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STABILIZATION BY A MEASURABLE OUTPUT AND ESTIMATION OF THE LEVEL
OF ATTENUATION FOR PERTURBATIONS IN CONTROL SYSTEMS

A. G. Mazko and S. N. Kusii UDC 517.93; 519.711

We establish new criteria for the output stabilization in linear control systems with the help of static
and dynamic regulators. It is shown that the stabilization algorithms derived from these criteria can be
applied to a certain class of nonlinear control systems. We propose some algorithms for the construction
of the regularities of control guaranteeing the required estimates of the weighted level of attenuation
of input signals. The obtained results are illustrated by an example of a system stabilizing a one-link
robot-manipulator.

1. Introduction

The problem of stabilization of dynamical systems is one of the main problems of control theory. For a class
of linear control systems with static feedback by the output

Px D Ax C Bu; y D Cx CDu; (1)

u D Ky; (2)

the problem is reduced to the determination of the matrix of amplification coefficients K for which the closed
system is asymptotically stable. Here, x 2 Rn; u 2 Rm; and y 2 Rl are, respectively, the vectors of state, control,
and measurable output of the system and A; B; C; and D are matrices of suitable sizes. The complete solution of
this important problem is known only for some special cases (see the surveys [1, 2]). Note that numerous available
algorithms of stabilization of the systems are reduced to the solution of linear matrix inequalities with the use of
the efficient LMI-Toolbox means of the Matlab computer system (see, e.g., [3–5]).

If a stabilizing static feedback cannot be constructed, then we can consider the possibility of stabilization of
system (1) with the help of a dynamic regulator of order r  n of the form

P⇠ D Z⇠ C Vy; u D U ⇠ CKy; (3)

where ⇠ 2 Rr is the vector of state of the regulator and Z; V; U; andK are the unknown matrices of suitable sizes.
In the present work, we propose some new criteria of stabilization of the linear system (1) with the help of

static and dynamic feedbacks. We also present some methods for the construction of regulators guaranteeing the
asymptotic stability of the state x ⌘ 0 of a class of nonlinear systems

Px D A.x/x C B.x/u; y D C.x/x CDu; (4)
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where A.x/; B.x/; and C.x/ are matrix functions continuous in the vicinity of the point x D 0: In this case, we
assume that B 2 Rn⇥m and C 2 Rl⇥n are matrices of full rank with m < n and l < n; respectively. For the class
of linear systems (1), we propose the algorithms of construction of the regularities of control of the forms (2) and
(3) guaranteeing the possibility of estimation of a certain criterion of quality, which describes the weighed level of
attenuation of the input signals and the robust stabilization relative to a given set of uncertainties. The proposed
quality criterion is an analog of theH1-norm of the transfer matrix functionH.�/ of the analyzed control system.

We use the following notation: In is the identity matrix of order n; 0n⇥m is the n⇥m zero matrix;X D XT > 0

.� 0/ is a positive (nonnegative) definite symmetric matrix X I i.X/ D fiC; i�; i0g is the inertia of an Hermitian
matrix X formed by the numbers of its positive, negative, and zero eigenvalues with regard for their multiplicities;
�max.X/ (�min.X/) is the maximum (minimum) eigenvalue of the Hermitian matrix X I AC is a pseudoreciprocal
matrix; kxk is the Euclidean norm of a vector x; WL 2 Rn⇥n�rankL is a matrix whose columns form a basis
of the kernel of the matrix L 2 Rl ⇥n; and B? (C?) is the orthogonal supplement of the matrix B 2 Rn⇥m

(C 2 Rl⇥n) of full rank m (l) defined by the relations BTB? D 0 and det
⇥
B;B?⇤ ¤ 0 (C?CT D 0 and

det
⇥
CT ; C?T

⇤
¤ 0).

