ C>1 QC1 XB1 + C>1 QD11

B>1 X +D>11QC1 D>11QD11 − γ2P

]
WR < 0, (56)

W>L

[
AY + Y A> +B1P

−1B>1 Y C>1 +B1P
−1D>11

C1Y +D11P
−1B>1 D11P

−1D>11 − γ2Q−1
]
WL < 0,

(57)
where R =

[
C2, D21

]
, L =

[
B>2 , D

>
12

]
.

Theorem 4.3 For linear system (53), there exists a static output
feedback controller (54) such that J < γ iff the system of relations
(43), (56) and (57) is feasible.

If we use a static state feedback u = Kx, then C2 = In, D21 = 0
and D22 = 0. In this case the relations (43) and (56) can be written
as [

X0 In
In Y

]
> 0, D>11QD11 − γ2P < 0. (58)

Corollary 4.1 For linear system (53), there exists a state feed-
back controller u = Kx such that J < γ iff the LMI system (57) and
(58) is solvable for some matrix Y = Y > > 0.

Remark 4.3 The gain matrix K in Theorem 4.3 and Corollary
4.1 may be constructed as K = K0(Il + D22K0)

−1, where K0 is an
arbitrary solution of LMI:

L̂>K0R̂+ R̂>K>0 L̂+ Ω < 0,
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R̂ =
[
R, 0l×k

]
, R =

[
C2, D21

]
, L̂ =

[
L, 0m×s

]
X̃, L =

[
B>2 , D

>
12

]
,

X̃ =

 X 0 0
0 0 Ik
0 Is 0

 , Ω =

 A>X +XA XB1 C>1
B>1 X −γ2P D>11
C1 D11 −Q−1

 .
4.4.2 Dynamic controllers

If we use the dynamic output feedback

ξ̇ = Zξ + V y, u = Uξ +Ky, ξ(0) = 0, (59)

and det
(
Im−KD22

)
6= 0, then closed loop system (53), (59) has the

form
˙̂x = M̂x̂+ N̂w, z = F̂ x̂+ Ĝw, x̂(0) = x̂0, (60)

where

x̂ =

[
x
ξ

]
, x̂0 =

[
x0
0

]
, M̂ =

[
A+B2K0C2 B2U0

V0C2 Z0

]
= Â+ B̂2K̂0Ĉ2,

N̂ =

[
B1 +B2K0D21

V0D21

]
= B̂1 + B̂2K̂0D̂21,

F̂ =
[
C1 +D12K0C2, D12U0

]
= Ĉ1 + D̂12K̂0Ĉ2,

Ĝ = D11 +D12K0D21 = D11 + D̂12K̂0D̂21,

Â =

[
A 0n×r

0r×n 0r×r

]
, B̂2 =

[
B2 0n×r

0r×m Ir

]
, Ĉ2 =

[
C2 0l×r

0r×n Ir

]
,

K̂0 =

[
K0 U0

V0 Z0

]
, B̂1 =

[
B1

0r×s

]
, D̂21 =

[
D21

0r×s

]
,

Ĉ1 =
[
C1, 0k×r

]
, D̂12 =

[
D12, 0k×r

]
,

K0 = (Im −KD22)
−1K, U0 = (Im −KD22)

−1U,

V0 = V (Il −D22K)−1, Z0 = Z + V D22(Im −KD22)
−1U.

Applying Lemmas 4.3, 4.4 and Theorem 4.1 to system (60), we
get the following result.
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Theorem 4.4 For linear system (53), there exists a dynamic con-
troller (59) such that J < γ iff the matrix system (32), (49), (56) and
(57) is feasible.

Remark 4.4 The coefficient matrices of dynamic controller (59)
in Theorem 4.4 may be constructed in the form

K = (Im+K0D22)
−1K0, U = (Im+K0D22)

−1U0,

V = V0(Il+D22K0)
−1, Z = Z0−V0D22(Im +K0D22)

−1U0,
(61)

by solving the LMI

L̂>K̂0R̂+ R̂>K̂>0 L̂+ Ω̂ < 0, (62)

where R̂=
[
Ĉ2, D̂21, 0l+r×k

]
, L̂ =

[
B̂>2 X̂, 0m+r×s, D̂

>
12

]
,

X̃=

X̂ 0 0
0 0 Ik
0 Is 0

, X̂=

[
X X>1
X1 X2

]
, Ω̂=

Â>X̂ + X̂Â X̂B̂1 Ĉ>1
B̂>1 X̂ −γ2P D>11
Ĉ1 D11 −Q−1

.
We give the following algorithm for constructing stabilizing dy-

namic controller (59) satisfying Theorem 4.4.

Algorithm 4.1 1) calculate the matrices WR and WL, where
R =

[
C2, D21

]
and L =

[
B>2 , D

>
12

]
;

2) find the matrices X = X> > 0 and Y = Y > > 0 satisfying
(32), (49), (56) and (57);

3) construct decomposition Z = Y − γ2X−1 = V >V , V ∈ Rr×n,
kerV = kerZ and form the block matrix

X̂ =

[
X X>1
X1 X2

]
> 0, X1 =

1

γ
V X, X2 =

1

γ2
V XV > + Ir;

4) solve the LMI (62) under restriction det(Im +K0D22) 6= 0;
5) calculate the coefficient matrices of dynamic controller (59) by

formula (61).

