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INTRODUCTION TO THE SERIES 

Modern stability theory, oscillations and optimization of nonlinear systems 
have developed in response to the practical problems of celestial mechanics 
and applied engineering has become an integral part of human activity and 
development at the end of the 20th century. 

For a process or a phenomenon, such as atom oscillations or a supernova 
explosion, if a mathematical model is constructed in the form of a system 
of differential equations, then the investigation is possible either by a di
rect (numerical as a rule) integration of the equations or by analysis by 
qualitative methods. 

In the 20th century, the fundamental works by Euler (1707 -1783), La
grange (1736-1813), Poincare (1854-1912), Liapunov (1857 -1918) and 
others have been thoroughly developed and applied in the investigation of 
stability and oscillations of natural phenomena and the solution of many 
problems of technology. 

In particular, the problems of piloted space flights and those of astro
dynamics were solved due to the modern achievements of stability theory 
and motion control. The Poincare and Liapunov methods of qualitative 
investigation of solutions to nonlinear systems of differential equations in 
macroworld study have been refined to a great extent though not completed. 
Also modelling and establishing stability conditions for microprocesses are 
still at the stage of accumulating ideas and facts and forming the principles; 
for examples, the stability problem of thermonuclear synthesis. 

Obviously, this is one of the areas for the application of stability and 
control theory in the 21th century. The development of efficient methods 
and algorithms in this area requires the interaction and publication of ideas 
and results of various mathematical theories as well as the co-operation of 
scientists specializing in different areas of mathematics and engineering. 

ix 
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X INTRODUCTION TO THE SERIES 

The mathematical theory of optimal control (of moving objects, water 
resources, global processes in world economy, etc.) is being developed in 
terms of basic ideas and results obtained in 1956-1961 and formulated in 
Pontryagin's principle of optimality and Bellman's principle of dynamical 
programming. The efforts of many scholars and engineers in the framework 
of these ideas resulted in the efficient methods of control for many concrete 
systems and technological processes. 

Thus, the development of classical ideas and results of stability and con
trol theory remains the principle direction for scholars and experts modern 
stage of the mathematical theories. The aim of the International book 
series; Stability, Oscillations and Optimization of Systems is to pro
vide a medium for the rapid publication of high quality original monographs 
in the following areas: 

Development of the theory and methods of stability analysis: 
a. Nonlinear Systems (ordinary differential equations, partial differential 

equations, stochastic differential equations, functional differential equa
tions, integral equations, difference equations, etc.) 

b. Nonlinear operators (bifurcations and singularity, critical point theory, 
polystability, etc.) 

Development of up-to-date methods of the theory of nonlinear oscillations: 
a. Analytical methods. 

b. Qualitative methods. 
c. Topological methods. 

d. Numerical and computational methods, etc. 

Development of the theory and up-to-date methods of optimization of sys
tems: 

a. Optimal control of systems involving ODE, PDE, integral equations, 
equations with retarded argument, etc. 

b. Nonsmooth analysis. 

c. Necessary and sufficient conditions for optimality. 
d. Hamilton-Jacobi theories. 

e. Methods of successive approximations, etc. 

Applications: 

a. Physical sciences (classical mechanics, including fluid and solid mechan
ics, quantum and statistical mechanics, plasma physics, astrophysics, 
etc.). 
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b. Engineering (mechanical engineering, aeronautical engineering, electrical 
engineering, chemical engineering). 

c. Mathematical biology and life sciences (molecular biology, population 
dynamics, theoretical ecology). 

d. Social sciences (economics, philosophy, sociology). 
In the forthcoming publications of the series the readers will find fun

damental results and survey papers by international experts presenting the 
results of investigations in many directions of stability and control theory 
including uncertain systems and systems with chaotic behaviour of trajec
tories. 

It is in this spirit that we see the importance of the "Stability, Oscilla
tions and Optimization of Systems" series, and we are would like to thank 
Cambridge Scientific Publishers, Ltd. for their interest and cooperation in 
publishing this series. 





PREFACE

In modern applied mathematics, spectral and algebraic techniques
of the study of dynamic systems is being rapidly developed based on
the use of matrix equations and inequalities. The Lyapunov matrix
equation presents a constructive method of research, which is being
successfully used, not only in problems of stability analysis, but also
in the design of controllable systems with prescribed quality.

The constantly growing requirements for the quality of designed
objects lead to the use of complex mathematical models and the
necessity of construction of analogues of the Lyapunov equation as
techniques of analysis and synthesis of the corresponding classes of
systems. The most essential results in these directions have been
obtained in the last two decades and published in scientific journals.

This book is dedicated to the development of new, and syste-
matization of the known, methods of research of dynamic systems
of various types, based on the construction and the study of the
generalized Lyapunov equation. The main attention is given to the
problems of localization of the spectrum and estimation of stability
of wide classes of linear differential systems most often occurring in
applications. The mathematical rationale of the described methods is
the theorems on solvability and inertia of Hermitian solutions of mat-
rix equations, as well as the theory of linear equations with positively
invertible operators in a partially ordered space.

In Chapters 1 and 2, methods for construction of analogues of
the Lyapunov equations for matrices and matrix functions are pro-
posed. The properties of solutions of such equations are formulated
as generalized Lyapunov and Ostrowsky–Schneider theorems descri-
bing the location of eigenvalues with respect to relatively wide classes
of analytic curves. Systems of spectrum splitting and solutions of ge-
neralized block spectral problems are determined and used.

xiii



xiv Preface

The method of generalized Lyapunov equations underlies the pro-
posed algebraic criteria and the sufficient stability conditions for
some classes of differential, difference, differential-difference, and
stochastic systems (Chapter 3). A general technique for construc-
tion of solutions of differential and difference systems based on the
solution of the respective block spectral problem is also proposed.

In Chapter 4 the theory of Sylvester matrix equations of the gene-
ral form is set forth, which includes new and already known methods
of transformations, analysis of solvability conditions and construction
of solutions. The main results of this chapter are several theorems
generalizing Hill’s and Schneider’s theorems on inertia of Hermitian
solutions of transformable matrix equations.

Chapter 5 is devoted to the study of the stability conditions for
the dynamic systems in a partially ordered Banach space. Classes
of positive and monotone systems with respect to given cones of a
phase space are determined. The main results of the research are the
criteria of asymptotic stability of linear positive systems, stated in
terms of positive operators, methods for the stability investigation of
nonlinear monotone systems, as well as the development of methods
of comparison of systems in a partially ordered space. These results,
taking into consideration the supplements, allow us to consider the
earlier studied matrix problems and the stability problem from the
general positions of the theory of operators in a partially ordered
space.

In the supplementary Chapter 6 representations of linear opera-
tors acting in matrix and other partially ordered spaces are studied.
Special attention is given to the description of classes of positive
and positively invertible operators with respect to a given cone, in
particular, the set of nonnegative definite matrices.

The book mainly contains the results of the author’s works pub-
lished in periodicals. I hope that it will be useful to many researchers
developing the methods of analysis and synthesis of dynamic systems,
and also to engineers, post-graduates and students of higher technical
educational institutions.

I hereby express my deep gratitude to Professor A. A. Martynyuk
for his advice and comments which contributed to the improvement
of the contents of the book. I would like to thank my colleagues from
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the Institute of Mathematics of the National Academy of Sciences of
Ukraine for useful discussions and technical support.

A.G. Mazko





NOTATION

Rn — real

Cn — complex

}
n dimensional vector space;

Rn×m — space of real

Cn×m — space of complex

}
n×m matrices;

A = ||aij ||n,mi,j=1 =



a11 . . . a1m

· · · · · · · · ·
an1 . . . anm


 —

n×m matrix
with entries aij ;

I (In) — unit matrix (of order n);

0 — zero matrix, zero scalar or zero vector;

AT — transposed

A∗ — conjugate

A−1 — inverse

A− — semi-inverse

A+ — pseudoinverse





matrix to A;

f(A) — analytic function of matrix A;

Λ0
f — analytic curve described by the equation f(λ, λ̄) = 0;

Λ±
f — open domains bounded by the curve Λ0

f ;

λmax(A) (λmin(A)) — maximal (minimal) eigenvalue of the Hermitian
matrix A = A∗;

xvii



xviii Notation

σ(A) — spectrum

detA — determinant

trA — trace

i(A) — inertia

rankA — rank

signA — signature





of matrix A;

i+(A), i−(A), i0(A) — number of positive, negative, and zero eigen-
values of the matrix A, taking into account the multiplicities;

i+f (A), i−f (A), i0f (A) — number of points of the spectrum σ(A), be-

longing to the respective sets Λ+
f , Λ−

f , Λ0
f ;

A⊗B — Kronecker product

A⊙B — Schur product

}
of matrices A and B;

∮

ω

— Cauchy type integral over a closed contour ω;

X , Y, Xpq, Ypq — sets in a matrix space;

Hn (Kn) — set of Hermitian (nonnegative definite) n× n matrices;

LX, LfX, MfX — linear operators (transformation) of X;

E — identity operator;

ρ(L) — spectral radius of operator (matrix);

kerL — kernel of operator (matrix);

K — cone in a partially ordered space E ;

K0 — set of inner points of the cone K;

X
K
≥ Y , X

K
≤ Y , X

K
> Y , X

K
< Y — inequalities between elements X

and Y , generated by the cone K;
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r(X) — rank

s(X) — signature

i(X) — inertia





of X ∈ E ;

(
q
p

)
= Cqp — number of combinations from p elements on q,

equal to
p!

q!(p− q)!
.
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PRELIMINARIES

0.1 The Object and Review of the Book

During the study and creation of controllable physical objects (trans-
port, electromechanical, extraterrestrial, etc.) there occur problems
of stability and quality of the systems that describe their motion.
Modern methods of solving such problems are based on application
of the state space procedure and matrix analysis and oriented at the
use of the scope of computation engineering.

The dynamics of many real objects is adequately modelled by
differential or difference systems of the form

F (D)x(t) = g(t), t ≥ t0, (0.1.1)

where F (λ) is an analytic matrix function, x is a state vector of the
system, D is an operator of time differentiation or a shift operator,
g is a vector of external forces (operating controls, random perturba-
tions, etc.). The main subclasses of systems (0.1.1) are determined
by the structure and properties of the matrix function F (λ):

F (λ) = λI −A — systems of equations of Cauchy type;

F (λ) = A − λB — systems of equations not solved with respect to
derivatives or iterations (descriptor systems);

F (λ) = A + λB + λ2C — systems of second-order differential or
difference equations;

F (λ) = A0 + λA1 + · · · + λsAs — systems of s–th order differential
or difference equations;

F (λ) = A0 + λA1 +
∑
k>1

e−λτk−1Ak — delay systems.

1



2 Preliminaries

Numerous problems of mechanics, mathematical physics and ana-
lysis lead to systems of the form (0.1.1). In the study of mechanical
systems, a particular role is played by linear and quadratic pencils
whose coefficients are formed on the basis of expressions for kinetic
and potential energies and dissipative functions. Matrix polynomials
of higher degrees occur, e.g., in the control problems with dynamic
state-feedback.

Stability conditions and quality indices of systems of the type
(0.1.1) are described by location of some algebraic or transcendent
equations, i. e. eigenvalues of the matrix function F (λ), composing
its spectrum σ(F ) in the complex plane. E.g., the number

α = −max {Reλ : λ ∈ σ(F )}

determines the stability factor and the estimate for the time of the
transient process t ≤ 1/α. Localization of the spectrum inside a ver-
tical band is used at construction of majorants and minorants of the
transient process. Localization of the spectrum of a stable system
between two beams passing through the point of origin secures the
oscillation of the system, to not exceed the prescribed one. The re-
quirement for aperiodicity of the system in terms of spectrum means
that all eigenvalues are located on the real axis. In applications there
occur systems with more complex limitations on the domain of the
possible location of the spectrum.

Stability of the motion of some classes of nonstationary systems
is also related to the problem of spectrum location. Thus, the con-
dition of the asymptotic stability of linear systems of the Cauchy
type with periodic coefficients is the location of the spectrum of the
monodromy matrix inside a unit disk with its center in the point
of origin. Spectral methods of analysis and synthesis of systems of
the type (0.1.1) are successfully used in the study of more complex
classes of nonlinear nonstationary systems.

The increasing requirements for the quality of designed systems
make it necessary to study the general problems of eigenvalues loca-
tion of matrix polynomials and functions. These problems are the
natural generalization of the Routh–Hurwitz problem formulated for
the roots of characteristic polynomials in the stability theory of au-
tonomous systems.



The Object and Review of the Book 3

The basics of classical methods of solving the Routh–Hurwitz
problem for simple domains are laid out in the works of Cauchy,
Sturm, Hermite, Routh, Hurwitz, Lienard, Shepard, Schur, and oth-
ers (see references in Gantmacher [1] and Krein, Naimark [1]). One of
the principal methods of solving this problem is the famous Lyapunov
theorem. According to it, the spectrum of a matrix A is located in
the open left half-plane if and only if for any given positive definite
Hermitian matrix Y = Y ∗ > 0 the linear algebraic matrix equation

−AX −XA∗ = Y (0.1.2)

has the unique solution X = X∗ > 0.

The Lyapunov criterion, as against the determinant conditions of
Routh–Hurwitz, is written in terms of the system coefficients without
direct calculation of its characteristic polynomial. This is above all
the reason for its wide application, not only in the study of practical
stability problems, but also in problems of synthesis of controllable
systems with given properties, as well as in other areas of applied
mathematics and physics.

For the Lyapunov equation (0.1.2) the inertia theorem is proved
which describes the location of the spectrum of a matrix A with
respect to an imaginary axis in terms of inertia indices of the solu-
tion X (Ostrowsky–Schneider and Tausski theorems). The Lyapunov
theorem and inertia theorem are applied to some classes of algebraic
domains used in the study of the matrix spectrum. At the same
time respective analogues of the Lyapunov matrix equation are con-
structed.

Substantial interest is now shown in the construction and appli-
cation of analogues of the Lyapunov equation for different classes of
dynamic systems. Such equations are presented in the form

∑

i,j

cijAiXA
∗
j = Y, (0.1.3)

where cij are scalar coefficients, Ai is a set of given matrices, and X
and Y are Hermitian matrices subject to determination.

For the class of equations of the type (0.1.3) with simultaneously
triangulable matrix coefficients, inertia theory has been developed



4 Preliminaries

which determines spectral conditions of solvability and inertial pro-
perties of Hermitian solutions in the form of generalization of Lya-
punov, Ostrowsky–Schneider and Tausski theorems. In particular,
in this theory families of functions of matrix can be used, as well as
commutative and quasi-commutative sets of matrices.

Matrix coefficients of the known analogues of the Lyapunov equa-
tion for differential–difference and stochastic systems are not con-
strained by any limitations and do not satisfy the conditions of si-
multaneous reducibility to triangular form. Therefore for such equa-
tions a more general inertia theory is required, which does not use
such limitations on matrix coefficients.

The aim of this monograph is to get the reader acquainted with
general methods of construction, study and application of matrix
equations acting as analogues of the Lyapunov equation in problems
of stability and spectrum location of the dynamic systems. Such
methods can be used while solving practical problems of analysis
of stability and synthesis of controllable objects. Their efficiency is
proved by the new opportunities arising due to the application of
computational technologies. The main advantage of the method of
the generalized Lyapunov equation is that the analysis of the quality
of the studied object adds up to solving algebraic equations and does
not require calculation of the spectrum of matrix functions.

Chapter 1 deals with the problem of distribution of the spectrum
of a matrix A with respect to the sets Λ+

f , Λ−
f , and Λ0

f consisting of

those points λ ∈ C1 for which the values of the Hermitian function
f(λ, λ̄) are respectively positive, negative, and zero. It is required to
estimate the numbers i+f , i−f , and i0f equal to the number of points of
the spectrum σ(A), taking into account the multiplicities, belonging
respectively to Λ+

f , Λ−
f , and Λ0

f . In particular, we are interested in
the criteria of the belonging of the whole spectrum to each of the
mentioned sets. The problem is studied by the method of the matrix
equation

LfX = Y

with the Krein–Daletskii operator Lf . Spectral and algebraic proper-
ties of operators of the type Lf are studied. Proceeding from eigen-
values, components and eigenvectors of the matrix A, methods of de-
termination of eigenelements of the operator Lf are proposed. One
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of the main results of the first chapter is the generalized Lyapunov
theorem derived on the basis of auxiliary statements on positivity
and positive invertibility of the operator Lf with respect to a cone
of nonnegative definite matrices. The class of domains for which the
criterion of inclusion σ(A) ⊂ Λ+

f is obtained for f ∈ Hm
0 is max-

imum allowable (within the framework of matrix equations). This
class contains all known domains for which the Lyapunov theorem is
generalized. In the generalized inertia theorem the numbers i±f are
determined in terms of inertia of solutions of the inequality LfX > 0,
where f ∈ Hm

2 is some class of functions. For estimation of i0f the
solutions of the homogeneous equation LfX = 0 are used. The
technique for extension of the sets of matrices X and Y used for
localization of the spectrum in the generalized Lyapunov equation
is described. The author also proposes a modification of the known
method of spectrum localization which adds up to determination of
the characteristic polynomial of some λ–matrix.

Developed in Chapter 2 are methods of the generalized Lyapunov
equation in the study of spectral properties of matrix functions F (λ).
Linear, quadratic and polynomial pencils of matrices are considered,
as well as analytic matrix functions allowing regular factorization. In
the general case, some subset of spectrum σ0(F ) is separated which
consists of r eigenvalues, taking into account the multiplicities, and
the quantities of whose points belong to the given sets Λ+

f , Λ−
f , and

Λ0
f are determined. The possibilities of solution of the eigenvalues

localization problem are studied with the use of the matrix equation

MfX = Y,

where Mf is the generalization of the operator Lf . Proposed are
various techniques for construction of the operator Mf , connected
with methods of spectrum splitting. The most general theorem on
eigenvalues location are formulated on the basis of the introduced
notions of right and left pairs of the matrix function F (λ). Pro-
posed are sufficient conditions for localization of the spectrum σ(F )
in some domains, that are based on the solution of systems of matrix
equations and inequalities.

Chapter 3 is dedicated to the application of the results of the first
two chapters to the analysis of linear dynamic systems, most fre-
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quently occurring in applications. Proposed for a linear controllable
object is a method for construction of a controller ensuring the best
value of the averaged quality functional and location of a system
spectrum in a given domain. This method generalizes the known
algorithms of suboptimal stabilization and allows not only the carry-
ing out of the minimization of the functional, but at the same time
effective provision of quality performance of the controlled system
by way of solving the generalized Lyapunov equation. Formulated
for linear descriptor systems, as well as for second-order differential
and difference systems, are the new criteria of asymptotic stability
and methods of Lyapunov functions construction, that are based
on solving matrix equations. A technique of analysis of stability of
differential-difference and stochastic systems is described, which is
based on solving the Sylvester equation. For the analysis and com-
putational construction of solutions of systems of the type (0.1.1) a
general technique is proposed which uses the properties of the right
pairs of matrix functions.

In Chapter 4, the theory of linear matrix equations of the general
form is described. The inertial properties of the solutions of symmet-
ric equations of the form (0.1.3) are studied, which are transformable
to a special form. The main results of this chapter are given in the
form of generalized theorems of Hill and Schneider. During the study
of matrix equations a number of new facts are found related to the de-
termination of the rank and signature of matrices. The methods for
computational and analytic construction of solutions of linear matrix
equations are described, following from the general theory. Criteria
of solvability of the Sylvester equation with arbitrary matrix coeffi-
cients are formulated, as well as the criterion of stability of the class
of linear positive systems, ensuing from the integral representation
of solutions of operator equations.

The results described in Chapters 1 to 4 show that for each dy-
namic system of the type (0.1.1) it is possible to construct matrix
equations (0.1.3) with properties of their solutions connected with
the stability conditions and the location of the spectrum of the given
system. Conversely, to each matrix equation (0.1.3) some class of
linear systems of the form (0.1.1) corresponds, with their dynamic
properties described in the form of inertia theorems for a given equa-
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tion. This is the main reason for the great attention given to the
theory of linear equations and operators in the space of matrices.

In Chapter 5 linear and nonlinear dynamic systems in a partially
ordered Banach space are considered. Classes of positive and mono-
tone systems with respect to given cones of a phase space are deter-
mined. The main results of the study are the criteria of asymptotic
stability of linear positive systems, formulated in terms of positive
and positively invertible operators, as well as the development of the
methods of analysis of robust stability and the known principle of
comparison of systems in a partially ordered space.

In the supplementary Chapter 6 methods of representation of li-
near operators in the space of matrices are given, as well as the basic
properties of the latter. The main attention is paid to the classes of
positive and positively invertible operators with respect to a cone of
nonnegative definite matrices. The results of the study of the class
of linear equations

LX − PX = Y, (0.1.4)

are given, where X and Y are elements of some partially ordered
space E with a cone K, and L and P are given operators satisfying
the condition PK ⊆ LK. In particular, it is supposed that the
operator P is positive, and the operator L is positively invertible, i.e.
PK ⊆ K ⊆ LK. In wide assumptions, equations with linear operators
occurring in applications are representable in the form (0.1.4). In
particular, the class of generalized matrix equations of Lyapunov
and Sylvester studied in Chapters 1 to 4 can be represented in the
form (0.1.4). Here K is a cone of Hermitian nonnegative definite
matrices. The properties of operators L and P are used in the study
of the iteration process

X0 = G, LXk+1 = PXk + Y, k = 0, 1, . . . ,

as a method of monotone approximation to the solutions of the equa-
tion (0.1.4).

The main substance of the book is the results of the authors pub-
lished works. The known results are used in logical constructs or for
comparison. The list of literature does not pretend to be complete
and only contains the publications that were most available for the
author.
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0.2 Notes and References

Classes of dynamic systems of the form (0.1.1) occur in problems
of analysis and synthesis of controllable objects. Solutions, stability
property and quality indices of such systems are described in terms
of spectral characteristics of a matrix F (λ). The study of spectral
theory of matrix and operator pencils is described in Markus [1],
Gohberg, Sigal [1], Rezvan [1], Krein, Langer [1], Gantmacher [1],
Kublanovskaya [1], and others.

In the systems theory and applications the methods of spectrum
localization in the complex plane are very important. Classical me-
thods for estimation of polynomial roots are described in Gantmacher
[1], Krein, Naimark [1], Postnikov [1], Cebotarev, Meiman [1], Parodi
[1], Jury [1], and others.

The matrix equation (0.1.2) is known as the Lyapunov equation
for continuous systems (see Lyapunov [1] and Gantmacher [1]). Its
solutions have unique properties and are widely used in various prob-
lems of analysis and synthesis of systems (see, e.g., Andreev [1],
Afanasiev, Kolmanovskii, Nosov [1], Ikramov [1], Zubov [1], Kuntse-
vich, Lychak [1], Aliev, Larin [1], Anderson, Moor [1], Boyd, Ghaoui,
Feron, Balakrishman [1], Martynyuk [1]).

The inertia theorem for the Lyapunov equation has been obtained
in Ostrowsky, Schneider [1] and Taussky [1]. Generalizations of the
Lyapunov theorem and the inertia theorem for some classes of equa-
tions of the form (0.1.3) have been proved by Jury [1], Kalman [1],
Mazko [1, 2, 5, 6, 7], Kharitonov [1], Gutman, Chojnowski [2], Carl-
son, Hill [1], Wimmer [1,2], and others.

Analogues of the Lyapunov equation for matrix polynomials and
functions have been constructed by Mazko [8, 11–13, 15, 25, 28].

Obtained in Schneider [1] and Hill [1] were inertia theorems for
equations of the form (0.1.3) with simultaneously triangulable matrix
coefficients. In Mazko [19–21, 23] these results were extended to
more general classes of equations, using the notions of collectives
and transformations.

Matrix equations of the form (0.1.3) occur in problems of stabi-
lity of differential-difference and stochastic systems (see Korenevskii,
Mazko [1, 2], Korenevskii [1], Zelentzovsky [1], Valeev, Karelova,
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Gorelov [1], Skorodinskii [1]).
The study of linear equations of the form (0.1.4) and operators in

partially ordered spaces leads to the natural generalization of some
facts of the theory of matrix equations and methods of spectrum
localization (see e. g. Krasnoselskii, Lifshits, Sobolev [1], Mazko
[30–32], Schneider [1]).





1

LOCATION OF MATRIX SPECTRUM WITH

RESPECT TO PLANE CURVES

1.0 Introduction

The Gershgorin theorem and its generalizations give descriptions of
domains in the complex plane, containing the eigenvalues of a given
matrix. In this chapter the reader will find the description of an
alternative approach to the study of spectral properties of a matrix.
We assume that the domain of possible location of the spectrum is
given, and look for the conditions of the desired clustering of eigen-
values with respect to the domain boundary. In particular we are
interested in the criteria of belonging of the whole spectrum to a
given domain. The main results in this direction are related to the
computation of inertia indices of Hermitian solutions of linear matrix
equations (the generalized Lyapunov equation).

Recall that the inertia of the Hermitian matrix X = X∗ is repre-
sented by the ordered triple of numbers

i(X) = {i+(X), i−(X), i0(X)} ,

which is determined by the numbers of its positive (i+), negative (i−),
and zero (i0) eigenvalues, taking into account the multiplicities.

In Section 1.1 the technique of description of curves and domains
in the complex plane by using Hermitian functions is described. A
general problem of distribution of eigenvalues of an arbitrary complex
matrix with respect to plane curves is defined.

Section 1.2 is devoted to the study of the class of integral operators
Lf of Cauchy type acting in the space of matrices and being the

11



12 Location of Matrix Spectrum

generalization of the Lyapunov operator LX = AX+XA∗. Spectral
and algebraic properties of operators Lf are described, as well as the
representations of their eigenelements.

Described in Section 1.3 is the full proof of the generalized Lya-
punov theorem which is the criterion of belonging of the matrix spec-
trum to an arbitrary domain from some maximum allowed class.
There is also a number of auxiliary propositions on positivity and
positive invertibility of the operator Lf with respect to a cone of
nonnegative definite matrices, and on the solvability of the generali-
zed Lyapunov equation LfX = Y .

Section 1.4 is devoted to the study of the maximum class of Her-
mitian functions Hm

0 satisfying the generalized Lyapunov theory. Its
main subclasses are distinguished, including the known ones, and se-
veral examples of domains are given that are bounded by remarkable
algebraic and transcendental curves.

In Section 1.5 the maximally generalized inertia theorem is stu-
died, presenting a method for distribution of a matrix spectrum with
respect to analytic curves in terms of inertia of solutions of matrix
equations or inequalities.

Formulated in Section 1.6 are the conditions of location of matrix
eigenvalues on plane curves with the use of solutions of the homoge-
neous matrix equation LfX = 0.

Estimates and methods of localization of a matrix spectrum are
described in Section 1.7. A modification of the known method of
spectrum localization is also proposed, which adds up to the deter-
mination of the characteristic polynomial of some λ matrix.

In Section 1.8 the technique of extension of the sets of Hermitian
matrices X and Y is described that are used for spectrum localization
in the generalized Lyapunov equation. The concept of controllability
of a pair of matrices is used, as well as some of its generalizations.

1.1 Description of Domains of the Complex Plane

Let f(λ, µ) be a complex function of two variables, uniquely deter-
mined in some domain and satisfying the identity

f(λ, µ) ≡ f(µ̄, λ̄), λ ∈ C1, µ ∈ C1. (1.1.1)
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All values of this function for µ = λ̄ are real. In the plane C1

determine the sets

Λ+
f =

{
λ : f(λ, λ̄) > 0

}
, (1.1.2)

Λ−
f =

{
λ : f(λ, λ̄) < 0

}
, (1.1.3)

Λ0
f =

{
λ : f(λ, λ̄) = 0

}
. (1.1.4)

These sets are described by the real function g(x, y) = f(λ, λ̄), where
x = Reλ, y = Imλ. Conversely, if some real function g(x, y) is given,
then the sets of points on which it takes on positive, negative, and
zero values can be described as (1.1.2)–(1.1.4), assuming

f(λ, λ̄) = g

(
λ+ λ̄

2
,
λ− λ̄

2i

)
, λ = x+ iy.

Here the function f is Hermitian, i.e. it satisfies the identity (1.1.1).
Assign a class of Hermitian functions with separable variables

f(λ, µ̄) =
∑

p,q

γpqfp(λ) fq(µ) ≡ zλΓz
∗
µ, (1.1.5)

where γpq are entries of the matrix Γ, and fp(λ) are components of the
vector function zλ = [f1(λ), . . . , fk(λ)]. If the matrix Γ is Hermitian,
then the function (1.1.5) satisfies the identity (1.1.1). The converse
is true when the functions f1(λ), . . . , fk(λ) are linearly independent.

The locus of the type (1.1.4) can be considered as a curve sep-
arating the domains Λ±

f in the complex plane. The boundary ∂Λ+
f

(∂Λ−
f ) of the domain Λ+

f (Λ−
f ) may not coincide with Λ0

f . In par-

ticular, if zλ =
[
1, λ, . . . , λk−1

]
, then the function (1.1.5) describes

the algebraic curve Λ0
f of order r ≤ 2k − 2, for which the inclusions

∂Λ+
f ⊂ Λ0

f and ∂Λ−
f ⊂ Λ0

f hold true.
If we have several curves of the form (1.1.4), then for the descrip-

tion of various domains separated by those curves in the complex
plane, one can use the properties of so-called R-functions. For exam-
ple, for the intersection and union of domains of the form (1.1.2),
corresponding to the functions f and ϕ, the following relations are
true:

Λ+
f ∩ Λ+

ϕ = Λ+
u , Λ+

f ∪ Λ+
ϕ = Λ+

v , (1.1.6)



14 Location of Matrix Spectrum

where

u(λ, λ̄) = f(λ, λ̄) + ϕ(λ, λ̄) −
√
f2(λ, λ̄) + ϕ2(λ, λ̄) =

= zλ




0 1 0
1 0 0
0 0 −1


 z∗λ,

v(λ, λ̄) = f(λ, λ̄) + ϕ(λ, λ̄) +
√
f2(λ, λ̄) + ϕ2(λ, λ̄) =

= zλ




0 1 0
1 0 0
0 0 1


 z∗λ,

zλ =
[
(1 + i)/2, ψλ,

√
ψλ

]
, ψλ = f(λ, λ̄) + iϕ(λ, λ̄).

If the real functions g(x, y) = f(λ, λ̄) and h(x, y) = ϕ(λ, λ̄) for
λ = x + iy ∈ Λ+

v are continuous and satisfy the Cauchy–Riemann
conditions

∂g(x, y)

∂x
=
∂h(x, y)

∂y
,

∂g(x, y)

∂y
= −∂h(x, y)

∂x
,

then ψλ is an analytic function of λ, and the functions u and v
describing the sets (1.1.6) are representable in the form (1.1.5).

Let an arbitrary matrix A ∈ Cn×n be given. Its spectrum
σ(A) = {σ1, . . . , σn} is composed of n eigenvalues, taking into ac-
count the multiplicities. If λ1, . . . , λα are all pairwise distinct points
σ(A), then the characteristic and minimal polynomials of the matrix
A have the form

χ(λ) = (λ− λ1)
n1 . . . (λ− λα)nα ,

Θ(λ) = (λ− λ1)
m1 . . . (λ− λα)mα ,

where

mt ≤ nt, m ≤ n, m =
∑

t

mt, n =
∑

t

nt, t = 1, α.
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Determine the quantity of the points of the spectrum σ(A), belonging
to each of the sets (1.1.2)–(1.1.4):

i+f (A) =
∑

λt∈Λ+

f

nt, i−f (A) =
∑

λt∈Λ−

f

nt, i0f (A) =
∑

λt∈Λ0
f

nt. (1.1.7)

It is required to construct classes of functions f and matrices A on
which the functionals (1.1.7) have prescribed properties. In partic-
ular, we are interested in the conditions under which the equality
i+f (A) = n equivalent to the location of all eigenvalues of the matrix
A in the domain (1.1.2) would hold true.

The problem makes sense if at least the values of the function
f(λt, λ̄t) are determined. Let H denote a set of Hermitian functions
f for which all the partial derivatives

fij(λt, λ̄τ ) =
∂i+j−2

∂λi−1
t ∂λ̄j−1

τ

f(λt, λ̄τ ),

are determined that compose the block Hermitian m×m matrix

Γf

(
m1 · · · mα

λ1 · · · λα

)
△
=



F11 · · · F1α

· · · · · · · · ·
Fα1 · · · Fαα


 , (1.1.8)

where

Ftτ =




f11(λt, λ̄τ ) · · · f1mτ (λt, λ̄τ )
· · · · · · · · ·

fmt1(λt, λ̄τ ) · · · fmtmτ (λt, λ̄τ )


 , t, τ = 1, α.

If mt = mτ = 1, then the respective block Ftτ represents the value
of the function f(λt, λ̄τ ). For the functions (1.1.5) the matrix (1.1.8)
is representable as

Γf

(
m1 · · · mα

λ1 · · · λα

)
= ZΓZ∗, (1.1.9)

where Z is a rectangular matrix whose rows are the derivatives z
(i−1)
λ

for λ = λt, i = 1,mt, t = 1, α.
Hermitian matrices of the type (1.1.8), (1.1.9) in particular, will

be used in the further study related to finding the admissible sub-
classes of functions of the class H in the process of solving the set
problem.
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1.2 Operator Lf

In the matrix space consider the linear operator Lf , defined by

LfX = − 1

4π2

∮

ω1

∮

ω2

f(λ, µ)(A− λI)−1X(B − µI)−1dλ dµ, (1.2.1)

where A ∈ Cn×n and B ∈ Cs×s are given square matrices, I is a unit
matrix of appropriate dimensions, ω1 (ω2) is a simple closed contour
containing the spectrum σ(A) (σ(B)) and separating in the complex
plane the closed domain Ω1 (Ω2), and f is a single-valued function
which has no singularity in the domain Ω1 × Ω2.

Assign a family of operators of the form (1.2.1) that preserve the
set of Hermitian matrices:

LfX = − 1

4π2

∮

ω1

∮

ω2

f(λ, µ̄)(A− λI)−1X(A− µI)−1∗dλ dµ̄. (1.2.2)

In this case B = A∗, and the function f ∈ H satisfies the iden-
tity (1.1.1). In particular, for the function (1.1.5) the operator (1.2.2)
reduces to the form

LfX =
∑

p,q

γpqfp(A)Xfq(A)∗, (1.2.3)

where the matrix coefficients represent analytic functions of matrix
A:

fp(A) = − 1

2πi

∮

ω1

fp(λ)(A − λI)−1dλ.

The operators (1.2.2) and (1.2.3) underlie our investigations related
to the solution of the problem of distribution of the spectrum σ(A).

Operators of the form (1.2.1), in particular (1.2.2) and (1.2.3),
have interesting algebraic properties. If the conditions

f(λ, µ) 6= 0, λ ∈ σ(A), µ ∈ σ(B), (1.2.4)

hold true, then the operator (1.2.1) is invertible, and the inverse
operator has the same form:

L−1
f = Lϕ, ϕ(λ, µ) =

1

f(λ, µ)
. (1.2.5)
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The spectrum σ(Lf ) of the operator (1.2.1) is formed by ns values
of the function f , determined in (1.2.4). Any operators Lf1 and Lf2
of the form (1.2.1) commute and satisfy the relations

Lf1Lf2 = Lf1f2 , c1Lf1 + c2Lf2 = Lc1f1+c2f2 , (1.2.6)

where c1 and c2 are arbitrary constants. Moreover, if we
have a given set of operators Lf1 , . . . , Lfk

and a given function
g(z1, . . . , zk), single-valued and analytic in the neighbourhood of the
set σ(Lf1) × · · · × σ(Lfk

), then

g(Lf1 , . . . , Lfk
) = Lg(f1,...,fk). (1.2.7)

Here the function of the family of commuting operators has the form

g(Lf1 , . . . , Lfk
) = νk

∮

σ1

· · ·
∮

σk

g(z1, . . . , zk)
k∏

j=1

(zjE − Lfj
)−1dz,

where νk = 1/(2πi)k , dz = dz1 . . . dzk, E is an identity operator,
σj is a closed contour containing the spectrum of the operator Lfj

.
The formula (1.2.7) is proved on the basis of the relations (1.2.5)
and (1.2.6).

