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Abstract—We develop new methods of robust stability analysis for equilibrium states and opti-
mization of nonlinear feedback control systems. For a family of nonlinear systems with uncertain
matrices of coefficients and measurable output feedback we formulate sufficient stability condi-
tions for the zero state with a general quadratic Lyapunov function. We propose a solution for
the general robust stabilization and estimation problem for a quadratic performance index for
a family of nonlinear systems. We show an example of a stabilization system for a single-link
robot manipulator.
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1. INTRODUCTION

In applied problems of analysis and synthesis of real objects, one often uses systems of differential
and difference equations with uncertain parameters and functional structure (see, e.g., [1–3]). For
instance, the zero solution x ≡ 0 of a system of differential equations with parametric uncertainty

ẋ = f(x, p, t), f(0, p, t) ≡ 0, x ∈ R
n, p ∈ P, t � 0, (1.1)

is called robustly stable with respect to a given set of parameters P ⊆ R
ν if it is Lyapunov stable

for every fixed p ∈ P. Intervals, polytopes, affine families of matrices and other objects may serve
as the parametric uncertainty set P for system (1.1). In defining uncertainties and robust stability
conditions for systems in semiordered spaces one can use cone inequalities and intervals [4, 5].
Numerous works find sufficient stability conditions for linear controllable systems with uncertain
matrices of coefficients and feedback with respect to measurable output in terms of linear matrix
inequalities (LMI). A survey of problems and known methods of robust stability analysis and
stabilization of feedback control systems can be found in [6, 7].

This work is devoted to developing new methods of robust stability analysis for equilibrium states
and optimization for a class of nonlinear multidimensional control systems with output feedback.
We assume that the measurable output vector contains components of both the system state and
the control. The considered nonlinear systems are called pseudolinear due to their vector–matrix
representation. One can reduce to a vector–matrix form, for instance, nonlinear motion equations
for certain robotic and pendulum systems, flying vehicles etc.

Using the results of [3, 8], we formulate sufficient stability conditions for the zero state of a family
of control systems with uncertain matrices of coefficients and static measurable output feedback.
We find the general Lyapunov function and an estimate for the quadratic quality functional. As
a result, we propose new ways to optimize the considered family of systems. Application of our
results reduces to solving systems of differential or algebraic LMI. To solve LMI with constant
matrices, one can use a rather efficient procedure in the Matlab suite.
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2. NOTATION AND AUXILIARY STATEMENTS

We use the following notation: In is the unit n× n matrix; X = XT > 0 (� 0) is a positive
(nonnegative) definite symmetric matrix X; i(X) = {i+(X), i−(X), i0(X)} is the inertia of matrix
X = XT composed of the numbers of its positive, negative, and zero eigenvalues with multiplic-
ities; λmax(X) (λmin(X)) is the maximal (minimal) eigenvalue of matrix X; σ(A) (ρ(A)) is the
spectrum (spectral radius) of matrix A, ‖x‖ is the Euclidean norm of vector x; Co{A1, . . . , Aν} ={
A =

∑ν
i=1 αiAi : αi � 0, i = 1, ν,

∑ν
i=1 αi = 1

}
is the convex polyhedron (polytope) with vertices

A1, . . . , Aν in the space of matrices.

Consider a linear control system

ẋ = Ax+Bu, y = Cx+Du, u = Ky, (2.1)

where x ∈ R
n, u ∈ R

m, and y ∈ R
l are respectively the state, control, and observable object output

vectors, A, B, C, and D are constant matrices of corresponding sizes n × n, n × m, l × n, and
l × m, and, moreover, rankB = m and rankC = l. Control system diagram is shown on Fig. 1.
Its characteristic feature is that it can use measurements of linear combinations of both the system
state vector and the control.

We introduce on the set of matrices KD = {K : det(Im −KD) �= 0} a nonlinear operator

D : Rm×l → R
m×l, D(K) = (Im −KD)−1K.

For each feedback matrix K∗ ∈ KD the closed-loop control system (2.1) has the form

ẋ = M∗x, M∗ = A+BD(K∗)C. (2.2)

We list the properties of the operator D without proof:

1) if K ∈ KD then

D(K) ≡ K[Il +DD(K)] ≡ K(Il −DK)−1, Il +DD(K) ≡ (Il −DK)−1; (2.3)

2) if K1 ∈ KD and K3 = (Im −K1D)−1K2 ∈ KD then

K1 +K2 ∈ KD, D(K1 +K2) ≡ D(K1) +D(K3) [Il +DD(K1)]; (2.4)

3) if K ∈ KD then
K∗ = −D(K) ∈ KD, D(K∗) = −K. (2.5)

According to (2.5), to achieve the desired properties and, in particular, to stabilize system (2.2)
it suffices to provide a system with matrix M∗ = A−BKC with these properties.