Remark 4.5 Note, that we have necessary and sufficient condi-
tions for an evaluation J0 < γ represented by the corresponding state-
ments of Theorems 4.1 – 4.4 without usage of additional restriction
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X < γ2X0. With the use of static state feedback or full order r = n
dynamic controllers the problems under consideration are reduced to
solving LMI systems. We can formulate analogs of Theorems 4.1 –
4.4 for the corresponding control systems with a polyhedral uncer-
tainties of the matrices A, B1, C1 and D11. In addition, sufficient
statements of these theorems can be generalized for the correspond-
ing affine control systems with continuous coefficient matrices (see
Lemma 4.2).

Example 4.1 Consider a controlled linear damped oscillator de-
scribed by system (53) with

A =

[
0 1
−ω2

0 −δ

]
, B1 = B2 =

[
0
1

]
, C1 =

[
1 0
0 0

]
, C2 =

[
1 0

]
,

D11 =

[
0
0

]
, D12 =

[
0
1

]
, D21 =D22 =0, x =

[
ϕ
ϕ̇

]
, z =

[
ϕ
u

]
, y = ϕ.

For system without control, we get J0 = 1, 00124 and J = 1, 29005 assuming
that δ = 0, 1, ω0 = 1, P = 1, Q = diag{q1, q2} and X0 = diag{ρ1, ρ2}, where
q1 = 0, 01, q2 = 0, 1, ρ1 = ρ2 = 0, 04. Figure 1 shows the dependence J of
δ and ω0. The damping level of input signals and initial perturbations of
oscillator decreases with the increase of its natural frequency ω0 and does
not change with the increase of the damping factor δ.

0

4

5

3 0,8

10

0,62
0,41

0,2

Figure 1: The dependence J(δ, ω0). Figure 2: Uncertainty region (63).
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Figure 3: The dependence
J0(q1, q2) (closed loop system).

Figure 4: The dependence
J(ρ1, ρ2) (closed loop system).
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Figure 5: System behavior without
control.

Figure 6: Closed loop system be-
havior.

Next, using Algorithm 4.1, we performed minimization of the parameter
γ satisfying Theorem 4.4. As a result for γ = 0, 865, we constructed an
approximate J-optimal dynamic controller (59) with the coefficient matrices
K = −0, 23768, U =

[
− 0, 34024 3, 90359

]
,

V =

[
−0, 00081
0, 11005

]
, Z =

[
−0, 02029 −0, 08965
0, 24404 −1, 05858

]
,

that provides a robust stability and nonexpansiveness of closed loop system
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(60). This regulator significantly reduced the damping level of input sig-
nals and initial perturbations of oscillator. For example, for the indicated
values of parameters we have J0 = 0, 39131 and J = 0, 86275 < 1. The
oscillator with constructed regulator preserves asymptotic stability for any
perturbation function (see Figure 2)

w(t) =
1

γ
(θ1ϕ+ θ2u),

θ21
q1

+
θ22
q2
≤ 1, |w| ≤ 1

γ

√
q1ϕ2 + q2u2. (63)

For closed loop system, the worst perturbation w and the worst initial
vector x̂0 with respect to J were also found (see Remark 4.2):

w = Θ̂0x̂, Θ̂0 =
[

0, 00298 0, 03650 −0, 00263 0, 07191
]
,

x̂0 =
[
−0, 76067 −0, 64914 0 0

]>
.

The dependences J0(q1, q2) and J(ρ1, ρ2) for closed loop system are
shown in Figures 3 and 4, respectively. Figure 5 shows system behavior
without control and Figure 6 shows closed loop system behavior for the
worst perturbation w and the worst initial vector x̂0:

˙̂x = M̂0x̂, M̂0 = M̂ + N̂Θ̂0, x̂(0) = x̂0,

σ(M̂0) =
{
− 0, 05019, −0, 79024, −0, 15097± 1.01506 i

}
.

4.5 H∞-Control problem for descriptor systems

We can formulate analogs of Theorems 4.1 – 4.4 for a class of descrip-
tor control systems. Consider a linear continuous-time descriptor
system with bounded perturbations

Eẋ = Ax+Bw, z = Cx+Dw, x(0) = x0, (64)

where x ∈ Rn, w ∈ Rs, z ∈ Rk and rankE = ρ ≤ n.

Definition 4.2 A matrix pair (E,A) is said to be admissible if it
is regular , impulse-free and stable, i.e. detF (λ) 6≡ 0, degF (λ) = ρ
and σ(F ) ⊂ {λ ∈ C : Reλ < 0}, respectively, where F (λ) = A− λE.
Descriptor system (64) with admissible pair (E,A) is admissible.