We will show that each operator of the type (1.2.1) is representable
as

LfX =

m−1∑

p=0

r−1∑

q=0

γpqA
pXBq, (1.2.8)

where γpq are some coefficients and m(r) is the degree of the minimal
polynomial of the matrix A(B). Let λ1, . . . , λα (µ1, . . . , µβ) denote
all pairwise distinct points of the spectrum σ(A) (σ(B)) with the
respective indices m1, . . . ,mα (r1, . . . , rβ). Use the expansions of
resolvents

(λI −A)−1 =

α∑

t=1

mt∑

i=1

(i− 1)!

(λ− λt)i
Ati,

(µI −B)−1 =

β∑

τ=1

rτ∑

j=1

(j − 1)!

(µ− µτ )j
Bτj.
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The matrices Ati (Bτj) are linearly independent and called compo-
nents of the matrix A(B). Substituting these relations into (1.2.1)
and calculating the derivatives of integrals of Cauchy type, we obtain

LfX =

α∑

t=1

β∑

τ=1

mt∑

i=1

rτ∑

j=1

fij(λt, µτ )AtiXBτj , (1.2.9)

where

fij(λt, µτ ) = −(i− 1)!(j − 1)!

4π2

∮

ω1

∮

ω2

f(λ, µ) dλdµ

(λ− λt)i(µ− µτ )j
=

=
∂i+j−2

∂λi−1
t ∂µj−1

τ

f(λt, µτ ).

The components Ati = αti(A) (Bτj = βτj(B)) are scalar polynomials
of A (B) with their degrees not exceeding m− 1 (r − 1). Therefore
the expression (1.2.9) for the operator (1.2.1) is reducible to the
form (1.2.8).

Note that the properties (1.2.5)–(1.2.7) of the class of opera-
tors (1.2.1) can be found proceeding from the representation (1.2.9),
by calculation of higher order partial derivatives for sums and prod-
ucts of the respective functions, and by using the properties of matrix
components as well. In particular, the pairwise commuting compo-
nents of the matrix A have the following properties:

A2
t1 = At1,

α∑

t=1

At1 = I, Ati =
1

(i− 1)!
(A− λtI)

i−1At1,

AtiAτj =





0, t 6= τ or k > mt,
(
i− 1
k − 1

)
Atk, t = τ and k ≤ mt,

(1.2.10)

k = i+ j − 1, i = 1,mt, j = 1,mτ , t, τ = 1, α.

Components of the matrix B have similar properties.
In the expansion (1.2.9) isolate the terms whose left (right) ma-

trix coefficients form the spectral projectors At1 (Bτ1) of the matrix
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A(B):

LfX =

α∑

t=1

β∑

τ=1

[f(λt, µt)At1XBτ1 +NtτX] , (1.2.11)

where

NtτX =
∑

i+j>2

fij(λt, λτ )AtiXBτj , t = 1, α, τ = 1, β.

Using the properties of matrix components, one can find that all
operators Ntτ in (1.2.11) are nilpotent.

We will study the spectral properties of the operator (1.2.1), pro-
ceeding from its representation (1.2.11). In particular, we are inte-
rested in the structure of eigenelements (eigenvectors) of the ope-
rator (1.2.1) and the conditions of existence of nonnegative definite
matrices acting as eigenelements of this operator.

Consider the homogeneous matrix equation

LfW = wW. (1.2.12)

Each nonzero solution W = W (w) of this equation is an eigenelement
of the operator (1.2.1), corresponding to the eigenvalue

w ∈
{
f(λt, µτ ) : t = 1, α, τ = 1, β

}
.

Lemma 1.2.1 Matrix W is an eigenelement of the opera-
tor (1.2.1), corresponding to the eigenvalue w if and only if it is
representable in the form

W =
∑

(t,τ)∈Θw

At1HtτBτ1 6= 0, (1.2.13)

where Θw 6= ∅ is a set of pairs (t, τ), for which f(λt, µτ ) = w, Htτ are
some matrices satisfying the conditions

NtτHtτ = 0, (t, τ) ∈ Θw. (1.2.14)

Proof. Let Θw 6= ∅. Then any matrix of the form (1.2.13) un-
der the conditions (1.2.14) satisfies the equation (1.2.12). This is
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proved directly by substituting (1.2.13) into (1.2.12), using the pro-
perties of matrix coefficients of the expansion (1.2.11). Thus, assum-
ing Htτ = AtmtCtτBτrτ , Ctτ ∈ Cn×s, one can find that the condi-
tions (1.2.14) hold true. In this case we have the eigenelements of
the operator (1.2.1) of the form

W =
∑

(t,τ)∈Θw

AtmtCtτBτrτ 6= 0.

We will show that if W 6= 0 is a solution of the equation (1.2.12),
then Θw 6= ∅, and for some block matrix

H =



H11 · · · H1β

· · · · · · · · ·
Hα1 · · · Hαβ




the relations (1.2.13)–(1.2.14) hold true. LetHtτ = At1WBτ1. Then,
multiplying (1.2.12) from the left (right) by At1 (Bτ1), taking into
consideration (1.2.10) and (1.2.11), we obtain the system

[w − f(λt, µτ )]Htτ = NtτHtτ , t = 1, α, τ = 1, β, (1.2.15)

which is equivalent to the input equation (1.2.12). If w = f(λt, µτ ),
then the conditions (1.2.14) hold true. If w 6= f(λt, µτ ), then from
the nilpotency of the operator Ntτ follows Htτ = 0. Taking into
consideration the properties of projectors At1 and Bτ1, we have the
relation between the matrices W and H in the form

H =



A11
...

Aα1


W

[
B11 · · · Bβ1

]
,

W =
[
A11 · · · Aα1

]
H



B11
...

Bβ1


 .

(1.2.16)

Consequently, (1.2.13) and (1.2.14) hold true. At the same time,
Θw 6= ∅. Otherwise, all the blocks Htτ are zero, and according
to (1.2.16), W = 0, which is contrary to the assumptions.
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The lemma is proved.

Lemma 1.2.2 The nonnegative definite matrix W = W ∗ ≥ 0 is
an eigenelement of the operator (1.2.2), corresponding to the eigen-
value w, if and only if it is representable in the form

W =
∑

(t,τ)∈Θ∗

w

At1HtτA
∗
τ1 6= 0, (1.2.17)

where Θ∗
w 6= ∅ is a set of pairs (t, τ) for which

f(λt, λ̄τ ) = f(λt, λ̄t) = f(λτ , λ̄τ ) = w,

Htτ are blocks of a Hermitian nonnegative definite matrix, satisfying
the conditions

NtτHtτ = 0, (t, τ) ∈ Θ∗
w. (1.2.18)

Proof. Use the proof of Lemma 1.2.1 in the case of A = B.
If Θw 6= ∅, then under the conditions (1.2.18) the matrix (1.2.17)
satisfies the equation (1.2.12). In particular, one can assume that

W =
∑

(t,τ)∈Θ∗

w

AtmtCtτA
∗
τmτ

≥ 0,

where Ctτ are blocks of an arbitrary matrix C = C∗ > 0.

If the nonzero matrix W = W ∗ ≥ 0 satisfies the equation (1.2.12),
then, according to (1.2.16), H = H∗ ≥ 0, and H 6= 0. All columns
and rows of a nonnegative definite matrix that intersect on zero di-
agonal elements are equal to zero. Therefore if w 6= f(λt, λ̄t), then,
according to (1.2.15), Htt = 0, and with any τ the off-diagonal blocks
Htτ and Hτt are zero. Consequently, (1.2.13) and (1.2.14) are re-
ducible to the form (1.2.17) and (1.2.18), where Θ∗

w 6= ∅.
The lemma is proved.

Note that if the matrices A and B have a simple structure,
then the operators Ntτ in (1.2.11) are zero, and in the expressions
(1.2.13) and (1.2.17) there are no constraints on blocks Htτ of the
form (1.2.14) and (1.2.18).

Find the relation between the solutions of the equation (1.2.12)
and the eigenvectors of the matrices A and B. From the right (left)
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eigenvectors of the matrix A(B), corresponding to the eigenvalue
λt (µτ ), construct the matrices Ut ∈ Cn×ut (Vτ ∈ Cvτ×s). These
matrices satisfy the relations

AUt = λtUt, VτB = µτVτ .

Let Ut (Vτ ) be a matrix of full rank ut (vτ ) equal to the geometric
multiplicity of the eigenvalue λt (µτ ). Proceeding from the basic
interpolation properties of the polynomials αti and βτj , obtain the
relations

AtiUp =

{
Ut, t = p and i = 1,
0, t 6= p or i > 1,

VqBτj =

{
Vτ , τ = q and j = 1,
0, τ 6= q or j > 1.

(1.2.19)

From (1.2.19) it follows that any matrices of the form Htτ = UtStτVτ
satisfy the conditions (1.2.14).

Thus, if Θw 6= ∅, then according to Lemma 1.2.1, the expression

W =
∑

(t,τ)∈Θw

UtStτVτ 6= 0 (1.2.20)

is an eigenelement of the operator (1.2.1), corresponding to the eigen-
value w. Under the conditions A = B and Θ∗

w 6= ∅ the matrix (1.2.20)
is reducible to the form

W =
∑

(t,τ)∈Θ∗

w

UtStτU
∗
τ ≥ 0 (6= 0) (1.2.21)

and serves as an eigenelement of the operator (1.2.2), corresponding
to the eigenvalue w. It is always possible to select the blocks Stτ so
that the rank of the matrix (1.2.21) would take on any value from
the interval

1 ≤ rankW ≤
∑

(t,t)∈Θ∗

w

ut,

where ut is the geometric multiplicity of the eigenvalue λt ∈ σ(A).
The described techniques of solving the equation (1.2.12) can be

used in the study of a more intricate problem of construction of
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Jordan sequences of elements for the operator (1.2.1). The number
of such elements for each eigenvalue w of the operator (1.2.1) equals
the algebraic multiplicity calculated as

k(w) =
∑

(t,τ)∈Θw

nt sτ ,

where nt (sτ ) is the algebraic multiplicity of the eigenvalue λt (µτ )
of the matrix A(B).

1.3 The Generalized Lyapunov Theorem

Consider the linear matrix equation

LfX = Y, (1.3.1)

where Lf is an operator of the form (1.2.2), constructed for the given
matrix A ∈ Cn×n and function f ∈ H. For any matrix Y ∈ Cn×n

the equation (1.3.1) has the unique solution X ∈ Cn×n if and only if
the following inequalities hold true:

f(λt, λ̄τ ) 6= 0, t = 1, α, τ = 1, α, (1.3.2)

where λ1, . . . , λα are pairwise distinct points of the spectrum σ(A).
If Y is a Hermitian matrix, then under the conditions (1.1.1) the
solution X is also Hermitian.

Let K0 (K) denote a set of Hermitian positive (nonnegative) de-
finite matrices of order n. The set K is a reproducing cone of the
space Cn×n. If LfK ⊆ K, then K is an invariant set of the operator
Lf .

Study the relation between the spectral properties of the matrix
A and the solvability conditions of the equation (1.3.1) in K0 and K.
From Lemma 1.2.2 it follows in particular that under the condition
σ(A) ∩ Λ+

f 6= ∅ there exist matrices X ≥ 0 and Y ≥ 0 that satisfy
the equation (1.3.1).

Lemma 1.3.1 If for some matrix Y > 0 the equation (1.3.1) has
a solution X ≥ 0, then all eigenvalues of the matrix A are located in
the domain (1.1.2), i.e.

f(λ1, λ̄1) > 0, . . . , f(λα, λ̄α) > 0. (1.3.3)
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Conversely, if the inequalities (1.3.3) hold true, then there exist mat-
rices X > 0 and Y > 0 that satisfy the equation (1.3.1).

Proof. Multiplying (1.3.1) from the left (right) by Atmt (A∗
τmτ

),
taking into account (1.2.10) and (1.2.11) gives

f(λt, λ̄τ )AtmtXA
∗
τmτ

= AtmtY A
∗
τmτ

, t = 1, α, τ = 1, α. (1.3.4)

If Y > 0, then in the right-hand side of (1.3.4) for t = τ there are
nonzero nonnegative definite matrices. If, in addition, X ≥ 0, then
the inequalities (1.3.3) hold true. From (1.3.4) it also follows that
with X > 0 and Y ≥ 0 all values of the function f(λt, λ̄t) are nonzero.

We will show that under the conditions (1.3.3) it is possible to
construct matrices X > 0 and Y > 0 satisfying the equation (1.3.1).
Let J = TAT−1 be the left Jordan form of the matrix A. Transform
the equation (1.3.1) to the form

α∑

t=1

α∑

τ=1

mt∑

i=1

mτ∑

j=1

fij(λt, λ̄τ )αti(J)Hατj(J)∗ = G, (1.3.5)

where H = TXT ∗, G = TY T ∗. Use some properties of the matrices
αti(J), following from (1.2.10). All elements of the matrices αt1(J)
are zero except nt diagonal elements αt1(λt) = 1. All nonzero ele-
ments of the matrices αti(J) for i > 1 are located below the leading
diagonal.

Let Hk and Gk be sequential leading submatrices of order k of
the corresponding matrices H and G, k = 1, n. Then, according to
(1.3.5)

Hk =

[
Hk−1 uk
u∗k hkk

]
, Gk =

[
Gk−1 vk
v∗k f(σk, σ̄k)hkk + wk

]
, (1.3.6)

where Gk−1, vk, and wk do not depend on the entry hkk of the
matrix H, k = 2, n. Under the conditions (1.3.3) we have the recur-
rent algorithm of finding a matrix H for which G > 0. Apparently,
G1 = f(σ1, σ̄1)H1 > 0 for H1 = h11 > 0. If Hk−1 > 0 and Gk−1 > 0,
then the inequalities Hk > 0 and Gk > 0 are achieved by increasing
the diagonal entry hkk. Thus, if

f(σk, σ̄k) hkk + wk > v∗kG
−1
k−1 vk, (1.3.7)
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then Gk > 0. To off-diagonal elements H the arbitrary values
hks = h̄sk can be assigned. Using this technique, one can construct
a diagonal matrix H > 0 satisfying the inequalities (1.3.7). The
sought matrices X > 0 and Y > 0 for the input equation (1.3.1) are
determined in (1.3.5).

The lemma is proved.

Lemma 1.3.2 K is an invariant cone of the operator (1.2.2) if
and only if the following condition holds true:

Γf

(
m1 . . . mα

λ1 . . . λα

)
≥ 0. (1.3.8)

The operator (1.2.2) preserves the set of positive definite matrices
K0 if and only if the system of inequalities (1.3.3) and (1.3.8) holds
true.

Proof. The inclusion LfK ⊆ K means that in (1.3.1) X ≥ 0
implies Y ≥ 0. For each vector c ∈ Cn, introduce a set of pairs of
indices ∆c = {(t, i) | gti 6= 0}, where gti = A∗

ti c, t = 1, α, i = 1,mt.
Using (1.2.9) and (1.3.1), calculate the Hermitian form

c∗Y c =
∑

(t,i)∈∆c

∑

(τ,j)∈∆c

fij(λt, λ̄τ )g
∗
tiXgτj = tr(QcX), (1.3.9)

where Qc = Gc Fc
T G∗

c , and Fc is the principal submatrix in (1.1.8)
with the entries fij(λt, λ̄τ ) for (t, i) ∈ ∆c, (τ, j) ∈ ∆c, and the matrix
Gc is formed by the column vectors gti with (t, i) ∈ ∆c.

If c 6= 0, then ∆c 6= ∅, and all nonzero columns gti are linearly
independent. Indeed, assuming lt = max {i | (t, i) ∈ ∆c} and multi-
plying the linear combination

∑

(t,i)∈∆c

dti gti = 0

from the left consecutively by A∗
τj (j = lτ − 1, lτ − 2, . . .), taking into

consideration (1.2.10), obtain dτj = 0 with (t, j) ∈ ∆c. Here it is also
taken into account that (τ, j) 6∈ ∆c implies (τ, q) 6∈ ∆c with q > j.

Since the matrix Gc has full rank with respect to its columns for
c 6= 0, then the inequalities Fc ≥ 0 and Qc ≥ 0 are equivalent. If
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the inequalities (1.3.3) hold, then Qc 6= 0. We will show that there
exists a vector c for which Gc has the maximal rank m.

Consider the linear combination

α∑

t=1

mt∑

i=1

dti gti =
α∑

t=1

mt∑

i=1

dti αti(A)∗c = z(A)∗c = 0, (1.3.10)

where z(λ) =
∑
t,i
d̄ti αti(λ) is a polynomial of order p < m. Let c0

be a vector whose minimal annihilating polynomial with respect to
the matrix A∗ coincides with the minimal polynomial of order m for
this matrix. Then, assuming in (1.3.10) c = c0, we have z(λ) ≡ 0
and, owing to the independence of the polynomials αti, all coefficients
dti = 0. This means that Gc is a matrix of rank m. For the above
mentioned vector c, the principal submatrix Fc coincides with the
whole matrix (1.1.8).

According to the Feyer theorem, the inequality tr(QcX) ≥ 0 holds
for any matrix X ≥ 0 if and only if Qc ≥ 0. For any matrix X > 0,
the strict inequality tr(QcX) > 0 holds if and only if Qc ≥ 0 and
Qc 6= 0. Using these criteria and the determined properties of the
matrices Qc, Fc, andGc in the relation (1.3.9) for the vector c running
through the whole space, we arrive at the propositions of the lemma.

The lemma is proved.

Note that if there exists a matrix X > 0 for which LfX > 0, then
the inclusions LfK0 ⊆ K0 and LfK ⊆ K are equivalent.

Lemma 1.3.3 For any positive definite matrix Y the equa-
tion (1.3.1) has a positive definite solution X (K0 ⊆ LfK0) if and
only if the inequalities (1.3.2) hold true, as well as the matrix in-
equality

Γϕ

(
m1 · · · mα

λ1 · · · λα

)
≥ 0, (1.3.11)

where ϕ(λ, µ̄)
△
= 1/f(λ, µ̄).

Proof. If the equation (1.3.1) is solvable for any matrix Y > 0,
then the inequalities (1.3.2) hold true and the operator (1.2.2) is in-
vertible. Indeed, any matrix Y is representable in the form of a linear
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combination of positive definite matrices Yk, and the solution X cor-
responds to it. In particular, one can assume

Y = Y1 − Y2 + i(Y3 − Y4), X = X1 −X2 + i(X3 −X4),

where Xk > 0 is a solution of (1.3.1), corresponding to Yk > 0.
The inequalities (1.3.2) follow from (1.3.4), as the right-hand sides
of these relations, with the proper choice of the matrix Y , can be
nonzero.

According to (1.2.5) and (1.2.9), the unique solution of (1.3.1)
under the conditions (1.3.2) has the form

X = LϕY =
α∑

t=1

α∑

τ=1

mt∑

i=1

mτ∑

j=1

ϕij(λt, λ̄τ )AtiY A
∗
τj . (1.3.12)

The matrix (1.3.11) is composed of the coefficients of this expression

ϕij(λt, λ̄τ ) =
∂i+j−2

∂λi−1
t ∂λ̄j−1

τ

ϕ(λt, λ̄τ ).

Applying Lemma 1.3.2 to the operator (1.3.12), we arrive at the
proposition of Lemma 1.3.3.

The lemma is proved.

Lemma 1.3.4 Let the matrix (1.1.8) have exactly one positive
eigenvalue:

i+

(
Γf

(
m1 . . . mα

λ1 . . . λα

))
= 1. (1.3.13)

Then the system of inequalities (1.3.2) and (1.3.11) is equivalent to
the inequalities (1.3.3).

Proof. Values of the function ϕ(λt, λ̄t) are located on the leading
diagonal of the matrix (1.3.11). Therefore the inequalities (1.3.3)
follow from (1.3.11). We will prove the converse proposition. First
of all, under the conditions (1.3.3) and (1.3.13) the inequalities (1.3.2)
hold true. Otherwise, in (1.1.8) there is a principal submatrix of the
form [

f(λt, λ̄t) f(λt, λ̄τ )
f(λτ , λ̄t) f(λτ , λ̄τ )

]
> 0,
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which is contrary to the condition (1.3.13).
Consider the algebraic function

g(λ, µ̄) =

α∑

t,τ=1

mt∑

i=1

mτ∑

j=1

fij(λt, λ̄τ ) αti(λ) ατj(µ) ≡

≡ aλ Γf

(
m1 . . . mα

λ1 . . . λα

)
a∗µ.

(1.3.14)

Here the elements of the row vector aλ ∈ Cm are the polynomials
αti(λ) that determine the components Ati = αti(A) of the matrix A
and satisfy the following interpolation conditions:

dk−1

dλk−1
αti(λ)

∣∣∣∣
λ=λτ

=

{
1, t = τ and k = i,
0, t 6= τ or k 6= i.

Using these conditions, obtain

fij(λt, λ̄τ ) =
∂i+j−2

∂λi−1
t ∂λ̄j−1

τ

g(λt, λ̄τ ),

ϕij(λt, λ̄τ ) =
∂i+j−2

∂λi−1
t ∂λ̄j−1

τ

ψ(λt, λ̄τ ),

where ψ(λ, µ̄) = 1/g(λ, µ̄). This means that the matrix Γf (Γϕ) does
not change if g(ψ) is used instead of f(ϕ).

Transforming the matrix (1.1.8) to diagonal form under the con-
dition (1.3.13) and using Cauchys inequality, we arrive at relations
true in the neighbourhood of the points (λt, λ̄τ ), of the form

g(λ, µ̄) = u(λ) u(µ) [1 − v(λ, µ̄)] 6= 0, v(λ, µ̄) =
∑

s

vs(λ) vs(µ),

|v(λ, µ̄)|2 ≤ v(λ, λ̄) v(µ, µ̄) < 1, v(λ, λ̄) < 1, v(µ, µ̄) < 1,

ψ(λ, µ̄) =
1

u(λ) u(µ)

∞∑

k=0

vk(λ, µ̄) =

∞∑

k=0

wk(λ) wk(µ),

where u, vs, and wk are some rational functions constructed from
the polynomials αti. As a result, obtain a matrix inequality

Γϕ

(
m1 . . . mα

λ1 . . . λα

)
=

∞∑

k=0

dk d
∗
k ≥ 0,
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where

dk = [δk1(λ1), . . . , δkm1
(λ1), . . . , δk1(λα), . . . , δkmα

(λα)]T ,

δki(λ) =
di−1

dλi−1
wk(λ).

The lemma is proved.

For a given function f the conditions (1.3.11) and (1.3.13) can be
verified if the eigenvalues λt of the matrix A and their indices mt

are known. For a diagonalizable matrix, the condition (1.3.11) is
represented as

Γϕ

(
1 . . . 1
λ1 . . . λm

)
=




1

f(λ1, λ1)
· · · 1

f(λ1, λm)
· · · · · · · · ·
1

f(λm, λ1)
· · · 1

f(λm, λm)



≥ 0. (1.3.15)

Let Hm
0 be a class of functions f ∈ H satisfying the condi-

tion (1.3.15) for any set of points λ1, . . . , λm from the domain (1.1.2).
Consider the case m = 2. The class H2

0 is determined by the
inequality

∆(λ, µ̄) = |f(λ, µ̄)|2 − f(λ, λ̄)f(µ, µ̄) ≥ 0, ∀λ, µ ∈ Λ+
f .

The matrix inequality (1.3.11) for m1 = m and λ1 = λ ∈ Λ+
f reduces

to the form

δ(λ, λ̄) =
∂f(λ, λ̄)

∂λ

∂f(λ, λ̄)

∂λ̄
− f(λ, λ̄)

∂2f(λ, λ̄)

∂λ∂λ̄
≥ 0. (1.3.16)

Proceeding to the limit for µ→ λ, we have

ψ(µ, λ, λ̄) =
f(µ, λ̄) − f(λ, λ̄)

µ− λ
→ ∂f(λ, λ̄)

∂λ
,

∆(λ, µ̄)

|µ− λ|2 = |ψ(µ, λ, λ̄)|2 − f(λ, λ̄)
ψ(µ, λ, µ̄) − ψ(µ, λ, λ̄)

µ̄− λ̄
→ δ(λ, λ̄).

Consequently, for the functions f ∈ H2
0 the inequality (1.3.16) holds

true. A more general statement follows.
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Lemma 1.3.5 If f ∈ Hm
0 , then the inequality (1.3.11) holds true

for any sets of points λ1, . . . , λα from the domain Λ+
f and the real

numbers m1, . . . ,mα with their sum not exceeding m.

Proof. Let max {m1, . . . ,mα} ≥ 2. In the neighbourhood of each
point λt ∈ Λ+

f for mt ≥ 2 determine a set of pairwise distinct points

λt1, . . . , λtmt ∈ Λ+
f and construct a block matrix

Φ =

[
Φ11 · · · Φ1α

Φα1 · · · Φαα

]
=

= Γϕ

(
1 · · · 1 · · · 1 · · · 1
λ11 · · · λ1m1

· · · λα1 · · · λαmα

)
,

(1.3.17)

where

Φtτ =




ϕ(λt1, λ̄τ1) · · · ϕ(λt1, λ̄τmτ )
· · · · · · · · ·

ϕ(λtmt , λ̄τ1) · · · ϕ(λtmt , λ̄τmτ )


 , t, τ = 1, α.

Assume also that λt = λt1 and λt2 − λt1 = · · · = λtmt − λtmt−1 = δt.
Using recurrent formulae for approximate computation of higher or-
der derivatives of the function, for δt → 0 and δτ → 0 obtain

δ1−it δ1−jτ

i∑

p=1

j∑

q=1

(−1)i+j−p−q
(
i− p
i− 1

)(
j − q
j − 1

)
ϕ(λtp, λ̄τq) →

→ ϕij(λt, λ̄τ ).

Hence

UΦU∗ → Φ0 = Γϕ

(
m1 . . . mα

λ1 . . . λα

)
, (1.3.18)

where

U =



U1 0

. . .

0 Uα


 , Ut =




u
(1)
t1 0
...

. . .

u
(mt)
t1 · · · u

(mt)
tmt


 ,

u
(i)
tp = (−1)i−p

(
i− p
i− 1

)
δ1−it .
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On the basis of (1.3.17) and (1.3.18) one can construct a sequence
of Hermitian matrices Φk converging in norm to Φ0 and such that
i(Φk) = i(Φ), k = 1, 2, . . . . If f ∈ Hm

0 , then Φ ≥ 0 and Φk ≥ 0.
Owing to the closedness of the cone of nonnegative definite matrices,
we have Φ0 ≥ 0, i.e. the inequality (1.3.11) holds true.

The lemma is proved.

Theorem 1.3.1 Let a matrix A ∈ Cn×n, a function f ∈ Hm
0

and an arbitrary positive definite matrix Y ∈ K0 be given. Then the
spectrum σ(A) is located in the domain Λ+

f if and only if the equation
(1.3.1) has the unique positive definite solution X ∈ K0.

Proof. If for some matrix Y > 0 the equation (1.3.1) has a solution
X > 0, then, according to Lemma 1.3.1, σ(A) ⊂ Λ+

f . Here f may be
an arbitrary function of the class H.

Let f ∈ Hm
0 and the inequalities (1.3.3) be true. Then, according

to Lemma 1.3.5, the system of inequalities (1.3.2) and (1.3.11) holds
true. From Lemma 1.3.3 it follows that for any matrix Y > 0 the
equation (1.3.1) has a unique solution X > 0 of the form (1.3.12).

This proposition can be proved without using Lemma 1.3.5, pro-
ceeding from the following reasoning about continuity. An arbitrary
matrix A, with the use of infinitesimal perturbations of its entries,
can be transformed into a matrix Aε of a simple structure. Specifi-
cally, assuming

Aε = A+D, D = diag {ε1, . . . , εn} ,

one can choose arbitrary small numbers εk so that all eigenvalues of
the matrix Aε will be different and, under the conditions (1.3.3), will
belong to the domain (1.1.2). In this case, according to Lemma 1.3.3,
for any matrix Y > 0 the equation (1.3.1) has a solution Xε > 0.
If D → 0, then Xε → X ≥ 0, where X is a solution of the equa-
tion (1.3.1), corresponding to the matrices A and Y . We will show
that X > 0. According to Lemma 1.3.1, there exist matrices X0 > 0
and Y0 > 0 that satisfy the equation (1.3.1). Choose a small number
δ > 0 so that the inequality Y −δY0 > 0 is true. Then, in accordance
with the above proved, for this matrix the equation (1.3.1) has the
solution X − δX0 ≥ 0. Hence, X > 0.

The theorem is proved.
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Theorem 1.3.1 gives the criterion of the inclusion σA) ⊂ Λ+
f and

is a generalization of the Lyapunov theorem. The used class of func-
tions f ∈ Hm

0 is in a certain sense the maximum allowed. Indeed, if
the condition (1.3.15) is violated for some λt ∈ Λ+

f , then, according to
Lemma 1.3.3, the criterion does not hold true for any matrix A with
eigenvalues λt, t = 1,m. If the degree of the minimal polynomial m
of the matrix A is unknown, then in the conditions of Theorem 1.3.1
one can assume f ∈ Hn

0 .

1.4 Hermitian Functions of the Class Hm
0

Using Theorem 1.3.1, it is necessary to solve the question of belonging
of a given function f to the class Hm

0 , i.e. to verify that the matrix
inequality (1.3.15) holds for any λ1, . . . , λm ∈ Λ+

f . In Hm
0 choose the

important subclasses of Hermitian functions, determined by relations
simpler than the inequalities (1.3.15) and containing some known
classes of functions. Here we will assume that each of the sets (1.1.2)–
(1.1.4) is nonempty.

First of all, note that if a Hermitian function is representable in
the form f(λ, µ) = u(λ, µ)−v(λ, µ), and Λ+

f ⊂ Λ+
u , and the functions

u and v for ∀λ, µ ∈ Λ+
f satisfy the inequalities

|u(λ, µ̄)|2 ≥ u(λ, λ̄) u(µ, µ̄), |v(λ, µ̄)|2 ≤ v(λ, λ̄) v(µ, µ̄),

then u(λ, µ̄) 6= 0, f(λ, µ̄) 6= 0 and the expansion

1

f(λ, µ̄)
=

1

u(λ, µ̄)

∞∑

k=0

wk(λ, µ̄), (1.4.1)

holds true, where w(λ, µ) = v(λ, µ)/u(λ, µ), |w(λ, µ̄)| < 1,
∀λ, µ ∈ Λ+

f . If the functions u and v are such that

U =

∥∥∥∥
1

u(µi, µ̄j)

∥∥∥∥
m

1

≥ 0, V = ‖v(µi, µ̄j)‖m1 ≥ 0, (1.4.2)

for ∀ µ1, . . . , µm ∈ Λ+
f , and m ≥ 2, then they satisfy the mentioned

requirements and, furthermore, the matrix inequality
∥∥∥∥

1

f(µi, µ̄j)

∥∥∥∥
m

1

= U + U ⊙ U ⊙ V + U ⊙ U ⊙ U ⊙ V ⊙ V + · · · ≥ 0,
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is true, which is the consequence of the expansion (1.4.1) and the
known properties of the Schur product ⊙ . If this inequality holds
for ∀ µ1, . . . , µm ∈ Λ+

f , it means that f ∈ Hm
0 .

Let H0 be a class of Hermitian functions f for which the following
relations hold true:

f(λ, µ̄) 6= 0,
1

f(λ, µ̄)
=
∑

k

ϕk(λ) ϕk(µ), ∀ λ, µ ∈ Λ+
f , (1.4.3)

where ϕk are functions analytical in the domain Λ+
f . Then H0 ⊂ Hm

0

for any natural m (see the proof of Lemma 1.3.4). The series (1.4.3)
can be constructed, proceeding from (1.4.1), for subclasses of func-
tions H1 ⊂ Hm

0 and H2 ⊂ Hm
0 determined by the respective relations

f = u− v, u = f1(λ) f1(µ), v =
∑

k>1

fk(λ) fk(µ), (1.4.4)

f = u− v, u = f1(λ) f1(µ), v = f2(λ) f2(µ). (1.4.5)

For the functions u and v the matrix inequalities (1.4.2) hold true.
Under the condition

i+(Γ) = 1 (1.4.6)

each function (1.1.5) is representable in the form (1.4.4) by trans-
forming the matrix Γ to diagonal form. The class H1 is therefore
determined by (1.1.5) and (1.4.6). Similarly, the class H2 is com-
posed by the functions (1.1.5), for which

i±(Γ) ≤ 1. (1.4.7)

If Λ+
f 6= ∅, then the equality (1.4.6) must hold true.

Let Hm
1 and Hm

2 denote the classes of Hermitian functions satis-
fying the respective conditions

i+
(
‖f(µi, µ̄j)‖m1

)
= 1, ∀ µ1, . . . , µm ∈ Λ+

f ;

i±
(
‖f(µi, µ̄j)‖m1

)
≤ 1, ∀ µ1, . . . , µm 6∈ Λ0

f .

Lemma 1.4.4 directly implies Hm
1 ⊂ Hm

0 , and from the formu-
lae (1.1.5), (1.1.9), and (1.4.6) it follows that H1 ⊂ Hm

1 . Similarly,
in our assumptions Hm

2 is a subclass in Hm
0 and contains H2.
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Thus, for m ≥ 1 we have the following inclusions:

H2 ⊂ H1 ⊂ H0

∩ ∩ ∩
Hm

2 ⊂ Hm
1 ⊂ Hm

0 ⊂ H

All the described subclasses of Hermitian functions are used in
Theorem 1.3.1. If f ∈ Hm

2 , then Theorem 1.3.1 is applicable for the
both domains Λ+

f and Λ−
f .

Studying the algebraic functions (1.1.5) for fk(λ) = λk, the limi-
tations have been constructed in the form of nonnegative definiteness
of the matrix (see Mazko [2])

Sλ = Γ z∗λzλ Γ − f(λ, λ̄) Γ ≥ 0, (1.4.8)

where λ is an arbitrary point of the domain (1.1.2), and also in terms
of rank and signature of the matrix Γ (see Kharitonov [1])

rankΓ + sign Γ = 2. (1.4.9)

The conditions (1.4.6), (1.4.8), and (1.4.9) are equivalent (see Section
4.2). In the conditions (1.4.7) one can assume

rankΓ = 2, sign Γ = 0. (1.4.10)

Note that the equality (1.4.6) is equivalent to each of the condi-
tions

S = Γ z∗0z0 Γ − z0Γz
∗
0 Γ ≥ 0, z0 ∈ Z, (1.4.11)

G =

∥∥∥∥∥
1

ziΓz∗j

∥∥∥∥∥

n

i,j=1

≥ 0, ∀z1, . . . , zm ∈ Z, (1.4.12)

where z0, . . . , zm are vectors from the set Z = {z : z Γ z∗ > 0} 6= ∅.
The proof of the equivalence of the relations (1.4.6) and (1.4.11)

follows from the more general results of Chapter 4. The equiva-
lence of the inequalities (1.4.11) and (1.4.12) is proved in the process
of reduction of the matrix G to diagonal form by using elementary
transformations. All the forms of the limitations (1.4.3)–(1.4.12) on
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the matrix Γ can be used in Theorem 1.3.1 for the analytic func-
tions (1.1.5) with the vectors zλ, λ ∈ Λ+

f . The numerical verification
of the conditions (1.4.8), (1.4.11), or (1.4.12) is based on the applica-
tion of the known criteria of sign definiteness of Hermitian matrices.
The conditions (1.4.6), (1.4.7), (1.4.9), and (1.4.10) are related to the
calculation of the matrix inertia.

Take a subclass of functions (1.1.5) corresponding to the family
of second-order algebraic curves, assuming

Γ =



γ11 γ12 γ13

γ21 γ22 0
γ31 0 0


 , zλ =

[
1, λ, λ2

]
.

Calculating the entries sij of the matrix (1.4.8), obtain:

s11 = (γ12γ21 − γ11γ22)λλ̄+ γ12γ31λ
2λ̄+ γ13γ21λλ̄

2 + γ13γ31λ
2λ̄2,

s12 = s̄21 = (γ11γ22 − γ12γ21)λ+ γ13γ22λλ̄
2 − γ12γ31λ

2,

s13 = s̄31 = −γ13γ21λ− γ13γ22λλ̄− γ13γ31λ
2,

s22 = γ21γ12 − γ11γ22 − γ22γ13λ
2 − γ22γ31λ

2,

s23 = s̄32 = γ21γ13 + γ22γ13λ̄,

s33 = γ13γ31.