For matrices B and C, that have full rank with respect to columns and rows respectively,
we introduce orthogonal complements and pseudoinverse matrices: BTB⊥ = 0, det

[
B,B⊥] �= 0,

C⊥CT = 0, det
[
CT, C⊥T

] �= 0, B+ = (BTB)−1BT, C+ = CT(CCT)−1. The following statement,
which is proven in the Appendix, shows a way to place the spectrum of matrix M∗ = A−BKC
with certain properties with respect to the straight line Reλ = α, λ ∈ C
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Fig. 1. Control system diagram.
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Lemma 1. There exists a matrix K for which the spectrum σ(M∗) consists of p and q points in
the corresponding half-planes Reλ < α and Reλ > α if and only if the following system of relations
is feasible with respect to X = XT:

S =B⊥TLB⊥ < 0, i(X) ={p, q, 0}, i(H) = {l,m, 0}, H =

[
H0 HT

1

H1 H2

]

, (2.6)

where L = AX +XAT − 2αX, H0 = B+(L− LRL)B+T, H1 = CX(In −RL)B+T, H2 =
−CXRXCT, R = B⊥S−1B⊥T. Under conditions (2.6) matrix K can be found by solving one
of the following equivalent matrix inequalities

Y1 = H0 −KH1 −HT
1 K

T +KH2K
T < 0, (2.7)

Y = L−BKCX −XCTKTBT < 0. (2.8)

In particular, if in relations (2.6), (2.7) X = XT > 0 and α � 0 then real parts of all points of the
spectrum σ(M∗) are negative.

Note that inequality (2.8), which is linear in K, holds if

K = BTX−1C+, AX +XAT − 2αX < 2BBT, (C+C − In)X
−1B = 0, (2.9)

and in order for inequality (2.7), which is quadratic in K, to hold it suffices that

K = γ BTX−1C+, γ > λmax(H0)/2, C⊥X−1B = 0, (2.10)

and the latter equalities (2.9) and (2.10) are equivalent. Due to (2.5), (2.6), and (2.10), for α � 0
we have sufficient conditions that guarantee asymptotic stability for system (2.2):

X = XT > 0, B⊥T(AX +XAT − 2αX)B⊥ < 0, C⊥X−1B = 0,

K∗ = −D(K), K = γ BTX−1C+ ∈ KD, γ > λmax(H0)/2.

We formulate an auxiliary statement that will be used in the proofs of our main results. Consider
a nonlinear operator

F(K) = W + UTD(K)V + V TDT(K)U + V TDT(K)RD(K)V

and an ellipsoidal set of matrices

K =
{
K ∈ R

m×l : KTPK � Q
}
, (2.11)

where P = PT > 0, Q = QT > 0, R = RT � 0, W = WT � 0, U , V , and D are matrices of suitable
sizes. Due to the equivalence of matrix inequalities [9]

KTPK � Q,

[
P−1 K
KT Q

]

� 0, KQ−1KT � P−1,

the set (2.11) can also be described as K = {K ∈ R
m×l : KQ−1KT � P−1}. Here in case m = 1

the ellipsoid K is described with a scalar inequality.

Lemma 2. Suppose that the following matrix inequalities hold:

DTQD +R < P, Ω =

⎡

⎢
⎣
W UT V T

U R− P DT

V D −Q−1

⎤

⎥
⎦ � 0 (< 0). (2.12)

Then F(K) � 0 (< 0) for every matrix K ∈ K.
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Proof of Lemma 2 is given in the Appendix.

Note that Lemma 2 is a generalization of the sufficiency statement for an existing criterion known
as the Petersen’s lemma on matrix uncertainty [10] (see also [11]). According to [10], for every
matrix K ∈ R

m×l with bounded norm ‖K‖ = (λmax(K
TK))1/2 � 1 the matrix inequality F(K) =

W+UTKV +V TKTU < 0 holds if and only if there exists ε > 0 such thatW+ε−1UTU+εV TV < 0.
The latter relation can be represented in block form as

Ω =

⎡

⎢
⎣
W UT V T

U −εIm 0
V 0 −ε−1Il

⎤

⎥
⎦ < 0,

while requirement ‖K‖ � 1 holds if KTK � Il. Letting in Lemma 2 D = 0, R = 0, P = εIm, and
Q = εIl, where ε > 0 is a certain number, we have the sufficiency statement of Petersen’s lemma.