2. Static Stabilization by the Output

First, we consider the linear system (1) with feedback (2). If the matrix of amplification coefficientsK belongs
to the set

KD D fK W det.Im �KD/ ¤ 0g;

then the closed system takes the form

Px D Mx; M D AC BD.K/C: (5)

The nonlinear operator D.K/ D .Im �KD/�1K has the following properties [6]:

1) if K 2 KD; then D.K/ ⌘ K.Il �DK/�1 and Il CDD.K/ ⌘ .Il �DK/�1I

2) if K1 2 KD and K2 2 KD1
; then

D.K1 CK2/ D D.K1/C .Im �K1D/�1D1.K2/ .Il �DK1/
�1

and K1 CK2 2 KD; where

D1 D .Il �DK1/
�1D and D1.K2/ D .Im �K2D1/

�1K2I

3) if �K0 2 KD; then K D �D.�K0/ 2 KD and D.K/ D K0:

By n�˛ .M/; nC˛ .M/; and n0˛.M/ we denote the numbers of eigenvalues of the matrix M D AC BK0C with
regard for multiplicities that belong to the corresponding setsC�

˛ D f� W Re ˘C˛ < 0g;CC
˛ D f� W Re ˘C˛ > 0g;

and C0
˛ D f� W Re ˘C ˛ D 0g; where ˛ 2 R: If n�˛ .M/ D n; then, for ˛ � 0; system (5) has a spectral stability

margin ˛:

Lemma 1. There exists a matrix K0 such that

n�˛ .M/ D p; nC˛ .M/ D q; n0˛.M/ D 0; (6)
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iff the following system of relations is solvable with respect to X :

B?T .AX CXAT C 2˛X/B? < 0; (7)

i.X/ D fp; q; 0g ; X D XT ; (8)

i.Å/ D fl; n; 0g ; Å D
"

AX CXAT C 2˛X XCT

CX 0

#
: (9)

If conditions (7)–(9) are satisfied, then the matrix K0 guaranteeing the validity of conditions (6) can be found
as a solution of the linear matrix inequalities

AX CXAT C 2˛X C BK0CX CXCTKT
0 BT < 0: (10)

Proof. According to the theorem on inertia [7], equalities (6) are equivalent to the consistency of the system
of relations (8) and (10) with respect to X: In [6], it was shown that the problem of determination of the matrix X

satisfying the given system is reduced to the solution of the matrix inequality (7) under the conditions

i.H/ D fl; m; 0g ; H D
"

BC.L � LRL/BCT BC.In � LR/XCT

CX.In �RL/BCT �CXRXCT

#
; (11)

where

L D AX CXAT C 2˛X; R D B?S�1B?T ; and S D B?TLB?:

The block matrixH can be represented in the formH D bH 0 � bHT
1
bH�1

2
bH 1; where

bHD
"

bH 0
bHT

1
bH 1

bH 2

#
D

2

64
BCLBCT BCXCT BCLB?

CXBCT 0 CXB?

B?TLBCT B?TXCT S

3

75DWÅW T ; W D

2

4
BC 0

0 Il
B?T 0

3

5 :

By using the well-known formulas for the indices of inertia of a block matrix [8, p. 147] and the formula bH 2 D
S < 0, we obtain

iC.bH/ D iC.bH 2/C iC.H/ D iC.H/; i�.bH/ D i�.bH 2/C i�.H/ D i�.H/C n �m:

Since W 2 RnCl⇥nCl is a square nonsingular matrix, we get i.bH/ D i.Å/: Hence, relations (9) and (11) are
equivalent under conditions (7) and (8).

The lemma is proved.

In the open set of solutions of the matrix inequality (10), it is always possible to choose a matrix K0 such that
�K0 2 KD: In this case, M D A C BK0C is a matrix of the closed system (5) (see property 3) of the operator
D.K/). Therefore, Lemma 1 yields the following criterion of stabilization of system (1).
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Theorem 1. The linear system (1) can be stabilized with the spectral stability margin ˛ � 0 with the help
of the static feedback (2) iff there exists a matrix X D XT > 0 satisfying relations (7) and (9). In this case, the
stabilizing feedback matrix can be defined in the form

K D �D.�K0/ 2 KD; (12)

where K0 is a solution of the linear matrix inequalities (10).

Remark 1. Conditions (8) and (9) are equivalent to the matrix inequality

C?.AT Y C YAC 2˛Y /C?T < 0; (13)

where Y D X�1: Indeed, by finding the indices of inertia of the block matrix

Å1 D W T
1 ÅW1 D

2

4
C?L1C

?T 0 C?L1C
C

0 0 Il
CCTL1C

?T Il CCTL1C
C

3

5 ;

where

L1 D AT Y C YAC 2˛Y; W1 D


YC?T 0 YCC

0 Il 0

�
2 RnCl⇥nCl ; detW1 ¤ 0;

we get

i˙.Å1/ D i˙.C?L1C
?T /C l D i˙.Å/

(see [8, p. 147]). Therefore, equalities (6) hold only under conditions (7) and (13). As a consequence, the criterion
of stabilization of system (1) by control (2) in Theorem 1 is reduced to the consistency of two linear matrix
inequalities (7) and (13) with respect to the mutually reciprocal positive-definite matrices X and Y (see also [4]).