If γ22 ≤ 0 and λ ∈ Λ+
f , then all principal minors of the ma-

trix (1.4.8) are nonnegative:

s11 ≥ |λ|2|γ12 + γ13 + γ22λ|2 ≥ 0, s22 ≥ |γ21 + γ22λ̄|2 ≥ 0,

s33 = |γ13|2 ≥ 0, detSλ ≡ 0,

det

[
s11 s12
s21 s22

]
= −γ22|λ|4|γ13|2f(λ, λ̄) ≥ 0,

det

[
s11 s13
s31 s33

]
= −γ22|λ|2|γ13|2f(λ, λ̄) ≥ 0,

det

[
s22 s23
s32 s33

]
= −γ22|γ13|2f(λ, λ̄) ≥ 0.

Consequently, f ∈ H1 if γ22 ≤ 0. In this case the equality (1.4.6)
holds true.
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Examples.

Here are the examples of algebraic and transcendental domains in
the complex plane of the form

Λ+
f =

{
λ : f(λ, λ̄) = zλ Γ z∗λ > 0

}
,

the geometric properties of those domains can be used in the prob-
lems of analysis and control of the quality of systems. All functions f
describing those domains belong to the class H1 and, consequently,
satisfy the generalized Lyapunov theorem. In addition, in Exam-
ples 1, 2, 13, 14, 16, 20–22 the functions f ∈ H2 satisfy the condi-
tions of the inertia theorem (see Section 1.5). Unfortunately, general
geometric regularities of the domains Λ+

f corresponding to the class
of functions f ∈ Hm

0 have not been found yet.

The list of functions below can be considerably extended. When
making it out, the author used equations of major algebraic curves
of order p ≤ 6, and also of some transcendent curves of the form
ϕ(x, y) = 0, x = Reλ, y = Imλ. In the pictures the hatched part of
the plane C1 corresponds to each domain Λ+

f .

1. Straight line y cos θ = (x− a)sinθ, 0 ≤ θ ≤ π/2.

Γ =

[
2a sin θ − sin θ + i cos θ

− sin θ − i cos θ 0

]
,

zλ = [1, λ].

2. Circle (x− a)2 + (y − b)2 = r2, w = a+ ib.

Γ =

[
r2 − |w|2 w

w̄ −1

]
,

zλ = [1, λ].
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3. Ellipse x2/a2 + y2/b2 = 1, a > 0, b > 0.

Γ =




4a2b2 0 a2−b2
0 −2(a2+b2) 0

a2−b2 0 0


,

zλ = [1, λ, λ2].

4. Parabola x = a− by2, a < 0, b > 0.

Γ =




2a −1 b/2
−1 −b 0
b/2 0 0


,

zλ = [1, λ, λ2].

5. Hyperbola x2/a2 − y2/b2 = 1, 0 < b ≤ a.

Γ =



−4a2b2 0 a2+b2

0 2(b2−a2) 0
a2+b2 0 0


,

zλ = [1, λ, λ2].

6. Vertical straight lines (x− a)(b− x) = 0, a < b.

Γ =




−2ab a+ b −1/2
a+ b −1 0
−1/2 0 0


,

zλ = [1, λ, λ2].
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7. Horizontal straight lines y2 = a2, a > 0.

Γ =




4a2 0 1
0 −2 0
1 0 0


,

zλ = [1, λ, λ2].

8. Straight line and circle x(x2 + y2 + 2rx) = 0, r ≥ 0.

Γ =




0 0 −r
0 −2r −1
−r −1 0


,

zλ = [1, λ, λ2].

9. Curve 2ax− (x2 + y2)2 = 0, a < 0.

Γ =




0 a 0
a 0 0
0 0 −1


,

zλ = [1, λ, λ2].

10. Curve (x+ a)[y2(x+ a) + b ] = 0, a > 0, b > 0.

Γ =




−4ab −2b a2 a 1/4
−2b −2a2 −a 0 0
a2 −a −1/2 0 0
a 0 0 0 0

1/4 0 0 0 0




,

zλ = [1, λ, λ2, λ3, λ4].
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11. Circles (x2 + y2 − r2)(R2 − x2 − y2) = 0, 0 < r < R.

Γ =




−r2R2 0 0
0 r2 +R2 0
0 0 −1


,

zλ = [1, λ, λ2].

12. Astroid (x2 + y2 − a2)3 + 27a2x2y2 = 0, a > 0.

Γ =




16a6 0 0 0 27a2

0 −48a4 0 0 0
0 0 −6a2 0 0
0 0 0 −16 0

27a2 0 0 0 0



,

zλ = [1, λ, λ2, λ3, λ4].

13. Cassini ovals (x2 + y2)2 − 2b2(x2 − y2) = a4 − b4, 0 < a < b.

Γ =

[
a4 − b4 b2

b2 −1

]
,

zλ = [1, λ2].

14. Bernoulli lemniscate (x2 + y2)2 = 2a2(x2 − y2), a > 0.

Γ =

[
0 a2

a2 −1

]
,

zλ = [1, λ2].
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15. Cissoid of Diocles x3 + xy2 + ay2 = 0, a > 0.

Γ =




0 0 a/2
0 −a −1
a/2 −1 0


,

zλ = [1, λ, λ2].

16. Strophoid (x+ a)x2 + (x− a)y2 = 0, a > 0.

Γ =

[
0 1
1 0

]
,

zλ = [λ+ a, λ2].

17. Maclaurin trisector 2x(x2 + y2) = a(y2 − 3x2), a > 0.

Γ =




0 0 −a
0 −a −1
−a −1 0


,

zλ = [1, λ, λ2].

18. Pascals limacon (x2 + y2 + 2ax)2 = b2(x2 + y2), 0 < b ≤
√

2a.

Γ =




0 0 −a2

0 b2 − 2a2 −2a
−a2 −2a −1


,

zλ = [1, λ, λ2].
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19. Cardioid (x2 + y2 + 2ax)2 = 4a2(x2 + y2), a > 0.

Γ =




0 0 a2

0 −2a2 2a
a2 2a 1


,

zλ = [1, λ, λ2].

20. Family of lines cos[2(ax− by + c)] = 0, w = a+ ib.

Γ =

[
1 0
0 −1

]
,

zλ = [cos(wλ+ c), sin(wλ+ c)].

21. Curve cos y = ex.

Γ =

[
0 1/2

1/2 −1

]
,

zλ = [1, eλ].

22. Family of lines cos(ay) = 0, a > 0.

Γ =

[
0 1
1 0

]
,

zλ = [1, eaλ].
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23. Exponential curve x = −ay, a > 1.

Γ =




0 1 0
1 0 0
0 0 −1


,

zλ = [1,−λ/2, aλ/2i].

24. Catenary x = −a ch(y/a), a > 0.

Γ =




0 1 0 0
1 0 0 0
0 0 −a 0
0 0 0 −a


,

zλ = [1,−λ, eλ/(2ai), e−λ/(2ai)].

1.5 Inertia Theorem

It is known that the matrix A does not have purely imaginary eigen-
values if and only if the matrix inequality

AX +XA∗ > 0

is solvable with respect to X = X∗. The number of eigenvalues
of the matrix A, which have positive and negative real parts, taking
into account the multiplicities, coincides respectively with i+(X) and
i−(X). This statement gives the distribution of the spectrum σ(A)
with respect to an imaginary axis in terms of inertia of Hermitian
forms (theorems of Ostrowsky–Schneider and Tausski).

Along with the equation (1.3.1) consider the matrix inequality

LfX > 0, (1.5.1)

where Lf is the operator (1.2.2) constructed for the given matrix
A ∈ Cn×n and function f ∈ H. An arbitrary solution of the equa-
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tion (1.3.1) for Y > 0 at the same time is a solution of the inequality
(1.5.1).

Lemma 1.5.1 Let a function f ∈ H satisfy the inequalities

i±

(
Γf

(
1 · · · 1
µ1 · · · µm

))
≤ p±, ∀ µ1, . . . , µm ∈ Λ,

where p± ≥ 0 are integers, Λ ⊂ C1 is some open set. Then for any
sets of points λ1, . . . , λα ∈ Λ and natural numbers m1, . . . ,mα whose
sum does not exceed m the following inequalities hold true:

i±

(
Γf

(
m1 · · · mα

λ1 · · · λα

))
≤ p±. (1.5.2)

Proof. Use the proof technique of Lemma 1.3.5 and construct a
sequence of matrices Fk such that i±(Fk) ≤ p±, Fk − F0 = ∆k → 0,
k → ∞, where F0 is the matrix (1.1.8) composed of partial derivatives
of the function f .

If p+ = 0, then Fk ≤ 0 and F0 ≤ 0. Let p+ 6= 0 and
V F0V

∗ = D > 0, where V is a matrix composed of all the left eigen-
vectors of the matrix F0, corresponding to the positive eigenvalues.
Then for sufficiently large k the following relations hold true:

V FkV
∗ = D + V∆kV

∗ > 0, i+(F0) = i+(V FkV
∗) ≤ i+(Fk) ≤ p+.

Similarly, i−(F0) ≤ p−, i.e. the inequalities (1.5.2) hold true.
The lemma is proved.

Using the class of functions Hm
2 (see Section 1.4), formulate the

following proposition.

Theorem 1.5.1 The matrix inequality (1.5.1) has a solution if
and only if the following conditions hold true:

f(λt, λ̄t) 6= 0, t = 1, α. (1.5.3)

Under the conditions (1.5.3) there exists a solution X satisfying the
equalities

i+f (A) = i+(X), i−f (A) = i−(X), i0(X) = 0. (1.5.4)
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If X is a solution of the inequality (1.5.1) for f ∈ Hm
2 , then the

relations (1.5.3) and (1.5.4) hold true.

Proof. If in the equation (1.3.1) Y > 0, then according to (1.3.4),
the inequalities (1.5.3) hold true. Use the recurrent algorithm of
search of the matrices X and Y , which follows from (1.3.5)–(1.3.7)
and represents the solution of the equation (1.5.1) under the condi-
tions (1.5.3). At each step of this algorithm the inequality (1.3.7)
must hold, i.e. G > 0. In addition, if f(σk, σ̄k) < 0, then hkk follows
the inequality

δk =
detHk

detHk−1
= hkk − u∗k H

−1
k−1 uk < 0.

If f(σk, σ̄k) > 0, then the strict inequality δk > 0 must hold true.
Taking into account the Yacobi theorem for the matrix H and
Sylvesters law of inertia, obtain the relations (1.5.4).

Let X be a solution of the inequality (1.5.1) and f ∈ Hm
2 . Then,

according to Lemma 1.6.1, the conditions (1.5.2) hold true for p± = 1,
and the function (1.3.14) is representable in the form

g(λ, µ̄) = p(λ) p(µ) − q(λ) q(µ),

where p and q are some polynomials. The equation (1.5.1), in con-
sideration of (1.3.5), is reducible to the form

[p(J), q(J)]

[
H 0
0 −H

] [
p(J)∗

q(J)∗

]
= G > 0. (1.5.5)

This implies that H is a nonsingular matrix, since

rankH = i+(H) + i−(H) ≥ i+(G) = n.

Moreover, taking into account the triangular structure of p(J)
and q(J), one can find that all successive principal minors of the
matrix H are nonzero: hk = detHk 6= 0. Therefore there exists an
expansion

H = LDL∗, D = diag {d1, . . . , dn} , (1.5.6)
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where dk = hk/hk−1, k = 1, n, h0 = 1, L is the lower triangular
matrix with a unit diagonal. Taking the successive principal subma-
trices Gk in (1.5.5) in consideration of (1.5.6), obtain the relations

G1 = f(σ1, σ̄1) d1 > 0, Gk = Ck∆kC
∗
k +Rk > 0, k = 2, n, (1.5.7)

where

Ck = Uk [p(J)Vk, q(J)Vk] , Uk = [Ik, 0] , Vk = L [Ik−1, 0]T ,

∆k =




d1 · · · · · · 0
. . .

... dk−1
...

... −d1
...

. . .

0 · · · · · · −dk−1




,

Rk =




0 · · · 0
...

. . .
...

0 · · · f(σk, σ̄k) dk


.

Using the properties of the indices of inertia in (1.5.7), obtain

i+(Gk) = k ≤ i+(∆k) + i+(Rk) = k − 1 + i+(Rk).

Hence i+(Rk) = 1, and the inequalities

f(σk, σ̄k) dk > 0

hold true which, taking into account (1.5.6) and the law of inertia,
are equivalent to the equalities (1.5.4).

The theorem is proved.

Formulate a corollary of Theorem 1.5.1 for the matrix equation
∑

i,j

γijfi(A)Xfj(A)∗ = Y. (1.5.8)

Corollary 1.5.1 Let f ∈ H2, Y > 0 and X be a solution of
the equation (1.5.8). Then the curve (1.1.4) does not intersect with
the spectrum σ(A), and in the domains (1.1.2) and (1.1.3) respec-
tively i+(X) and i−(X) eigenvalues of the matrix A, taking into ac-
count the multiplicities, are located.
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1.6 Location of Eigenvalues on Plane Curves

Consider the problem of belonging of eigenvalues of the matrix A
to the plane curve (1.1.4). In particular, we are interested in the
estimates for the number i0f (A) and in the criteria of location of all
eigenvalues on the curve (1.1.4). Similar problems occur e.g. during
the study of conditions of stability and aperiodicity of some mechan-
ical systems.

Use the properties of the homogeneous matrix equation

LfX = 0, (1.6.1)

where Lf is the operator (1.2.2), in particular (1.2.3). This equation
can be regarded as a problem of determination of eigenelements of
the operator (1.2.2), corresponding to its zero eigenvalue.

Theorem 1.6.1 If the equation (1.6.1) has a nonzero nonnegative
definite solution X ≥ 0, then on the curve (1.1.4) there are at least
rankX eigenvalues of the matrix A:

i0f (A) ≥ rankX. (1.6.2)

In particular, for X > 0 the whole spectrum of the matrix A is lo-
cated on the curve (1.1.4). Conversely, if i0f (A) 6= 0, then the equa-
tion (1.6.1) has a nonnegative definite solution of any rank from the
interval

0 < rankX ≤
∑

λt∈Λ0
f

ξt, (1.6.3)

where ξt is the geometric multiplicity of the eigenvalue λt ∈ σ(A).

Proof. Let X ≥ 0 be a solution of the equation (1.6.1). Then,
according to Lemma 1.2.2, it can be determined by using the re-
lations (1.2.17) and (1.2.18) with w = 0. Transform the expres-
sion (1.2.17), using the expansions of idempotent components

At1 = AtA
+
t , A+

t At = Int , t = 1, α.

The multipliers At (A+
t ) determine the right (left) Jordan vector

trains of the matrix A, corresponding to the eigenvalue λt with alge-
braic multiplicity nt. For the solution X we have the expression

X =
∑

(t,τ)∈Θ∗

0

AtCtτ A
∗
τ ≥ 0, (1.6.4)
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where Ctτ are some matrices of dimensions nt × nτ . If λt ∈ Λ0
f ,

then (t, t) ∈ Θ∗
0. Applying the Sylvester inequality to the expres-

sion (1.6.4), obtain

rankX ≤
∑

λt∈Λ0
f

rankAt =
∑

λt∈Λ0
f

nt = i0f (A).

Consequently, the estimate (1.6.2) holds true. If X > 0, then
i0f (A) = n.

If on the curve (1.1.4) there are eigenvalues of the matrix A, then
Θ∗

0 6= ∅, and according to (1.2.21) the arbitrary nonnegative definite
matrix

X =
∑

(t,τ)∈Θ∗

0

Ut Stτ U
∗
τ ≥ 0 (1.6.5)

is a solution of the equation (1.6.1). Since the multipliers Uk have the
full rank ξt, then free parameters of the matrices Stτ of dimensions
ξt×ξτ can be chosen from any given value of the rank of the solution
from the interval (1.6.3).

The theorem is proved.

Corollary 1.6.1 If a matrix A has a simple structure, then the
inequality i0f (A) ≥ ρ holds true if and only if the equation (1.6.1) has
a nonnegative definite solution of the rank ρ.

This criterion follows from Theorem 1.6.1 under the conditions
nt = ξt. In this case the formula (1.6.5) determines the general form
of the nonnegative definite solution of the equation (1.6.1).

Note that if the function f has the property

λ, µ ∈ Λ0
f , λ 6= µ =⇒ f(λ, µ̄) 6= 0, (1.6.6)

then the expressions (1.6.4) and (1.6.5) can be simplified. Thus,
under the conditions (1.6.6) the equation (1.6.1) is satisfied by any
matrix X representable in the form

X =
∑

λt∈Λ0
f

Ut St U
∗
t ≥ 0,

where St are matrices of dimensions ξt × ξt.
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1.7 Estimates and Localization of Eigenvalues

1. Consider the relation (1.3.1) under the conditions f ∈ H,
A ∈ Cn×n, and X ∈ K0. As X one can select any positive defi-
nite matrix and calculate the relation Y . There is no need to solve
the equation (1.3.1).

If X > 0, then there exist numbers ε1 and ε2 satisfying the in-
equalities

ε1X ≤ Y ≤ ε2X, ε1 ≤ ε2. (1.7.1)

Using the proof of Lemma 1.3.1, obtain an estimate for the domain
containing the spectrum of the matrix A:

ε1 ≤ f(λ, λ̄) ≤ ε2, λ ∈ σ(A). (1.7.2)

The interval [ε1, ε2] is determined by solving the system of inequal-
ities (1.7.1) with respect to unknown parameters ε1 and ε2. Reduc-
ing this interval, we thereby reduce the domain (1.7.2) containing the
spectrum σ(A). It can be proved that the values of the parameters ε1
and ε2, calculated by using the relations

ε1 = min {ε: det(Y − εX) = 0} = min
‖z‖=1

z∗Y z

z∗Xz
,

ε2 = max {ε: det(Y − εX) = 0} = max
‖z‖=1

z∗Y z

z∗Xz
,

represent one of the solutions of the system of inequalities (1.7.1).
The corresponding interval [ε1, ε2] is minimal.

Note that in the particular case ε1 = ε2 all points of the spec-
trum σ(A) belong to the set Λ0

f−ε1
.

2. In the relation (1.6.1) let the matrices A and X > 0 be given,
and f ∈ H be an unknown function. If, proceeding from (1.6.1),
one succeeds in finding some function f , then according to Theo-
rem 1.6.1 the spectrum of the matrix A is located on the respective
curve (1.1.4). If we have two such functions f and g, then each eigen-
value of the matrix A is an intersection of curves Λ0

f and Λ0
g of the

form (1.1.4).
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We will confine ourselves to the class of algebraic curves and con-
sider a homogeneous equation

r−1∑

k,s=0

γksA
kXAsT = 0,

where A ∈ Rn×n and X = XT > 0 are given real matrices, and
γks = γsk are unknown coefficients. This equation reduces to the
system of algebraic equations

G(X) γ = 0, (1.7.3)

where G(X) is some p×q matrix, γ is a vector of unknown coefficients
of order q, and p = n(n+1)/2, q = r(r+1)/2. The system (1.7.3) has
a nontrivial solution if rankG(X) < q. It is advisable to select the
matrix X so that this inequality would hold true for the minimum
possible value r.

Corresponding to the subspace of solutions of the system (1.7.3)
is a family of algebraic curves Λ0

f with

f(λ, µ) =
r−1∑

k,s=0

γksλ
kµs.

Each of these curves crosses α different points λt ∈ σ(A) and has
an order not exceeding 2r − 2. If one manages to find two solutions
of the system (1.7.3) so that the corresponding curves have α diffe-
rent intersections, then each of those points is an eigenvalue of the
matrix A.

3. Let matrices A, Y = Y ∗ > 0 and a function f ∈ H be
given. Consider the curve (1.1.4) and its neighbourhood Λ+

fε
, where

fε = 1 − ε2f2, ε > 0 is a numeric parameter. Obviously Λ0
f ⊂ Λ+

fε
,

and the domain Λ+
fε

degenerates into (1.1.4) while ε → ∞. If
fε ∈ Hm

0 , then, according to Theorem 1.3.1, the matrix equation

X − εLf2X = Y (1.7.4)

has a unique positive definite solution X = X(ε) if and only if the
inclusion σ(A) ⊂ Λ+

fε
holds true. This proposition, for sufficiently



50 Location of Matrix Spectrum

large value ε, can be used for the estimation of the location of the
spectrum σ(A) near the curve (1.1.4) with some desirable accuracy.

If there is a limit

lim
ε→∞

X(ε) = X∞ > 0. (1.7.5)

where X(ε) is a solution of the equation (1.7.4), then the matrix X∞

satisfies the homogeneous equation Lf2X∞ = 0, and according to
Theorem 1.6.1, the inclusion σ(A) ⊂ Λ0

f holds true. The converse
proposition is proved within additional limitations. Thus, if the ma-
trix A has a simple structure, σ(A) ⊂ Λ0

f , fε ∈ Hm
0 and the condi-

tions (1.6.6) hold true, then the limiting value (1.7.5) for the solution
of the equation (1.7.4) is a positive definite matrix.

4. Set out in a generalized form the known technique of localiza-
tion of a spectrum σ(A) (see Gutman, Chojnowski [1]) for the class
of domains

Λ = Λ+
f0

∩ Λ+
f1

∩ · · · ∩ Λ+
fs
,

where fk(λ, µ) are prescribed Hermitian functions, k = 0, s, s ≥ 1.
Introduce the following notation:

f(λ, µ, z) =

s∑

k=0

fk(λ, µ) zk, F (z) =

s∑

k=0

Fk z
k,

Fk = − 1

4π2

∮

ω

∮

ω̄

fk(λ, µ)(A− λI)−1 ⊗
(
Ā− µI

)−1
dλdµ,

where ⊗ is the sign of the Kronecker product of matrices, ω (ω̄) is
a closed contour enclosing the spectrum σ(A) (σ(Ā)).

Theorem 1.7.1 Let the following conditions hold true:
1) Λ−

f0
∩ Λ−

f1
∩ · · · ∩ Λ−

fs
= ∅;

2) f(λ, λ̄, z) = 0 =⇒ z ∈ R1;
3) rk(λ, µ) =

∑
p+q=k

fp(λ, µ̄) fq(µ, λ̄) > 0, ∀ λ, µ ∈ Λ, k = 0, 2s.

Then the spectrum of a matrix A is located in the domain Λ if
and only if all coefficients of the polynomial

detF (z) = a0 + a1z + · · · + aN z
N , N = s n2,
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are positive.

Proof. Each z ∈ C1 of the function f has a corresponding opera-
tor Lf of the type (1.2.1) whose action in the space Cn

2

is described
by the matrix F (z), i.e.

LfX = Y ⇐⇒ F (z) x = y, x = [x1∗, . . . , xn∗]
T , y = [y1∗, . . . , yn∗]

T ,

where xi∗ is the i-th row of the matrix X. The spectrum of the
operator Lf consists of n2 eigenvalues f(σi, σ̄j , z), where σi ∈ σ(A),
whose product gives the expression

detF (z) ≡ dσ(z) =

(
∏

i

s∑

k=0

fk(σi, σ̄i) z
k

)

∏

i<j

2s∑

k=0

rk(σi, σj) z
k


 .

If σ(A) ⊂ Λ and conditions 3) hold true, then all coefficients of the
polynomial multipliers in this expression are positive, and hence the
polynomial dσ(z) has degree N and positive coefficients. The con-
verse statement is the consequence of the described relations and
conditions 1) and 2). Indeed, all real roots of the polynomial dσ(z)
of degree N with positive coefficients are negative. In particular, the
polynomials f(σi, σ̄i, z) must have real negative roots only, and there-
fore the positive coefficients fk(σi, σ̄i) > 0, which means σ(A) ⊂ Λ.

The theorem is proved.

Theorem 1.7.1 holds true if instead of condition 3) we require
that for any set of points σ1, . . . , σn ∈ Λ all coefficients of the poly-
nomial dσ(z) of degree N must be positive. The expressions for
the coefficients ak as functions of σ1, . . . , σn are determined as a re-
sult of multiplication of all polynomials f(σi, σ̄j , z). For example, if
f(λ, µ, z) = f0(λ, µ) + z, then these expressions can be constructed
by using Vieta’s formulae in the form

aN−p =
∑

ni1+j1<···<nip+jp

f0(σi1 , σ̄j1) · · · f0(σip , σ̄jp), p = 1, N.

The class of domains Λ used in Theorem 1.7.1 is sufficiently wide.
Each domain of the form (1.1.2), corresponding to the class of func-
tions H1 (see Section 1.4), can be described as an intersection of
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some domain so that the conditions of Theorem 1.7.1 hold true.
Theorem 1.7.1 is satisfied by the class of I-transformable domains
(see Gutman, Chojnowski [1]), which in the case of algebraic poly-
nomials fk was determined by using the inequalities fs(λ, µ̄) 6= 0
(∀λ, µ ∈ Λ), fs(λ, λ̄) ≥ 0 (∀λ ∈ C1) instead of condition 1), and
by using the requirement of stability of the family of polynomials
f(λ, µ̄, z) (λ, µ ∈ Λ) of degree s instead of condition 3). The last
limitation is sufficient for condition 3) to hold true. If all domains
Λ+
fk

are simple, i.e. Λ0
fk

= ∂Λ+
fk

, then given the conditions of Theo-
rem 1.8.1, the following criterion holds true:

σ(A) ⊂ Λ̄ ⇐⇒ ai ≥ 0, i = 0, N,

where Λ̄ is the closure of the domain Λ, and ai are the coefficients of
the polynomial detF (z).

Consider the case s = 1. Here the application of Theorem 1.7.1
adds up to the computation of coefficients of the characteristic poly-
nomial of the linear pencil of matrices F (z) = F0 + zF1 of order n2.
Condition 2) of the theorem follows from the fact that the func-
tions f0 and f1 must be Hermitian. Under condition 1) the domain Λ
coincides with Λ+

g , where g = f0f1. Condition 3) means that g ∈ H∗,
where H∗ is a class of Hermitian functions with the following prop-
erty:

g(λ, λ̄) > 0, g(µ, µ̄) > 0 =⇒ Re g(λ, µ̄) > 0.

Let f0 = u − v and f1 = 1/u, where u and v are Hermitian
functions such that for ∀ λ, µ ∈ Λ

|u(λ, µ̄)|2 ≥ u(λ, λ̄) u(µ, µ̄), |v(λ, µ̄)|2 ≤ v(λ, λ̄) v(µ, µ̄).

Then for the function w = v/u the following inequalities hold true:

Rew(λ, µ̄) ≤ |w(λ, µ̄)| ≤
√
w(λ, λ̄) w(µ, µ̄) < 1, ∀ λ, µ ∈ Λ,

and hence it follows that g = 1 − w ∈ H∗. If we assume that

U =

∥∥∥∥
1

u(µi, µ̄j)

∥∥∥∥
m

1

≥ 0, V = ‖v(µi, µ̄j)‖m1 ≥ 0, ∀ µ1, . . . , µm ∈ Λ,
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then for µ1, . . . , µm ∈ Λ the following relations are true (see Sec-
tion 1.4)

W = U ⊙ V = ‖w(µi, µ̄j)‖m1 ≥ 0,

∥∥∥∥
1

g(µi, µ̄j)

∥∥∥∥
m

1

= E +W +W ⊙W +W ⊙W ⊙W + · · · ≥ 0,

where ⊙ is the sign of the Schur product, E a matrix with all its
elements equal to 1, and therefore g ∈ H∗ ∩Hm

0 .

1.8 Controllability Conditions for the Generalized

Lyapunov Equation

Hereinabove we have established the relation between the indices
of inertia of the Hermitian matrices X and Y satisfying the equa-
tion (1.3.1), and the location of the spectrum of the matrix A with
respect to the sets (1.1.2)–(1.1.4). Now we will enlarge the sets of the
matrices X and Y used for solving the spectrum localization prob-
lem. We will need the concept of controllability of a pair of matrices,
which emerged in the controllable system theory.

Let A and R be matrices of dimensions n×n and n×r respectively.
Construct a sequence of block matrices

Pk(A,R) =
[
R,AR, . . . , Ak−1R

]
, k = 1, 2, . . . .

The pair (A,R) is said to be controllable, if for some k the matrix
Pk(A,R) has full rank n.

Lemma 1.8.1 If Z = RR∗, then the following statements are
equivalent:

(a) the pair of matrices (A,R) is controllable;

(b) there exists a function ϕ ∈ H such that LϕZ > 0;

(c) the pair of matrices (A,Z) is controllable.

Proof. The expression (1.2.8) for the operator Lϕ is reducible to
the form

LϕZ = Pm(A,R) (Γ ⊗ I) Pm(A,R)∗,
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where ⊗ is a Kronecker product of matrices. If this expression is
nonsingular – positive definite in particular – matrix, then the mul-
tiplier Pm(A,R) has full rank and the pair (A,R) is controllable
((b) ⇒ (a)).

Consider the sequence of matrices

Zk = Pk(A,R) Pk(A,R)∗ ≥ 0, k = 1, 2, . . . . (1.8.1)

If the pair (A,R) is controllable, then, starting from some number
k = q, all matrices of this sequence are positive definite. State-
ments (b) and (c) hold true, since

Zk = Lϕk
Z = Pk(A,Z) Pk(A, I)

∗,

where ϕk(λ, µ̄) = 1 + λµ̄+ · · · + λk−1µ̄k−1.
The fact that (c) implies (a) follows from the Sylvester inequality

for the rank of matrix product and the relations

Pk(A,Z) = Pk(A,R) diag {R∗, . . . , R∗} , k = 1, 2, . . . .

The lemma is proved.

Lemma 1.8.2 Let a matrix sequence

Z1 ≥ 0, Zk+1 = Z1 + LZk, k = 1, 2, . . . , (1.8.2)

be given, where L is a linear operator preserving the cone of non-
negative definite matrices invariant (LK ⊆ K). Then the following
relations hold true:

r1 < r2 < · · · < rq = rq+1 = · · · = r, (1.8.3)

where q ≤ n− r1 + 1, rk = rankZk, k = 1, 2, . . . .

Represent the sequence (1.8.1) in the form (1.8.2), assuming
Z1 = RR∗, LZ = AZA∗. Then, according to Lemma 1.8.2, the con-
trollability condition for the pair (A,R) means that rq = n, where q is
the minimum value of the index k, for which the sequence of ranks rk
in (1.8.3) reaches the maximum value r = n. In this case the follow-
ing estimate is true:

q ≤ min {m,n− r1 + 1} ,
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where m is the degree of the minimal polynomial of the matrix A.

Theorem 1.8.1 Let the matrices X and Y satisfy the equa-
tion (1.3.1). Then the following statements hold true:

1) the controllability of the pair (A,Y ) implies the controllability of
the pair (A,X);

2) if X ≥ 0 and i0f (A) = 0, then the controllability of the pair (A,X)
implies the controllability of the pair (A,Y );

3) if Y ≥ 0 and the pair (A,Y ) is controllable, then i0f (A) = 0;

4) if X ≥ 0, Y ≥ 0 and the pair (A,Y ) is controllable, then
i+f (A) = n;

5) if X ≥ 0, Y ≥ 0 and the pair (A,X) is controllable, then
i−f (A) = 0;

6) if X ≥ 0, Y = 0 and the pair (A,X) is controllable, then
i0f (A) = n.

Proof. The controllability of the pair (A,R) is equivalent to the
conditions

rank[A− λI,R] = n, λ ∈ σ(A).

These conditions do not hold true if and only if there exists a left
eigenvector v∗t of the matrix A, corresponding to the eigenvalue λt,
for which v∗t R = 0. If v∗t X = 0, then according to (1.2.19),

v∗t Y =

α∑

τ=1

mτ∑

j=1

f1j(λt, λ̄τ ) v
∗
tXA

∗
τj = 0.

Therefore the pair (A,X) is controllable if such is the pair (A,Y ).

Given X ≥ 0 the equalities v∗t X = 0 and v∗t Xvt = 0 are equiva-
lent. If v∗t X 6= 0 and f(λt, λ̄t) 6= 0, then v∗t Y 6= 0, since

f(λt, λ̄t) v
∗
t Xvt = v∗t Y vt, t = 1, . . . , α. (1.8.4)

Thereby statements 1) and 2) are proved.

The equalities (1.8.4) are similarly used for derivation of state-
ments 3)–6). If Y ≥ 0 and v∗t Y 6= 0, then f(λt, λ̄t) 6= 0. If X ≥ 0,
Y ≥ 0, then the inequality v∗t X 6= 0 (v∗t Y 6= 0) implies f(λt, λ̄t) ≥ 0
(f(λt, λ̄t) > 0). In the case Y = 0 v∗t X 6= 0 implies f(λt, λ̄t) = 0.
Statements 3) – 6) can be also determined by using Lemma 1.8.1.
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The theorem is proved.

If some operator L commutes with the operator (1.2.2) and the
matrices X and Y satisfy the equation (1.3.1), then the expressions
X̂ = LX and Ŷ = LY also satisfy this equation and therefore can
be used in Theorems 1.3.1, 1.5.1, 1.6.1, and 1.8.1. The respective
limitations on the inertial properties of the parent matrices X and Y
are canceled. In particular, in Theorem 1.8.1 the inequalities X ≥ 0
or Y ≥ 0 are not required. If the operator L determines the nonempty
sets of matrices

L(L) = {Z : LZ > 0} , L̄(L) = {Z : LZ ≥ 0} ,

then for the inclusion σ(A) ⊂ Λ+
f it is sufficient that the equa-

tion (1.3.1) has a solution X ∈ L̄(L) for some matrix Y ∈ L(L).
If f ∈ Hm

0 , then the inclusions σ(A) ⊂ Λ+
f and L(L) ⊆ LfL(L) are

equivalent. The latter statement is an analogue of Theorem 1.3.1.
Let Lϕ and Lψ be operators of the type (1.2.2), describing the

nonempty sets of matrices

L(Lϕ), L(Lψ), LϕK, LψK, L̄(Lϕ), L̄(Lψ), LϕK0, LψK0.

It is possible to construct different conditions for localization of the
spectrum σ(A) in terms of solutions of the equation (1.3.1), belonging
to one of those sets. Here the functions ϕ and ψ must have some
additional properties.

In the equation (1.3.1) let X ∈ LϕK and Y ∈ L(Lψ). Then the
following relations hold true:

LgX̂ = Ŷ , X = LϕX̂, LψY = Ŷ , (1.8.5)

where X̂ ≥ 0, Ŷ > 0 are some matrices, g = f ϕψ is a product of
functions. If the functions ϕ and ψ are selected so that

Λ−
f ∩ Λ−

ϕψ = ∅, (1.8.6)

then, according to Lemma 1.3.1, the spectrum σ(A) belongs to the
domain (1.1.2). If the following inequalities hold true

Γ1/g

(
m1 · · · mα

λ1 · · · λα

)
≥ 0, g(λt, λ̄τ ) 6= 0, t, τ = 1, α,
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then, according to (1.8.5) and Lemma 1.4.3, the equation (1.3.1) has
a solution X ∈ LϕK for any matrix Y ∈ L(Lψ). If we assume that
along with (1.8.6) the following conditions hold true

µ1, . . . , µm ∈ Λ+
f =⇒ Γ1/g

(
1 · · · 1
µ1 · · · µm

)
≥ 0,

g(µt, µ̄τ ) 6= 0, t, τ = 1,m,

(1.8.7)

then the inclusions σ(A) ⊂ Λ+
f and L(Lψ) ⊆ LfLϕK are equiva-

lent. This criterion adds up to Theorem 1.3.1 in the particular case
ϕ = ψ ≡ 1. The conditions (1.8.7) hold true if, e.g., g ∈ Hm

0 and
Λ+
f ⊆ Λ+

ϕψ.

See the consequences of the described approach for the class of
functions f ∈ H1, in particular f ∈ H2.

Theorem 1.8.2 Let the functions f and ψ be represented as

f = f+ − f−, ψ =
s∑

j=0

f s−j+ f j−, (1.8.8)

where

f+(λ, µ̄) = f1(λ) f1(µ), f−(λ, µ̄) =
∑

i>1

fi(λ) fi(µ), s ≥ 1.