3. ROBUST STABILIZATION OF NONLINEAR CONTROL SYSTEMS

Consider a nonlinear control system in vector-matrix form

ẋ = A(x, t)x+B(x, t)u, y = C(x, t)x+D(x, t)u, t � 0, (3.1)

where x ∈ R
n, u ∈ R

m, and y ∈ R
l are state, control, and observable object output vectors respec-

tively. We control the system with output feedback:

u = K(x, t) y, K(x, t) = K∗(x, t) + K̃(x, t), K̃(x, t) ∈ K, (3.2)

where K is an ellipsoidal set of matrices of the form (2.11) in the space R
m×l defined by symmetric

positive definite matrices P and Q. We assume that the matrices in question A, B, C, D, K∗,
and K depend on x and t continuously and will omit it for brevity. We assume matrices P and Q
to be constant, although in what follows they may also be functions of x and t.

According to (2.11), (3.1), and (3.2), the following inequality must hold:

[xT, uT]

[
CTQC − CTKT∗ PK∗C CTQD + CTKT∗ PG

DTQC +GTPK∗C Δ

] [
x
u

]

� 0,

where Δ = DTQD −GTPG, G = Im −K∗D. We assume that

Δ(x, t) < 0, x ∈ S0, t � 0, (3.3)

where S0 = {x ∈ R
n : ‖x‖ � h} is a neighborhood of the point x = 0. Then x = 0 implies u = 0,

and x ≡ 0 is an equilibrium state for the system. In what follows we assume that this equilibrium
state is isolated, i.e., the neighborhood S0 does not contain other equilibrium states of this system.

The problem is to construct conditions under which the zero state of the closed-loop control
system (3.1) and (3.2) is Lyapunov asymptotically stable for every matrix K̃ ∈ K. Matrix K∗ is
chosen for the purposes of stabilization, e.g., in case when the zero state of the system without
control (u = 0) is unstable. When looking for the stabilizing matrix K∗ in the class of linear
autonomous systems (2.1), one can use Lemma 1 and its special cases (see also [3, 6, 7]).

Under assumption (3.3) matrix G must be nondegenerate. Therefore for every x ∈ S0 and
t � 0 values of the operator D(K∗)= (Im −K∗D)−1K∗ are defined. If K̃ ∈ K then values of D(K)
and D(K̂) are also defined, where K̂ = G−1K̃. Indeed, under conditions (3.2) and (3.3) we have

DTK̃TPK̃D � DTQD < GTPG, FTPF < P,
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where F = K̃DG−1 and P > 0. Therefore ρ(F ) < 1, and matrix Im − F is nondegenerate, and
hence matrices Im −KD = (Im − F )G and Im − K̂D = G−1(Im −KD) are nondegenerate as well.

So, the closed-loop system (3.1), (3.2) under constraint (3.3) can be represented as

ẋ = M(x, t)x, M(x, t) = A+BD(K)C. (3.4)

We assume that the zero state of this system for K ≡ K∗ is asymptotically stable. We find a
solution for our problem for system (3.4) with a quadratic Lyapunov function v(x, t) = xTX(t)x,
where X(t) is a continuously differentiable symmetric matrix that satisfies conditions

ε1In � X(t) � ε2In, 0 < ε1 � ε2, t � 0. (3.5)

Theorem 1. Suppose that for some εi > 0 (i = 0, 1, 2) and for x = 0 the following matrix
inequalities hold: (3.3), (3.5), and

Ω(t) =

⎡

⎢
⎢
⎣

Ẋ +MT∗ X +XM∗ + ε0In XB CT∗
BTX −GTPG DT

C∗ D −Q−1

⎤

⎥
⎥
⎦ � 0, t � 0, (3.6)

where M∗ = A+BD(K∗)C, C∗ = C +DD(K∗)C. Then any control (3.2) ensures asymptotic sta-
bility of the zero state for system (3.1) and the general Lyapunov function v(x, t) = xTX(t)x.

Proof of Theorem 1 is given in the Appendix.

Note that in [3], based on the so-called non-inferiority property for the S-procedure, the authors
obtain a similar statement with constant matrix X in case P = Im and Q = μIl, where μ is the
stability radius for feedback matrices K for the linear autonomous system (2.1). Note that (3.3) fol-
lows from the strict inequality (3.6), while matrices P and Q1 = Q−1 occur in the expression (3.6)
linearly. Therefore, together with X they can be treated as unknowns and found with an effi-
cient procedure implemented in the Matlab suite. This extends the capabilities of the quadratic
stabilization method [3] even to the class of systems (2.1).