Theorem 2. Assume that the following linear matrix inequalities hold for a matrix X D XT > 0 and some
˛ � 0 W

B?T
0 .A0X CXAT

0 C 2˛X/B?
0 < 0 (14)

and, moreover, that one of the relations

i.Å/ D fl; n; 0g and C?
0 .AT

0 Y C YA0 C 2˛Y /C?T
0 < 0 (15)

is true, where

A0 D A.0/; B0 D B.0/; C0 D C.0/; Y D X�1; Å D


A0X CXAT
0 C 2˛X XCT

0

C0X 0

�
:

Then the static regulator (2) with matrix (12), where K0 is a solution of the linear matrix inequalities

A0X CXAT
0 C 2˛X C B0K0C0X CXCT

0 KT
0 BT

0 < 0; (16)
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guarantees the asymptotic stability of the state x ⌘ 0 of the nonlinear system (4) and the quadratic Lyapunov
function v.x/ D xT Yx:

Proof. Conditions (14) and (15) ensure the solvability of the linear matrix inequality (16) with respect toK0:

In this case, by the continuity of the matrix functions A.x/; B.x/; and C.x/; the following relations are true for
some h > 0 W

M.x/X CXMT .x/C 2˛X < 0; Pv.x/ < �2˛ v.x/  0; x 2 S0;

where M.x/ D A.x/ C B.x/K0C.x/; S0 D fx W kxk < hg; and Pv.x/ is the derivative of the function v.x/ by
virtue of the closed system (4), (2), (12). Therefore, Theorem 2 is a consequence of Theorem 1 and the Lyapunov
theorem on asymptotic stability [9]. In this case, �K0 2 KD; K 2 KD; D.K/ D K0; and the spectrum of the
matrix M.x/ is located in the half plane C�

˛ for x 2 S0:

The theorem is proved.

Remark 2. In Theorems 1 and 2, the matrix of stabilizing feedbackK is determined as a result of the solution
of the corresponding linear matrix inequalities (10) and (16). Under additional restrictions, the sizes of the resolved
matrix inequalities can be decreased. Thus, if, in the set of solutions of the linear matrix inequalities (7), one can
find a matrix X such that C?X�1B D 0; then, for sufficiently large � > 0; the feedback matrix (12) in which

�K0 D � BTX�1CC 2 KD

guarantees the asymptotic stability of the closed system (5) with the spectral stability margin ˛. In this case, it
suffices to take � > �max.H0/=2; whereH0 D BC.L � LRL/BCT [6].

3. Dynamic Regulators

The control system (1) with dynamic feedback (3) of order r ¤ 0 is equivalent to a control system with static
feedback in the extended phase space RnCr :

Pbx D bAbx C bBbu; by D bCbx C bDbu; bu D bKby; (17)

where

bxD

x

⇠

�
; byD


y

⇠

�
; buD


u
P⇠

�
; bKD


K U

V Z

�
;

bAD


A 0n⇥r
0r⇥n 0r⇥r

�
; bBD


B 0n⇥r

0r⇥m Ir

�
; bC D


C 0l⇥r

0r⇥n Ir

�
; bDD


D 0l⇥r

0r⇥m 0r⇥r

�
:

For the matrix coefficients bB and bC of full rank, the formulas for the orthogonal supplements and pseudoreciprocal
matrices are as follows:

bB?D


B?