Then the equation (1.3.1) has a unique solution X > 0 under the
conditions

σ(A) ⊂ Λ+
f , LψY > 0. (1.8.9)

If Y ≥ 0, s = n — rankY and X > 0 is the unique solution of the
equation (1.3.1), then the conditions (1.8.9) hold true.

Proof. Since g = fψ = f s+1
+ − f s+1

− ∈ H1, then the condi-
tions (1.8.6) and (1.8.7) hold true. In this case ϕ ≡ 1. If σ(A) ⊂ Λ+

f ,
then the operators Lf , Lψ, and Lg are invertible. From Theo-
rem 1.3.1 and the relations (1.8.7) and (1.8.9) it follows that the
equation (1.3.1) has the unique solution X > 0.

Let for some matrix Y ≥ 0 the equation (1.3.1) have the unique
solutionX > 0. The invertibility of the operator Lf and Lemma 1.3.1
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imply the inequalities (1.3.2), (1.3.3) and the relations

f1(λt) 6= 0,
1

f(λt, λ̄τ )
=

1 + δ(λt, λ̄τ ) + δ2(λt, λ̄τ ) + · · ·
f1(λt)f1(λτ )

,

|δ(λt, λ̄τ )|2 ≤ δ(λt, λ̄t) δ(λτ , λ̄τ ) < 1, t, τ = 1, α.

Here Cauchy’s inequality for the function δ = f−/f+ was used. Ta-
king into consideration the formula (1.2.7), we obtain the expansion
of the inverse operator

L−1
f = L−1

f+

(
E + Lδ + L2

δ + · · ·
)

= L−s−1
f+

Lψ + ∆s,

where E is an identity operator, ∆s → 0 (s → ∞). The matrix
sequence

X1 = L−1
f+
Y, Xs+1 = Xs + LδXs = f1(A)−s−1 (LψY ) f1(A)−s−1∗,

converges to a positive definite solution X and satisfies the conditions
of Lemma 1.8.2. Consequently, for some s we arrive at the strict
inequality LψY > 0. In particular, we can put s = n− rankY .

The theorem is proved.

Theorem 1.8.3 Let the matrices A,Y = RR∗ ≥ 0 and the func-
tion f ∈ H2 of the form (1.4.5) satisfy the condition

rank [F0R, . . . , FsR] = n, (1.8.10)

where Fk = f s−k1 (A)fk2 (A), k = 0, s, s = n− rankY . Then if X is a
solution of the equation

f1(A)Xf1(A)∗ − f2(A)Xf2(A)∗ = Y, (1.8.11)

then the curve (1.1.4) does not intersect with the spectrum σ(A), and
in the domain Λ+

f (Λ−
f ) there are exactly i+(X) (i−(X)) eigenvalues

of the matrix A, taking into account the multiplicities.

Proof. Represent the functions f and ψ in the form (1.8.8). Under
the condition (1.8.10) we have the inequality LψY = PP ∗ > 0, where
P is the block matrix determined in (1.8.10). Act on both parts of
the equation (1.8.11) by the operator Lψ. As a result, arrive at the
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inequality LgX > 0, where g = fψ = f s+1
+ − f s+1

− ∈ H2. Taking into
account the corollary of Theorem 1.5.1, obtain (1.5.4).

The theorem is proved.

The statement of Theory 1.8.3 holds under the controllability con-
ditions of the pair of matrices (A,Y ), and the limitations (see Carl-
son, Hill [1])

h(λt) 6= h(λτ ) (t 6= τ), h′(λt) 6= 0 (mt > 1), (1.8.12)

where

h(λ) =
f1(λ) + f2(λ)

f1(λ) − f2(λ)
.

These limitations are equivalent to the coincidence of the geometric
multiplicities of the eigenvalues λt of the matrix A with the cor-
responding geometric multiplicities of the eigenvalues h(λt) of the
matrix h(A). When using the limitation (1.8.10), unlike (1.8.12), no
information on the spectrum σ(A) is required.

Note that for the function f(λ, µ̄) = 1 − λ µ̄ describing the unit
circle Λ0

f , the equality (1.8.10) coincides with the controllability con-
dition of the matrix pair (A,R).

1.9 Notes and References

1.1 The description of sets in the complex plane by means of Her-
mitian functions in the form (1.1.2)–(1.1.4) is used in eigenvalue lo-
cation problems (see e.g. Gutman, Jury [1], Howland [1], Kalman
[1], Carlson, Hill [1], Barnett, Saraton [1], Gutman, Chojnowski [1,
2], Mazko [1–15, 20, 22, 24–31], Kharitonov [1], and others). For the
description of uniting, intersection, and other operations with given
sets, R–functions can be used (see Rvachev [1]).

1.2 The operators (1.2.1) and (1.2.2) are taken from Daletskii,
Krein [1] and Daletskii [1]. Their representation (1.2.9) and expres-
sions for eigenvalues in Lemmas 1.1.1 and 1.1.2 were obtained in
Mazko [22]. The used properties of functions and components of
matrix are taken from Lancaster [1] and Gantmacher [1].

1.3 Lemmas 1.3.1–1.3.5 and Theorem 1.3.1 are proved in Mazko
[21–23, 25]. In the proof of Lemmas 1.3.1 and 1.3.2 the known facts
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of the theory of matrices were used, taken from Gantmacher [1] and
Horn, Johnson [1]. The description of the structure of the matrices
αti(J) is available in Lancaster [1].

The statement of Theorem 1.3.1 without the use of Lemma 1.3.5
in the case of algebraic domains is also formulated by Mazko [6] and
Gutman, Chojnowski [2]. Maximal classes of algebraic and tran-
scendent domains described by using matrices of the type (1.1.8) in
Theorem 1.3.1 were for the first time determined in Mazko [1, 2, 5].

1.4 The classes of algebraic and analytic functions of the type H1,
described in terms of the matrix (1.4.8) in the generalized Lyapunov
theorem were introduced in Mazko [2, 5]. The statement of this the-
orem is proved for algebraic domains with the limitation (1.4.9) (see
Kharitonov [1]). The equivalence of the conditions (1.4.8) and (1.4.9)
was proved in Mazko, Kharitonov [1]. Limitations on the matrix Γ
of the form (1.4.10) were used by Jury [1], Kalman [1], and others.

The examples of algebraic and transcendent curves were taken
from Savelov [1].

1.5 The results of this Section were proved in Mazko [22, 23, 25].
Theorem 1.5.1 is a generalization of the known inertia theorems (see
Ostrowsky, Schneider [1] and Taussky [1]). The justification of the
expansion (1.5.6) is available in Gantmacher [1].

1.6 The known techniques for solution of problems of belonging
of polynomial roots to some curves are described, as well as the
technical applications related to them (see Jury [1] and Postnikov
[1]). Theorem 1.6.1 and its corollaries give the conditions of location
of matrix eigenvalues in terms of solutions of a homogeneous matrix
equation (see Mazko [7, 8, 10]).

1.7 At construction of the minimal interval [ε1, ε2] in (1.6.2) one
can use, e.g., statements 12.57 and 12.60 from Voevodin, Kuznetsov
[1]. The matrix equation (1.7.4) in a problem of spectrum localization
was used in Mazko [7, 10]. Theorem 1.7.1 was formulated by Mazko
[39] on the basis of the technique proposed by Gutman, Chojnowski
[1].

1.8 The concept of a controllable matrix pair emerged in con-
trollable system theory (see e.g. Andreev [1], Wonham [1], Simon,
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Mitter [1], and others). The Lyapunov equation with a nonnegative
definite right-hand side was studied in Bakhilina, Lerner [1], Carlson,
Schneider [1], Snyders, Zakai [1], Carlson, Hill [1], Wimmer [1,2], and
others. Lemmas 1.8.1 and 1.8.2 and Theorems 1.8.1–1.8.3 were ob-
tained in Mazko [13, 30]. The proposition of Theorem 1.8.3 with the
limitations (1.8.12) was proved in Carlson, Hill [1].





2

ANALOGUES OF THE LYAPUNOV EQUATION

FOR MATRIX FUNCTIONS

2.0 Introduction

This chapter deals with the analysis of spectral properties of matrix
polynomials and functions. We propose classes of linear operators
and respective matrix equations playing the role of the generalized
Lyapunov equation in problems of stability and localization of eigen-
values. Here we use different methods of spectrum splitting that are
based on the construction of contour integrals of Cauchy type, re-
gular factorization of matrix functions, solution of special algebraic
systems and definition of right and left pairs of matrix functions.

In Section 2.1 a class of the linear operators Mf is defined which
generalize a class of the operators Lf studied in Chapter 1. Operators
Mf are used in construction of analogues of the Lyapunov equations
for matrix polynomials and functions. Using series expansions of the
multiplicative derivative of the investigated matrix function F and
the analytic function f which defines the domains for distribution
of the selected subset of the spectrum σ0(F ) in the complex plane,
spectral and algebraic properties of the operator Mf are determined.

In Section 2.2 it is supposed that the matrix function F admits
regular factorization with a regular linear multiplier whose spectrum
coincides with the subset σ0(F ). The operator Mf can be reduced
to a special form which, taking into consideration the inertia law, al-
lows us to generalize well-known theorems of eigenvalues localization
(Lyapunov, Ostrowsky-Schneider, etc.).

In Section 2.3 the spectrum of a matrix polynomial is studied with
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the use of its linear accompanying form. In this case the operator Mf

reduces to a standard form where matrix coefficients are determined
in the form of integrals of Cauchy type or calculated by expansion
of the resolvent F−1(λ) in Laurent series in the neighbourhood of
an infinite point. The definition of the main theorems of eigenvalues
localization is similar to the statements given in Section 2.2.

In Section 2.4 the procedure of construction of coefficients of the
generalized Lyapunov equation for a matrix polynomial is described
which is based on solving auxiliary algebraic matrix systems. Every
nontrivial solution of such systems defines some subset of the spec-
trum of the matrix polynomial and the corresponding operator Mf

satisfying the eigenvalues localization theorems stated in Section 2.2.

In Section 2.5 the notions of right and left pairs of a matrix func-
tion are introduced, generalizing the solutions of respectively the
right and left problems for eigenvalues. Each right (left) pair of a
matrix function defines some subset of the spectrum, with the num-
ber of its points, taking into account the multiplicities, equal to the
observability (controllability) index of the given pair of matrices. A
generalized spectral problem for a matrix polynomial is stated in the
form of a corresponding algebraic matrix equation.

The analogues of the Lyapunov equation that are constructed in
Section 2.6 by means of the right and left pairs of a matrix func-
tion are used in the study of a selected subset of the spectrum of
this matrix function. The stated theorems on eigenvalue localization
are the most general with respect to the main results described in
Sections 2.2–2.4 and, within the framework of the method of matrix
equations, are unique in the published books on this subject.

In Section 2.7 an effective simplified technique of the study of
spectral properties of matrix polynomials and functions is described.
Sufficient conditions of location of the spectrum of a matrix function
in a specified domain are proposed which add up to solution of linear
matrix equations and inequalities. Stated as a corollary are the con-
ditions of stability of matrix quasi-polynomials used in description
of differential-difference dynamic systems.

We hope that the generalized Lyapunov equation as a new direc-
tion of research in stability theory will be widely adopted both in
analysis problems and in those of synthesis of dynamic systems with
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prescribed properties.

2.1 Operator Mf

Let F (λ) be an n × n matrix composed of single-valued analytic
functions and satisfying the condition

χ(λ) = detF (λ) 6≡ 0, λ ∈ C1. (2.1.1)

Zeros of the function χ(λ) are the eigenvalues of the matrix F (λ) and
form its spectrum σ(F ). Let us select some subset of the spectrum

σ0(F ) = {λ1, . . . , λ1; . . . ;λα, . . . , λα} , (2.1.2)

where λ1, . . . , λα are pairwise different eigenvalues with the corre-
sponding multiplicities n1, . . . , nα. For a matrix polynomial the
whole spectrum σ(F ) consisting of l eigenvalues can be considered
as σ0(F ). Henceforth we will construct the subset (2.1.2) by using
the methods of spectrum splitting. Construct a linear operator

MfX = − 1

4π2

∮

ω

∮

ω̄

f(λ, µ̄)RλXR
∗
µ dλ dµ̄, (2.1.3)

where f is a given Hermitian function, Rλ = F ′(λ)F−1(λ) is a mul-
tiplicative derivative of matrix F (λ), and ω (ω̄) is a simple closed
contour enclosing the points λt (λ̄t), t = 1, . . . , α. The operator Mf

is the generalization of the operator Lf studied in Chapter 1. In the
case of f ≡ 1 the expression (2.1.3) reduces to

MX = ∆X∆∗, ∆ =
1

2πi

∮

ω

Rλ dλ, (2.1.4)

where ∆ is a matrix analogue of the logarithmic residue of a function
with respect to the set of points σ0(F ),

trRλ ≡ χ′(λ)

χ(λ)
, λ 6∈ σ(F ), tr ∆ = n1 + · · · + nα = r.
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For functions f with separable variables we will use the representa-
tion

MfX =
∑

p,q

γpq FpXF
∗
q , Fp =

1

2πi

∮

ω

fp(λ)Rλ dλ. (2.1.5)

We will obtain an analogue of the formula (1.2.9) for the opera-
tor Mf . Each eigenvalue λt ∈ σ0(F ) is a pole of order mt of the
matrix function Rλ(m1 + · · ·+mα = m). In some neighbourhood of
the point λt the following expansion holds true:

Rλ =

mt∑

i=1

(i− 1)!

(λ− λt)i
Ati + St(λ), (2.1.6)

where Ati are constant matrices, St(λ) is a matrix function analy-
tical in the given neighbourhood. We will use Taylor series for the
function f in the neighbourhood of (λt, λ̄τ ):

f(λ, µ̄) =
∞∑

i,j=1

fij(λt, λ̄τ )
(λ− λt)

i−1(µ̄− λ̄τ )
j−1

(i− 1)!(j − 1)!
,

fij(λt, λ̄τ ) =
∂i+j−2

∂λi−1
t ∂λ̄j−1

τ

f(λt, λ̄τ ).

Calculating integrals in (2.1.3) with the help of the main theorem of
residues, we come to the following representation:

MfX =

α∑

t,τ=1

mt,mτ∑

i,j=1

fij(λt, λ̄τ )AtiXA
∗
τj . (2.1.7)

The matrix coefficients in (2.1.5) and (2.1.7) satisfy the relations

∆ =

α∑

t=1

At1, Fp =

α∑

t=1

mt∑

i=1

di−1fp(λt)

dλi−1
t

Ati,

trAti =

{
nt, i = 1
0, i > 1

, trFp =

α∑

t=1

ntfp(λt).
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Consider the case of the linear pencil F (λ) = A − λB. On the
assumption of regularity (2.1.1) there exist nonsingular matrices P
and Q reducing to the canonical form

P (A− λB)Q ≡
[
J − λI 0

0 I − λN

]
, (2.1.8)

where J and N are square matrices of order r and n− r respectively
such that σ(J) = σ(F ), Nν = 0, I is a unit matrix of appropriate
dimensions. The set of finite elementary divisors of the pencil F (λ)
consists of the elementary divisors of the matrix J . The nilpotency
index ν of the matrix N is determined by the maximum power of
infinite elementary divisors of the pencil F (λ). Taking into account
the identity (2.1.8), obtain the relation

Rλ=−B(A− λB)−1 =−P−1

[
(J − λI)−1 0

0 N(I − λN)−1

]
P, (2.1.9)

where

(J − λI)−1 = −
α∑

t=1

mt∑

i=1

(i− 1)!

(λ− λt)i
Jti, (I − λN)−1 =

ν−1∑

i=0

λiN i,

Jti = αti(J) are components of the matrix J , corresponding to the
eigenvalues λt. Consequently, for the evaluation of the coefficients in
(2.1.5) and (2.1.7), in accordance with (2.1.6) and (2.1.9), we obtain
the relations

Fp = ∆fp(Θ), Ati = ∆ αti(Θ), (2.1.10)

∆ = BZ = P−1

[
I 0
0 0

]
P,

Θ = AZ = P−1

[
J 0
0 0

]
P,

(2.1.11)

Z = − 1

2πi

∮

ω

(A− λB)−1dλ = Q

[
I 0
0 0

]
P. (2.1.12)
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If the functions fp(λ) and αti(λ) in the point λ = 0 take on zero
values, then the multiplier ∆ in (2.1.10) can be omitted. For numer-
ical evaluation of the matrices ∆ and Θ one can use the following
Laurent expansion ensuing from (2.1.9)

Rλ = λν−2Kν−1 + · · · + λK2 +K +
1

λ
∆ +

1

λ2
Θ +

1

λ3
Θ2 + · · · ,

where K is some nilpotent matrix. The matrices Ati in (2.1.10)
commute pairwise and satisfy the relations (see Section 1.2)

A2
t1 = At1,

α∑

t=1

At1 = ∆, At1Ati = AtiAt1 = Ati,

AtiAτj = 0 (t 6= τ), Ati =
1

(i− 1)!
(Θ − λt∆)i−1At1.

Some algebraic and spectral properties of the operators Lf apply
to the class of operatorsMf in the case of a regular pencil of matrices.
In particular, we have the relations

Mf1Mf2 = Mf2Mf1 = Mf1f2, c1Mf1 + c2Mf2 = Mc1f1+c2f2 ,

M g (Mf1 , . . . ,Mfs
) = Mg(f1,...,fs),

MfWtτ = f(λt, λ̄τ )Wtτ , Wtτ = AtmtCtτA
∗
τmτ

6= 0,

where c1 and c2 are arbitrary constants, g, f1, . . . , fs are given func-
tions, and Ctτ are some matrices. If w is an eigenvalue of the op-
erator Mf with the multiplicity q, then either w = f(λt, λ̄τ ) and
q ≥ ntnτ , or w = 0 and q ≥ n2 − r2. Using the results of Chapter 1,
one can obtain a general representation of the eigenelements of the
operator Mf .

2.2 Matrix Functions Admitting Regular

Factorization

We study the properties of the operator Mf , assuming that the ma-
trix function F (λ) admits a regular factorization

F (λ) = C(λ)D(λ), D(λ) = A− λB,

σ(D) = σ0(F ), σ(C) ∩ σ(D) = ∅.
(2.2.1)
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Lemma 2.2.1 Let ω be a closed contour enclosing the spectrum
of the matrix pencil A − λB and separating a closed domain Ω in
the complex plane, and C1(λ) and C2(λ) be analytic in Ω matrix
functions. Then the following equality holds true:

2πi

∮

ω

C1(λ)SλC2(λ) dλ =

∮

ω

C1(λ)Sλ dλ ·
∮

ω

SλC2(λ) dλ, (2.2.2)

where Sλ = −B(A− λB)−1.

Proof. Represent the right-hand side of the equality (2.2.2) in
the form of

C =

∮

ω

∮

ω̂

C1(λ)SλSµC2(µ) dλdµ (λ ∈ ω, µ ∈ ω̂).

Here the closed contour ω̂ entirely encloses and does not cross ω. It
is easy to find that the following identity holds true:

Sλ − Sµ ≡ (µ− λ)SλSµ, λ, µ 6∈ σ(F ). (2.2.3)

If B = I, then (2.2.3) coincides with the Gilbert identity for the
resolvent Sλ. Like in the resolvent case, we have

C=

∮

ω

C1(λ)Sλ



∮

ω̂

C2(µ)

µ− λ
dµ


dλ−

∮

ω̂



∮

ω

C1(λ)

µ− λ
dλ


SµC2(µ) dµ =

= 2πi

∮

ω

C1(λ)SλC2(λ) dλ.

Here the Cauchy formula and an integral theorem were used, giving
as a result

∮

ω̂

C2(µ)

µ− λ
dµ = 2πiC2(λ) (λ ∈ ω),

∮

ω

C1(λ)

µ− λ
dλ = 0 (µ ∈ ω̂).

The lemma is proved.
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Lemma 2.2.2 The operator (2.1.3) on the assumption of (2.2.1)
is represented in the form

MfX = GLf (HXH
∗)G∗, (2.2.4)

where G ∈ Cn×r, H ∈ Cr×n, Lf is an operator defined in (1.2.2) for
some matrix J ∈ Cr×r with the spectrum σ(J) = σ0(F ).

Proof. Calculate the multiplicative derivative of the factorized
matrix (2.2.1):

F ′(λ)F−1(λ) = C ′(λ)C−1(λ) + C(λ)SλC
−1(λ).

Here the first summand does not have singularities within the con-
tour ω. Applying Lemma 2.2.1 separately to each integral in (2.1.3),
we obtain

MfX = − 1

4π2

∮

ω

∮

ω̄

f(λ, µ̄)USλV XV
∗ S∗

µU
∗ dλ dµ̄,

where

U =
1

2πi

∮

ω

C(λ)Sλ dλ, V =
1

2πi

∮

ω

SλC
−1(λ) dλ,

Consequently, taking into account (2.1.9) we have the representa-
tion (2.2.4). Note that

Lf X̂ = − 1

4π2

∮

ω

∮

ω̄

f(λ, µ̄)(J − λI)−1X̂(J − µI)−1∗dλ dµ̄,

U = [G, 0] P, G =
1

2πi

∮

ω

C(λ)P−1

[
(λI − J)−1

0

]
dλ,

V = P−1

[
H
0

]
, H =

1

2πi

∮

ω

[
(λI − J)−1, 0

]
PC−1(λ) dλ.

The lemma is proved.

Consider the matrix equation

MfX = Y, (2.2.5)
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where Mf is a linear operator (2.1.3) constructed for the matrix
function F (λ), f is a Hermitian function describing the nonempty
sets

Λ+
f =

{
λ : f(λ, λ̄) > 0

}
,

Λ−
f =

{
λ : f(λ, λ̄) < 0

}
,

Λ0
f =

{
λ : f(λ, λ̄) = 0

}
.

We will look for the matrices X and Y in (2.2.5) in the sets of Her-
mitian matrices formed by using the operator M of the form (2.1.4):

X =

r⋃

p=0

Xp0, Y =

r⋃

p=0

Yp0, (2.2.6)

where

Xpq =
{
X : X̂ = MX, i+(X̂) = p, i−(X̂) = q

}
,

Ypq =
{
Y : Y = MŶ , i+(Y ) = p, i−(Y ) = q

}
.

Here we assume that the multipliers G and H in (2.2.4) have full
rank. The last limitation is equivalent to the equality rank∆ = r,
from which it follows in particular that Xr0 6= ∅ and Yr0 6= ∅. Deter-
mine the quantity of eigenvalues of the subset of the spectrum (2.1.2),
belonging to the respective sets Λ+

f , Λ−
f and Λ0

f :

r+ =
∑

λt∈Λ+

f

nt, r− =
∑

λt∈Λ−

f

nt, r0 =
∑

λt∈Λ0
f

nt.

From Lemmas 1.3.1–1.3.3 and the formulas (2.2.4)–(2.2.6) the fol-
lowing statements arise.

Lemma 2.2.3 If for some matrix Y ∈ Yr0 the equation (2.2.5) has
a solution X ∈ X , then the subset of the spectrum (2.1.2) is located
in the domain Λ+

f . Conversely, if σ0(F ) ⊂ Λ+
f , then there exist

matrices X ∈ Xr0 and Y ∈ Yr0 that satisfy the equation (2.2.5).

Lemma 2.2.4 The inclusion MfXr0 ⊆ Yr0 is equivalent to the
relations

f(λt, λ̄t) > 0, t = 1, α; Γf

(
m1 . . .mα

λ1 . . . λα

)
≥ 0.
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The last inequality is true if and only if MfX ⊆ Y.

Lemma 2.2.5 For any matrix Y ∈ Yr0 the equation (2.2.5) has
the solution X ∈ Xr0 if and only if

f(λt, λ̄τ ) 6= 0, t = 1, α, τ = 1, α; Γ1/f

(
m1 . . .mα

λ1 . . . λα

)
≥ 0.

Formulate analogues of Theorems 1.3.1, 1.5.1, and 1.6.1 for the
matrix functions (2.2.1).

Theorem 2.2.1 Let f ∈ Hr
0. Then the inclusion σ0(F ) ⊂ Λ+

f is
satisfied if and only if for any matrix Y ∈ Yr0 the equation (2.2.5)
has the solution X ∈ Xr0.

Theorem 2.2.2 If MfX ∈ Yr0, then r0 = 0. If r0 = 0, then there
exists a matrix X ∈ Xpq such that MfX ∈ Yr0 and the equalities

r+ = p, r− = q, p+ q = r. (2.2.7)

hold true. If some matrices X ∈ Xpq and Y ∈ Yr0 satisfy the equa-
tion (2.2.5) with f ∈ Hr

2, then the equalities (2.2.7) hold true.

Theorem 2.2.3 If a homogeneous matrix equation

MfX = 0 (2.2.8)

has the solution X ∈ Xp0, then the estimate r0 ≥ p holds true. Speci-
fically, for X ∈ Xr0 all eigenvalues λt ∈ σ0(F ) are located on the
curve Λ0

f . Conversely, if r0 6= 0, then the equation (2.2.8) has the
solution X ∈ Xp0 for any p from the interval

0 < p ≤
∑

λt∈Λ0
f

ξt,

where ξt is the geometric multiplicity of the eigenvalue λt ∈ σ0(F ).

The results of Chapter 1 related to the expansion of sets of Her-
mitian matrices in the problem of localization of matrix spectrum
can be generalized for the matrix function (2.2.1). Specifically, in
construction of analogues of Theorem 1.8.1 we use the concept of
controllability of linear systems not solved for derivatives.
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2.3 Matrix Polynomial and its Accompanying Linear

Form

When studying the spectral properties of the matrix polynomial

F (λ) = A0 + λA1 + · · · + λsAs ∈ Cn×n, detF (λ) 6≡ 0, (2.3.1)

one can use the linear accompanying pencils of matrices with the
spectrum σ(F ). Different methods of construction of such pencils are
known. We will use the following block matrices of the dimensions
ns× ns:

A =




−A0 0 · · · 0
0 I · · · 0
· · · · · · · · · · · ·
0 0 · · · I


 , B =




A1 I · · · 0
· · · · · · · · · · · ·
As−1 0 · · · I
As 0 · · · 0


 ,

C =




A1 · · · As−1 As
I · · · 0 0
· · · · · · · · · · · ·
0 · · · I 0


 , S1 =




I 0 · · · 0
0 A2 · · · As
· · · · · · · · · · · ·
0 As · · · 0


 ,

S2 =




A1 A2 · · · As
A2 A3 · · · 0
· · · · · · · · · · · ·
As 0 · · · 0


 , S3 =




−A0 0 · · · 0
0 A2 · · · As
· · · · · · · · · · · ·
0 As · · · 0


 .

(2.3.2)

All scalar spectral characteristics (eigenvalues, finite and infi-
nite elementary divisors) of the linear pencils D(λ) = A − λB and
L(λ) = A−λC coincide and fully determine the corresponding spec-
tral characteristics of the matrix polynomial F (λ).

Let σ0(F ) be some subset of spectrum (2.1.2) of the matrix poly-
nomial (2.3.1), separated in the complex plane by a contour ω. Con-
struct an operator Mf for the accompanying pencil D(λ).

Applying Frobenius’s formula for inversion of block matrices, for
λ 6∈ σ(F ) we get

−D−1(λ) = S1W (λ) + F1(λ),

D′(λ)D−1(λ) = S2W (λ) + F2(λ),

λD′(λ)D−1(λ) = S3W (λ) + F3(λ),

(2.3.3)
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where F1(λ), F2(λ), F3(λ) are some polynomial matrices, W (λ) is a
matrix which has the block Hankel structure

W (λ) =




F−1(λ) λF−1(λ) · · · λs−1F−1(λ)
λF−1(λ) λ2F−1(λ) · · · λsF−1(λ)

· · · · · · · · · · · ·
λs−1F−1(λ) λsF−1(λ) · · · λ2s−2F−1(λ)


 .

Integrating the equalities (2.3.3) along the closed contour ω enclosing
all the points σ0(F ), we obtain the relations

Z = S1H, ∆ = BZ = S2H, Θ = AZ = S3H, (2.3.4)

where

H =




H1 H2 · · · Hs

H2 H3 · · · Hs+1

· · · · · · · · · · · ·
Hs Hs+1 · · · H2s−1


 ,

Hp =
1

2πi

∮

ω

λp−1F−1(λ) dλ, p = 1, 2, . . . .

Integrals Hp satisfy the system of matrix equations

A0H1 +A1H2 + · · · +AsHs+1 = 0,

A0H2 +A1H3 + · · · +AsHs+2 = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
A0Hp +A1Hp+1 + · · · +AsHs+p = 0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
It follows that the matrices (2.3.4) are expressed through the first s
integrals H1, . . . ,Hs. Indeed, the blocks Zpq of the matrix Z have
the form

Zpq =





s∑

j=p

AjHj+q−p+1, q < p,

Hq, p = 1,

−
p−1∑

j=0

AjHj+q−p+1, q ≥ p > 1.

(2.3.5)
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Here there are no matrices Hp for p > s. Note that if the contour ω
encloses the whole spectrum σ(F ), then the matrices Hp coincide
with the coefficients of the main part of Laurent’s expansion of re-
solvent in the neighbourhood of an infinite point

F−1(λ) = H0(λ) +
1

λ
H1 +

1

λ2
H2 + · · · + 1

λs
Hs + · · · . (2.3.6)

Operator Mf for the pencil of matrices D(λ) is represented in the
form (2.1.7) where the coefficients Ati are determined by (2.1.10)–
(2.1.12). For the class of functions f with separable variables we will
use the operator

MfX =
∑

p,q

γpq FpXF
∗
q , (2.3.7)

where

Fp =

{
fp(Θ), fp(0) = 0,

∆fp(Θ), fp(0) 6= 0.

The matrices ∆ and Θ in (2.3.4) and (2.3.7) have the following pro-
perties (see Section 2.1):

rank∆ = r, ∆2 = ∆,

∆Θ = Θ∆ = Θ, σ0(F ) ⊆ σ(Θ).
(2.3.8)

Thus, if s integrals H1, . . . ,Hs in the relations (2.3.4) and (2.3.8)
are known, then the properties of the operator Mf and the location
r of the eigenvalues λt ∈ σ0(F ) of the matrix polynomial F (λ) with
respect to the sets Λ+

f , Λ−
f and Λ0

f can be described by using Lem-
mas 2.2.2–2.2.5 and Theorems 2.2.1–2.2.3. Later we will construct a
system of algebraic relations satisfied by the matrices H1, . . . ,Hs.

2.4 Algebraic Systems of Spectrum Splitting

Each nontrivial solution Z of the algebraic system

AZ = ZA, Z = Z2, (2.4.1)

determines a projector of matrix A and some separation of spec-
trum σ(A) into two subsets. Projectors of a matrix can be used for
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splitting and localization of its spectrum. We will construct ana-
logues of the system (2.4.1) for the pencils of matrices satisfying
the condition (2.1.1), and study the potentialities of their usage in
Theorems 2.2.1–2.2.3.

Consider the combined equations

AZB = BZA, Z = ZBZ, (2.4.2)

where A and B are matrices of the regular pencil D(λ) = A − λB,
Z is an unknown matrix. The general solution of the system (2.4.2)
will be sought in the form

Z = Q

[
Z0 Z1

Z2 Z3

]
P,

where P and Q are nonsingular matrices of the transform (2.1.8). To
find the blocks Zj obtain the system of equations

JZ0 = Z0J, NZ3 = Z3N,

Z1 = JZ1N, Z2 = NZ2J,

Z0 = Z2
0 + Z1NZ2, Z1 = Z0Z1 + Z1NZ3,

Z2 = Z2Z0 + Z3NZ2, Z3 = Z2Z1 + Z3NZ3.

Since N is a nilpotent matrix, then the equalities

Z1 = JZ1N = J2Z1N
2 = · · · = 0

hold true. The blocks Z2 and Z3 must be zero as well. Therefore the
general solution of the system (2.4.2) is found in the form

Z = Q

[
Z0 0
0 0

]
P, JZ0 = Z0J, Z0 = Z2

0 , (2.4.3)

where Z0 is an arbitrary projector of the matrix J . If r 6= 0 is
the rank of the matrix Z0, then for some nonsingular matrix S the
following relations hold true:

Z0 = S−1

[
I 0
0 0

]
S, SJS−1 =

[
J0 0
0 J1

]
, (2.4.4)
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where J0 ∈ Cr×r. It follows that the system of equations (2.4.2)
has a nonempty set of solutions of rank r only if r is equal to the
sum of orders of Jordan blocks of the matrix J , corresponding to
some combination of elementary divisors of the pencil D(λ). If S is
an identity matrix, then the solution (2.4.3) of the system (2.4.2) is
representable in an integral form:

Z = − 1

2πi

∮

ω

(A− λB)−1dλ, rankZ = r.

Here the contour ω encloses a part of the spectrum σ0(D), consisting
of r eigenvalues, taking into account the multiplicities. In the case
when σ0(D) is the whole spectrum, we find the solution of the sys-
tem (2.4.2) of the type (2.1.12) of the maximum rank equal to the
total quantity of eigenvalues of the pencil D(λ).

If Z is a solution of the system (2.4.2) of rank r, then, in ac-
cordance with (2.4.3) and (2.4.4), in the relations (2.1.5), (2.1.7),
and (2.1.10) one can use the matrices

∆ = BZ = G−1

[
I 0
0 0

]
G,

Θ = AZ = G−1

[
J0 0
0 0

]
G,

(2.4.5)

where

G =

[
S 0
0 I

]
P, σ(J0) ⊆ σ(D).

Here a subset of the spectrum σ0(D) is determined, which coincides
with σ(J0), and the matrices (2.4.5) have the following properties
(see Section 2.1):

rank∆ = r, ∆2 = ∆,

∆Θ = Θ∆ = Θ, σ0(D) ⊆ σ(Θ).
(2.4.6)

Consequently, if the operators (2.1.5) and (2.1.7) are determined
by using the relations (2.1.10) and (2.4.5) for an arbitrary solution Z
of the system (2.4.2) of rank r, then the location r of eigenvalues of
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the matrix pencil D(λ) with respect to the given sets Λ+
f , Λ−

f and Λ0
f

can be described by using the statements of Theorems 2.2.1–2.2.3.
The system of matrix relations (2.2.5) and (2.4.2) is an analogue of
the Lyapunov equation for a regular matrix pencil D(λ).

Note that to each nonzero solution Z of the system (2.4.2) a subset
of spectrum σ0(D) = σ(J0) corresponds, which coincides with the
spectrum r × r matrix Θ0 = R∗AL, where L and R∗ are multipliers
of the skeleton expansion

Z = LR∗, L ∈ Cn×r, R ∈ Cn×r. (2.4.7)

The solutions of linear equation in (2.4.2) can be used to lower
the dimension in problems of estimation and location of eigenvalues.
Thus, if the matrix (2.4.7) satisfies the equation

AZB = BZA (2.4.8)

and a 6∈ σ(D), then the spectra of regular linear pencils of the ma-
trices

U(λ) = R∗D(λ)D∗(a)R, V (λ) = L∗D∗(a)D(λ)L

coincide and form some subset of the spectrum of the initial pencil
D(λ). Here the right (left) eigenvectors of the pencil D(λ), corre-
sponding to the given subset of the spectrum, are determined in the
form of linear combinations of columns (rows) of the multiplier L(R∗)
in the expansion (2.4.7). Using the solutions of the equation (2.4.8),
one can construct regular pencils of matrices of the type U(λ) and
V (λ), which are not unimodular under additional rank limitations
on Z.

The equation (2.4.8) is equivalent to the identity

D(λ)ZD(a) ≡ D(a)ZD(λ), λ ∈ C1.

The matrices (2.4.7) for which this identity holds true have proper-
ties similar to those described above, even if D(λ) is a regular matrix
function.

Let F (λ) be a matrix polynomial of the form (2.3.1), and
D(λ) = A − λB be its accompanying pencil whose matrices are
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determined in (2.3.2) and σ(F ) = σ(D). Represent the system of
equations (2.4.2) in the form of 2s matrix equations with respect to
unknown T1, . . . , Ts.

First consider the case s = 2, assuming

A =

[
−A0 0

0 I

]
, B =

[
A1 I
A2 0

]
, Z =

[
T1 T2

G1 G2

]
.