We assume that system (3.1) for x = 0 has unknown coefficients:

A ∈ Co{A1, . . . , Aνa}, B ∈ Co{B1, . . . , Bνb}, C ∈ Co{C1, . . . , Cνc}, x = 0, t � 0, (3.7)

where given tuples of constant matrices Ai, Bj and Ck are vertices of certain polytopes in the cor-
responding spaces Rn×n, Rn×m and R

l×n. Then matrix inequality (3.6), due to a linear dependence
of the block expression Ω on these coefficients, follows from a system of similar inequalities

⎡

⎢
⎢
⎣

Ẋ +MT
ijkX +XMijk + ε0In XBj CT

k + CT
k DT(K∗)DT

BT
j X −GTPG DT

Ck +DD(K∗)Ck D −Q−1

⎤

⎥
⎥
⎦ � 0, (3.8)

where Mijk = Ai +BjD(K∗)Ck, i = 1, νa, j = 1, νb, k = 1, νc, x = 0, t � 0. Indeed, due to (3.7),
after multiplying matrix inequalities (3.8) by unknown parameters of convex linear combinations
of vertices of polytopes Ai, Bj and Ck and summing them up respectively over i, j, and k we
get matrix inequality (3.6). Consequently, the statement of Theorem 1 holds for the family of
systems (3.1) and (3.7) if instead of (3.6) we use the system of matrix inequalities (3.8). Here strict
inequalities (3.8) ensure that condition (3.3) of Theorem 1 holds.

Suppose that together with (3.7) it holds that

K∗ ≡ 0, D ∈ Co{D1, . . . ,Dνd}, x = 0, t � 0. (3.9)

Then D(K∗) = 0, Mijk = Ai, and G = Im in (3.8). If, in addition, matrix X > 0 is constant then
we can let εi = 0 (i = 0, 1, 2). Thus, under stronger assumptions than Theorem 1 the following
statement holds.
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Corollary 1. Suppose that the system of LMI with constant matrices

X > 0,

⎡

⎢
⎢
⎣

AT
i X +XAi XBj CT

k

BT
j X −P DT

s

Ck Ds −Q−1

⎤

⎥
⎥
⎦ < 0, i = 1, νa, j = 1, νb, k = 1, νc, s = 1, νd (3.10)

is feasible. Then any control (3.2) provides asymptotic stability for the zero state in the family of
systems (3.1), (3.7), (3.9), and the general quadratic Lyapunov function v(x) = xTXx.

Remark. Systems of matrix inequalities (3.8) and (3.10) can be used to solve inverse robust sta-
bilization problems. For instance, for a given matrix X > 0 under the assumptions of Corollary 1
one can construct a family of stabilization systems defined by certain polytopes of matrix coeffi-
cients (3.7) and (3.9) and by the ellipsoid of feedback matrices (2.11). In that problem, vertices
of polytopes Ai, Bj , Ck, and Ds will serve as unknowns together with positive definite matrices P
and Q that define the ellipsoid in question.

4. BOUNDS ON THE QUADRATIC QUALITY CRITERION FOR A FAMILY OF SYSTEMS

Consider a control system (3.1) with quadratic quality functional

J(u, x0) =

∞∫

0

ϕ(x, u, t) dt, ϕ(x, u, t) =
[
xT, uT

]
Φ(t)

[
x
u

]

,

Φ(t) =

[
S N
NT R

]

,

(4.1)

where x0 = x(0), and the blocks of symmetric matrix Φ(t) for some δ > 0 satisfy conditions

S � NR−1NT + δ In, R > 0, t � 0. (4.2)

We need to describe the set of controls (3.2) that would provide asymptotic stability for the
state x ≡ 0 of system (3.1) and a bound

J(u, x0) � ω, (4.3)

where ω is some maximal admissible value of the functional. When solving this problem, we still
use the Lyapunov function v(x, t) = xTX(t)x with a continuously differentiable matrix X(t) that
satisfies

xT0 X(0)x0 � ω, ε1In � X(t) � ε2In, 0 < ε1 � ε2, t � 0. (4.4)

Under assumptions (3.2) and (3.3) values of D(K), D(K∗), and D(K̂) are defined, where K̂ = G−1K̃
(see Section 3). Here the closed-loop system can be represented as (3.4), and the derivative of
function v(x, t) due to system (3.4) and the expression under the integral in (4.1) have the form

v̇(x, t) = xT(Ẋ +MTX +XM)x, ϕ(x, u, t) = xTLTΦLx,

where M = A+BD(K)C, LT = [In, C
TDT(K)], K = K∗ + K̃.