Lemma 4.5 [17] System (64) is admissible if and only if there
exists matrix X such that A>X +X>A < 0 and E>X = X>E ≥ 0.
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We introduce an analog of the performance (29) for system (64):

J = sup
(w,x0)∈W

‖z‖Q√
‖w‖2P + x>0 X0x0

, (65)

where P > 0, Q > 0 and X0 ≥ 0 are weight matrices, W is a set of
pairs (w, x0) such that system (64) has a solution and 0 < ‖w‖2P +
x>0 X0x0 < ∞. To formulate the following analog of the Bounded
Real Lemma for system (64), we suppose that X0 = E>HE ≥ 0,
where H = H> > 0.

Lemma 4.6 [18] Given γ > 0, system (64) is admissible and
satisfies J < γ if there exist matrices X and S = S> ≥ 0 such that

0 ≤ E>X = X>E = S ≤ γ2X0, rank (S − γ2X0) = ρ, (66)[
A>X +X>A+ C>QC X>B + C>QD

B>X +D>QC D>QD − γ2P

]
< 0. (67)

Conversely, if system (64) is admissible with J < γ and
rank

[
E> C>QD

]
= ρ, then relations (66) and (67) are feasible.

Remark 4.6 If system (1) is admissible and there exist matrices
X and S such that (66) and

A>1 X +X>A1 +X>R1X +Q1 = 0 (68)

hold with γ = J (see Remark 4.2), then (36) and x0 ∈ Ker (S−γ2X0)
represent the worst external and initial perturbations relatively J for
system (64).

Consider the descriptor control system

Eẋ = Ax+B1w +B2u, x(0) = x0,
z = C1x+D11w +D12u,
y = C2x+D21w +D22u,

(69)

where x ∈ Rn, u ∈ Rm, w ∈ Rs, z ∈ Rk and y ∈ Rl. Using the
dynamic controller (59) a closed loop system has the form

Ê ˙̂x = M̂x̂+ N̂w, z = F̂ x̂+ Ĝw, x̂(0) = x̂0, (70)

where Ê = diag{E, Ir} (see (60)).
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Theorem 4.5 [19] If there exist matrices X, Y , S = S> ≥ 0
and Θ = Θ> ≥ 0 such that (66) and

EY = Y >E> ≥ 0, rank

[
X −ΘE γIn
γIn Y

]
= n, rank Θ = r,

(71)

W>R

[
A>X +X>A+ C>1 QC1 X>B1 + C>1 QD11

B>1 X +D>11QC1 D>11QD11 − γ2P

]
WR < 0, (72)

W>L

[
AY + Y >A> +B1P

−1B>1 Y >C>1 +B1P
−1D>11

C1Y +D11P
−1B>1 D11P

−1D>11−γ2Q−1
]
WL < 0

(73)
hold with L =

[
B>2 , D

>
12

]
and R =

[
C2, D21

]
, then there exists an

r-order dynamic controller (59) provided the admissibility and evalu-
ation J < γ for a closed loop system (70).

Theorem 4.6 [19] Let

R0 = D>12QD12 > 0, R1 = γ2P −D>11Q1D11 > 0.

If there exist matrices X, G, S = S> ≥ 0 and Θ = Θ> ≥ 0 such that
(66), (72) and

X −ΘE = G, Θ = Θ> ≥ 0, rank Θ = r, (74)

A>2 G+G>A2 +G>R2G+Q2 < 0 (75)

hold with A2 = A1 + B11R
−1
1 D>11Q1C1, A1 = A − B2R

−1
0 D>12QC1,

R2 = B11R
−1
1 B>11 − B2R

−1
0 B>2 , B11 = B1 − B2R

−1
0 D>12QD11, Q1 =

Q−QD12R
−1
0 D>12Q, Q2 = C>1 (Q1 +Q1D11R

−1
1 D>11Q1)C1, then there

exists an r-order dynamic controller (59) provided the admissibility
and evaluation J < γ for a closed loop system (70).

Remark 4.7 The coefficient matrices of dynamic controller (59)
in Theorems 4.5 and 4.6 can be constructed in the form (61) by
solving the LMI (62) with

Ω̂ =

 Â>X̂ + X̂>Â X̂>B̂1 Ĉ>1
B̂>1 X̂ −γ2P D>11
Ĉ1 D11 −Q−1

 , X̂ =

[
X X3

X1 X2

]
,
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Θ = X3X
−1
2 X>3 , X1 = X>3 E, X1 ∈ Rr×n, X2 ∈ Rr×r, X3 ∈ Rn×r,

wherein the remaining matrix expressions in (62) are the same.

Remark 4.8 In the case Θ = 0, Theorems 4.5 and 4.6 give the
conditions for existence of a static controller (54) such that a closed
loop system is admissible with J < γ.

Remark 4.9 Without loss of generality, the matrix X in Lemma
4.6 and Theorems 4.5 and 4.6 can be defined as

X = S1E + E0G1, 0 < S1 = S>1 < γ2H,

where E0 = WE> ∈ Rn×(n−ρ) and G1 ∈ R(n−ρ)×n. Then in (66) we
have 0 ≤ E>S1E = S ≤ γ2X0 and rank (S − γ2X0) = ρ.
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