In accordance with (2.4.2), we arrive at the system of four matrix
equations with respect to T1 and T2:

A0T1A1 −A1T1A0 = A2T2A0 −A0T2A2,

A0T1A2 −A2T1A0 = A2T2A1 −A1T2A2,

T1 = T1A1T1 + T1A2T2 + T2A2T1,

T2 = T2A2T2 − T1A0T1.

(2.4.9)

The blocks G1 and G2 of the unknown matrix Z in the system (2.4.2)
are expressed through T1 and T2:

G1 = A2T2, G2 = −A0T1 −A1T2. (2.4.10)

In addition, in accordance with the second equation (2.4.2), the fol-
lowing equalities must hold true:

G1 = G1A1T1 +G2A2T1 +G2
1,

G2 = G1A1T2 +G2A2T2 +G1G2.

However one can find out that these equalities are the consequence
of the relations (2.4.9) and (2.4.10). Therefore, if T1 and T2 are the
solution of the system (2.4.9), then the matrices

∆ = BZ =

[
A1T1 +A2T2 −A0T1

A2T1 A2T2

]
,

Θ = AZ =

[ −A0T1 −A0T2

A2T2 −A0T1 −A1T2

]
,

(2.4.11)
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satisfy the relations (2.4.6) and can be used in construction of ana-
logues of the Lyapunov equation in Theorems 2.2.1–2.2.3 for the
quadratic matrix pencil F (λ) = A0 + λA1 + λ2A2 (see (2.1.10)
and (2.4.5)).

Let us generalize the system (2.4.9) for a matrix polynomial of
power s ≥ 2. Represent the matrices A, B, and Z in the form

A =
[
A(0)

∣∣∣A(1)
]

=




−A0

0
...
0

∣∣∣∣∣∣∣∣∣

0 · · · 0
I 0

. . .

0 I


 ,

B =
[
B(0)

∣∣∣B(1)
]

=




A1

A2
...
As

∣∣∣∣∣∣∣∣∣

I 0
. . .

0 I
0 · · · 0


 ,

Z =

[
T

G

]
=




T1 T2 · · · Ts

G11 G12 · · · G1s

· · · · · · · · · · · ·
Gs−11 Gs−12 · · · Gs−1s


 .

Then the system (2.4.2) is equivalent to the relations

A(0)TB(0) −B(0)TA(0) = B(1)GA(0) −A(1)GB(0), (2.4.12)

WG
∆
= A(1)GB(1) −B(1)GA(1) = B(0)TA(1) −A(0)TB(1), (2.4.13)

T = TB(0)T + TB(1)G, (2.4.14)

G = GB(0)T +GB(1)G. (2.4.15)

Note that the equality (2.4.13) gives explicit representation of G
through T :

Gpq =





−
p∑

j=0

AjTq−p+j, p < q,

s∑

j=p+1

AjTq−p+j, p ≥ q.

(2.4.16)
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The operator W determined in the right-hand side of the equal-
ity (2.4.13) is invertible. Applying the operator W to both sides
of the equality (2.4.15), one can find out that the equality (2.4.15)
is the consequence of the relations (2.4.12), (2.4.14), and (2.4.16).
Substituting (2.4.16) into (2.4.12) and (2.4.14), we arrive at the fol-
lowing system 2s of matrix equations with respect to the unknown
T1, . . . , Ts:

p∑

i=0

s∑

j=p+1

(AiTi+j−pAj −AjTi+j−pAi) = 0,

Tq =

s∑

i=q

s∑

j=i

TiAjTq+j−i −
q−1∑

i=0

i−1∑

j=−1

TiAjTq+j−i,

(2.4.17)

where T0 = A−1 = 0, p = 0, s − 1, q = 1, s.

Construct the block matrices ∆ = BZ and Θ = AZ of the form

∆ =




∆11 · · · ∆1s

· · · · · · · · ·
∆s1 · · · ∆ss


, Θ =




Θ11 · · · Θ1s

· · · · · · · · ·
Θs1 · · · Θss


, (2.4.18)

where

∆pq =





−
p−1∑

j=0

AjTq−p+j, p < q,

s∑

j=p

AjTq−p+j, p ≥ q,

Θpq =





−
p−1∑

j=0

AjTq−p+j+1, p ≤ q,

s∑

j=p

AjTq−p+j+1, p > q.

In the case s = 2 the system (2.4.17) reduces to the form (2.4.9), and
the matrices (2.4.11) and (2.4.18) are the same.
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Comparing (2.3.5) and (2.4.16), and using the structure of solu-
tions of the system (2.4.2) for the accompanying pencil D(λ), obtain
the following statement.

Lemma 2.4.1 The integral family

Tp =
1

2πi

∮

ω

λp−1F−1(λ)dλ, p = 1, s, (2.4.19)

where ω is a closed contour separating the subset of spectrum σ0(F ),
presents one of the solutions of the system (2.4.17).

Lemma 2.4.2 Let T1, . . . , Ts be a nontrivial solution of the sys-
tem (2.4.17). Then ∆ is a projector of rank r of the matrix Θ,
1 ≤ r ≤ ns, and at least r eigenvalues of the matrix Θ, taking
into account the multiplicities, belong to the spectrum of the matrix
polynomial F (λ). Note that if λ ∈ σ(Θ), then either λ ∈ σ0(F ),
or λ = 0.

This proposition can be proved through representation of matri-
ces (2.4.18) in the form (2.4.5) with respect to the solutions of the
system (2.4.2). The subset of spectrum σ0(F ) of the matrix polyno-
mial F (λ) is determined, which coincides with σ(J0) and also with
σ(R∗AL), where L and R∗ are multipliers of the skeleton expan-
sion (2.4.7) of the corresponding solution of the system (2.4.2).

Using Lemma 2.4.2 and the above technique, we arrive at the
following conclusion.

Theorem 2.4.1 Let the equation (2.2.5) and the sets of matri-
ces (2.2.6) be constructed for the operators

MfX =
∑

p,q

γpq FpXF
∗
q , MX = ∆X∆∗,

where

f(λ, µ̄) =
∑

p,q

γpq fp(λ)fq(µ), Fp =

{
fp(Θ), fp(0) = 0,

∆fp(Θ), fp(0) 6= 0,

and the matrices ∆ and Θ be determined in the form (2.4.18) with re-
spect to the nontrivial solution of the system (2.4.17). Then for some
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subset of the spectrum σ0(F ) of the matrix polynomial F (λ), consist-
ing of r = rank∆ eigenvalues, all statements of Lemmas 2.2.2–2.2.5
and Theorems 2.2.1–2.2.3 hold true.

Thus, we have a general technique for construction of analogues
of the Lyapunov equation and the corresponding theorems on eigen-
values location for linear, quadratic, and polynomial pencils of ma-
trices. This technique is based on the usage of operators of the
type M and Mf , formed by the solutions of the matrix algebraic sys-
tem (2.4.17), e.g., integrals (2.4.19) or coefficients of the leading part
of the Laurent expansion of the resolvent (2.3.6). The generalized
results presented in the form of Theorem 2.4.1 belong to the class of
Hermitian functions f with separable variables.

2.5 Right and Left Pairs of a Matrix Function

Let F (λ) be a matrix function of dimensions n×n, analytical in some
domain Λ. We will introduce definitions generalizing the concepts of
block eigenvalues and block eigenvectors of a matrix polynomial.

The matrices U ∈ Cm×m and T 6= 0 ∈ Cn×m form the right
pair (U, T ) of a matrix function F (λ), if for some analytic matrix
function Φ(λ) in the neighbourhood of points σ(U) the identity

F (λ)T ≡ Φ(λ)(λI − U), λ ∈ Λ. (2.5.1)

holds true. The left pairs (U, T ) of a matrix function F (λ) are simi-
larly determined by using the identity

TF (λ) ≡ (λI − U)Φ(λ), λ ∈ Λ. (2.5.2)

If a matrix function F (λ) is presented in the form

F (λ) = A0 + a1(λ)A1 + · · · + as(λ)As, (2.5.3)

where aj(λ) are scalar functions, Aj are constant matrices, then its
right and left pairs (U, T ) satisfy the corresponding equations

A0T +A1Ta1(U) + · · · +AsTas(U) = 0, (2.5.4)

TA0 + a1(U)TA1 + · · · + as(U)TAs = 0. (2.5.5)
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This statement follows directly from (2.5.1), (2.5.2) and integral re-
presentation of analytic functions of the matrix aj(U). Conversely, if
the matrices U and T 6= 0 satisfy the equation (2.5.4) ((2.5.5)), then
(U, T ) is the right (left) pair of the matrix function (2.5.3).

For the right and left pairs of the matrix function F (λ), construct
sequences of matrices Ek with the corresponding block structure:

Ek =




T
TU
...

TUk−1


, Ek =

[
T,UT, . . . , Uk−1T

]
, k = 1, 2, . . . . (2.5.6)

For both sequences (2.5.6) the rank relations

r1 < r2 < · · · < rh = rh+1 = · · · = r, (2.5.7)

hold true, where rk = rankEk, and h is the least value of the index k
with rk = rk+1. The maximum r = rh of the rank sequence (2.5.7)
is called the observability (controllability) index of the right (left)
pair (U, T ). The following estimates are true:

rankT + h− 1 ≤ r ≤ m, 1 ≤ h ≤ m0, (2.5.8)

where m0 is the power of the minimal polynomial of the matrix U .
In the case of r = m the right (left) pair (U, T ) is observable (con-
trollable). The observability and controllability of the pair (U, T ) are
equivalent to the conditions

rank

[
λI − U
T

]
= m, rank[λI − U, T ] = m, λ ∈ σ(U).

The observable (controllable) pairs of matrices (U, T ) satisfying
the condition (2.5.1) ((2.5.2)) will be called the right (left) eigen-
values of the matrix function F (λ). For such pairs the inclusion
σ(U) ⊆ σ(F ) holds true. The reverse inclusion σ(F ) ⊆ σ(U) holds
true under the conditions

rank[F (λ),Φ(λ)] = n, λ ∈ σ(F ), (2.5.9)
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rank

[
F (λ)
Φ(λ)

]
= n, λ ∈ σ(F ). (2.5.10)

If l < ∞ is the number of points of the spectrum σ(F ), then under
the condition (2.5.9) ((2.5.10)) the pair (U, T ) has the maximum
possible observability (controllability) index r = l.

Lemma 2.5.1 Let (U, T ) be the right (left) pair of the matrix
function F (λ) with the observability (controllability) index r. Then
at least r points of the spectrum σ(U) are eigenvalues of the matrix
function F (λ). Under the condition (2.5.9) ((2.5.10)) each point of
the spectrum σ(F ) is an eigenvalue of matrix U .

Proof. Let the identity (2.5.1) hold true. If r is the observabi-
lity index of the pair (U, T ), then there exists a nonsingular matrix
G ∈ Cm×m transforming the matrices U and T to the form

GUG−1 =

[
U0 0
U2 U1

]
, TG−1 = [T0, 0] ,

where U0 ∈ Cr×r, T0 ∈ Cn×r, (U0, T0) is an observable pair. Taking
this transform into account, in accordance with (2.5.1) obtain the
relations

F (λ)T0 ≡ Φ0(λ)(λI − U0), Φ(λ) = [Φ0(λ), 0]G.

If u0 is the right eigenvalue of the matrix U0, corresponding to
the eigenvalue λ0 ∈ σ(U0), then in view of observability of the
pair (U0, T0) the inequality v0 = T0u0 6= 0 holds true. Therefore v0 is
the right eigenvalue of the matrix function F (λ), corresponding to
the eigenvalue λ0 ∈ σ(F ). Using the described relations one can find
that detF (λ) ≡ ϕ(λ) det(λI−U0), where ϕ is some function. Hence,
σ(U0) coincides with some subset of the spectrum σ0(F ) ⊆ σ(U). If
λ0 is an eigenvalue of the matrix U0 with the multiplicity n0, then λ0

is also an eigenvalue of the matrix function F (λ) with the multipli-
city N0 ≥ n0. Under the condition (2.5.9) the converse is proved in
a similar way.

The proof of the statements in the case of the left pair (U, T ) of
the matrix function F (λ) follows from the relations

G−1UG =

[
U0 U2

0 U1

]
, G−1T =

[
T0

0

]
,
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T0F (λ) ≡ (λI − U0)Φ0(λ), Φ(λ) = G

[
Φ0(λ)

0

]
, λ ∈ Λ,

where U0 ∈ Cr×r, T0 ∈ Cr×n, (U0, T0) is a controllable pair.

The selected subset of the spectrum σ0(F ), corresponding to the
right (left) pair (U, T ), coincides with the observable (controllable)
part of the spectrum σ(U0) of the matrix U . If the condition (2.5.9)
((2.5.10)) is satisfied, then the inclusion σ(F ) ⊆ σ(U) is proved by
multiplication from the left (right) of the identity (2.5.1) ((2.5.2)) by
the left (right) eigenvalues of the matrix function F (λ).

The lemma is proved.

For the matrix polynomial (2.3.1) the relations determining the
right and left pairs (U, T ) have the form

A0T +A1TU + · · · +AsTU
s = 0, (2.5.11)

TA0 + UTA1 + · · · + U sTAs = 0. (2.5.12)

In (2.5.1) and (2.5.2) Φ(λ) is determined by the corresponding ex-
pression:

Φ(λ) =

s∑

i=1

λi−1
s∑

j=i

AjTU
j−i,

Φ(λ) =

s∑

i=1

λi−1
s∑

j=i

U j−iTAj.

If in (2.5.11) ((2.5.12)) T is a matrix of full rank with respect to
columns (rows), then the pair (U, T ) is composed of the right (left)
block eigenvalue and the eigenvector of the matrix polynomial F (λ).

Lemma 2.5.2 (U, T ) is the right pair of the matrix polyno-
mial (2.3.1) of the observability index r if and only if

AE = CEU, E =




T
TU
...

TU s−1


 , rankE = r. (2.5.13)
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Similarly, (U, T ) is the left pair of the matrix polynomial F (λ) with
controllability index r if and only if

EA = UEB, E =
[
T,UT, , . . . , U s−1T

]
, rankE = r. (2.5.14)

Proof. The equivalence of the matrix equalities (2.5.11) and
(2.5.13) ((2.5.12) and (2.5.14)) is the consequence of the structure
of the block matrices (2.3.2). The fact that the rank of the matrix E
coincides with the observability (controllability) index of the pair
(U, T ) is established by using the canonical form of regular pencil of
matrices. (2.1.8) and (2.5.14) imply

E = [R, 0]P, RJ = UR, rankE = rank [E, UE] .

Therefore columns of the matrix UE and, in particular, of the
block U sT are linearily expressed through columns of the matrix E.
Similarly, in (2.5.13) rows of the matrix EU belong to the linear hull
of rows E. Hence, for the matrix polynomial along with (2.5.8) the
estimate h ≤ s holds true.

The lemma is proved.

According to (2.3.2), AS1 = S1A = S3 and BS1 = S1C = S2.
Therefore from (2.5.13) ((2.5.14)) follow the relations

AZ = BZU, Z = S1E (ZA = UZC, Z = ES1) , (2.5.15)

that also determine the connection between the right (left) pairs of
a matrix polynomial and its accompanying pencil.

Solutions of the system (2.4.17) can be used for finding the right
and left pairs of a matrix polynomial. Indeed, the first block row
(the first block column) of the matrix Z satisfying the system

AZB = BZA, Z = ZBZ (AZC = CZA, Z = ZCZ), (2.5.16)

composes the solution T1, . . . , Ts of (2.4.17). At the same time, the
equalities (2.5.15) follow from (2.5.16) for U = AZ (U = ZA).

Lemma 2.5.3 If T1, . . . , Ts is a solution of the system (2.4.17),
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then the matrices

T = [T1, . . . , Ts] , U = ‖Upq‖s1 , Upq =





−
p−1∑
i=0

AiTq−p+i+1, p ≤ q,

s∑
i=p

AiTq−p+i+1, p > q,

form the right pair (U, T ), and the matrices

T =



T1
...
Ts


 , U = ‖Upq‖s1 , Upq =





−
q−1∑
i=0

Tp−q+i+1Ai, p ≥ q,

s∑
i=q

Tp−q+i+1Ai, p < q,

form the left pair (U, T ) of the matrix polynomial (2.3.1).

The matrix system (2.4.17) is satisfied by the integrals (2.4.19).
If the closed contour ω encloses the whole spectrum σ(F ), then
in Lemma 2.6.3 (U, T ) is the right (left) pair of the matrix
polynomial F (λ), for which the conditions (2.5.9) ((2.5.10)) and
σ(F ) ⊆ σ(U) hold true. This statement follows from the cano-
nical structure of the accompanying pencils L(λ) = A − λC and
D(λ) = A − λB and block transforms of matrix expressions in the
relations

rank [L(λ), CE] = n s, rank

[
D(λ)
EB

]
= n s, λ ∈ σ(F ),

reducing them to the corresponding form (2.5.9) and (2.5.10).
In construction of right and left pairs of a matrix polynomial one

can only use linear equations of the systems (2.4.17) and (2.5.16).
Thus, using (2.1.8), it is easy to show that if AZB = BZA, then for
some matrix U the pair (U,E), where E = (ZB)k, k ≥ ν, satisfies
the relations (2.5.14). If rankZ = rank(BZ), then as E one can also
choose the matrix Z.

2.6 Theorems on Eigenvalues Location

Let (U, T ) be the right (left) pair of the matrix function F (λ) of
the observability (controllability) index r and let a subset of the
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spectrum σ0(F ) ⊆ σ(F ) correspond to it, consisting of r eigenvalues
(see Lemma 2.5.1). We study the location of the points σ0(F ) in the
complex plane with respect to the sets

Λ+
f =

{
λ : f(λ, λ̄) > 0

}
, Λ−

f =
{
λ : f(λ, λ̄) < 0

}
,

Λ0
f =

{
λ : f(λ, λ̄) = 0

}
,

described by the Hermitian function

f(λ, µ̄) =
∑

i,j

γij fi(λ)fj(µ) ≡ zλΓz
∗
µ.

Construct the linear matrix equation

∑

i,j

γij FiXF
∗
j = EY E∗, (2.6.1)

where the matrix coefficients are defined in terms of the right or left
pair (U, T ) of the matrix function F (λ). To reduce the computation,
in both cases we use the same notation. If (U, T ) is the right pair,
then

Fi = Efi(U), E =




T
TU
...

TUh−1


 .

In the case of the left pair (U, T ) assume

Fi = fi(U)E, E =
[
T,UT, . . . , Uh−1T

]
.

If F (λ) is a matrix polynomial of order s, then along with (2.5.8) the
inequality h ≤ s holds true. Take the sets of Hermitian matrices

K = {X : EXE∗ ≥ 0} ,

Kpq = {X : i+(EXE∗) = p, i−(EXE∗) = q} ,
where i±(·) are the indices of inertia of a Hermitian matrix, equal
to the quantities of its positive and negative eigenvalues. For the
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matrix Y in the equation (2.6.1) the following limitations will be
used:

Sλ = EY E∗ + E(λI − U)(λI − U)∗E∗ ≥ 0, rankSλ ≡ r, (2.6.2)

Sλ = EY E∗ + (λI − U)EE∗(λI − U)∗ ≥ 0, rankSλ ≡ r. (2.6.3)

Theorem 2.6.1 If the matrices X ∈ K and Y ∈ K satisfy the
equation (2.6.1) and the conditions (2.6.2) ((2.6.3)), then a set of
spectrum σ0(F ), corresponding to the right (left) pair (U, T ) of the
matrix function F (λ), is located in the domain Λ+

f . If in addition the

condition (2.5.9) ((2.5.10)) holds true, then σ0(F ) = σ(F ) ⊂ Λ+
f .

Conversely, if σ0(F ) ⊂ Λ+
f and f ∈ Hr

0, then for any matrix Y ∈ K
the equation (2.6.1) has a solution X ∈ K.

Theorem 2.6.2 If the matrices X ∈ Kpq and Y ∈ Kr0 satisfy the
equation (2.6.1), and f ∈ Hr

2, then the equalities

r+ = p, r− = q, r0 = 0, (2.6.4)

hold true, where r+, r−, and r0 are the quantities of the points of
σ0(F ), belonging to Λ+

f , Λ−
f and Λ0

f respectively. Conversely, if for
some p and q the equalities (2.6.4) hold true, then there exist matri-
ces X ∈ Kpq and Y ∈ Kr0 satisfying the equation (2.6.1).

Theorem 2.6.3 If the matrices X ∈ Kp0 and Y ∈ K00 satisfy the
equation (2.6.1), then the estimate r0 ≥ p holds true. In particular,
with p = r the inclusion σ0(F ) ⊂ Λ0

f is true. Conversely, if r0 6= 0,
Y ∈ K00, 0 < p ≤ ξ, where ξ is the sum of geometric multiplicities
of eigenvalues of the matrix U , belonging to the set σ0(F )∩Λ0

f , then
the equation (2.6.1) has a solution X ∈ Kp0.

Proof of Theorems 2.6.1–2.6.3. Let (U, T ) be the right pair of the
matrix function F (λ) with the observability index r. Then from the
proof of Lemma 2.5.1 we get

E = E0G0, E0 =




T0

T0U0
...

T0U
h−1
0


 ,
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G0 = [I, 0]G, Fi = E0fi(U0)G0,

where (U0, T0) is a right eigenvalue of the matrix function F (λ), E0

and G0 are matrices of full rank with respect to their columns and
rows respectively. Therefore the equation (2.6.1) is equivalent to the
relation

∑

i,j

γijfi(U0)X0fj(U0)
∗ = Y0, (2.6.5)

where X0 = G0XG
∗
0, Y0 = G0Y G

∗
0. The matrix (2.6.2) is repre-

sentable in the form

Sλ = E0 [(λI − U0)G0G
∗
0(λI − U0)

∗ + Y0]E
∗
0 .

Therefore the conditions (2.6.2) are equivalent to the controllability
of the pair (U0, Y0).

Considering the case of the left pair (U, T ) of the matrix function
F (λ) and using the proof of Lemma 2.5.1, obtain the relations

E = G0E0, E0 =
[
T0, U0T0, . . . , U

h−1
0 T0

]
, G0 = G

[
I
0

]
,

Fi = G0fi(U0)E0, X0 = E0XE
∗
0 , Y0 = E0Y E

∗
0 ,

where (U0, T0) is the left pair of eigenvalues of the matrix function
F (λ), E0 and G0 are matrices of full rank with respect to their
columns and rows respectively. The equation (2.6.1) also reduces
to (2.6.5), and the conditions (2.6.3) are equivalent to the controlla-
bility of the pair (U0, Y0).

In both cases described above the condition X ∈ Kpq means that
i+(X0) = p and i−(X0) = q. Similarly, the condition Y ∈ Kpq is
equivalent to the equalities i+(Y0) = p, i−(Y0) = q.

Consequently, the statements of Theorems 2.6.1–2.6.3 follow from
Lemma 2.5.1, the described technique, and Theorems 1.3.1, 1.5.1,
1.6.1, and 1.8.1 for the equation (2.6.5).

Theorems 2.6.1–2.6.3 are proved.

Remark 2.6.1 The conditions (2.5.9) and (2.6.2) of Theorem
2.6.1 are satisfied if

F (λ)F (λ)∗ + Φ(λ)Y Φ(λ)∗ > 0, λ ∈ Λ. (2.6.6)
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The conditions (2.6.3) are the consequence of the matrix inequality

F (λ)F (λ)∗ + Θ(λ)YΘ(λ)∗ > 0, λ ∈ Λ, (2.6.7)

where Θ(λ) =
[
I, λI, . . . , λh−1I

]
. All the relations (2.5.9), (2.5.10),

(2.6.2), (2.6.3), (2.6.6), (2.6.7) in the respective statements of Theo-
rem 2.6.1 must only hold true in some neighbourhood of the points
σ0(F ) for λ 6∈ Λ+

f . If Y > 0, then the conditions (2.6.2), (2.6.3)
and (2.6.7) hold true for any λ.

Remark 2.6.2 The limitations f ∈ Hr
0 and f ∈ Hr

2 in The-
orems 2.6.1 and 2.6.2 hold true respectively for i+(Γ) = 1 and
i±(Γ) ≤ 1. If

f(λ, µ̄) = f1(λ)f1(λ) − f2(λ)f2(λ) ∈ H2,

then the set of matrices Y ∈ Kr0 in Theorem 2.6.2 can be enlarged,
assuming Y ∈ Kp0, p ≤ r and using additional limitations on f
and U (see Section 1.4). Thus, in the case of the left pair (U, T ) in
Theorem 2.6.2 instead of Y ∈ Kr0 it is sufficient to require that

Ŷ = EY E∗ ≥ 0, Ỹ =

r−p∑

i=0

ϕi(U)Ŷ ϕi(U)∗ ≥ 0,

ϕi(λ) = f1(λ)r−p−if2(λ)i, p = rank Ŷ ≤ r = rank Ỹ , i = 0, r − p.

Note that the statements of Theorems 2.6.1–2.6.3, related to the
application of the right (left) pairs of the matrix function F (λ),
hold true, if instead of the matrix E in the equation (2.6.1) and
the expression for the sets K and Kpq, one uses the product WE
(EW ), where W is any matrix for which rank(WE) = rankE
(rank(EW ) = rankE). This allows one to lower the order of the
algebraic system to which the equation (2.6.1) is reduced. If the
subset of the spectrum σ0(F ) corresponding to the given pair (U, T )
does not coincide with σ(F ), then at the further application of The-
orems 2.6.1–2.6.3 one can use methods similar to procedures of de-
flation of block spectral characteristics of a matrix polynomial.
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2.7 Sufficient Conditions of Spectrum Location

Let Ξ(z) = A0 + z1A1 + · · · + zsAs be a multi-parametric pencil of
n× n matrices, satisfying the regularity condition

detΞ(z) 6≡ 0, z =



z1
...
zs


 ∈ Cs. (2.7.1)

The spectrum σ(Ξ) of the pencil is defined as a locus of points z,
with detΞ(z) = 0. Let us formulate a problem of localization of the
spectrum σ(Ξ), i.e. construction of vector sets Z containing all the
points σ(Ξ).

Consider the matrix equation

s∑

i,j=0

γij AiXA
∗
j = Y, (2.7.2)

where γij are scalar coefficients composing a Hermitian matrix Γ.
In Cs determine a set of vectors

Z = {z : rank∆(z) + sign ∆(z) ≥ 2} , (2.7.3)

where ∆(z) = ZΓZ∗, Z = [−z, Is]. The complement of this set
Z− = Cs \ Z consists of those vectors z for which ∆(z) ≤ 0.

Theorem 2.7.1 Let the Hermitian matrices X and Y satisfy the
equation (2.7.2) and relations

∥∥AiXA∗
j + Ξ(z)CijΞ(z)∗

∥∥s
i,j=1

≥ 0, z ∈ Z−, (2.7.4)

Y + Ξ(z)SΞ(z)∗ > 0, z ∈ Z−, (2.7.5)

where Cij are blocks of some matrix C ≥ 0 and S > 0. Then each
point of the spectrum σ(Ξ) belongs to the set Z.

Proof. Introduce the block matrices

A = [A0, . . . , As] , B =



A1
...
As


 , C = [A1, . . . , As] .
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The matrix equation (2.7.2) is represented in the form

A(Γ ⊗X)A∗ = Y, (2.7.6)

where ⊗ is a Kronecker product. Let u∗ 6= 0 be a left eigenvector
of the matrix Ξ(z), corresponding to the point z ∈ σ(Ξ). Then the
relations

u∗A = u∗ [A0, C] = u∗C ([−z, Is] ⊗ In) = u∗C (Z ⊗ In)

are true. Here u∗C 6= 0. Otherwise the inequality rankA < n holds
true, contradicting the condition (2.7.1).

Assume that z ∈ Z−. Multiplying (2.7.6) from the left (right)
by u∗ (u), taking into account (2.7.4), (2.7.5), and the properties of
the Kronecker product, obtain the relation

u∗C (∆(z) ⊗X)C∗u = tr
(
∆(z)W T

)
= u∗Y u > 0,

where

W = UBXB∗U∗ ≥ 0, U =



u∗ · · · 0
...

. . .
...

0 · · · u∗


 .

In the case Y ≥ 0 the inequalities u∗Y u > 0 and u∗Y 6= 0 are
equivalent. Using the expansion of the nonnegative definite matrix
W T = RR∗ ≥ 0 and permuting the multipliers within the operation
tr, arrive at the inequality

tr (R∗∆(z)R) > 0.

From this, taking into consideration the law of inertia, it follows that
the matrix ∆(z) cannot be negatively semidefinite, i.e. z ∈ Z. This
contradicts the assumption that z ∈ Z−. Hence, σ(Ξ) ⊂ Z.

The theorem is proved.

Remark 2.7.1 The conditions (2.7.4) ((2.7.5)) of Theorem 2.7.1
are satisfied if BXB∗ ≥ 0 (Y ≥ CHC∗, H > 0). In particular, for the
conditions (2.7.4) ((2.7.5)) to be satisfied it is sufficient that X (Y )
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be a nonnegative (positive) definite matrix. If Y ≥ 0, then the
limitation (2.7.5) is equivalent to an identity

rank [Ξ(z), Y ] ≡ n, z ∈ Z−,

which is an analogue of the conditions of controllability and stabiliz-
ability of linear systems in the Simon-Mitter form.

The vector sets (2.7.3) localizing the spectrum σ(Ξ) in Theo-
rem 2.7.1 are described in terms of rank and signature of the Hermi-
tian matrix ∆(z) and defined by the values of only scalar coefficients
of the equation (2.7.2). The condition z ∈ Z means that the ma-
trix ∆(z) has at least one positive eigenvalue. For example, if the
matrix Γ is presented in the form

Γ =

[
γ g∗

g G

]
, γ > 0, G0 = γ z0 z

∗
0 −G ≥ 0, z0 =

1

γ
g,

then ∆(z) = γ (z− z0)(z− z0)∗−G0 and the set Z is located outside
the s-dimensional sphere:

Z ⊂ {z : ‖z − z0‖ > r} ,

where r =
√
γ0/γ, γ0 ≥ 0 is the minimum eigenvalue of the matrix

G0. In the description of the set (2.7.3) one can use the generalized
law of inertia (see Chapter 4).

From Theorem 2.7.1 the technique of construction of domains in
the complex plane follows, containing the spectrum of the matrix
functions

F (λ)
∆
= Ξ (z(λ)) = A0 + z1(λ)A1 + · · · + zs(λ)As, (2.7.7)

where z(λ) is a given vector-function with components zi(λ),
i = 1, s.

Theorem 2.7.2 If Hermitian matrices X and Y satisfy the re-
lations (2.7.2), (2.7.4), and (2.7.5), and in the conditions (2.7.4)
and (2.7.5) z = z(λ), λ 6∈ Λ, where Λ = {λ : z(λ) ∈ Z}, and Z
is a set of the form (2.7.3), then the spectrum of the matrix func-
tion (2.7.7) is located in the domain Λ.
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Corollary 2.7.1 Let F (λ) = A0 + λA1 + · · · + λsAs be a matrix
polynomial, and the conditions of Theorem 2.7.2 hold true. Then the
spectrum σ(F ) is located in the domain

Λ = {λ : i+(∆λ) ≥ 1} , (2.7.8)

where ∆λ = Γ0 − λΓ1 − λ̄Γ∗
1 + λλ̄Γ2,

Γ0 =



γ11 · · · γ1s

· · · · · · · · ·
γs1 · · · γss


 , Γ1 =




γ01 · · · γ0s

· · · · · · · · ·
γs−11 · · · γs−1s


 ,

Γ2 =




γ00 · · · γ0s−1

· · · · · · · · ·
γs−10 · · · γs−1s−1


 .

The proof follows from the relations

∆(z) = Sλ∆λS
∗
λ, z =




λ
...
λs


 ,

Sλ =




1 0 · · · 0 0
λ 1 · · · 0 0
· · · · · · · · · · · · · · ·
λs−1 λs−2 · · · λ 1


 .

If ∆λ ≤ 0 (∀λ: Reλ ≥ 0), then the domain (2.7.8) is located in the
left half-plane. Similarly, if ∆λ ≤ 0 (∀ λ : |λ| ≥ 1), then the domain
(2.7.8) is located inside a unit disk. These limitations on the matrix Γ
will be used in construction of the algebraic conditions of stability of
s-th order differential and difference systems.

Corollary 2.7.2 Let the vector-function z(λ) in (2.7.7) and the
matrix Γ have the following structure:

z(λ) =

[
λ
wλ

]
, Γ =




0 1 0
1 γ h∗

0 h H


 ,
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γ < 0, h ∈ Cs−1, H = H∗ < 0.

Then under the conditions of Theorem 2.7.2 the spectrum of the ma-
trix function (2.7.7) is located in the domain

Λ =
{
λ : λ+ λ̄ < γ − (h− wλ)

∗H−1(h− wλ)
}
. (2.7.9)

For the domain (2.7.9) to be located in the left half-plane it is
sufficient to require that

γ ≤ (h− wλ)
∗H−1(h− wλ) (∀ λ : Reλ ≥ 0). (2.7.10)

For example, if

wλ =




e−λτ1

...
e−λτs−1


 ,

then the condition (2.7.10) is satisfied under the limitations

h = 0, γ = γ1 ≤ 1

γ2
+ . . . +

1

γs
, H = diag {γ2, . . . , γs} , (2.7.11)

and also in the case

s−1∑

i=1

(1 + |hi|)2 ≤ γµ, (2.7.12)

where µ is the maximum eigenvalue of the matrix H.
With the stated limitations on the matrix Γ Corollary 2.7.2

presents the conditions of absolute stability of the quasi-polynomial

F (λ) = A0 + λA1 + e−λτ1A2 + · · · + e−λτs−1As.

The limitation (2.7.10) is more general with respect to (2.7.11)
and (2.7.12).

2.8 Notes and References

2.1 Construction and application of analogues of the Lyapunov equa-
tion for matrix functions is a new trend in systems theory. Such
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equations for matrices and linear matrix pencils were investigated in
Bender [1], Stykel [1], Bulgakov [1] and others. The integral oper-
ator (2.1.3) proposed by Mazko [8, 11], with the use of the multi-
plicative derivative Rλ, underlies the construction of the generalized
Lyapunov equation for matrix polynomials and functions. Some im-
portant properties of the matrix Rλ were found in Keldysh [1] and
Gohberg, Sigal [1]. Representation of the operator (2.1.7) and its
main properties have been obtained in Mazko [22, 25]. The Laurent
expansion of the resolvent of a regular pencil of matrices was also
used in Lewis [1] and Mazko [15]. More detailed information on the
canonical form of a regular pencil of matrices of the form (2.1.8) can
be found in Gantmacher [1].

2.2 Conditions of regular factorization of matrix and operator
functions of the form (2.2.1) can be found in Markus, Matsaev [1].
Conclusion of the equality (2.2.2) follows from a similar formula in
the case of resolvent (see Daletskii, Krein [1]). Lemmas 2.2.2–2.2.5
and Theorems 2.2.1–2.2.3 are proved in Mazko [8, 11, 12, 22, 25].
The conditions of controllability of linear systems not solved with
respect to derivatives, are available, e.g., in Khasina [1] and Yamada,
Luenberger [1].

2.3 The spectral properties of accompanying pencils of block ma-
trices of the form (2.3.1) can be found in Lancaster [1], Markus [1],
Khazanov [1]), and others. The statements of lemmas 2.2.2–2.2.5 and
Theorems 2.2.1–2.2.3 with the use of the relations (2.3.4)–(2.3.8) are
proved in Mazko [15, 25].

2.4 The known methods of splitting of a matrix spectrum are de-
scribed in Valeev [1]. In Mazko [13, 14, 24] a technique of splitting
of the spectrum of linear and polynomial pencils of matrices is pro-
posed, which is based on the solution of the algebraic systems (2.4.2),
(2.4.9), and (2.4.17). The main properties of the system (2.4.17) are
given in the form of Lemmas 2.4.1 and 2.4.2, and Theorem 2.4.1 gen-
eralizes Lemmas 2.2.2–2.2.5 and Theorems 2.2.1–2.2.3 for arbitrary
solutions of this system.

2.5 A block spectral problem for a matrix polynomial is studied
by Khazanov [1]. The concepts of right and left pairs of a matrix
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function that are the solutions of the more general spectral prob-
lems (2.5.1) and (2.5.2) are introduced in Mazko [28], where their
main properties are also determined; they are stated with the use
of the concepts of observability and controllability in the form of
Lemmas 2.5.1–2.5.3.