We now require that together with (3.3) and (4.4) the following inequalities hold:

v̇(x, t) � −ϕ(x, u, t) � −δ ‖x‖2, x ∈ S0, t � 0, (4.5)

where S0 is a neighborhood of the point x = 0 containing x0. For this it suffices that matrix
inequalities (4.2) hold, and that (see the proof of Theorem 1)

Ẋ +MT
0 X +XM0 + LT

0 ΦL0 � −ε0In, t � 0, (4.6)
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where

ε0 > 0, M0 = A0 +B0D̂(K0)C0, LT
0 = [In, C

T
0 D̂T(K0)],

D̂(K0) = (Im −K0D0)
−1K0, K0 = K∗0 + K̃0.

Here the zero index of each matrix indicates its value for x = 0 and t � 0. Then the zero solution
of system (3.4) is asymptotically stable and together with (4.4) and (4.5) we get an upper bound
on the functional (4.1):

J(u, x0) � −
∞∫

0

d

dt
v(x, t) dt = xT0 X(0)x0 � ω. (4.7)

Using property (2.4) of operator D̂, we rewrite inequality (4.6) as

F(K̂) = W + UTD(K̂)V + V TDT(K̂)U + V TDT(K̂)RD(K̂)V � 0,

x = 0, t � 0,
(4.8)

where

W = Ẋ +MT
∗ X +XM∗ +Φ∗ + εIn, Φ∗ = LT

∗ ΦL∗,

U = BTX +NT +RD(K∗)C, V = C∗, LT
∗ = [In, C

TDT(K∗)].

Here

K̃ ∈ K ⇐⇒ K̂ ∈ K̂ = {K : KTP̂K � Q},

where K̂ = G−1K̃, P̂ = GTPG.

Applying Lemma 2 and relations (4.4)–(4.8), we arrive at the following result.

Theorem 2. Suppose that for some εi > 0 (i = 0, 1, 2) and for x = 0 the system of matrix in-
equalities (4.4) holds, and

GTPG−DTQD > R, t � 0, (4.9)
⎡

⎢
⎢
⎣

Ẋ+MT∗ X+XM∗ +Φ∗+ ε0In XB+N +CTDT(K∗)R CT∗
BTX +NT +RD(K∗)C R−GTPG DT

C∗ D −Q−1

⎤

⎥
⎥
⎦� 0, t� 0. (4.10)

Then any control (3.2) provides asymptotic stability for the zero state of system (3.1), general
Lyapunov function v(x, t) =xTX(t)x, and a bound on the functional (4.3).

The statement of Theorem 2 holds for the family of systems (3.1), (3.7) if instead of (4.10) we
use the system of matrix inequalities

⎡

⎢
⎢
⎣

Ẋ +MT
ijkX +XMijk +Φk + ε0In XBj +N +CT

k DT(K∗)R CT
∗k

BT
j X +NT +RD(K∗)Ck R−GTPG DT

C∗k D −Q−1

⎤

⎥
⎥
⎦� 0, (4.11)

where

Mijk = Ai +BjD(K∗)Ck, Φk = LT
kΦLk, LT

k = [In, C
T
k DT(K∗)],

C∗k = Ck +DD(K∗)Ck, i = 1, νa, j = 1, νb, k = 1, νc, x = 0, t � 0.

We formulate a corollary of Theorem 2 under stronger assumptions.
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Corollary 2. Suppose that the following system of LMI with constant matrices:

P −DT
s QDs >R,

⎡

⎢
⎢
⎣

AT
i X +XAi+S XBj +N CT

k

BT
j X +NT R− P DT

s

Ck Ds −Q−1

⎤

⎥
⎥
⎦� 0, X > 0, (4.12)

is feasible, where i = 1, νa, j = 1, νb, k = 1, νc, s = 1, νd. Then any control (3.2) provides asymptotic
stability for the zero state in the family of systems (3.1), (3.7), (3.9), general Lyapunov function
v(x) = xTX x and bound of the functional (4.3).

Based on Theorem 2 and its corollaries, we can formulate the following optimization problems
for system (3.1) and families of systems (3.1), (3.7) and (3.1), (3.7), (3.9):

(1) minimize ω > 0 under constraints (4.4), (4.9) and (4.10);

(2) minimize ω > 0 under constraints (4.4), (4.9) and (4.11);

(3) minimize ω > 0 under constraints (4.12) and xT0 Xx0 � ω.

To solve these problems, in the case of constant matrices one can use various methods of mathe-
matical programming. As optimization parameters one can use positive definite matrices, quadratic
Lyapunov function (X), coefficients of the feedback ellipsoid (P and Q), and the quality func-
tional (Φ). Here results of the computations depend on the initial vector x0.