0r⇥.n�m/

�
; bBCD


BC 0m⇥r
0r⇥n Ir

�
; bC?D

h
C?; 0.n�l/⇥r

i
; bCCD


CC 0n⇥r
0r⇥l Ir

�
:
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Under the condition K 2 KD; the closed system (17) can be represented in the form

Pbx D cM bx; cM D bAC bBbD.bK/bC ; (18)

where

cM D
"

M B.Im �KD/�1U

V.Il �DK/�1C Z C VD.Im �KD/�1U

#
; M D AC BD.K/C:

Theorem 3. The following assertions are equivalent:

(i) there exists a dynamic regulator (3) of order r  n guaranteeing the asymptotic stability of the closed
system (18) with spectral margin ˛ � 0I

(ii) there exist matrices X and X0 satisfying relations (7) and such that

i.Å0/ D fl; n; 0g; X � X0 > 0; rank .X �X0/  r; (19)

where

Å0 D
"

AX0 CX0A
T C 2˛X0 X0C

T

CX0 0

#
I

(iii) there exist matrices X and Y satisfying relations (7) and (13) and such that

W D

X In
In Y

�
� 0; rankW  nC r: (20)

Proof. According to Theorem 1, the criterion of stabilization of system (17) with the help of a static regulator
has the form

bB?T
⇣
bAbX C bXbAT C 2˛bX

⌘
bB? < 0; i.bÅ/ D fl C r; nC r; 0g; (21)

where

bÅ D

2

4
bAbX C bXbAT C 2˛bX bXbC T

bCbX 0

3

5 ; bX D
"

X XT
1

X1 X2

#
> 0; ˛ � 0:

In view of the structure of the block matrices, the first relation in (21) coincides with the matrix inequality (7) with
respect to X:We now use the congruent transformation of the matrix bÅ:

bLbÅbLT D
"

Å0 0

0 Å1

#
; (22)
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where

bL D

2

66664

In �XT
1 X�1

2 0 �AXT
1 X�1

2

0 0 Il �CXT
1 X�1

2

0 Ir 0 0

0 0 0 Ir

3

77775
; Å1 D


2˛X2 X2

X2 0

�
:

Here, the diagonal block Å0 is defined in (19) for X0 D X �XT
1 X�1

2 X1: In this case,

i.Å1/ D fr; r; 0g; rank .X �X0/ D rank .XT
1 X�1

2 X1/  r; and X � X0:

Hence, relation (21) yields relations (7) and (19) for some positive-definite matrices X and X0: Conversely, if
the system of relations (7) and (19) is solvable with respect to X D XT > 0 and X0 D XT

0 > 0; then, in view of
(22), one can always find a block matrix bX > 0 satisfying relations (21). In this case, the matrix X must be its first
diagonal block. As X1 and X2; we can choose, e.g., the multiplier of the expansion X �X0 D XT

1 X1 � 0 and the
identity matrix Ir ; respectively.

The equivalence of Assertions 1 and 3 is established with regard for Remark 1 and the block structure of
the analyzed matrices. It is worth noting that the matrices X and X0 satisfy Assertion 2 iff the matrices X and
Y D X�1

0 satisfy Assertion 3. In order that relations (20) be true, it is necessary that the matrices X and Y be
positive definite. The rank restrictions in relations (19) and (20) are always satisfied for the dynamic regulator of
the full order r D n:

The theorem is proved.

Assertion 2 of Theorem 3 yields the following algorithm of construction of the stabilizing dynamic regulator
(3) of order r  n for system (1):

Algorithm 1.

1. Determination of the matrices X D XT > 0 and X0 D XT
0 > 0 satisfying relations (7) and (19).

2. Decomposition of the nonnegative-definite matrix

X �X0 D XT
1 X1 � 0; X1 2 Rr⇥n; rankX1  r:

3. Solution of the linear matrix inequalities

bAbX C bXbAT C 2˛bX C bBbK0
bCbX C bXbC T bKT

0
bBT < 0

with respect to bK0 under the restrictions det .Im CK0D/ ¤ 0 and ˛ � 0; where

bX D


X XT
1

X1 Ir

�
> 0; bK0 D


K0 U0

V0 Z0

�
:

4. Determination of the matrices of regulator (3) by the formulas

K D .Im CK0D/�1K0; U D .Im CK0D/�1U0;

V D V0.Il CDK0/
�1; Z D Z0 � V0D.Im CK0D/�1U0:

(23)
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By using relations (17) and (18), we can now formulate sufficient conditions for the existence of the dynamic
regulator (3) and the methods for its construction guaranteeing the asymptotic stability of the state x ⌘ 0 of the
nonlinear system (4) (see Theorem 2).