2.6 This Section is based on the results obtained in Mazko [28–
30]. The general Theorems 2.6.1–2.6.3 present a universal technique
of localization of the spectrum of matrix functions by using solutions
of matrix equations and are the main results of Chapter 2. On the
deflation of block spectral characteristics of a matrix polynomial see
Kublanovskaya, Khazanov [1].

2.7 The results of Section 2.7 are published in Mazko [26]. The-
orem 2.7.2 and its corollaries provide an effective technique of con-
struction of domains in a complex plain, containing the spectrum of
a given matrix function. Limitations of the type (2.7.11) were used
in Zelentzovsky [1] and Korenevskii, Mazko [2] in construction of al-
gebraic conditions of absolute stability of differential-difference delay
systems by method of the Lyapunov–Krasovsky functionals (see also
Boyd, Ghaoui, Feron, Balakhrishman [1]).





3

LINEAR DYNAMIC SYSTEMS.

ANALYSIS OF SPECTRUM AND SOLUTIONS

3.0 Introduction

This chapter is devoted to the application of some results of the
investigations described in Chapters 1 and 2 to the analysis of linear
dynamic systems most often occurring in applications.

Proposed in Section 3.1 for a linear controllable object is a method
of quadratic optimization by output feedback, using solutions of the
generalized Lyapunov equation and ensuring the location of the sys-
tem spectrum in a given domain. If the linear state feedback is
sought, and the desirable domain of spectrum allocation is the left
half-plane, then this method coincides with the known iteration al-
gorithm of solving the Riccati equation and the optimal stabilization
of the system.

In Sections 3.2 and 3.3, for linear descriptor systems and for
second-order differential and difference systems, new criteria and
sufficient conditions of asymptotic stability, spectrum location, and
techniques of Lyapunov functions construction are formulated, based
on solving the appropriate matrix equations.

In Section 3.4 algebraic conditions of stability of differential-
difference and stochastic systems are formulated in terms of solutions
of Sylvester–Lyapunov matrix equations.

In Section 3.5 the general technique of the study and numerical
construction of solutions of higher order linear differential and dif-
ference systems is developed by using the concept of right pairs of
matrix polynomials and functions.

101
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3.1 Localization of Spectrum and Optimization of

Linear Controllable Systems

At construction of real control systems such properties as their stabil-
ity and optimality are put in the forefront. Many dynamic character-
istics of linear controllable systems are described by using conditions
put on the spectrum of a closed-loop system. Therefore the simulta-
neous solution of the problems of optimization and spectrum control
(optimal modal control) is of great interest.

Attainment of a fixed set of eigenvalues of a closed system in
a problem of optimal modal control limits the opportunity to meet
other requirements (minimization of functional, physical realizability
of control law, etc.). Prescribing the domain of the desirable location
of a spectrum, one can overcome or reduce those restrictions and con-
struct a relevant suboptimal control. Using the results of Chapter 1,
we will enlarge the class of admissible domains of the spectrum loca-
tion for a closed-loop system in the problem of quadratic optimization
given incomplete information on the conditions of the object.

Consider a controllable object whose motion is described by the
linear stationary system

ẋ = Ax+Bu, y = Cx, x(0) = x0, (3.1.1)

where x ∈ Rn is a state vector, u ∈ Rm is a control vector, y ∈ Rl is a
vector of measurable outputs, A,B and C are matrices of appropriate
dimensions, and rankB = m, rankC = l. Determine the averaged
quality criterion of the system

J =

∫

∆

ρ(x0)

∞∫

0

(x∗Qx+ u∗Ru) dt dx0, (3.1.2)

where ρ(x0) > 0 is a weight function determined on the set of admis-
sible initial states x0 ∈ ∆, Q = Q∗ > 0 and R = R∗ > 0 are given
matrices.

Let the desirable dynamic properties of the system be character-
ized by the location of its spectrum in the domain

Λ+
f = {λ : f(λ̄, λ) =

∑

i,j

γijfi(λ)fj(λ) > 0}, (3.1.3)
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wholly located in the left half-plane. It is required to construct a
control in the form of a linear output feedback

u = −Ky, (3.1.4)

which ensures the least value of the functional (3.1.2) and the loca-
tion of the spectrum of the closed-loop system (3.1.1) in the domain
(3.1.3). This problem can be formally represented in the form

J(K) = tr [W (K)∆0] → inf
K∈K

, (3.1.5)

where

∆0 =

∫

∆

ρ(x0)x0 x
∗
0 dx0, K =

{
K ∈ Cm×l : σ(G) ⊂ Λ+

f

}
,

G = A − BKC is a closed-loop matrix, W = W (K) > 0 a solution
of the Lyapunov equation

−G∗W −WG = Q+ C∗K∗RKC. (3.1.6)

Construct a solution of the equation (3.1.6) in the form

W =
∑

i,j

γijfi(G)∗Hfj(G), (3.1.7)

where H is a new unknown matrix. Substituting (3.1.7) into (3.1.6),
obtain an equation with respect to H:

∑

i,j

βijϕi(G)∗Hϕj(G) = Q+ C∗K∗RKC, (3.1.8)

where βij and ϕi are some coefficients and functions expressed
through γij and fi. The domain Λ+

ϕ , corresponding to the function

ϕ(λ̄, λ) =
∑

i,j

βijϕi(λ) ϕj(λ) = −(λ̄+ λ)f(λ̄, λ)

consists of two disjoint subdomains — the domain (3.1.3) and the
right half-plane. If H if a solution of the equation (3.1.8), then the
inequality

X = −G∗H −HG > 0 (3.1.9)
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ensures the location of the closed-loop matrix spectrum in the domain
(3.1.3). The matrix (3.1.9) is a solution of the equation

∑

i,j

γij fi(G)∗Xfj(G) = Q+ C∗K∗RKC. (3.1.10)

Thus, the original problem adds up to a mathematical program-
ming problem. It is required to minimize the function (3.1.5) calcu-
lated by using the relations (3.1.7) and (3.1.8), with the limitations
(3.1.9). The search of a suboptimal solution of the problem can be
effected by gradient methods, using the known expression for gradi-
ent

dJ

dK
= 2 (RKC −B∗W )FC∗,

where W is a solution of the equation (3.1.6), in particular, the ma-
trix (3.1.7), and F is a solution of the equation

−GF − FG∗ = ∆0. (3.1.11)

From the requirement for minimum of the function (3.1.5) the below
relation follows:

K = R−1B∗WFC∗(CFC∗)−1. (3.1.12)

The system of matrix relations (3.1.7), (3.1.8), (3.1.9), (3.1.11), and
(3.1.12) represent the requirements for the minimum of functional
and the location of the spectrum of closed-loop system in the domain
(3.1.3). If the function f in (3.1.3) is representable in the form

f(λ̄, λ) = −(λ̄+ λ)ψ(λ̄, λ), ψ(λ̄, λ) =
∑

i,j

δij ψi(λ)ψj(λ), (3.1.13)

then for the calculation of the matrix W one can use the expression

W =
∑

i,j

δij ψi(G)∗Xψj(G), (3.1.14)

where X is a solution of (3.1.10). In this case the equation (3.1.8) is
not used.

Construct an iterative process according to the following rules:
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1) select K0 ∈ K and assume s = 0;

2) calculate the matrix Gs = A−BKsC;

3) determine the matrices Hs and Fs from the equations

∑

i,j

βij ϕi(Gs)
∗Hsϕj(Gs) = Q+ C∗K∗

sRKsC,

GsFs + FsG
∗
s = −∆0;

4) calculate the expressions

Ws =
∑

i,j

γij fi(Gs)
∗Hsfj(Gs),

Ks+1 = R−1B∗WsFsC
∗(CFsC

∗)−1;

5) increase s by one and revert to item 2).

The difference of this iterative process from the known quadratic
optimization algorithms is the method of calculation of the matrix
sequence Ws. Since at each step Ws is a solution of the Lyapunov
equation (3.1.6), then the following inequalities hold true:

J(K0) ≥ J(K1) ≥ . . . ≥ J(Ks) ≥ . . . .

Under the limitation (3.1.13) the matrices Ws can also be determined
by using the formulae (3.1.10) and (3.1.14). In the case of the al-
gebraic domains (3.1.3), the use of the matrix equations (3.1.8) or
(3.1.10) instead of the Lyapunov equation (3.1.6) practically does
not change the computational difficulties of the algorithm. At the
same time, in the optimization process we have an opportunity to
effectively control the belonging of the spectrum of the system to the
domain (3.1.3) by using the inequality (3.1.9).

In individual cases under the conditions of controllability and ob-
servability of the system (3.1.1), the convergence of the matrix se-
quence Ks is proved. The initial approximation K0 ∈ K can be
determined by the known modal control techniques.
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Note that in the case C = In, when all components of state vector
are measurable, the sequence Ws reduces to the positive definite
solution of the Riccati equation

A∗W +WA−WBR−1B∗W +Q = 0.

Corresponding to the optimal control (3.1.4) for the system (3.1.1)
is the limiting value of the coefficients

K = lim
s→∞

Ks = R−1B∗W.

Example 3.1.1 Consider the system (3.1.1) and the functional
(3.1.2) with parameters

A =




−1 0 0
−1 0 −2

0 1 −1


 , B =




1 0
0 1
0 0


 , C = ∆0 = I3,

Q =




1 0 0
0 2 0
0 0 3


 , R = I2.

As a domain Λ+
f , take the exterior of a disk of radius r with

the center in a point (−r, 0), located in the left half-plane (see Sec-
tion 1.4). In this case the function f ∈ F1 satisfies Theorem 1.3.1
and the conditions (3.1.13).

The functional (3.1.2) can be evaluated in the form

J(K) = trW, W = GTX +XG + r−1GTXG,

where X is a solution of the matrix equation

−G2TX −XG2 − 2GTXG− r−1G2TXG− r−1GTXG2 = Q+KTK.

As an initial approximation the solution of the modal control problem

K0 =

[
0, 661 −0, 428 0, 238

−0, 237 1, 24 0, 005

]

was used, for which the spectrum of the closed-loop system
σ(G0) = {−1,5; −1,2 ± 1,5i} and the functional J(K0) = 3, 69. The
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minimization was effected by the gradient method for two values of
the radius r. For r = r0 = 0, 4 the optimal values of the following
parameters were obtained:

K(0) =

[
0, 594 −0, 323 0, 305

−0, 323 1, 21 −0, 213

]
,

J(K(0)) = 3, 663, G(0) = A−BK(0),

σ(G(0)) = {λ1, λ2, λ3}, λ1 = −1, 43; λ2,3 = −1, 19 ± 1, 39i.

If r = r1 = 0, 73, then the values of absolute minimum cannot be
obtained, since λ1 6∈ Λ+

f . In this case, suboptimal values of the
following parameters were obtained:

K(1) =

[
0, 622 −0, 353 0, 279
−0, 28 1, 23 −0, 134

]
,

J(K(1)) = 3, 666, G(1) = A−BK(1),

σ(G(1)) = {µ1, µ2, µ3}, µ1 = −1, 46, µ2,3 = −1, 2 ± 1, 43i.

In the pointK(1) the conditionX > 0 is violated, since the eigenvalue
µ1 is located on the boundary of the domain Λ+

f .

Example 3.1.2 Consider the set of equations that describe the
perturbed motion of a rocket, taking into account the elastic oscilla-
tions of its airframe as a straight flexible nonuniform rod (see Fisher
[1])

z̈ =
1

µ
[(F1 − F2)ϕ+ F3ψ + F4δ] +

ν∑

j=1

djηj ,

ϕ̈+ c1ψ + c2δ +
ν∑

j=1

ejηj = 0, ψ = ϕ− ż/v0,

η̈j + 2ζjωj η̇j + ω2
jηj = ξjδ, j = 1, ν,

where z is the shift of the center of gravity of the rocket in the
direction perpendicular to the calculated trajectory, ϕ is the angle
of pitch, ψ is the angle of attack, δ is the rotation angle of the
engine, ηj is the j-th form of bending vibrations, F1 is the tractive
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force, F2 is the axial force acting upon the sides of the air flow, F3

is the constituent of the force of the air flow, perpendicular to the
longitudinal axis of the rocket, F4 is the control power perpendicular
to the longitudinal axis of the rocket, µ is the rocket mass, v0 is
the velocity of the rocket along the trajectory, dj , cj, ej, ωj , ζj,
ξj are coefficients determined through the physical parameters of the
rocket. Taking into account the three forms of the airframe’s bending
vibrations, we will reduce this system to the standard form (3.1.1),
where x = [ϕ, ϕ̇, ψ, η1, η̇1, η2, η̇2, η3, η̇3]

T , u = δ,

A =




0 a1 0 0 0 0 0 0 0
0 0 a2 a3 0 a4 0 a5 0
a6 a7 a8 a9 0 a10 0 a11 0
0 0 0 0 a12 0 0 0 0
0 0 0 a13 a14 0 0 0 0
0 0 0 0 0 0 a15 0 0
0 0 0 0 0 a16 a17 0 0
0 0 0 0 0 0 0 0 a18

0 0 0 0 0 0 0 a19 a20




, B =




0
b1
b2
0
b3
0
b4
0
b5




.

The values of the coefficients aj and bj are given in Table 3.1.1.

Table 3.1.1

j aj j aj j aj j aj j bj
1 1 6 -0,0458 11 7 × 10−4 16 -169 1 -1,138
2 0,2165 7 1 12 1 17 -0,13 2 -0,0348
3 -0,0356 8 -0,0133 13 -29,81 18 1 3 29,56
4 -0,0299 9 4 × 10−4 14 -0,0546 19 -334,3 4 47,25
5 -0,027 10 6 × 10−4 15 1 20 -0,1828 5 16,4

The matrix A is unstable. Its spectrum consists of three real eigen-
values, including two positive ones, and three complex-conjugate
pairs of eigenvalues located in the left half-plane and characterizing
the respective forms of bending vibrations of the rocket airframe.

As an admissible domain for location of the spectrum of the closed
system choose a domain limited by a cissoid of Diocles (see Sec-
tion 1.4). This domain degenerates to the left half-plane for a → 0.
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This allows one to optimize, taking into account the spectrum lo-
cation, by using the general procedure of computation for different
values of the parameter a. An increase of the latter results in an
increase of the stability factor and a decrease of the admissible fre-
quency of the bending vibrations of the rocket airframe. For some
values of a > a0 the complex eigenvalues of the closed-loop systems
may not belong to the domain Λ+

f .
Assuming a = 0, 1 and using the values of matrices of functional

from (Fisher [1]), a stabilizing control was calculated according to
the above-mentioned optimization algorithm given full information
on the state vector (C = I). As a result, optimal control was obtained
in the form of linear state feedback, which coincides with sufficient
accuracy with the control obtained in the above-mentioned work by
the method of solving the Riccati equation. The algorithm conver-
gence was observed upon five iterations, and the inequality X > 0,
where X was a solution of the equation

a

2
(G2TX +XG2) −GT (aX +GTX +XG)G = Q+ CTKTRKC,

equivalent to the location of the system spectrum in the domain Λ+
f ,

held true for each iteration.
The main difficulties occurring during realization of the found con-

trol law are related to the determination of components of the state
vector x. Sensors measure different linear combinations of those com-
ponents. We will show the results of calculation of the suboptimal
control in the form of a linear output feedback, assuming the pres-
ence of sensors of angular position, sensors of angular velocities, and
accelerometers. The output signal equation y = Cx, where

C =




1 0 0
0 1 0
0 0 4, 368

0, 02462 0 −0, 73673
0 −0, 04819 −1, 1663 × 10−5

0, 06918 0 53, 7935
0 −0, 082347 0, 041957

−0, 124168 0 161, 21166
0 −0, 08976 0, 08851




T

.
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Matrices of functional, selected in compliance with the requirement
for the equilibration of bending vibration energies and the limitation
on the lateral drift of the rocket, have the form

Q=

[
Q1 0
0 Q2

]
, R=1, ∆0 =I9, Q1 =




0, 1 0 −0, 1
0 0, 05 0

−0, 1 0 0, 5


 ,

Q2 = diag
{
10−4; 3 × 10−3; 8 × 10−5; 0, 0137; 19 × 10−5; 0, 0621

}
.

For the considered system a suboptimal control u = −Kcy for
a = 0 was obtained, proceeding from different initial values for the
vector of multiplication factors K0. At the same time, sufficiently
good convergence of the proposed iteration algorithm was observed.
The results of the calculations were the same as with a = a1 = 0, 8.
This means that the spectrum of the closed-loop system is located
in the given domain. If a = a2 = 0, 9, then after four iterations the
inequality X > 0, i.e. the condition of belonging of the spectrum to
the domain Λ+

f , was violated.
In Table 3.1.2 you will find the obtained values of the multiplica-

tion factors [k1, k2, k3] = −K, the spectrum of the closed-loop system
σ(G), and the functional J(K), corresponding to suboptimal control
for specified values of the parameter a. For a = a2 (suboptimal
control with limitation on the spectrum), frequencies of elastic vi-
brations of the rocket airframe are less, and the stability margin is
more than in the case a = a1.

In the plane of the first two multiplication factors k1 and k2 (for
the fixed value of k3 = −0, 0177) the domains K1 and K2 are con-
structed, corresponding to the location of the spectrum of closed-loop
system in the domain Λ+

f for a = 0, 8 and a = 0, 9 (Fig. 3.1.1). In
these domains the movement of current values of the multiplication
factors is represented, proceeding from different initial approxima-

tions K
(t)
0 , t = 1, . . . , 4.

Thus, the described algorithm, as against the known, allows one
to control effectively, in the process of parameters optimization, the
dynamic characteristics of the systems expressed in the form of a
prescribed domain of the spectrum location.
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Table 3.1.2

Suboptimal Suboptimal
control control

with limitation on spectrum

k1 1,0401 1,0450
k2 1,5558 1,6164
k3 −0, 0177 −0, 0179

−0, 0528 −0, 0530
−1, 8661 ± 18, 1633i −1, 8617 ± 18, 0673i

σ(G) −2, 9326 ± 14, 1661i −3, 1098 ± 14, 1555i
−0, 8486 ± 5, 2828i −0, 8828 ± 5, 2737i
−0, 7098 ± 0, 4029i −0, 7441 ± 0, 3444i

J(K) 15,7482 15,7510

Fig. 3.1.1. Stability region and optimization of the parameters

k1 and k2 in the domains K1 and K2.
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3.2 Stability of Descriptor Continuous and Discrete

Systems

The subject of inquiry in many applications is the sets of differential
(difference) equations not solved with respect to derivatives (itera-
tions). The construction of solutions of such systems and the analy-
sis of their stability can be performed on the basis of the theory of
canonical forms of matrix pencils, and by using different generalized
inverse matrices as well.

In this Section the results of investigations are proposed, related
to the development and application of the second Lyapunov’s method
for continuous and discrete-time systems of the form

Bẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (3.2.1)

Bxk+1 = Axk, k = 0, 1, . . . , (3.2.2)

where A and B are n×nmatrices of the regular pencil L(λ) = A−λB,
whose spectrum σ(L) consists of l eigenvalues, taking into account
the multiplicities, and x0 is the vector of initial states. The stability
conditions for the differential system (3.2.1) are determined by the
location of the spectrum σ(L) with respect to the imaginary axis.
The number

ε = min
λ∈σ(L)

(−Reλ)

characterizes the spectral stability factor of the system (3.2.1). Sim-
ilarly, the value

ε = min
λ∈σ(L)

(1 − |λ|)

determines the spectral stability factor of the system (3.2.2) with
respect to the unit circle.

If B is a nonsingular matrix, then l = n. In this case the systems
(3.2.1) and (3.2.2) reduce to the Cauchy form by the inversion of the
matrix B. If B is singular, then the equality

l = n−
τ∑

i=1

νI = rankB −
τ∑

i=1

νi + τ

is true, where ν1, . . . , ντ are degrees of infinite elementary divisors
of the matrix pencil L(λ). This equality follows from the canonical
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form of a regular pencil of matrices. Let ν denote the maximum of
the numbers ν1, . . . , ντ . If B is a nonsingular matrix, then assume
ν = 0. The number l determines the dimension of some subspace L
to which the initial states and trajectories of the systems (3.2.1) and
(3.2.2) belong. The system (3.2.1), taking into account (2.1.8), adds
up to the relations

ẏ1(t) = Jy1(t), Nẏ2(t) = y2(t), y(t) =

[
y1(t)
y2(t)

]
= Q−1x(t).

Since Nν = 0, then y2(t) ≡ 0 and x(t) ∈ L for t ≥ 0, where L
is the linear span of the first l columns of the matrix Q. The zero
solution of the system(3.2.1) is asymptotically stable if and only if
the spectrum of the matrix J , coinciding with σ(L), is located to the
left of the imaginary axis.

Study the stability conditions and the spectral properties of the
systems (3.2.1) and (3.2.2), using the matrix relations

γ00BXB
∗ + γ10AXB

∗ + γ01BXA
∗ + γ11AXA

∗ = Y ≥ 0, (3.2.3)

rank [L(λ), Y ] ≡ n, λ ∈ C1, (3.2.4)

rank (BXB∗) = l. (3.2.5)

Let l+, l−, and l0 denote the quantities of the points of the spec-
trum σ(L), belonging to the respective sets

Λ+ = {λ : f(λ, λ̄) > 0},

Λ− = {λ : f(λ, λ̄) < 0},
Λ0 = {λ : f(λ, λ̄) = 0},

where f(λ, λ̄) = γ00 + γ10λ+ γ01λ̄+ γ11λλ̄ is a prescribed Hermitian
function. Λ0 is some straight line or a circle with the center in the
point γ = −γ01/γ11, separating the domains Λ± ⊂ C1.

Lemma 3.2.1 If the Hermitian matrices X and Y satisfy the
equation (3.2.3) under the condition (3.2.4), then the following rela-
tions hold true:

l+ ≤ i+(BXB∗), l− ≤ i−(BXB∗), l0 = 0. (3.2.6)
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All equalities in (3.2.6) hold true if and only if the condition (3.2.5)
is true. Under the condition l0 = 0 there exist Hermitian matrices
X and Y satisfying the relations (3.2.3)–(3.2.5).

Proof. Assuming in (3.2.3)

PAQ =

[
J 0
0 I

]
, PBQ =

[
I 0
0 N

]
,

X = Q

[
X1 X2

X∗
2 X3

]
Q∗, PY P ∗ =

[
Y1 Y2

Y ∗
2 Y3

]
,

where P and Q are nonsingular matrices, arrive at the equations

γ00X1 + γ10JX1 + γ01X1J
∗ + γ11JX1J

∗ = Y1, (3.2.7)

γ00X2N
∗ + γ10JX2N

∗ + γ01X2 + γ11JX2 = Y2, (3.2.8)

γ00NX3N
∗ + γ10X3N

∗ + γ01NX3 + γ11X3 = Y3. (3.2.9)

Taking into consideration (3.2.4), obtain

BXB∗ = P−1

[
X1 X2N

∗

NX∗
2 NX3N

∗

]
P−1∗, (3.2.10)

rank [J − λI, Y1] ≡ l, λ ∈ C1. (3.2.11)

The equivalence of the identities (3.2.4) and (3.2.11) follows from
the inequality Y ≥ 0. The identity (3.2.11) is the condition of con-
trollability of the pair (J, Y1) in the form of Simon–Mitter. It can
be shown that the function f satisfies the conditions of the inertia
theorem for equations of the type (3.2.7) (see Section 1.8). Hence
the relations (3.2.6) hold true, and

l+ = i+(X1) ≤ i+(BXB∗), l− = i−(X1) ≤ i−(BXB∗),

where X1 is a nonsingular l×l matrix, satisfying the equation (3.2.7).
The equalities are achieved if and only if the condition (3.2.5) holds
true.

The lemma is proved.
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Note that if the right-hand side of the equation (3.2.3) has the
form

Y = BHB∗, H > 0, (3.2.12)

then the identity (3.2.4) holds true. In (3.2.8)–(3.2.10) the equalities
X2N

∗ = 0 and NX3N
∗ = 0 hold true, as well as the condition (3.2.5)

in each of the following cases:

1) ν ≤ 1;

2) γ11 = 0;

3) γ11 6= 0, ν ≤ 2, γ 6∈ σ(L).

If

f(λ, µ̄) 6= 0, (λ, µ) ∈ σ(L) × σ(L), (3.2.13)

then the equation (3.2.3) is solvable for any matrix (3.2.12) in each
of the following cases:

1) ν ≤ 1;

2) γ11 = 0, ν ≤ 2;

3) γ11 6= 0, γ 6∈ σ(L);

4) γ11 6= 0, γ ∈ σ(L), ζ(γ) = ξ(γ).

Here ζ(γ)(ξ(γ)) is the algebraic (geometric) multiplicity of the spec-
trum point γ ∈ σ(L). If γ11 = 0, then for any matrix (3.2.12) the
equation (3.2.3) has a solution if and only if the conditions (3.2.13)
and ν ≤ 2 hold true.

Lemma 3.2.2 Let the equation (3.2.3) and the condition (3.2.4)
be satisfied by Hermitian matrices of the form

X = EX̂E∗, Y = BEŶ E∗B∗, (3.2.14)

where E 6= 0 is any matrix determined by the relation

rank [AE,BE] = rank (BE). (3.2.15)

Then the following equalities hold true:

l+ = i+(X), l− = i−(X), l0 = 0. (3.2.16)

Under the condition l0 = 0 there exist matrices X, Y, and E for
which the relations (3.2.3)–(3.2.5), (3.2.14)–(3.2.16) hold true.
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Proof. The condition (3.2.15) means that for some matrix U the
equality AE = BEU holds true. Therefore the matrices E, X, and
Y in (3.2.14)–(3.2.16) have the following structure:

E = Q

[
R
0

]
, X = Q

[
X1 0
0 0

]
Q∗, Y = P−1

[
Y1 0
0 0

]
P−1∗, (3.2.17)

where X1 = RX̂R∗, Y1 = RŶ R∗, R is l × k matrix, satisfying the
equality JR = RU . Substituting (3.2.17) into (3.2.3) and (3.2.4),
arrive at the relations (3.2.7) and (3.2.11). From (3.2.11) it follows,
in particular, that rankR = rankE = l ≤ k. The equalities (3.2.16)
follow from the relations (3.2.7), (3.2.11), (3.2.17), and the known
inertia theorems. Under the condition l0 = 0 one can select matrices
X̂ and Ŷ so that the relations (3.2.3)–(3.2.5), (3.2.14)–(3.2.16) would
hold true.

The lemma is proved.

If in (3.2.15) the matrix E has full rank with respect to its
columns, then it is a block eigenvalue of the pencil L(λ), L(λ), corre-
sponding to the block eigenvalue U . In this case σ(U) ⊆ σ(F ). The
inverse inclusion σ(F ) ⊆ σ(U) holds under the condition

rank [L(λ), BE] ≡ n, λ ∈ C1. (3.2.18)

If the matrix Y has the structure (3.2.14), then the condition (3.2.18)
is necessary for the identity (3.2.4) to hold true. In the case Ŷ > 0
the conditions (3.2.4) and (3.2.18) are equivalent.

The conditions for the existence of matrices X and Y that satisfy
the equation (3.2.3) and have the given structure (3.2.14) depend on
the spectrum σ(L) only and are not connected with the properties
of the infinite elementary divisors of the pencil L(λ). If ν ≤ 3, then
for the determination of the matrix E in Lemma 3.2.2 one can use
the linear equation AE = BS with respect to E and S instead of
the condition (3.2.15). Lemma 3.2.2 remains valid in each of the
following cases:

1) ν ≤ 2;
2) ν = 3, γ11 = 0;
3) ν = 3, γ11 6= 0, γ 6∈ σ(L).

From Lemma 3.2.2 the next propositions follow.
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Lemma 3.2.3 If the matrices (3.2.14) satisfy the equation

−AXB∗ −BXA∗ = Y ≥ 0 (3.2.19)

under the conditions (3.2.4) and (3.2.15), then on the imaginary axis
there are no points of the spectrum σ(L), and of them exactly i+(X)
and i−(X) eigenvalues are located respectively in the left and right
half-planes.

Lemma 3.2.4. If the matrices (3.2.14) satisfy the equation

BXB∗ −AXA∗ = Y ≥ 0 (3.2.20)

under the conditions (3.2.4) and (3.2.15), then on the unit circle
there are no points of the spectrum σ(L), and of them exactly i+(X)
and i−(X) eigenvalues are located respectively inside and outside the
unit disk.

Theorem 3.2.1. The differential system (3.2.1) is asymptotically
stable if and only if there exist Hermitian matrices X and Y that
satisfy the equation (3.2.19) and the relations

BXB∗ ≥ 0, rank [L(λ), Y ] ≡ n, Reλ ≥ 0. (3.2.21)

If the differential system (3.2.1) is asymptotically stable, then for
any nonnegative definite matrix of the form Y = BEŶ E∗B∗ ≥ 0
the equation (3.2.19) under the condition (3.2.15) has a solution
X = EX̂E∗ ≥ 0.

Theorem 3.2.2 The difference system (3.2.2) is asymptotically
stable if and only if there exist Hermitian matrices X and Y that
satisfy the equation (3.2.20) and the relations

BXB∗ ≥ 0, rank [L(λ), Y ] ≡ n, |λ| ≥ 1. (3.2.22)

If the difference system (3.2.2) is asymptotically stable, then for
any nonnegative definite matrix of the form Y = BEŶ E∗B∗ ≥ 0
the equation (3.2.20) under the condition (3.2.15) has a solution
X = EX̂E∗ ≥ 0.

In the construction of Lyapunov functions for the systems (3.2.1)
and (3.2.2) one can use the solutions of the matrix equations

−2αB∗XB −A∗XB −B∗XA = B∗Y B, (3.2.23)
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β2B∗XB −A∗XA = B∗Y B, (3.2.24)

where Y = Y ∗ > 0, α ≥ 0 and 0 < β ≤ 1 are real numbers. The
expression for the Lyapunov quadratic functions is determined in the
form

v(x) = x∗B∗XBx. (3.2.25)

Theorem 3.2.3 Let X be a solution of the equation (3.2.23) and
B∗XB ≥ 0. Then the zero solution of the system (3.2.1) is asymptot-
ically stable with the stability factor ε ≥ α, and the function (3.2.25)
and its derivatives along the nontrivial solution x = x(t) satisfy the
relations

v(x) > 0,
dv(x)

dt
= −x∗(B∗Y B + 2αB∗XB)x < 0.

Theorem 3.2.4 Let X be a solution of the equation (3.2.24)
and B∗XB ≥ 0. Then the zero solution of the system (3.2.2) is
asymptotically stable with the stability factor ε ≥ 1 − β, and the
function (3.2.25) and its first difference along the nontrivial solution
xk(k = 0, 1, . . .) satisfy the relations

v(xk) > 0, v(xk+1) − v(xk) = −xk∗B∗
(
Y + (1 − β2)X

)
Bxk < 0.

Lyapunov functions for the stable systems (3.2.1) and (3.2.2) can
always be determined in the form (3.2.25), assuming, e.g., in (3.2.23)
and (3.2.24)

X = Z∗X̂Z ≥ 0, Y = Z∗Ŷ Z ≥ 0, Ŷ > 0,

where Z is a solution of the maximum rank l of the matrix system
(3.2.16) in Chapter 2. The stability conditions for the systems (3.2.1)
and (3.2.2) are described in terms of the matrices

X = E∗X̂E ≥ 0, Y = E∗Ŷ E ≥ 0, Ŷ > 0,

where E = (BZ)s, s ≥ ν, satisfying the equations (3.2.23) and
(3.2.24). As Z one can select the solution of the linear equation
AZB = BZA, in particular, Z = (A− zB)−1, z 6∈ σ(L).
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3.3 Spectrum and Stability Analysis of Second-order

Differential and Difference Systems

In problems of analysis and synthesis of controllable physical objects
considerable attention is paid to methods of study of mathematical
models described by the systems of second-order linear differential
and difference equations

Ax(t) +Bẋ(t) + Cẍ(t) = g(t), t ≥ 0, (3.3.1)

Axt +Bxt+1 + Cxt+2 = gt, t = 0, 1, . . . , (3.3.2)

where x ∈ Rn is the vector of generalized coordinates of the ob-
ject, A, B and C are n × n matrices of dynamic coefficients, g is a
vector-function depending on control parameters and external per-
turbations. Control parameters are usually determined in the form
of dynamic state feedback or linear measurable output feedback. As
a result, the closed-loop system (3.3.1) ((3.3.2)) is homogeneous,
and its stability is described by the location of the spectrum of the
quadratic pencil of matrices with respect to the imaginary axis (unit
circle).

In those cases when the initial model is non-autonomous, the
method of frozen coefficients is used, according to which the most
characteristic points of time are selected on a prescribed motion in-
terval, and the respective sets of equations with constant matrix co-
efficients A, B, and C are considered. The dynamics of the studied
object, and its stability in particular, are judged by the solutions of
stationary systems of the type (3.3.1) or (3.3.2).

An important role in the problem of motion stabilization is played
by coefficient criteria of stability, formulated in terms of the matri-
ces A, B, and C in the form of systems of algebraic equations and
inequalities. In the construction of such criteria, different limitations
on matrix coefficients are used, including such requirements as sym-
metry, non-singularity, positive definiteness, etc. Thus, for oscillating
systems with friction the following limitations are peculiar:

A = A∗, B = H +K, H = H∗ ≥ 0, K = −K∗, C = C∗, (3.3.3)

where A is the matrix of potential forces, C is the matrix of inertia,
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and the matrices H and K characterize respectively damping and
gyroscopic forces.

The method of analysis of stability and spectrum of the systems
(3.3.1) and (3.3.2) which is set forth below adds up to the construc-
tion and solving of matrix algebraic equations. For its substanti-
ation (see Chapter 2) in some cases we use the only limitation —
the condition of the regularity of the quadratic pencil of matrices
F (λ) = A+ λB + λ2C.

The matrix equation of the left block spectral problem for the
quadratic pencil F (λ) has the form

TA+ UTB + U2TC = 0. (3.3.4)

Let some solution (U, T ) of this equation be known, for which
rankE = r 6= 0, where E = [T,UT ]. According to Lemma 2.6.1,
there exists a subset of the spectrum σ0(F ), consisting of r eigenval-
ues of the matrix U . In particular, under the limitations

rank

[
F (λ)

TB + UTC + λTC

]
≡ n, λ ∈ C1, (3.3.5)

the pair (U, T ) has maximum controllability index r and
σ0(F ) = σ(F ) ⊆ σ(U).

Formulate the stability criteria for the systems (3.3.1) and (3.3.2),
following from Theorem 2.6.1 for the respective matrix equations

−2αX − UX −XU∗ = Y, (3.3.6)

β2X − UXU∗ = Y, (3.3.7)

where α ≥ 0, 0 < β ≤ 1 are real numbers characterizing the spectral
stability factor.

Theorem 3.2.5 Let (U, T ) be a pair of matrices satisfying the
relations (3.3.4) and (3.3.5). Then the zero solution of the homoge-
neous system (3.3.1) ((3.3.2)) is asymptotically stable with the sta-
bility factor ε ≥ α (ε ≥ 1−β) if and only if for any prescribed matrix
of the form Y = EŶ E∗, where Ŷ > 0, the equation (3.3.6) ((3.3.7))
has the solution X = EX̂E∗ ≥ 0.
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For construction of matrices U and T satisfying Theorem 3.2.5
one can use the solutions of the algebraic system

AT1B −BT1A = CT2A−AT2C,

AT1C − CT1A = CT2B −BT2C,

T1 = T1BT1 + T1CT2 + T2CT1,

T2 = T2CT2 − T1AT1.

(3.3.8)

In particular, if T1 and T2 are a solution of this system, then the
matrices

U =

[ −AT1 −AT2

CT2 −AT1 −BT2

]
, T =

[
BT1 + CT2

CT1

]
(3.3.9)

form the left pair of the quadratic pencil F (λ), i.e. satisfy the equality
(3.3.4). According to Lemma 2.4.2, the matrix

E = [T,UT ] =

[
BT1 + CT2 −AT1

CT1 CT2

]
(3.3.10)

is a projector of rank r of the matrix U , and at least r eigenvalues
of the matrix U , taking into account the multiplicities, belong to the
spectrum σ(F ) (if λ ∈ σ(U), then either λ ∈ σ(F ), or λ = 0).