Note that instead of (4.1) one can use the quadratic functional

J0(u) =

∫

S0

μ(x0)J(u, x0) dx0, (4.13)

averaged over initial conditions, where μ(x0) � 0 is a given distribution density function for the
vector x0 on a certain set S0 ⊆ R

n, e.g., on a ball S0 = {x ∈ R
n : ‖x‖ � h}. Under assumption (4.5)

we have upper bounds for the functional (4.13):

J0(u) � tr (ΣX(0)) � μ0 λmax(X(0)),

Σ =

∫

S0

μ(x0)x0x
T
0 dx0, μ0 =

∫

S0

μ(x0)‖x0‖2 dx0.

Therefore in the formulated optimization problems (1)–(3) instead of the first condition of (4.4) we
can use inequalities tr (ΣX(0)) � ω or μ0 λmax(X(0)) � ω.

Example. Consider a control system for a single-link robot manipulator whose link’s circular
motion from one end to another is done with a flexible connection of the link and the executive
mechanism (Fig. 2).
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Fig. 2. A single-link robot manipulator.
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A linear torsion spring is located between the executive mechanism and the end of a link.
This system is defined with two nonlinear differential equations of order two that follow from the
mechanical balance of the executive mechanism (motor shaft) and the manipulator link discarding
the friction and external disturbances, or, in vector-matrix form [12],

ẋ = A(x)x+Bu, (4.14)

where

A(x) =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 0

−(μghϕ(θ1) + k)/J1 0 k/J1 0

0 0 0 1

k/J2 0 −k/J2 −d/J2

⎤

⎥
⎥
⎥
⎥
⎦
,

B =

⎡

⎢
⎢
⎢
⎢
⎣

0

0

0

1/J2

⎤

⎥
⎥
⎥
⎥
⎦
, x =

⎡

⎢
⎢
⎢
⎢⎢
⎣

θ1

θ̇1

θ2

θ̇2

⎤

⎥
⎥
⎥
⎥⎥
⎦
,

where θ1 and θ2 are angular coordinates of the manipulator link and motor shaft respectively, u is
the controlling moment produced by the electric drive, J1 and J2 are moments of inertia respectively
for the manipulator link and the electric drive, k is the rigidity of the transmission gear, d is the
damping coefficient, μ is the manipulator link’s mass, h is the manipulator link’s length, g is the
gravitational acceleration, and ϕ(θ) = (sin θ)/θ is a continuous function.

Let μgh = 5, d = 0.1, k = 100, and let J1 and J2 be unknown parameters that take values on
intervals

0.5 � J1 � 1.5, 0.1 � J2 � 0.5. (4.15)

We assume that the output vector

y = Cx+Du =

[
x1 + 0.1u

x4

]

, C =

[
1 0 0 0
0 0 0 1

]

, D =

[
0.1
0

]

can be measured. Solving two LMIs (2.6) and (2.8) for α = −0.1, J1 = 1, and J2 = 0.3, we find the
matrix X = XT > 0, vector K = [−0.6799 − 9.0603], and the corresponding control

u = K∗y, K∗ = −D(K) = [−0.7295 − 9.7213] (4.16)

that provides asymptotic stability for the linear system

ẋ = M∗x, M∗ = A(0) +BKC, K = D(K∗).

Here the spectrum equals σ(M∗) = {−0.6449; −15.0004; −7.4445 ± 11.8447i}, i(H) = {2, 1, 0} (see
Lemma 1), and the zero state of the original nonlinear system (4.14) is asymptotically stable as
well.

We define a matrix functional (4.1):

S = 0.5 I4, R = 0.2, N = 0.1 [1 0 0 1]T.

The system of relations (4.11) consists of four matrix inequalities that correspond to possible values
of the pair (J1, J2) at the ends of intervals (4.15). Using the Matlab suite, we find P = 2.33 and

AUTOMATION AND REMOTE CONTROL Vol. 76 No. 2 2015



260 MAZKO

 

–8.5

–9.0

–9.5

–10.0

–10.5

–11.0

 
k

 

2

 

–2.0 –1.5 –1.0 –0.5 0 0.5

 

k

 

1

 

K

 

*

Fig. 3. Region of feedback amplification co-
efficients (K−K∗)Q−1(K−K∗)T �P−1.

Fig. 4. System behavior with control u = K∗y.

positive definite matrices

Q =

[
1.0013 0.0013
0.0013 1.0013

]

, X =

⎡

⎢⎢
⎢
⎣

955.4267 −20.1682 −936.1927 −31.1040
−20.1682 5.2221 21.7147 −0.1949
−936.1927 21.7147 926.8484 31.0357
−31.1040 −0.1949 31.0357 2.9214

⎤

⎥⎥
⎥
⎦

that satisfy the above system of strict inequalities for ε0 = 0.