4. H1-Control by the Output

Consider system (1) with the trivial initial vector x.0/ D 0 and a class of controls

u D K⇤y C w; K⇤ 2 KD; (24)

whereK⇤ is the stabilizing matrix of static feedback. As the inputw; we can take a vector of external perturbations
or a new control. We can represent system (1) with control (24) in the form

Px D A⇤x C B⇤w; y D C⇤x CD⇤w; x.0/ D 0; (25)

where A⇤ D A C BD.K⇤/C; B⇤ D B.Im � K⇤D/�1; C⇤ D .Il � DK⇤/�1C; D⇤ D .Il � DK⇤/�1D; and
D.K⇤/ D .Im �K⇤D/�1K⇤:

For system (25), we define the quality criterion as follows:

JP;Q D sup
0<kwkP<1

J.w/; (26)

where

J.w/ D kykQ
kwkP

; kyk2Q D
1Z

0

yTQydt; kwk2P D
1Z

0

wTPwdt;

Q D QT > 0 and P D P T > 0 are positive-definite matrices specifying the weighedL2-norms kykQ and kwkP :

In this case, the following two-sided inequality is true:

�1J  JP;Q  �2J; �1 D �min.Q/

�max.P /
; �2 D �max.Q/

�min.P /
;

where J D JIm;Il coincides with theH1-norm of the transfer matrix function of system (1):

kHk1 D sup
!2R

q
�max.HT .�i!/H.i!//; H.�/ D C.�In � A/�1B CD:

The quantity J characterizes the level of attenuation of the input signals in the system, i.e., the “output–input”
energy ratio [3]. In the solution of various control problems, it is desirable to get the minimum values of this ratio.
The quality criterion (26), is called the weighed level of attenuation of the input signals in system (25).

Lemma 2. Assume that, for some matrix K⇤ 2 KD; the matrix A⇤ is the Hurwitz matrix. Then JP;Q < 1 iff
the following linear matrix inequality holds for some matrix X D XT > 0:

"
AT
⇤X CXA⇤ C CT

⇤ QC⇤ XB⇤ C CT
⇤ QD⇤

BT
⇤ X CDT

⇤ QC⇤ DT
⇤ QD⇤ � P

#
< 0: (27)
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In this case, the closed system (1), (24) with uncertainty

w D ‚y; ‚TP‚  Q; (28)

is robust stable with the general Lyapunov function v.x/ D xTXx:

Proof. By using the expansions of the positive-definite matrices P D bP T bP and Q D bQT bQ; we arrive at
the system

Px D A⇤x C bB⇤bw; by D bC ⇤x C bD⇤bw; x.0/ D 0;

where by D bQy; bw D bPw; bB⇤ D B⇤bP�1; bC ⇤ D bQC⇤; and bD⇤ D bQD⇤bP�1: In this case, the vector bw is
regarded as the input of the analyzed system with a quality criterion of the form J: Hence, the estimate JP;Q < �

holds iff the following linear matrix inequality is satisfied for some matrix X D XT > 0 [10, 11]:

b�� D

2

6664

AT
⇤X CXA⇤ XbB⇤ bCT

⇤
bBT

⇤X ��Im bDT
⇤

bC ⇤ bD⇤ ��Il

3

7775
< 0:

For K⇤ D 0; P D Im; andQ D Il ; this estimate is equivalent to the frequency inequality

HT .�i!/H.i!/ < �2Im; ! 2 R:

The obtained matrix inequality can be represented in the form

�� D GT b��G D

2

664

AT
⇤X CXA⇤ XB⇤ CT

⇤

BT
⇤ X ��P DT

⇤

C⇤ D⇤ ��Q�1

3

775 < 0; (29)

where G D diag fIn;bP ; bQ�1T g: It is clear that, under condition (29), the matrix A⇤ must be the Hurwitz matrix.
Setting � D 1 and applying the Schur lemma, we get a criterion of validity of the estimate JP;Q < 1 in the

form of the matrix inequality (27). The asymptotic stability of the closed system (1), (24) for any vector (28) (i.e.,
the robust stability) with the general Lyapunov function v.x/ D xTXx is a consequence of Theorem 1 [12].

The theorem is proved.