The system (3.3.8) consists of two linear homogeneous matrix
equations and two matrix equations with quadratic nonlinearity. Its
solutions can be found by methods of calculus mathematics. In ad-
dition, we can use partial solutions of the system (3.3.8) in integral
form (see Lemma 2.4.1)

T1 =
1

2πi

∮

ω

F (λ)−1dλ, T2 =
1

2πi

∮

ω

λF (λ)−1dλ, (3.3.11)

where ω is a closed contour separating some part of the spectrum
σ0(F ) ⊆ σ(U). In the particular case σ0(F ) = σ(F ) the conditions
of stability of the system (3.3.1)((3.3.2)) are fully determined by the
location of nonzero eigenvalues of the matrix U with respect to the
imaginary axis (unit circle).
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Note that for T1 = 0 we have the reduction of the system (3.3.8)
of the form

CT2A = AT2C, CT2B = BT2C, T2 = T2CT2. (3.3.12)

If C is a nonsingular matrix, then the system (3.3.12) has a solution
T2 = C−1. In this case E = I, and for the mechanical system (3.3.1)
under the conditions (3.3.3) the relation

−UX −XU∗ = Y ≥ 0,

holds true, where

U =

[
0 −AC−1

I −BC−1

]
, X =

[
A 0
0 C

]
, Y =

[
0 0
0 2H

]
.

If, in addition, the condition of controllability of the pair of matrices
(U, Y ) holds true, which is equivalent to the identity

rank [A+ λK + λ2C, λH] ≡ n,

then, according to the inertia theorem, there are no eigenval-
ues of the quadratic pencil F (λ) on the imaginary axis, and the
quantity of eigenvalues with negative (positive) real part equals
i+(A) + i+(C)(i−(A) + i−(C)). The inequalities A > 0 and C > 0
correspond to the case of asymptotic stability of the system (3.3.1),
(3.3.3).

There is one more property of the system (3.3.8) which can also be
used in the study of the spectrum of a quadratic pencil of matrices.
Determine the skeleton expansion of rank r of the block matrix

Z =

[
T1 T2

CT2 −AT1 −BT2

]
=

[
L1

L2

]
[R∗

1, R
∗
2] .

If T1 and T2 are the solution of the system (3.3.8), then r eigenvalues
of the matrix Σ = R∗

2L2 −R∗
1AL1 belong to the spectrum σ(F ). The

order of the matrix Σ, equal to r, can be much lower than the order
of the matrix U , which is very important in an eigenvalue problem.
In particular, for r = 1 the number Σ ∈ σ(F ) is an eigenvalue of the
quadratic pencil F (λ).
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Thus, problems of analysis of stability and movement stabilization
for the second-order dynamic systems (3.3.1) and (3.3.2) are reduced
to solving the matrix algebraic equation (3.3.4), in particular, the
system (3.3.8) and the respective analogues of the Lyapunov equation
(3.3.6) and (3.3.7) for a quadratic pencil of matrices.

At construction of sufficient conditions of stability and localization
of eigenvalues of the quadratic pencil of matrices F (λ) one can use
the matrix equation

γ11AXA
∗ + γ12AXB

∗ + γ21BXA
∗+

+γ13AXC
∗ + γ31CXA

∗ + +γ22BXB
∗+

+γ23BXC
∗ + γ32CXB

∗ + γ33CXC
∗ = Y,

(3.3.13)

where X and Y are Hermitian n× n matrices subject to determina-
tion. Suppose that along with (3.3.13) the following relations hold
true:

Y ≥ [B,C]Q[B,C]∗,

[
B

C

]
X

[
B

C

]∗
≥ 0, (3.3.14)

where Q is some positive definite matrix. Then the spectrum σ(F )
is located in the domain (see Section 2.7)

Λ = Λ1 ∪ Λ2, (3.3.15)

where

Λ1 = {λ : f1(λ, λ̄) > 0}, Λ2 = {λ : f2(λ, λ̄) < 0},

f1(λ, λ̄) = tr∆λ, ∆λ = VλΓV
∗
λ , f2(λ, λ̄) = det∆λ = z∗λ Γ̂T zλ,

Γ =



γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33


 , Vλ =

[
−λ 1 0

0 −λ 1

]
, zλ =

[
1, λ, λ2

]
,

Γ̂ =



γ22γ33 − γ32γ23 γ13γ32 − γ12γ33 γ12γ23 − γ22γ13

γ23γ31 − γ21γ33 γ11γ33 − γ13γ31 γ13γ21 − γ11γ23

γ21γ32 − γ22γ31 γ21γ12 − γ11γ32 γ11γ22 − γ12γ21


 .

Here Γ̂ is an adjoint matrix for Γ, composed of algebraic adjuncts
of its entries. The geometric properties of a domain Λ of the form
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(3.3.15) are fully determined by the selection of entries of the matrix
Γ.

We will give examples of the domains (3.3.15), for which Λ1 = ∅.

1. Γ =




−1 δ θ
δ −δ2 δ
θ δ −1


 , 0 < δ < 1, −1 < θ ≤ 1 − 2δ2,

Λ = {λ : η2(c− ξ) > ξ(1 + dξ + ξ2)},

ξ = Reλ, η = Imλ, c =
2δ2 + θ − 1

2δ
, d =

2δ2 − θ + 1

2δ
.

The domain Λ is located to the left of the imaginary axis, and for
θ = 1 − 2δ2 it degenerates to the open left half-plane. The rela-
tions (3.3.13) and (3.3.14) are the sufficient stability conditions of
the differential system (3.3.1).

2. Γ =




−1 0 0
0 −1 0
0 0 2ρ


 , Λ = {λ : |λ|2 < ρ+

√
ρ2 + 2ρ}.

The domain Λ for 0 < ρ ≤ 1/4 is located inside the unit disk. The
relations (3.3.13) and (3.3.14) are the sufficient conditions of stability
of the difference system (3.3.2).

3. Γ =




0 0 −1
0 −1/2 0

−1 0 −4α


 , α ≥ 0, Λ = {λ : |Reλ| > √

α}.

Under the conditions (3.3.13), (3.3.14) and α = 0 the quadratic
pencil F (λ) does not have pure imaginary eigenvalues.

4. Γ =




0 0 1
0 −1/2 0
1 0 −4β


 , β ≥ 0, Λ = {λ : |Imλ| > √

β}.

Under the conditions (3.3.13), (3.3.14) and β = 0 all eigenvalues of
the quadratic pencil F (λ) are complex.

Note that if Y > 0, then it is always possible to select a matrix
Q > 0 so that the limitation on the matrix Y of the form (3.3.14)
would hold true.
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3.4 Stability of Differential-difference and Stochastic

Systems

This Section deals with construction and study of matrix equations
playing the role of the generalized Lyapunov equation in stability
problems for some classes of differential-difference and stochastic sys-
tems.

1. Consider the system of differential-difference delay equations

A0 x(t) +A1
dx(t)

dt
+

s−1∑

i=1

Ai+1 x(t− τi) = 0, (3.4.1)

where A0, . . . , As are constant n×n matrices, and τi ≥ 0 are param-
eters of permanent delays, x(θ) = x0(θ), t0 − τ ≤ θ ≤ t0, 0 ≤ t0 ≤ t,
τ = max

i
τi, i = 1, s− 1. In the absence of the delays (τ = 0) the

system (3.4.1) is reduced to the form

Ax(t) +A1
dx(t)

dt
= 0, A = A0 +A2 + · · · +As. (3.4.2)

The zero solution of the system (3.4.1) is said to be stable by
Lyapunov, if for any ε > 0 there exists such δ = δ(ε, t0) > 0, that
||x(t)|| < ε for t > t0, as soon as ||x(θ)|| < δ for t0 − τ ≤ θ ≤ t0. The
zero solution of the system (3.4.1) is said to be asymptotically stable if
it is stable by Lyapunov and ||x(t)|| → 0 while t→ ∞. The problem
of absolute stability for the system (3.4.1) lies in the construction
of (algebraic) conditions imposed on the matrix coefficients, under
which the zero solution is asymptotically stable for any constant
values of the delays τi ≥ 0, i = 1, s− 1.

Lemma 3.4.1 For the asymptotic stability of the system (3.4.1)
it is necessary and sufficient that all eigenvalues of the matrix quasi-
polynomial

F (λ) = A0 + λA1 + e−λτ1A2 + . . .+ e−λτs−1As

have negative real parts.

From Theorem 2.7.2 and Lemma 3.4.1 the next proposition fol-
lows:
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Theorem 3.4.1 If the Hermitian matrices X,Y,Q, and G satisfy
the relations

A0XA
∗
1 +A1XA

∗
0 + C(G⊗X)C∗ = Y, (3.4.3)

BXB∗ ≥ 0, Y ≥ CQC∗, (3.4.4)

γ ≤ g∗λH
−1gλ, ∀λ : Reλ ≥ 0, (3.4.5)

where

B∗ = [A∗
1, . . . , A

∗
s], C = [A1, . . . , As], G =

[
γ h∗

h H

]
,

Q > 0, H < 0, gλ = h− [e−τ1λ, . . . , e−τs−1λ]T ,

then the zero solution of the system (3.4.1) is asymptotically stable.

In the case of a diagonal matrix G we have sufficient conditions
of absolute stability of the system (3.4.1).

Theorem 3.4.2 If the Hermitian matrices X and Y satisfy the
relations (3.4.4) and the equation

A0XA
∗
1 +A1XA

∗
0 +

s∑

i=1

γiAiXA
∗
i = Y, (3.4.6)

where γ1 = 1/γ2 + . . .+1/γs, γi < 0, i = 1, s, then the system (3.4.1)
is absolutely stable.

Remark 3.4.1 Statements analogous to Theorems 3.4.1 and 3.4.2
can be formulated in terms of solutions of the adjoint matrix equa-
tions

A∗
0ZA1 +A∗

1ZA0 +B∗(GT ⊗ Z)B = S, (3.4.7)

A∗
0ZA1 +A∗

1ZA0 +

s∑

i=1

γiA
∗
iZAi = S. (3.4.8)

Here instead of (3.4.4) one should use the inequalities C∗ZC ≥ 0 and
S ≥ B∗QB. Operators of the left-hand sides of the equations (3.4.7)
and (3.4.8) are adjoint to the respective operators of the equations
(3.4.3) and (3.4.6) (see Section 6.1). If the equation (3.4.6) ((3.4.8))
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is satisfied by the positive definite matrices X and Y (Z and S), then
the inequality −2ε < γ1 < 0 must hold true, where ε is the spectral
stability factor of the pencil of matrices A0 + λA1.

We will show that the solutions of the matrix equations (3.4.6)
and (3.4.8) can be used at construction of quadratic functionals of
the form

v = x∗(t)X0x(t) +

s−1∑

i=1

t∫

t−τi

x∗(τ)Xix(τ)dτ, (3.4.9)

that satisfy the Lyapunov–Krasovsky theorem on asymptotic sta-
bility of the system (3.4.1). In the case A1 = I some methods of
selection of the weight matrices Xi ≥ 0 are known that ensure the
conditions of absolute stability of the system (3.4.1).

The following statement yields general estimates for those matri-
ces and for the derivative of the functional (3.4.9) with respect to
solutions of the system (3.4.1).

Lemma 3.4.2 Let X0 = A∗
1ZA1 and the following system of in-

equalities

A∗ZA1 +A∗
1ZA ≥ Z0, X1 ≥ Z1, . . . ,Xs−1 ≥ Zs−1, (3.4.10)

∆=




Z0 X1 +A∗
1ZA2 · · · Xs−1 +A∗

1ZAs
X1 +A∗

2ZA1 Z1 · · · 0
· · · · · · · · · · · ·

Xs−1 +A∗
sZA1 0 · · · Zs−1


 ≥ 0,

(3.4.11)
hold true, where A is a matrix of the system (3.4.2), Zi ≥ 0 are some
nonnegative definite matrices. Then the derivative of the functional
(3.4.9), in view of the system (3.4.1), satisfies the estimate

dv

dt

∣∣∣∣
(55)

≤ −x∗(t)S0x(t), t ≥ t0. (3.4.12)

where S0 = A∗ZA1 +A∗
1ZA− Z0 ≥ 0.

Proof. Use the known formula of differentiation of integral with
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respect to parameter

d

dt

q(t)∫

p(t)

f(τ, t)dτ =

q(t)∫

p(t)

∂

∂t
f(τ, t)dτ + f(q, t)

dq

dt
− f(p, t)

dp

dt
.

As a result, obtain the expression for the derivative of functional in
view of the system (3.4.1)

dv

dt

∣∣∣∣
(55)

= −y∗Wy, y =




x(t)
x(t− τ1)

...
x(t− τs−1)


 ,

W =




A∗
0ZA1 +A∗

1ZA0 −
s−1∑
i=1

Xi A∗
1ZA2 · · · A∗

1ZAs

A∗
2ZA1 X1 · · · 0
· · · · · · · · · · · ·

A∗
sZA1 0 · · · Xs−1



.

Using block transformations of the matrix W , obtain the relations

dv

dt

∣∣∣∣
(55)

= −z∗Ωz, z =




x(t)
x(t− τ1) − x(t)

...
x(t− τs−1) − x(t)


 ,

Ω =




A∗ZA1 +A∗
1ZA X1 +A∗

1ZA2 . . . Xs−1 +A∗
1ZAs

X1 +A∗
2ZA1 X1 . . . 0

· · · · · · · · · · · ·
Xs−1 +A∗

sZA1 0 . . . Xs−1


 .

Under the conditions (3.4.10) and (3.4.11) obtain Ω ≥ Θ ≥ 0, where
Θ = Ω−∆ is a block-diagonal matrix. From this the estimate (3.4.12)
follows.

The lemma is proved.

Assume

Xi−1 = Zi−1 = −γiA∗
iZAi, Z0 =

s∑

i=2

D∗
iZDi,
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where Di = (−γi)−1/2A1 + (−γi)1/2Ai, γi < 0, i = 2, s. Then the
conditions of Lemma 3.5.2 hold true if

A∗ZA1 +A∗
1ZA−

s∑

i=2

D∗
iZDi = S, (3.4.13)

[
A∗

1

A∗
i

]
Z [A1, Ai] ≥ 0, i = 2, s, (3.4.14)

where A is a matrix of the system (3.4.2), S ≥ 0. It is easy to see that
the equations (3.4.8) and (3.4.13) are equivalent, and the inequalities
(3.4.14) are the consequence of the relation C∗ZC ≥ 0.

If

Xi−1 = Zi−1 = − 1

γi
X−1, γi < 0, i = 2, s,

Z0 = A∗
1Z

(
s∑

i=2

DiXD
∗
i

)
ZA1, X−1 = A∗

1ZA1,

then for the conditions (3.4.10) – (3.4.11) of Lemma 3.5.2 to hold
true it is sufficient that the matrices X > 0 and Y ≥ 0 satisfy the
equation

AXA∗
1 +A1XA

∗ −
s∑

i=2

DiXD
∗
i = Y. (3.4.15)

In the relation (3.4.12) S0 = A∗
1ZY ZA1. The matrix equations

(3.4.6) and (3.4.15) are equivalent.

2. Consider the system of Ito’s stochastic differential equations

dx(t) = Ax(t) dt+

s∑

i=1

Bix(t) dwi(t), (3.4.16)

where A,Bi are constant n × n matrices, wi are components of the
standard Wiener process, x(t0) = x0, t ≥ t0. At the study of the con-
ditions of mean-square stability of the system (3.4.16), the Lyapunov
function of the form

v(x) = x∗(t)Xx(t) (3.4.17)
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is used, where X is a positive definite matrix subject to determina-
tion. The average of distribution of the derivative of the function
(3.4.17) in view of the system (3.4.16) is represented in the form

M

{
dv

dt

}
= x∗(t)

(
A∗X +XA+

s∑

i=1

B∗
iXBi

)
x(t).

We formulate known algebraic criterion of the asymptotic mean-
square stability of system (3.4.16) following from the second Lya-
punov’s method.

Theorem 3.4.3 If for some positive definite matrix Y the matrix
equation

−A∗X −XA−
s∑

i=1

B∗
iXBi = Y (3.4.18)

has a positive definite solution X, then the zero solution of the system
(3.4.16) is asymptotically mean-square stable. The inverse statement
holds true also.

Rewrite the matrix equation (3.4.18) in the form

LX − PX = Y, (3.4.19)

where

LX = −A∗X −XA, PX =
s∑

i=1

B∗
iXBi.

Under the conditions of Theorem 3.4.3 the operator L is positively
invertible, and the operator P is positive with respect to the cone K
of nonnegative definite matrices, i.e. PK ⊆ K ⊆ LK. At the study
of the equation (3.4.19) one can use majorants of the operator P ,
satisfying the condition (P̂ − P )K ⊆ K. If the matrix equation

LZ − P̂Z = S, (3.4.20)

where S > 0, and P̂ is a majorant of the operator P , has a solution
Z > 0, then for some matrix Y > 0 the equation (3.4.19) also has a
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positive definite solution X > 0. As the majorant P̂ in (3.4.20) the
following linear operators can serve:

P̂X = r0(X)Q0, r0(X) = trX, Q0 =
s∑

i=1

B∗
iBi, (3.4.21)

P̂X =

s∑

i=1

ri(X)Qi, ri(X) = tr(E∗
iXEi), Qi = FiF

∗
i , (3.4.22)

where Ei and Fi are components of skeleton expansions Bi = EiF
∗
i ,

i = 1, s. Thus, if the relations

trH0 < 1, −A∗H0 −H0A = Q0, (3.4.23)

hold true, then for any matrix S > 0 the equation (3.4.20) with the
operator (3.4.21) has a positive definite solution Z > 0. If the system
of relations

det(Ii − Σi) > 0, −A∗Hi −HiA = Qi, i = 1, s, (3.4.24)

is true, where Σi are successive principal submatrices of dimension
i× i of the nonnegative matrix

Σ =




r1(H1) r1(H2) . . . r1(Hs)
r2(H1) r2(H2) . . . r2(Hs)
· · · . . . · · · · · ·

rs(H1) rs(H2) . . . rs(Hs)


 ,

then the equation (3.4.20) with the operator (3.4.22) is also solvable
in the form Z > 0 for any matrix S > 0 (see Section 6.2).

Each of the systems of relations (3.4.23) and (3.4.24) plays the
role of sufficient conditions of mean-square stability of the system
(3.4.16). The spectrum of the matrix A must be located to the left
of the imaginary axis. The stability conditions similar to the rela-
tions (3.4.24) can be obtained, proceeding from the equation (3.4.18),
when the matrix coefficients Bi have the unit rank.

Note that above stability analysis technique of the system (3.4.16),
based on the construction and solution of matrix equations of the
type (3.4.19), can be extended to more general classes of differential-
difference stochastic systems. The main properties of linear equa-
tions of the form (3.4.19) are described in Section 6.2.
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3.5 Representation of Solutions of Linear Dynamic

Systems

We will describe the technique for construction of the solutions of
linear dynamic systems, which is based on application of the right
pairs of matrix functions. First, consider the first-order differential
system

Az(t) −Bż(t) = y(t), z(0) = z0, (3.5.1)

where L(λ) = A−λB is a regular pencil of matrices. If the matrix B
is nonsingular, then this system can be reduced to the normal Cauchy
form. In the general case the solution z(t) has two constituents
corresponding to the finite and infinite elementary divisors of the
pencil L(λ). We will show that these constituents can be described
in terms of solutions of the algebraic systems

AE = BEU, BH = AHV. (3.5.2)

Determine the solution and the right part of the system (3.5.1) in
the form

z(t) = Eu(t) +Hv(t), y(t) = −BEp(t) +AHq(t), (3.5.3)

where u, v, p, and q are vector-functions. Substitution of these ex-
pressions into (3.5.1), taking into consideration (3.5.2), gives

−BE [u̇(t) − Uu(t) − p(t)] +AH [v(t) − V v̇(t) − q(t)] = 0.

Hence, if for some ν the condition

AHV νq(ν)(t) ≡ 0, (3.5.4)

holds true, then the system (3.5.1) is solvable in the form (3.5.3),
where

u(t) = etUu0 +

t∫

0

e(t−τ)Up(τ)dτ, v(t) =
ν−1∑

i=0

V iq(i)(t), (3.5.5)

q(i)(t) is an i-th order derivative of the vector-function q(t).
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Consider the s-th order differential system

A0x(t) +A1x
(1)(t) + . . .+Asx

(s)(t) = g(t), (3.5.6)

where

x(i)(0) = x
(i)
0 , i = 0, s − 1, detF (λ) 6≡ 0, F (λ) =

s∑

i=0

λiAi.

The right pairs of the matrix polynomials F (λ) and λsF (1/λ) are
determined by the relations

s∑

i=0

AiTU
i = 0,

s∑

i=0

AiKV
s−i = 0. (3.5.7)

At the same time the following identities hold true:

F (λ)T ≡ Φ(λ)(λI − U), F (λ)K ≡ Ψ(λ)(I − λV ), (3.5.8)

where

Φ(λ) =

s−1∑

i=0

λiΦi, Ψ(λ) =

s−1∑

i=0

λiΨi,

Φi =

s∑

j=i+1

AjTU
j−i−1, Ψi =

i∑

j=0

AjKV
i−j, i = 0, s − 1.

Theorem 3.5.1 Let the pairs of matrices (U, T ) and (V,K) sat-
isfy the equalities (3.5.7), and the following relations be true:

det(I − λV ) 6= 0, λ ∈ σ(F ), (3.5.9)

x0 = Tu0 +Kv0,

s∑

j=i

Aj x
(j−i)
0 = Φi−1 u0 − Ψi−1V v0, (3.5.10)

g(t) = Φ0p(t) + Ψ0q(t), Φip(t) + Ψiq(t) ≡ 0, (3.5.11)

where u0, v0, p(t), and q(t) are some vectors, i = 1, s− 1. Then the
system (84) is solvable in the form

x(t) = Tu(t) +Kv(t), (3.5.12)
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where u(t) and v(t) are the vector-functions determined in (3.5.5).
Conversely, if x(t) is a solution of the system (3.5.6), then there

exist matrices U , T , V , and K, for which all the relations (3.5.7) –
(3.5.12) hold true.

Proof. Rewrite the system (3.5.6) and the inequalities (3.5.7) in
the compact form (3.5.1) and (3.5.2), assuming

A =




0 . . . 0 −A0

I . . . 0 −A1

· · · · · · · · · · · ·
0 . . . I −As−1


 , B =




I . . . 0 0
· · · · · · · · · · · ·
0 . . . I 0
0 . . . 0 As


 ,

z(t) =




A1x(t) + . . .+Asx
(s−1)(t)

...

As−1x(t) +Asx
(1)(t)

x(t)


 , y(t) = −




g(t)
0
...
0


 ,

E =




Φ0
...

Φs−2

T


 , H =




−Ψ0V
...

−Ψs−2V
K


 ,

BE =




Φ0
...

Φs−2

Φs−1


 , AH = −




Ψ0
...

Ψs−2

Ψs−1


 .

According to (3.5.2)–(3.5.5), we have representation of the solution
z(t) of the system (3.5.1) of the form (3.5.3) with the respective
limitations on the initial vector z0 and the right hand part y(t).

Go to the canonical form of the regular pencil

P (A− λB)Q =

[
J − λI 0

0 I − λN

]
. (3.5.13)

According to (3.5.2) and (3.5.13), obtain the relations

[E,H] = Q

[
R S
0 G

]
, [BE,AH] = P−1

[
R JS
0 G

]
,
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JR = RU, NG = GV, S = JSV.

Since Nν = 0, then GV ν = 0, where ν is the maximum degree of
infinite elementary divisors of the pencil L(λ). If, in addition, the
condition (3.5.9) holds true, then S = 0, and in (3.5.4) HV ν = 0.
In particular, if the matrix V is nilpotent, then the condition (3.5.9)
holds true for any λ.

Consequently, under the conditions (3.5.7)–(3.5.11) the expression
(3.5.3) is a solution of the system (3.5.1). Taking into account the
block structure of the vector z(t), obtain the solution of the form
(3.5.12) of the initial system (3.5.6). The remaining equalities for
the block components of the vector z(t) follow from (3.5.5), (3.5.7)
– (3.5.12).

To prove the inverse proposition we can assume

E = − 1

2πi

∮

σ

(A− λB)−1dλ = Q

[
I 0
0 0

]
P,

H = − 1

2πi

∮

ω

(B − λA)−1dλ = Q

[
0 0
0 I

]
P,

U = AE = P−1

[
J 0
0 0

]
P, V = BH = P−1

[
0 0
0 N

]
P,

where σ and ω are closed contours enclosing respectively the spec-
trum σ(L) and the point 0. Apparently, V ν = 0 and the condition
(3.5.9) holds true, and the matrices BE and AH (EB and HA) are
orthogonal projectors, and BE+AH = I (EB+HA = I). Any vec-
tors z(t) and y(t) are therefore representable in the form (3.5.3). In
particular, we can assume u(t) = Bz(t), v(t) = Az(t), p(t) = −y(t),
q(t) = y(t).

The theorem is proved.

The described technique applies to wider classes of systems. Sup-
pose that the matrix function F (λ) describes the differential (diffe-
rence) system

F (D)x(t) = g(t), t ≥ t0, (3.5.14)

where D is a differentiation (shift) operator in the case of continuous
(discrete) time t, and the pairs of matrices (U, T ) and (V,K) are
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determined, satisfying the identities (3.5.8), where Φ(λ) and Ψ(λ)
are some matrix functions. Then, with some limitations, the vector
functions x(t) and g(t) in the system (3.5.14) can be determined in
the form

x(t) = Tu(t) +Kv(t), g(t) = Φ(D)p(t) + Ψ(D)q(t). (3.5.15)

Indeed, substitution of these expressions into (3.5.14) gives

Φ(D)[Du(t) − Uu(t) − p(t)] + Ψ(D)[v(t) − V Dv(t) − q(t)] = 0.

If for some ν the identity

Ψ(D)V νDνq(t) ≡ 0, (3.5.16)

is true, in particular, V is a nilpotent matrix, then the differential
system (3.5.14) is solvable in the form (3.5.15), where u(t) and v(t)
are determined in (3.5.5).

Similarly, solutions of the difference system (3.5.14) in the case
of the shift operator D for t = 0, 1, . . . are also determined by the
relations (3.5.8), (3.5.15), and (3.5.16), where

u(t+ 1) = U t+1u0 +
t∑

i=0

U t−ip(i), v(t) =
ν−1∑

i=0

V iq(t+ i). (3.5.17)

3.6 Notes and References

3.1 There are a lot of publications devoted to the techniques of control
of spectral properties of linear systems (see Andreev [1], Kozhinskaya,
Vornovitsky [1], Kirichenko [1], Porter, Crossley [1], Simon, Mitter
[1], and others).

Averaged quality criteria of the type (3.1.2) were used in
Kirichenko [1]. The system of matrix relations (3.1.7)–(3.1.9),
(3.1.11), and (3.1.12) expresses the necessary conditions for mini-
mum of a functional, under which the spectrum of a closed-loop
system is located in the given domain (3.1.3). This system and the
optimization algorithm following from it are obtained by Mazko [3,
6]. There the results of Athans, Levine [1] were used, in particu-
lar, an expression for the gradient of an averaged functional. The



Notes and References 137

known algorithms of measurable output optimization of systems co-
incide with the described computation scheme if the domain (3.1.3)
is the left half-plane (see Anderson, Moor [1], Athans, Levine [1],
Söderström [1], and others).

The illustrative example of a control system is taken from Maki,
Van de Vegte [1]. The example of a rocket control system with con-
sideration for elastic vibrations of the airframe is taken from Fisher
[1].

3.2 Some known techniques of construction and analysis of solu-
tions of descriptor systems of the form 3.2.1 are described in Bo-
yarintsev [1], Gantmacher [1], Rutkas [1], and others. Matrix equa-
tions of the Lyapunov equation type for such systems is studied in
Bender [1], Stykel [1], and others. Lemmas 3.2.1–3.2.4 and Theo-
rems 3.2.1 and 3.2.2 are proved by Mazko [27]. Stability criteria in
the form of (3.2.19)–(3.2.22) are given by Mazko [26].

3.3 Systems of the form (3.3.1) and (3.3.2) occur at simulation
of transport, electromechanical, space, and other objects (see, e.g.,
Krein, Langer [1], Lazaryan, Dlugach, Korotenko [1], Rabinovich [1],
Kilchevsky [1], and others). In Leang Shieh, Mohamad Mehio, Rani
Dib [1] a number of sufficient conditions for stability of the system
(3.3.1) were obtained within additional limitations on the matrix co-
efficients. In Wimmer [2] in the study of a system of the form (3.3.1)
the inertia theorem was used. Theorem 3.3.1 and the described tech-
niques of analysis of the spectrum of a quadratic pencil of matrices
follow from the more general results of Chapter 2.

3.4 The statement of Lemma 3.4.1 is available in Rezvan [1]. The
study of absolute stability of delay systems with the use of quadratic
functionals of the type (3.4.9) became possible owing to Krasovsky
[1]. In the case A1 = I the techniques of selection of weight matrices
of functionals are known, ensuring the conditions of absolute stability
of the system (3.4.1) (see Korenevskii [1], Zelentzovsky [1], Resvan
[1], Skorodinskii [1], and others). Theorems 3.4.1 and 3.4.2 generalize
the conditions of absolute stability of the system (3.4.1), formulated
in Korenevskii, Mazko [2].

Algebraic conditions of mean-square stability of Ito’s stochastic
systems with the use of matrix equations are described in Korenevskii
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[1], Korenevskii, Mazko [1], Valeev, Karelova, Gorelov [1], Boyd,
Ghaoui, Feron, Balakrishman [1], and others. Theorem 3.4.3 yields
such conditions in terms of solutions of the Silvester equation (3.4.18)
(see Korenevskii [1]).

3.5 The general technique of construction and study of linear dif-
ferential and difference systems solutions, based on the application of
generalized spectral problems for matrix polynomials and functions,
is proposed in Mazko [27-29].



4

MATRIX EQUATIONS AND LAW OF INERTIA

4.0 Introduction

In this chapter the techniques of the study of matrix equations of the
general type are described. First of all, we are interested in solvability
conditions, inertial properties of Hermitian solutions, and methods
of construction of matrix equation solutions. Furthermore, for the
systematization of the obtained data it seems important to study the
spectral and analytic properties of operators in the space of matrices,
which determine the considered classes of matrix equations.

Using the operation of matrix semi-inversion, in Section 4.1 you
will find the estimates for the rank of a matrix satisfying the linear
matrix equation of the general form. As a corollary, formulae for the
calculation of block matrix rank are given.

In Section 4.2 symmetric matrix equations are considered whose
solutions are Hermitian or symmetric matrices. A number of rela-
tions are given, presenting the generalized principle of inertia and
the technique of computation of the rank, signature, and indices of
inertia of solutions of such equations and various matrix expressions.

In Section 4.3 the classes of matrix equations allowing transfor-
mation of their coefficients to the easy-to-study canonical form are
determined, and the solvability conditions for such equations are for-
mulated. In particular, if the matrix coefficients of an equation are
simultaneously reducible to triangular form through similarity trans-
formation, then the conditions of one-valued solvability of this equa-
tion are only determined by the diagonal entries (eigenvalues) of the
transformed matrix coefficients.

139
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In Section 4.4 transformation systems for the class of symmet-
ric matrix equations are proposed, and general theorems of inertia
of Hermitian solutions are formulated. The main properties of the
respective classes of operators are determined.

In Section 4.5 the classes of matrix equations are studied whose
coefficients form so-called collectives. The concept of the property of
collective of order α is determined, and theorems of its distribution
that follow from the main results of Section 4.4 are formulated.

In Section 4.6 you will find a review of basic numerical and ana-
lytic methods of construction of solutions of linear matrix equations.
For special classes of equations some additional facts are formulated.
In particular, a spectral criterion of solvability of the Sylvester bino-
mial equation is found by applying the method of transformations.
Using the integral representation of a solution of matrix and more
general equations, a criterion of asymptotic stability of a class of
differential systems described by the operators of these equations is
formulated.

4.1 Estimate of the Rank of a Matrix Solution

Consider the linear matrix equation

k∑

i=1

s∑

j=1

cijAiXBj = Y, (4.1.1)

where Ai, Bj , and Y are given matrices of dimensions p× n, m× q,
and p× q respectively, cij the scalar coefficients composing the k× s
matrix C. Let the equation (4.1.1) be solvable and X be one of its
solutions of dimension n ×m. The equation (4.1.1) is equivalent to
the system

AZB = Y, C ⊗X = Z, (4.1.2)

where ⊗ is the Kronecker product, A, B, and Z are block matrices
of the form

A = [A1, . . . , Ak], B =



B1
...
Bs


 , Z =



c11X . . . c1sX
· · · · · · · · ·
ck1X . . . cksX


 .
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Along with (4.1.1) and (4.1.2) consider the relations

W = Z − ZBY −AZ, Y Y −Y = Y, (4.1.3)

where Y − is an arbitrary semi-inverse q×p matrix for Y . According
to (4.1.2) and (4.1.3), the matrix W is a solution of the homogeneous
equation

AWB = 0. (4.1.4)

If Y is a matrix of full rank by column (row), then WB = 0
(AW = 0).

Theorem 4.1.1. For the matrix system (4.1.2), (4.1.3) the fol-
lowing equality holds true:

rankC rankX = rankY + rankW. (4.1.5)

Proof. Let P , Q, and D be square nonsingular matrices of order
p, q, and δ respectively, such that

PY Q =

[
D 0
0 0

]
, rankY = δ 6= 0.

The semi-inversion operation has the following properties:

(PY Q)− = Q−1Y −P−1,

[
D 0
0 0

]−
=

[
D−1 U
V S

]
,

where U , V , and S are arbitrary blocks of appropriate dimensions.
Using these relations, represent the expression (4.1.3) in the form

W = Z − ZR0(L0ZR0)
−1L0Z − ZR1∆L1Z, (4.1.6)

where

L0 = [Iδ,DU ]PA, L1 = [0, Iq−δ ]PA, ∆ = S − V DU,

R0 = BQ

[
Iδ
V D

]
, R1 = BQ

[
0
Ip−δ

]
,

Iδ is a unit matrix of order δ. Here the equalities

L0ZR0 = D, L1ZR1 = 0, L0ZR1 = 0, L1ZR0 = 0,
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L0W = 0, WR0 = 0, L1W = L1Z, WR1 = ZR1

hold true. Let L2 and R2 be arbitrary matrices such that

rankL3 = k n, L3 =



L0

L1

L2


 , rankR3 = sm, R3 = [R0, R1, R2] .

Then the block matrices L4 and R4 of the form

L4 =




L0

L1

L2 − L2ZR0D
−1L0 − 0.5L2ZR1∆L1


 ,

R4 =

[
R0, R1, R2 −R0D

−1L0ZR2 −
1

2
R1∆L1ZR2

]
,

have full rank equaling respectively to kn and sm. Calculating and
comparing the products of matrices

L3WR3 =




0 0 0

0 0 L1ZR2

0 L2ZR1 L2WR2


 ,

L4ZR4 =



D 0 0

0 0 L1ZR2

0 L2ZR1 L2WR2


 ,

we see that the equality rankZ = rankW + δ holds true. This
equality can be reduced to the form (4.1.5), because rank(C ⊗X) =
= rankC rankX . If Y = 0, then Y − is an arbitrary matrix, and the
equality (4.1.5) follows from

[
A
L5

]
W [B,R5] =

[
A

L5 − 1
2L5ZBY

−A

]
Z

[
B,R5 −

1

2
BY −AZR5

]
.

Here the blocks L5 and R5 are selected so that the left and right
multipliers are matrices of full rank.

The theorem is proved.
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Remark 4.1.1 If we require that the semi-inverse matrix Y −

satisfies the second condition in the Penrose semi-inversion system
((Y −)− = Y ), then in (4.1.6) ∆ = 0, and the proof of Theorem 4.1.1
is simplified.