Thus, for all values of the moments of inertia (4.15) and the vector of feedback amplification co-
efficients K = K∗ + K̃ from a closed region bounded by the ellipse (K −K∗)Q−1(K −K∗)T = P−1

(Fig. 3), the motion of the manipulator robot in a neighborhood of the zero state is asymptotically
stable. Here v(x) = xTXx is a general Lyapunov function, and the value of the given quality func-
tional does not exceed v(x0) = 945.8169. The behavior of solutions of system (4.14) with control
u = K∗y and initial vector x0 = [1 −2 0 2]T is shown on Fig. 4.

5. CONCLUSION

In this work, we have proposed new methods of robust stability analysis for equilibrium states
and optimization of nonlinear control systems with static output feedback. Here values of unknown
matrix coefficients may belong to given polytopes, in particular, to matrix intervals, while the
measurable output vector contains components of both the system state and the control. Practical
implementation of the proposed methods is related to solving differential or algebraic LMIs. To solve
algebraic LMIs, one can use an efficient procedure already implemented in Matlab. An important
characteristic feature that distinguishes LMIs that we have found from known ones is the possibility
to construct an ellipsoid of stabilizing matrices for the feedback amplification coefficients, general
quadratic Lyapunov function, and also bounds on the quadratic quality functional for nonlinear
control systems with the considered uncertainties.

Results of this work are based on a generalization of the sufficiency statement of Petersen’s
lemma on matrix uncertainty. This generalization provides new possibilities in the robust stability
analysis problems for control systems with structured uncertainty, in particular to construct a
set of stabilizing feedback matrices as an ellipsoid, to bound the quadratic quality functional of
the control system, and also to solve similar robust stabilization problems for a class of nonlinear
discrete systems [13].

Unfortunately, conditions of Theorems 1 and 2 obtained from Lemma 2 and the second Lya-
punov’s theorem, in the general case are rather theoretical. Their practical use in the robust
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stabilization problems based on constructing quadratic Lyapunov functions with non-constant ma-
trices requires one to develop new methods for solving differential matrix inequalities. This remains
an important problem for further study.

APPENDIX

Proof of Lemma 1. According to the inertia theorem [14], matrix M∗ = A−BKC has p and q
(p + q = n) eigenvalues, counting multiplicities, in half-planes Reλ < α and Reλ > α respectively
only in case when the matrix inequality (2.8) has a solution X = XT with inertia i(X) = {p, q, 0}.
If, moreover, X > 0 and α � 0 then real parts of all points of the spectrum of σ(M∗) are negative.

Suppose that matrix inequality (2.8) has a nondegenerate solution X = XT. Let us show that
relations (2.6) hold. Applying Schur’s lemma [9] to block matrix TTY T < 0, where T =

[
B+T, B⊥],

detT �= 0, we obtain a system of inequalities S < 0 and Y1 < 0 which is equivalent to (2.8). Inertias
of matrices H and [

Im −K
0 Il

]

H

[
Im 0

−KT Il

]

=

[
Y1 HT

3

H3 H2

]

are the same, so i±(H) = i±(Y1) + i±(H4), whereH4 = H2 −H3Y
−1
1 HT

3 , H3 = H1 −H2K
T (see [4,

Corollary 4.2.6 ]). Under conditions S < 0 and Y1 < 0, due to the structure of the blocks in matrixH
we have

i−(H) = m and i+(H) = i+(H4) = rank [CXB⊥,H3] = rank(CXTΨ) = l,

where Ψ is a nondegenerate matrix of the form

Ψ =

[
0 Im

In−m S−1B⊥T(XCTKT − LB+T)

]

.

Let us show that under conditions (2.6) matrix inequalities (2.7) and (2.8) are feasible with
respect to K. Using the spectral decomposition of nondegenerate symmetric matrix H, we get

H=

[
U1

U2

]
[
UT
1 UT

2

]
−
[
V1

V2

]
[
V T
1 V T

2

]
, rank

[
U1

U2

]

= l, rank

[
V1

V2

]

= m.

Here detU2 �= 0. Indeed, U2U
T
2 − V2V

T
2 = H2 � 0 and hence (see [4, Lemma 6.1.1 ]) V2 = U2G,

where G is some l ×m matrix such that GGT � Il. But then rank
[
U2, V2

]
= rankU2 = l.

Let us show that there exists a matrix K for which det (V1 −KV2) �= 0 and

Y1 = (U1 −KU2)(U1 −KU2)
T − (V1 −KV2)(V1 −KV2)

T < 0.