Note that characteristic (26) is determined as a result of the solution of the following optimization problem
with respect to X and K⇤:

JP;Q D inf
¸
� W�� < 0;X D XT > 0; K⇤ 2 KD

π
:

As the parameters of optimization, parallel with X and K⇤; we can also take the positive-definite matrices P and
Q;

We now establish a criterion of existence of the matrix K⇤ satisfying Lemma 2.
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Let K0 D D.K⇤/: Then A⇤ D A C BK0C; B⇤ D B.Im C K0D/; and C⇤ D .Il C DK0/C; D⇤ D
.Il CDK0/D: For � D 1; the matrix inequality (29) takes the form

LTK0RCRTKT
0 LC S < 0; (30)

where

R D Œ C;D; 0l⇥l ç ; L D
h
BT ;DT ; 0m⇥m

i
bX;

bX D

2

664

X 0 0

0 0 Il

0 Im 0

3

775 ; S D

2

664

ATX CXA XB CT

BTX �P DT

C D �Q�1

3

775 :

This inequality is solvable with respect to K0 iff

W T
R SWR < 0; W T

L SWL < 0; (31)

where WL and WR are matrices whose columns form the bases of the corresponding kernels kerL and kerR [11].
Since

WR D
"

WŒC;Dç 0

0 Il

#
; WL D bX�1


WŒBT ;DT ç 0

0 Im

�
;

conditions (31) can be reduced, with regard for the Schur lemma, to the form

W T
ŒC;Dç

"
ATX CXAC C TQC XB C C TQD

BTX CDTQC DTQD � P

#
WŒC;Dç < 0; (32)

W T
ŒBT;DT ç

"
AY C YAT C BP�1BT YCT C BP�1DT

CY CDP�1BT DP�1DT �Q�1

#
WŒBT ;DT ç < 0; (33)

where Y D X�1: If the matrix inequality (30) is solvable, then it is always possible to choose its solution K0 such
that the matrix Il CDK0 is nonsingular. In this case,

Il CDK0 D .Il �DK⇤/�1

and

K⇤ D K0.Il CDK0/
�1: (34)

Theorem 4. There exists a matrix K⇤ for which JP;Q < 1 iff the system of linear matrix inequalities (32)
and (33) is solvable with respect to mutually reciprocal matrices X D XT > 0 and Y D Y T > 0: In this case, the
closed system (1), (24) with uncertainty (28) is robust stable with the general Lyapunov function v.x/ D xTXx:
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The algorithm of finding the matrixK⇤ satisfying Theorem 4 is based on the solution of linear matrix inequal-
ities under certain additional restrictions.

Algorithm 2.

1. Determination of the matrices WŒC;Dç and WŒBT ;DT ç:

2. Determination of the matrices X D XT > 0 and Y D Y T > 0 satisfying conditions (32) and (33) and
XY D In:

3. Solution of the linear matrix inequalities (30) with respect to K0 under the restriction det.Il CDK0/ ¤ 0:

4. Determination of the matrix K⇤ according to formula (34).

In Lemma 2 and Theorem 4, the matrices P and Q are given. However, we can assume that, in the presented
algorithm of robust stabilization, they are unknown and determine them together with the positive definite matrices
X and Y:Moreover, we can take into account the uncertainty

A 2 CofA1; : : : ; A˛g ,
º

⌫X

iD1

˛iAi W˛i � 0; i D 1; ⌫;

⌫X

iD1

˛i D 1

Ω
:

In this case, it is necessary to solve a system of 2˛ linear matrix inequalities of the form (32) and (33) for each
vertex Ai of the given polytope. In Lemma 2, we can also consider the uncertainties B 2 Co fB1; : : : ; Bˇ g and
C 2 Co fC1; : : : ; C�g with the use of the corresponding systems of linear matrix inequalities.

For system (1) with the trivial initial vector, we now consider the quality criterion (26) and a class of dynamic
regulators

P⇠ D Z⇠ C Vy; u D U ⇠ CKy C w; ⇠.0/ D 0; (35)

where w 2 Rm is the vector of input signals. Under the condition that K 2 KD; the combined system is reduced
to the form

Pbx D cMbx C bNw; y D bFbx C bGw; bx.0/ D 0; (36)

where

bx D
"

x

⇠

#
; cM D

"
AC BK0C BU0

V0C Z0

#
; bN D

"
B C BK0D

V0D

#
;

bF D ŒC CDK0C;DU0ç ; bG D D CDK0D;

K0 D D.K/; U0 D .Im �KD/�1U; V0 D V.Il �DK/�1; Z0 D Z C VD.Im �KD/�1U:

If cM is the Hurwitz matrix, then, by Lemma 2, JP;Q < 1 if and only if the following linear matrix inequality
is satisfied for a matrix bX D bXT > 0:

2

4
cMT bX C bXcM C bF TQbF bXbN C bF TQbG

bN T bX C bGTQbF bGTQbG � P

3

5 < 0: (37)
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In this case, system (36) with uncertainty (28) is robust stable with the general Lyapunov function v.bx/ D
bxT bXbx: Representing relation (37) in the form of a linear matrix inequality for the unknown K0; U0; V0; and Z0;

we find

bLT bK0
bRC bRT bKT

0
bLCbS < 0; (38)

where

bS D

2

6666664

ATX CXA ATXT
1 XB CT

X1A 0 X1B 0

BTX BTXT
1 �P DT

C 0 D �Q�1

3

7777775
; bLT D

2

6666664

XB XT
1

X1B X2

0 0

D 0

3

7777775
;

bR D
"

C 0 D 0

0 Ir 0 0

#
; bK0 D

"
K0 U0

V0 Z0

#
:

In this case, the matrices of regulator (35) and blocks of the matrix bK0 are connected by relations (23).
Repeating the proof of Theorem 4 for system (36), we arrive at the following proposition.

Theorem 5. There exists a dynamic regulator (35) for which JP;Q < 1 if and only if the system of relations
(20), (32), and (33) is solvable with respect to the matrices X D XT > 0 and Y D Y T > 0: In this case, the
closed system (1), (35) with uncertainty (28) is robust stable with the general Lyapunov function v.bx/ D bxT bXbx;
where bX is a solution of the linear matrix inequality (37).

We now present the algorithm of construction of the dynamic regulator (35) satisfying Theorem 5.

Algorithm 3.

1. Determination of the matrices WŒC;Dç and WŒBT ;DT ç:

2. Determination of the matrices X D XT > 0 and Y D Y T > 0 satisfying relations (20), (32), and (33).

3. Formation of the block mutually reciprocal matrices

bX D


X XT
1

X1 X2

�
> 0; bY D


Y Y T

1

Y1 Y2

�
> 0; bXbY D InCr :

4. Solution of the linear matrix inequality (38) with respect to bK0 under the restriction det.Il CDK0/ ¤ 0:

5. Determination of the matrices of regulator (35) from relations (23).

In item 3 of the proposed algorithm, one can use the Frobenius formula for the inversion of the block matrices
[13]. According to this formula,

X D Y �1 C Y �1Y T
1 H�1Y1Y

�1; X1 D �H�1Y1Y
�1; X2 D H�1;
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Fig. 1. One-link robot-manipulator.

where

H D Y2 � Y1Y
�1Y T

1 :

If some matrices X1 andH satisfy the relations

X � Y �1 D XT
1 HX1 � 0; H D HT > 0; and rankX1  r;

then we can set X2 D H�1; Y1 D �HX1Y; and Y2 D H C HX1YX
T
1 H: In particular, under the conditions

r D n and X > Y �1; we can take X1 D X2 D X � Y �1 and H D .X � Y �1/�1:

Example 1. Consider a system of control of a one-link robot-manipulator. In this system, the rotational
motion of the link around one of the ends is realized with the help of a flexible joint of the link and a driving
mechanism (Fig. 1).

This system is described by two nonlinear second-order differential equations guaranteeing the mechanical
balance of the driving mechanism (shaft of an electric motor) and the link of the robot-manipulator in the absence
of friction forces and external perturbations [14]. The equations of motion of the system can be represented in the
vector-matrix form (4), where

x D

2

664

✓1
P✓1
✓2
P✓2

3

775 ; A.x/ D

2

664

0 1 0 0

�Œ�gh'.✓1/C kç=J1 0 k=J1 0

0 0 0 1

k=J2 0 �k=J2 �d=J2

3

775 ; B D

2

664

0

0

0

1=J2

3

775 ;

x1 and x2 are angular coordinates of the link of manipulator and the shaft of the motor, respectively, u is the
controlling moment created by the motor, J1 and J2 are the moments of inertia of the link of manipulator and the
shaft of the motor, respectively, k is the stiffness of the connecting mechanism, d is the damping coefficient, � is
the mass of the link of manipulator, h is its length, g is the gravitational acceleration, �gh sin ✓1 is the moment of
the gravity forces acting upon the link of manipulator, and '.✓/ D .sin ✓/=✓ is a continuous function.