The latter inequality holds if we let U1 −KU2 = (V1 −KV2)F orKU2(Il −GF ) = U1 − V1F , where
F is such an m× l matrix that FFT < Im. Then, taking into account that GGT � Il, we have
GFFTGT < Il and ρ(GF ) < 1. Consequently, under conditions (2.6) matrix K = (U1 − V1F )(Il −
GF )−1U−1

2 satisfies relations (2.7) and (2.8). Here matrix V1 − KV2 = N(Im − FG)−1 is nonde-
generate because the following matrices are nondegenerate:

[
U1 V1

U2 V2

]

=

[
−N U1

0 U2

] [
0 −Im
Il U−1

2 V2

]

, N = V1 − U1U
−1
2 V2.

This completes the proof of the lemma.
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Proof of Lemma 2. Let K ∈K. Since DTKTPKD�DTQD�DTQD+R<P then ρ(KD)<1,
K ∈ KD and operator D(K) is defined.

We use the Frobenius’ formula to invert the block matrix:

[
R− P DT

D −Q−1

]−1

=

[
Δ−1 Δ−1DTQ

QDΔ−1 QDΔ−1DTQ−Q

]

,

where Δ = DTQD +R− P , and reduce matrix inequality Ω � 0 (< 0) to the form

[UT, V T]

[
Δ−1 Δ−1DTQ

QDΔ−1 QDΔ−1DTQ−Q

] [
U
V

]

� W (> W ). (A.1)

Here we have also used the following well-known criterion (Schur’s lemma [9]): if detS3 �= 0 then

[
S1 ST

2

S2 S3

]

� 0 (< 0) ⇐⇒ S3 < 0, S1 − ST
2 S

−1
3 S2 � 0 (< 0).

Due to (A.1) we see that matrix inequality F(K) � 0 (< 0), representable as

[UT, V T]

[
0 −D(K)

−DT(K) −DT(K)RD(K)

] [
U
V

]

� W (> W ),

holds if [
Δ−1 D(K) + Δ−1DTQ

DT(K) +QDΔ−1 DT(K)RD(K) +QDΔ−1DTQ−Q

]

� 0.

Applying Schur’s lemma to this expression in case detS1 �= 0, we get

DT(K)RD(K) +QDΔ−1DTQ−Q− [DT(K) +QDΔ−1]Δ[D(K) + Δ−1DTQ]

= DT(K)PD(K)−Q−DT(K)DTQDD(K)−QDD(K)−DT(K)DQ

= DT(K)PD(K)− [Il +DT(K)DT]Q[Il +DD(K)] � 0.

The latter inequality, due to the properties (2.3) of operator D and the law of inertia, reduces to
the form KTPK � Q, i.e., to condition K ∈ K.

Note that the stronger assumption Ω < 0 ensures that strict inequality F(K) < 0 holds for every
matrix K ∈ K.

This completes the proof of the lemma.

Proof of Theorem 1. We construct the Lyapunov function for the closed-loop system (3.4) as
v(x, t) = xTX(t)x. Under conditions (3.5) it holds that ε1‖x‖2 � v(x, t) � ε2‖x‖2, t � 0. In order
for the derivative of function v(x, t) with respect to system (3.4) in some neighborhood S0 of the
point x = 0 to satisfy v̇(x, t) � −ε‖x‖2, where ε > 0, it suffices that the following matrix inequality
holds:

Ẋ +MTX +XM + εIn � 0, x ∈ S0, t � 0. (A.2)

Here according to the second Lyapunov’s theorem the state x ≡ 0 of this system is uniformly asymp-
totically stable. Condition (A.2) means that supt�0,x∈S0

ω(x, t) � −ε, where ω(x, t) = λmax(Ẋ +

MTX +XM).

Together with (A.2) we consider condition supt�0 ω(0, t) � −ε0, i.e.,

Ẋ +MT
0 X +XM0 + ε0In � 0, t � 0, (A.3)
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where M0 = M(0, t), ε0 > ε. By continuity it is clear that there exists a neighborhood S0 of the
point x = 0 where (A.2) follows from (A.3).

Using property (2.4) of operator D̂(K) = (Im −KD0)
−1K, we rewrite inequality (A.3) as

F(K̂) = W + UTD(K̂)V + V TDT(K̂)U � 0, x = 0, t � 0,

where W = Ẋ +MT∗ X +XM∗ + εIn, U = BTX , V = C∗ = C +DD(K∗)C, K̂ = G−1K̃. Here

K̃ ∈ K ⇐⇒ K̂ ∈ K̂ = {K : KTP̂K � Q},
where P̂ = GTPG. Applying Lemma 2 with R = 0, we get conditions of the form (3.3) and (3.6)
under which inequality (A.3) and, consequently, (A.2) hold for every matrix K̃ ∈ K. These condi-
tions together with inequalities (3.5) ensure asymptotic stability for the zero state of the closed-loop
system (3.4).

This completes the proof of the theorem.
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