Let �gh D 5; d D 0:1; k D 100; J1 D 1; and J2 D 0:3: Assume that we measure the output vector

y D Cx CDu D


✓1
P✓2 C u

�
; C D


1 0 0 0

0 0 0 1

�
; D D


0

1

�
:
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By using Algorithm 1, we get the following matrices of the dynamic regulator (3) guaranteeing the asymptotic
stability of the linear system (18) with the spectral stability margin ˛ D 0:3:

K D
⇥
0:41138 1:02011

⇤
; U D

⇥
�0:01041 1:26562 5:01012 5:63158

⇤
;

V D

2

664

40:87656 12:66551

�82:39505 2:64321

1:12738 1:01236

0:43389 0:45288

3

775 ;

Z D

2

664

�221:68319 �73:24345 435:55701 �16:56658
�5:86971 �7:50591 �13:13094 �3:32791

�122:55623 �99:16994 �54:17854 �48:20623
726:00834 651:89123 284:48100 �0:45528

3

775 :

The trivial solution of the closed nonlinear system (3), (4) is also asymptotically stable.
In addition, for P D 1 and Q D 0:01I2; by using Algorithm 3, we construct the dynamic regulator (35) with

the matrices

K D
⇥
29:27198 17:72540

⇤
; U D

⇥
�136:98479 1:68417 159:99785 �4:63821

⇤
;

V D

2

664

�8:92308 29:89135

8:78891 �134:01536
�0:46761 �4:38040
�0:03049 10:43232

3

775 ;

Z D

2

664

�4:25434 �31:38366 9:09675 61:90396

0:95272 �0:44282 �0:00310 1:39153

�4:49349 57:91671 �0:29637 �201:07858
0:15745 1:47507 1:01022 �8:30203

3

775

guaranteeing the following estimate of the quality criterion: JP;Q < 1: We also determine the matrices

X D

2

664

504:20760 �107:19979 �103:12295 �17:22386
�107:19979 168:16951 133:38328 50:16634

�103:12295 133:38328 684:59654 40:47486

�17:22386 50:16634 40:47486 16:68031

3

775 ;

Y D

2

664

50:08075 �31:18632 50:37249 �25:00599
�31:18632 246:76214 �33:75284 40:51271

50:37249 �33:75284 52:75269 �32:09252
�25:00599 40:51271 �32:09252 707:83260

3

775

satisfying the system of linear matrix inequalities (20), (32), and (33). As the supplementing blocks X1 and X2;

we take X � Y �1: In this case, the trivial solution of the closed nonlinear system (4), (35) with uncertainty (28) is
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a b

Fig. 2. Behavior of a closed control system: (a) algorithm 1; (b) algorithm 3.

robust stable and the analyzed system possesses the general Lyapunov function

v.bx/ DbxT bXbx:

In Fig. 2, we present the behavior of solutions of the closed nonlinear control system (3), (4) with an initial
vector

bx0 D Œ0:1;�0:2; 0:3;�0:4;�0:1; 0:2;�0:3; 0:4çT

in the presence of a dynamic regulator of the total order r D 4 with the matrices K; U; V; and Z obtained by
using Algorithms 1 and 3. The continuous and dash-dotted lines show the trajectories of the system xi .t/ and the
regulator ⇠i .t/; i D 1; 4; respectively.

5. Conclusions

We establish new criteria of stabilization of the linear systems with the help of static and dynamic feedbacks
by the measurable output and propose new methods for the construction of regulators guaranteeing the asymptotic
stability of the equilibrium state of a certain class of nonlinear control systems. For the class of linear systems,
we develop the algorithms of construction of the regularities of control guaranteeing the estimation of the quality
criterion used to describe the weighed level of attenuation of the input signals and the robust stabilization of
the system with respect to a given set of uncertainties. The numerical realization of the proposed methods of
construction of the stabilizing regulators is reduced to the solution of systems of linear matrix inequalities. For this
purpose, it is possible to use fairly efficient tools of the Matlab computer system.
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