Corollary 4.1.1 For any solution of the equation (4.1.1) the fol-
lowing inequalities hold true

rankC rankX ≥ rankY, (4.1.7)

rankC rankX ≤ rankY − rankA− rankB + k n+ sm, (4.1.8)

rankC rankX ≤ rankY + rank(C− ⊗X− −BX−A). (4.1.9)

The inequality (4.1.7) follows directly from the equality (4.1.5).
The inequality (4.1.8) is a consequence of the relations (4.1.3)–
(4.1.5), and also of the Sylvester–Frobenius inequalities for the rank
of a matrix product. The inequality (4.1.9) follows from (4.1.5) and
the equality W = Z(Z−−BY −A)Z, where Z− is a semi-inverse ma-
trix for Z, in particular, Z− = C− ⊗X−. The equality in (4.1.7) is
achieved if and only if the expression BY −A is a semi-inverse matrix
for Z.

Corollary 4.1.2 If BY −A = C− ⊗X−, then the solution X of
the equation (4.1.1) has the minimum rank.

Corollary 4.1.3 If the matrices X1, X2, X3, and X4 have the
dimensions p×q, p×τ , t×q, and t×τ respectively, then the following
equalities hold true:

rank [X1,X2] = rankX1 + rankL,

rank

[
X1

X3

]
= rankX1 + rankR,

rank

[
X1 X2

X3 X4

]
= rankX1 + rankL+ rankR+ rankG,

(4.1.10)

where
L = X2 −X1X

−
1 X2, R = X3 −X3X

−
1 X1,

G = (It −RR−)T (Iτ − L−L), T = X4 −X3X
−
1 X2.
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For the proof of the equalities (4.1.10) in Theorem 4.1.1 assume

A = [Ip, 0], B =

[
Iq
0

]
, C = 1, Z = X =

[
X1 X2

X3 X4

]
.

At the same time the following relations hold true:

Y = X1, W =

[
0 L
R T

]
, L6WR6 =




0 0 L
0 G 0
R 0 0


 , (4.1.11)

where the multipliers L6 and R6 have full rank and the following
structure:

L6 =




Ip 0
(RR− − It)TL

− It −RR−

−1
2RR

−TL− RR−


 , rankL6 = p+ t,

R6 =

[
Iq R−T (L−L− Iq) −1

2R
−TL−L

0 Iτ − L−L L−L

]
, rankR6 = q + τ.

Therefore the equalities (4.1.10) follow from the formulae (4.1.5) and
(4.1.11).

Corollary 4.1.4 The following criterion takes place:

rank

[
X1 X2

X3 X4

]
= rankX1 ⇐⇒ L = 0, R = 0, T = 0.

If X1 is a square nonsingular block, then X−
1 = X−1

1 , L = 0,
R = 0. In this case the statement of Corollary 4.1.4 is known.

4.2 Inertia of Hermitian Solutions

Inertia of a Hermitian matrix X = X∗ is composed by the triple of
numbers

i(X) = {i+(X), i−(X), i0(X)}
determined by the quantity of its positive (i+), negative (i−), and
zero (i0) eigenvalues, taking into account the multiplicities. If the
Hermitian matrices X and Y are connected by the relation

AXA∗ = Y, (4.2.1)
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where A is a square nonsingular matrix, then i(X) = i(Y ). It means
that inertia is invariant with respect to Sylvester’s congruent trans-
formation (law of inertia). If A is a rectangular matrix of full rank
by column, then the invariants of the transformation (4.2.1) are the
indices of inertia i±, as well is the rank and the signature

rankX = i+(X) + i−(X), signX = i+(X) − i−(X).

Apparently, the rank and the signature determine all the three com-
ponents of inertia.

Study the connection between inertias of the matrices X and Y
satisfying the equation

k∑

i,j=1

cijAiXA
∗
j = Y, (4.2.2)

in particular, the relation (4.2.1) without any limitations on the ma-
trix coefficients A and Ai. Consider the relations (4.1.2)–(4.1.6) un-
der the conjugation conditions:

B = A∗, C = C∗, X = X∗, Y = Y ∗, Z = Z∗, Y − = Y −∗. (4.2.3)

Repeating the proof of Theorem 4.1.1, in consideration of the equal-
ities Ri = L∗

i and the law of inertia, obtain the following statement.

Theorem 4.2.1 For the matrix system (4.1.2), (4.1.3), and
(4.2.3) the following equalities hold true:

rankC rankX = rankY + rankW,

signC signX = signY + signW,

i+(C) i+(X) + i−(C) i−(X) = i+(Y ) + i+(W ),

i−(C) i+(X) + i+(C) i−(X) = i−(Y ) + i−(W ),

i0(C) i0(X) − n i0(C) − k i0(X) = rankY − i0(W ).

(4.2.4)

Corollary 4.2.1 For any Hermitian matrix solution X of the
equation (4.2.2) the following inequalities hold true:

i+(Y ) ≤ i+(C)i+(X)+i−(C)i−(X) ≤ i+(Y )+i+(C−⊗X−−A∗Y −A),
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i−(Y ) ≤ i−(C)i+(X)+i+(C)i−(X) ≤ i−(Y )+i−(C−⊗X−−A∗Y −A).

Corollary 4.2.2 Let X = X∗ be a solution of the equation (4.2.2)
under the condition signC = 0. Then the inequality

rankC rankX ≥ rankY + | signY | = 2max{i+(Y ), i−(Y )}

holds true. In particular, if Y > 0 or Y < 0, then under the con-
ditions rankC = 2 and signC = 0 the solution X is a nonsingular
matrix.

We will formulate corollaries of Theorem 4.2.1 for the relation
(4.2.1), assuming

C = 1, Z = X, W = X −XA∗Y −AX,

where A is a rectangular matrix of any rank. According to (4.2.4),
obtain the inequalities

i+(X) ≥ i+(Y ), i−(X) ≥ i−(Y ).

Corollary 4.2.3 The equalities

i+(X) = i+(Y ), i−(X) = i−(Y ) (4.2.5)

hold true if and only if the expression A∗Y −A is a semi-inverse ma-
trix for X.

If A is a square nonsingular matrix, then W = 0 and the equalities
(4.2.5) representing Sylvester’s law of inertia hold true.

Corollary 4.2.4 The equalities i+(X) = i+(Y ) + z and
i−(X) = i−(Y ) hold true if and only if W is a nonnegative def-
inite matrix of rank z. Similarly, the equalities i+(X) = i+(Y )
and i−(X) = i−(Y ) + z are equivalent to the relations W ≤ 0,
rankW = z.

These statements can be used in calculation of indices of inertia of
a Hermitian matrix. No limitations on its minors, similar to the con-
ditions of Jacobi’s theorem, are required. The search of inertia of the
matrix X adds up to the application of criteria of sign definiteness of
the matrices Y and W . Thus, if the p×n matrix A is selected so that
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Y > 0 and W ≤ 0, then i+(X) = p and i−(X) = rankW . Similarly,
under the conditions Y < 0, W ≥ 0 we have i+(X) = rankW and
i−(X) = p. In the case p = 1 the following statement is true.

Corollary 4.2.5 If the Hermitian form α(z) = z∗Xz > 0
is positive for some vector z, then the relations i+(X) = 1 and
α(z)X ≤ Xzz∗X are equivalent.

Corollary 4.2.6 Let a matrix X be represented in the block form

X =

[
X1 X2

X3 X4

]
, X1 = X∗

1 , X2 = X∗
3 , X4 = X∗

4 .

Then along with (4.1.10) the following equality holds true:

signX = signX1 + signG. (4.2.6)

The proof of Corollary 4.2.6 follows from (4.1.11), (4.2.4) and the
fact that the signatures of the matrix W and the block G in (4.1.11)
coincide. The equalities (4.1.10) and (4.2.6) are equivalent to the
relations

i±(X) = i±(X1) + i±(G) + rankL,

i0(X) = i0(X1) + i0(G) − 2 rankL.

In particular, we have the following criteria:

i+(X) = i+(X1) ⇐⇒ X2 = X1X
−
1 X2, X4 ≤ X3X

−
1 X2;

i−(X) = i−(X1) ⇐⇒ X2 = X1X
−
1 X2, X4 ≥ X3X

−
1 X2;

X ≥ 0 ⇐⇒ X1 ≥ 0, X4 ≥ X3X
−
1 X2, X2 = X1X

−
1 X2;

X > 0 ⇐⇒ X1 > 0, X4 > X3X
−1
1 X2.

Similar results can be obtained, considering the block X4 of X.

4.3 Transformations and Solvability Conditions of

Matrix Equations

In the study of matrix equations an important role is played by sys-
tems of transformations that reduce them to a simpler form. In
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particular, we are interested in the possibility of reduction of the
equation (4.1.1) to a similar equation with triangular matrix coef-
ficients; the solvability conditions of this equation are well studied.
Consider two equations of the form (4.1.1):

MX
∆
=

k∑

i=1

s∑

j=1

cij AiXBj = Y, (4.3.1)

M̂X̂
∆
=

k̂∑

i=1

ŝ∑

j=1

dij LiX̂Rj = Ŷ . (4.3.2)

The linear operator M(M̂) acts from the space of matrices of dimen-
sions n × m (n̂ × m̂) to the space of matrices of dimensions p × q
(p̂× q̂). According to (4.1.2), we have the representations

MX = A(C ⊗X)B, A = [A1, . . . , Ak] ,

B =



B1
...
Bs


 , C =



c11 . . . c1s
· · · · · · · · ·
ck1 . . . cks


 ,

M̂X̂ = L(D ⊗ X̂)R, L =
[
L1, . . . , Lk̂

]
,

R =



R1
...
Rŝ


 , D =



d11 . . . d1ŝ

· · · · · · · · ·
dk̂1 . . . dk̂ŝ


 .

Determine the connection between the parameters and the structure
of solutions of the equations (4.3.1) and (4.3.2), using the matrix
system of transformations

P1AP
(2) = P3LP

(4), Q(1)BQ2 = Q(3)RQ4,

C = S1GS2, D = S3GS4,

P1Y Q2 = P3Ŷ Q4,

(4.3.3)

where P (2) = S1⊗P2, P
(4) = S3⊗P4, Q

(1) = S2⊗Q1, Q
(3) = S4 ⊗Q3,

Pt, Qt, St, and G are some matrices of relevant dimensions. The
solutions X and X̂ will be constructed in the form

X(H) = P2HQ1, X̂(H) = P4HQ3, (4.3.4)
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where H is an unknown matrix. Here we use rank limitations on the
transformation matrices, in particular

rankP1 = p, rankQ2 = q, (4.3.5)

rankP2 = n, rankQ1 = m, (4.3.6)

rankP3 = p̂, rankQ4 = q̂, (4.3.7)

rankP4 = n̂, rankQ3 = m̂, (4.3.8)

rankS1 = k, rankS2 = s, (4.3.9)

rankS3 = k̂, rankS4 = ŝ. (4.3.10)

Theorem 4.3.1 Let the equations (4.3.1) and (4.3.2) be con-
nected by the system (4.3.3). Then, if the conditions (4.3.5) hold
true and the equation (4.3.2) is solvable in the form X̂ = X̂(H),
then X = X(H) is a solution of the equation (4.3.1). If the condi-
tions (4.3.7) are true and the equation (4.3.1) is solvable in the form
X = X(H), then X̂ = X̂(H) is a solution of the equation (4.3.2).

Proof. Use the prescribed structure of the solutions (4.3.4) and
calculate the Kronecker products

C ⊗X = P (2)FQ(1), D ⊗ X̂ = P (4)FQ(3),

where F = G ⊗ H. If one of the matrices (4.3.4) is a solution of
the respective equation (4.3.1) or (4.3.2), then, according to (4.3.1)–
(4.3.4), the equalities

P1Y Q2 = P1(MX)Q2 = P1AP
(2)FQ(1)BQ2 =

= P3LP
(4)FQ(3)RQ4 = P3(M̂X̂)Q4 = P3Ŷ Q4

hold true. Thus, if X̂ is a solution of the equation (4.3.2) and the
conditions (4.3.5) hold true, then P−

1 P1 = Ip, Q2Q
−
2 = Iq, and the

matrix X satisfies the equation (4.3.1). Similarly, if X is a solution of
the equation (4.3.1) under the conditions (4.3.7), then X̂ is a solution
of the equation (4.3.2). In this case P−

3 P3 = Ip̂ and Q4Q
−
4 = Iq̂,

The theorem is proved.
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The connection between the right-hand sides of the equations
(4.3.1) and (4.3.2) in the system (4.3.3) can be represented in the
form

Y = P−
1 P3Ŷ Q4Q

−
2 + Y0, Ŷ = P−

3 P1Y Q2Q
−
4 + Ŷ0,

where Y0 and Ŷ0 are arbitrary matrices such that P1Y0Q2 = 0 and
P3Ŷ0Q4 = 0. Under the conditions (4.3.5) ( (4.3.7) ) of Theorem
4.3.1 it is necessary that Y0 = 0 (Ŷ0 = 0). A similar connection
exists between the solutions with the structure (4.3.4). Excluding
the matrix H, obtain

X = P2P
−
4 X̂Q

−
3 Q1 +X0, X̂ = P4P

−
2 XQ

−
1 Q3 + X̂0,

where X0 = P2H0Q1, X̂0 = P4Ĥ0Q3, H0 and Ĥ0 are arbitrary ma-
trices such that P4H0Q3 = 0 and P2Ĥ0Q1 = 0. In particular, for
H0 = 0 and Ĥ0 = 0 we have the following statements.

Corollary 4.3.1 For the matrix X to be a solution of the equa-
tion (4.3.1), under the conditions (4.3.5) and (4.3.6) it is sufficient,
and under the conditions (4.3.6) and (4.3.7) it is necessary that the
matrix X̂ = P4P

−
2 XQ

−
1 Q3 must satisfy the equation (4.3.2).

Corollary 4.3.2 For the equation (4.3.1) to be solvable in the
form X = P2P

−
4 X̂Q

−
3 Q1, under the conditions (4.3.5) and (4.3.8)

it is sufficient, and under the conditions (4.3.7) and (4.3.8) it is
necessary that the matrix X̂ must satisfy the equation (4.3.2).

Consider the following variants of the system (4.3.3):

P1AP
(2) = L, Q(1)BQ2 = R, C = S1DS2, P1Y Q2 = Ŷ ; (4.3.11)

AP (2) = P3L, Q
(1)B = RQ4, C = S1DS2, Y = P3Ŷ Q4; (4.3.12)

P1A = LP (4), BQ2 = Q(3)R, S3CS4 = D, P1Y Q2 = Ŷ ; (4.3.13)

A = P3LP
(4), B = Q(3)RQ4, S3CS4 = D, Y = P3Ŷ Q4. (4.3.14)

If one succeeds in constructing the system (4.3.11) or (4.3.12), then
the solution of the equation (4.3.1) can be determined, according to
(4.3.4), in the form X = X(X̂), where X̂ is a solution of the equation
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(4.3.2). Similarly, using the systems (4.3.13) and (4.3.14), we have
X̂ = X̂(X).

Note that each of the limitations (4.3.5)–(4.3.10) allows us to sim-
plify the system (4.3.3). Thus, if the equalities (4.3.7), (4.3.8), and
(4.3.10) hold true, then, proceeding from (4.3.3), we can construct a
new transformation system of the form (4.3.11) by semi-inversion of
matrices of full rank.

Study the solvability conditions of the equations (4.3.1) and
(4.3.2), assuming that all matrices Li and Ri in the system (4.3.3)
simultaneously have quasitriangular structure:

Li =



L

(i)
11 . . . 0
...

. . .
...

L
(i)
α1 . . . L

(i)
αα


 , i = 1, k̂;

Rj =




R
(j)
11 . . . R

(j)
1β

...
. . .

...

0 . . . R
(j)
ββ


 , j = 1, ŝ.

(4.3.15)

Denote the dimensions of the diagonal blocks L
(i)
tt and R

(j)
ττ respec-

tively by lt1 × lt2 and rτ1 × rτ2 (t = 1, α, τ = 1, β). Using the block
form of the matrices

X̂ =



X̂11 . . . X̂1β

· · · · · · · · ·
X̂α1 . . . X̂αβ


 , Ŷ =



Ŷ11 . . . Ŷ1β

· · · · · · · · ·
Ŷα1 . . . Ŷαβ


 ,

represent the equation (4.3.2) in the form of a system αβ of matrix
equations with respect to X̂tτ :

K11X̂11 = Ŷ11, Ktτ X̂tτ +Ntτ X̂ = Ŷtτ , t+ τ > 2, (4.3.16)

where X̂tτ and Ŷtτ are blocks of the dimensions lt2×rτ1, and lt1×rτ2
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respectively, Ktτ ¡ and Ntτ are linear operators determined by

Ktτ X̂tτ =
k̂∑
i=1

ŝ∑
j=1

dij L
(i)
tt X̂tτR

(j)
ττ ,

Ntτ X̂ =
t∑

ξ=1

τ∑
ζ=1

k̂∑
i=1

ŝ∑
j=1

dij L
(i)
tξ X̂ξζR

(j)
ζτ , ξ + ζ < t+ τ.

(4.3.17)

Let all diagonal blocks of the matrices (4.3.15) be square: lt1 = lt2,
rτ1 = rτ2. The operators Ntτ only act on the blocks X̂ξζ of the

matrix X̂ for ξ ≤ t, ζ ≤ τ , and ξ + ζ 6= t + τ . This can be used
in a recurrent procedure of exclusion of unknown systems (4.3.16),
providing the proof of the following proposition.

Lemma 4.3.1 The matrix equation (4.3.2) with quasitriangular
coefficients (4.3.15) has a unique solution for any right-hand side if
and only if all operators Ktτ are invertible.

Represent the operator of the equation (4.3.2) in the form

M̂ = K +N, (4.3.18)

where

KX̂ =



K11X̂11 . . . K1βX̂1β

· · · · · · · · ·
Kα1X̂α1 . . . KαβX̂αβ


 ,

NX̂ =




0 N12X̂ . . . N1βX̂

N21X̂ N22X̂ . . . N2βX̂
· · · · · · · · · · · ·

Nα1X̂ Nα2X̂ . . . NαβX̂


 .

According to Lemma 4.3.1, the conditions of invertibility of op-
erators M̂ and K coincide. In addition, the unique solution of the
equation (4.3.2) has the form

X̂ = Ŷ1 +N1Ŷ1 + . . .+Nν−1
1 Ŷ1, (4.3.19)

where

ν = α+ β − 1, N1 = −K−1N,
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Ŷ1 = K−1Ŷ =



K−1

11 Ŷ11 . . . K−1
1β Ŷ1β

· · · · · · · · ·
K−1
α1 Ŷα1 . . . K−1

αβ Ŷαβ


 .

Indeed, the operators N and N1 are nilpotent. Their indices of nilpo-
tency coincide and do not exceed ν,

From (4.3.15) and (4.3.18) the following statement follows.

Lemma 4.3.2 Under the conditions (4.3.15) the spectrum of the
operator M̂ consists of the eigenvalues of the operators Ktτ :

σ(M̂) = σ(K) =
⋃

t,τ

σ(Ktτ ). (4.3.20)

Let the quasitriangular matrices (4.3.15) be triangular, i.e.
lt1 = lt2 = rτ1 = rτ2 = 1. Then the actions of the operators K
and K−1 give the Schur products:

KX̂ = Ω ⊙ X̂, K−1Ŷ = ∆ ⊙ Ŷ , (4.3.21)

where

Ω = ΣlDΣT
r =



ω11 . . . ω1β

· · · · · · · · ·
ωα1 . . . ωαβ


 ,

∆ =




1

ω11
. . .

1

ω1β

· · · · · · · · ·
1

ωα1
. . .

1

ωαβ



,

Σl =



L

(1)
11 . . . L

(k̂)
11

· · · · · · · · ·
L

(1)
αα . . . L

(k̂)
αα


 , Σr =



R

(1)
11 . . . R

(ŝ)
11

· · · · · · · · ·
R

(1)
ββ . . . R

(ŝ)
ββ


 .

In this case the spectrum (4.3.20) is formed by elements of the matrix
Ω, and the inequalities

wtτ =

k̂∑

i=1

ŝ∑

j=1

dij L
(i)
tt R

(j)
ττ 6= 0, t = 1, α, τ = 1, β, (4.3.22)
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represent the criterion of one-valued solvability of the equation
(4.3.2).

Solvability conditions and the solution of the original equation
(4.3.1) can be obtained by using (4.3.19), (4.3.22), and the corollaries
of Theorem 4.3.1 for different variants of the transformation system
(4.3.3), in particular, (4.3.11)–(4.3.14).

4.4 Inertial Properties of Transformable Equations

Consider the class of matrix equations

MX = Y, MX
∆
=

k∑

i,j=1

cij AiXA
∗
j ≡ A(C ⊗X)A∗, (4.4.1)

where C, X, and Y are Hermitian matrices of order k, n, and p
respectively. The notation of a block matrix A = [A1, . . . , Ak] will
be also used as a family of p× n matrices Ai, i = 1, . . . , k.

Study the properties of the operator M and the inertia of Hermi-
tian solutions of the equation (4.4.1), using transformation systems
of the type (4.3.11)–(4.3.14):

P1AP
(2) = L, C = S1DS

∗
1 , P1Y P

∗
1 = Ŷ , X = P2X̂P

∗
2 ; (4.4.2)

AP (2) = P3L, C = S1DS
∗
1 , Y = P3Ŷ P

∗
3 , X = P2X̂P

∗
2 ; (4.4.3)

P1A = LP (4), S3CS
∗
3 = D, P1Y P

∗
1 = Ŷ , P4XP

∗
4 = X̂; (4.4.4)

A = P3LP
(4), S3CS

∗
3 = D, Y = P3Ŷ P

∗
3 , P4XP

∗
4 = X̂. (4.4.5)

Suppose that there exists one of the transformation systems (4.4.2)–
(4.4.5), giving a family of triangular matrices L:

Li =




l
(i)
11 0 . . . 0

l
(i)
21 l

(i)
22 . . . 0

· · · · · · · · ·
l
(i)
α1 l

(i)
α2 . . . l

(i)
αα


 , i = 1, . . . , k̂. (4.4.6)

At the same time P (2) = S1 ⊗P2, P
(4) = S3 ⊗P4, and P1, . . . , P4 are

some matrices of full rank α.
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For each of the systems (4.4.2)–(4.4.5) determine a family of ma-
trices

X =

α⋃

t,τ=0

Xtτ , Xtτ = {X : i+(X̂) = t, i−(X̂) = τ},

Y =

α⋃

t,τ=0

Ytτ , Ytτ = {Y : i+(Ŷ ) = t, i−(Ŷ ) = τ}.

Thus, if the systems (4.4.2) or (4.4.3) are used, then X is a set
of Hermitian matrices representable in the form X = P2X̂P

∗
2 . If

X ∈ Xtτ , then i+(X) = t and i−(X) = τ , because P2 is a matrix of
full rank by column. For the systems (4.4.4) or (4.4.5) the relation
X ∈ Xtτ means that X̂ = P4XP

∗
4 is a Hermitian matrix with indices

of inertia i+(X̂) = t ≤ i+(X) and i−(X̂) = τ ≤ i−(X). Similarly,
the sets Y and Ytτ are described by using the matrices P1 and P3.
Note that if α = n (α = p), then in each case (4.4.2)–(4.4.5) the
set X (Y) consists of all Hermitian α × α matrices, and Xα0 (Yα0)
is a subset of positive definite matrices. The sets X00 and Y00 are
subspaces. In particular, for the systems (4.4.3) and (4.4.5), as well
as (4.4.2) and (4.4.4) in the case α = p, the subspace Y00 is zero.

Lemma 4.4.1 The equality Y = MX +Y00 holds true if and only
if

ωtτ =
k̂∑

i,j=1

dij l
(i)
tt l

(j)
ττ 6= 0, t, τ = 1, α. (4.4.7)

Proof. Consider the relations

M̂X̂ = Ŷ , M̂X̂
∆
=

k̂∑

i,j=1

dij LiX̂L
∗
j ≡ L(D ⊗ X̂)L∗, (4.4.8)

where L is the family of triangular matrices (4.4.6). The spectrum
of the operator M̂ consists of α2 numbers ωtτ , and the inequalities
(4.4.7) are equivalent to its invertibility. The operators M and M̂
are connected by one of the relations

P1 (MX)P ∗
1 = M̂X̂, MX = P3 (M̂X̂)P ∗

3 . (4.4.9)
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The first (second) of them holds true for the systems (4.4.2) and
(4.4.4) ((4.4.3) and (4.4.5)). ThereforeMX+Y00 ⊆ Y, in particular,
MX ⊆ Y. The inverse inclusion Y ⊆ MX + Y00 means that each
matrix Y ∈ Y is representable in the form

Y = MX + Y0, X ∈ X , Y0 ∈ Y00, (4.4.10)

and, owing to rank limitations on P1, . . . , P4, equivalent to the solv-
ability of the equation (4.4.8) for any right-hand side, i.e. to the
inequalities (4.4.7).

The lemma is proved.

Lemma 4.4.2 The operators M̂ and M̂−1 are representable in
the form

M̂X̂ =

α∑

t,τ=1

t,τ∑

i,j=1

γijtτ EtiX̂E
∗
τj , (4.4.11)

M̂−1Ŷ =
α∑

t,τ=1

t,τ∑

i,j=1

θijtτ EtiŶ E
∗
τj , (4.4.12)

where γijtτ and θijtτ are scalar coefficients, Epq is a matrix with a single
nonzero element equal to 1 and located at the intersection of the p-th
row and the q-th column.

Proof. Substituting the expansions of the triangular matrix coef-
ficients

Lξ =
α∑

t=1

t∑

i=1

l
(ξ)
ti Eti, ξ = 1, . . . , k̂,

into (4.4.8), arrive at the expression (4.4.11) for the operator M̂ . At
the same time

γijtτ =

k̂∑

ξ,ζ=1

dξζ l
(ξ)
ti l

(ζ)
τj , i ≤ t, j ≤ τ. (4.4.13)

For the inverse operator M̂−1 existing under the conditions (4.4.7)
one can construct a similar expression (4.4.12). Indeed, all its ma-
trix coefficients formed as a result of the use of the formulae (4.3.17)–
(4.3.19) are sums or products of left triangular matrices and therefore
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also have triangular structure. For the calculation of scalar coeffi-
cients of the expansion (4.4.12) we have the system of linear recurrent
relations

γtτtτ θ
tτ
tτ = 1,

t∑

ξ=i

τ∑

ζ=j

γijξζ θ
ξζ
tτ = 0, (4.4.14)

i ≤ t, j ≤ τ, i+ j < t+ τ

following from the identity M̂−1M̂X̂ ≡ X̂. The inequalities (4.4.7)
are the criterion of one-valued solvability of the system (4.4.14) for
prescribed values of the coefficients of (4.4.13).

The lemma is proved.

From the scalar coefficients of the expansions (4.4.11) and (4.4.12)
construct the block matrices

Γ =




Γ11 . . . Γ1α

· · · · · · · · ·
Γα1 . . . Γαα


 , Γtτ =



γ11
tτ . . . γ1τ

tτ

· · · · · · · · ·
γt1tτ . . . γtτtτ


 , (4.4.15)

Θ =




Θ11 . . . Θ1α

· · · · · · · · ·
Θα1 . . . Θαα


 , Θtτ =



θ11
tτ . . . θ1τ

tτ

· · · · · · · · ·
θt1tτ . . . θtτtτ


 , (4.4.16)

Since γtτtτ = ωtτ and θtτtτ = 1/ωtτ , then in (4.4.15) and (4.4.16) one can
find principal submatrices consisting of eigenvalues of the operators
(4.4.11) and (4.4.12), of the form

Ω =



ω11 · · · ω1α

· · · · · · · · ·
ωα1 · · · ωαα


 , ∆ =




1

ω11
. . .

1

ω1α
· · · · · · · · ·
1

ωα1
. . .

1

ωαα


 . (4.4.17)

Lemma 4.4.3 Let the matrix Γ have exactly one positive eigen-
value:

i+(Γ) = 1. (4.4.18)

Then the conditions (4.4.7) and the matrix inequality

Θ ≥ 0 (4.4.19)
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hold true if and only if all diagonal elements of the matrix Ω are
positive:

ω11 > 0, ω22 > 0, . . . , ωαα > 0. (4.4.20)

Proof. The matrix Θ is determined under the conditions (4.4.7),
and ∆ is its principal submatrix. Therefore from (4.4.19) it follows
that ∆ ≥ 0 and the inequalities (4.4.20) are true.

Let the relations (4.4.18) and (4.4.20) hold true. Then all elements
of the matrix Ω are nonzero. Indeed, the indices of inertia i± of any
principal submatrix do not exceed the respective indices of inertia of
the whole matrix. In particular, the following inequalities hold true:

i±(Ω) ≤ i±(Γ), i±(∆) ≤ i±(Θ). (4.4.21)

If ωtτ = 0 and t 6= τ , then Ω contains a second-order positive definite
principal submatrix located at the intersection of rows and columns
with the numbers t and τ . This, in accordance with (4.4.21), contra-
dicts the assumption (4.4.18).

Prove the inequality (4.4.19). Under the condition (4.4.18) the
entries of the matrix (4.4.15) are expanded in the form

γijtτ = u
(0)
ti u

(0)
τj −

∑

s

u
(s)
ti u

(s)
τj , i ≤ t, j ≤ τ. (4.4.22)

Substituting these expressions into (4.4.11), obtain

M̂ = M̂+ − M̂−, M̂+X̂ = U0X̂U
∗
0 , M̂−X̂ =

∑

s

UsX̂U
∗
s ,

where Us are left triangular matrices with elements u
(s)
ti for i ≤ t.

From (4.4.20) and (4.4.22) it follows that all diagonal elements of
the matrix U0 are nonzero and the operator M̂+ is invertible. The
eigenvalues of the operator W = M̂−M̂

−1
+ , taking into consideration

(4.4.20), (4.4.22) and the Cauchy inequality, satisfy the conditions

wtτ =
∑

s

u
(s)
tt u

(s)
ττ

u
(0)
tt u

(0)
ττ

, |wtτ |2 ≤ wttwττ < 1.
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Therefore for the operator M̂−1 it is possible to construct the ex-
pression

M̂−1Ŷ = U−1
0

(
∞∑

s=0

W sŶ

)
U−1∗

0 =
∑

s

VsŶ V
∗
s ,

where Vs are left triangular matrices with the elements v
(s)
ti for i ≤ t.

Reduce this expression to the form (4.4.12):

M̂−1Ŷ =

α∑

t,τ=1

t,τ∑

i,j=1

θ̌ijtτ EtiŶ E
∗
τj , θ̌ijtτ =

∑

s

v
(s)
ti v

(s)
τj .

Here the coefficients θ̌ijtτ (i ≤ t, j ≤ τ) form the matrix Θ̌ = Θ̌∗ ≥ 0.
However, the coefficients of the expansion (4.4.12) are uniquely de-
termined. Hence, Θ = Θ̌ ≥ 0.

The lemma is proved.

Lemma 4.4.4 If the equality

i+(Ω) = 1, (4.4.23)

holds true, then the conditions (4.4.7) and the matrix inequality

∆ ≥ 0 (4.4.24)

are equivalent to the scalar inequalities (4.4.20).

This statement holds true for any Hermitian matrices of the form
(4.4.17) and follows from Lemma 4.4.3 if and only if the matrices
(4.4.6) are diagonal. In this case all the elements of the matrices
(4.4.15) and (4.4.16), that do not belong to the respective submatri-
ces (4.4.17), are zero and in (4.4.21) equality is obtained.

Lemma 4.4.5 Let ∆ and H be Hermitian matrices of the same
dimensions. Then the inequality ∆⊙H ≥ 0 holds true for all H ≥ 0
if and only if ∆ ≥ 0. The strict inequality ∆ ⊙ H > 0 holds true
for all H > 0 if and only if ∆ ≥ 0 and all diagonal elements of the
matrix ∆ are positive.

Proof. According to the theorem of the Schur product, from
∆ ≥ 0, H ≥ 0 (∆ > 0,H > 0) it follows that ∆⊙H ≥ 0 (∆⊙H > 0).
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Let Eε = E + εI, where ε > 0 is a small parameter, I is a unit ma-
trix, and all elements of the matrix E are equal to 1. Apparently
E ⊙ ∆ = ∆ and Eε > 0 for any ε > 0. If the inequality ∆ ⊙H ≥ 0
holds true for any matrix H > 0, then ∆ ⊙ Eε = = ∆ + ε∆ ⊙ I ≥ 0,
and for ε→ 0 we have ∆ ≥ 0.

Let H > 0, ∆ ≥ 0, and ∆ ⊙ I > 0. The latter means that all
diagonal elements of the matrix ∆ are positive. For a sufficiently
small ε > 0 the inequality Hε = H − εI > 0 is true, and hence
∆ ⊙H = ∆ ⊙Hε + ∆ ⊙ I > 0 is also true.

The lemma is proved.

Theorem 4.4.1 If the inequalities

ω11 6= 0, ω22 6= 0, . . . , ωαα 6= 0, (4.4.25)

hold true, then there exist matrices X ∈ Xtτ and Y ∈ Yα0 satisfying
the equation (4.4.1). At the same time t and τ coincide with the
quantity of positive and negative numbers (4.4.25):

t =
α∑

s=1

i+(ωss), τ =
α∑

s=1

i−(ωss), t+ τ = α. (4.4.26)

If there exist matrices X ∈ Xtτ and Y ∈ Yα0 satisfying the conditions
(4.4.10) under the limitations

i+(Γ) ≤ 1, i−(Γ) ≤ 1, (4.4.27)

then the relations (4.4.25) and (4.4.26) hold true.

Theorem 4.4.2 If the inequalities (4.4.20) hold true, then there
exist matrices X ∈ Xα0 and Y ∈ Yα0 satisfying the equation (4.4.1).
If there exist matrices X ∈ Xα0 and Y ∈ Yα0 satisfying the conditions
(4.4.10) under the limitation (4.4.18), then the inequalities (4.4.20)
hold true.

Theorem 4.4.3 If the inequalities (4.4.7) and (4.4.19) hold true,
then each matrix Y ∈ Yα0 is representable in the form (4.4.10) for
X ∈ Xα0, i.e.

Yα0 ⊆MXα0 + Y00. (4.4.28)
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The inequalities (4.4.7), (4.4.20), and (4.4.24) are the consequence
of the inclusion (4.4.28).

Proof of Theorems 4.4.1–4.4.3. If

i+(X̂) = t, i−(X̂) = τ, (4.4.29)

where X̂ is a solution of the equation (4.4.8) for Ŷ > 0, then accord-
ing to (4.4.9) there exist matrices X ∈ Xtτ and Y ∈ Yα0 satisfying
the equation (4.4.1). In particular, X ∈ Xα0 and X̂ > 0. Conversely,
if for some X ∈ Xtτ and Y ∈ Yα0 the relations (4.4.10) hold true, in
particular (4.4.1), then there exists a matrix X̂ with the indices of
inertia (4.4.29) such that M̂X̂ > 0.

Let Xs and Ys be sequential principal submatrices of order s of the
respective matrices X̂ and Ŷ in the equation (4.4.8), s = 1, . . . , α.
Taking into account the formula (4.4.11), obtain the relations

Ys =

s∑

t,τ=1

t,τ∑

i,j=1

γijtτ EtiXsE
∗
τj , s = 1, . . . , α.

Here the matrices Eti have the dimensions s× s. According to The-
orem 4.2.1,

i+(Ys) ≤ i+(Γs ⊗Xs) ≤ i+(Γ ⊗Xs) = i+(Γ)i+(Xs) + i−(Γ)i−(Xs),

where Γs is the principal submatrix of the matrix Γ, consisting of
the blocks Γtτ , t ≤ s, τ ≤ s. The equalities i+(Ys) = s hold true
in all statements of Theorems 4.4.1–4.4.3 and in Theorems 4.4.2 and
4.4.3 i+(Xs) = s. Under the conditions (4.4.27) we have the relations
s ≤ i+(Xs) + i−(Xs) = rankXs. Therefore we only consider such
matrices X̂ that satisfy the equation (4.4.8) for Ŷ > 0 and whose all
sequential principal minors are all nonzero.

Represent the submatrices Xs and Ys in the form

Xs =

[
Xs−1 u∗s
us xs

]
= Ψs

[
Xs−1 0
0 κs

]
Ψ∗
s,

Ys =

[
Ys−1 v∗s
vs ys

]
= ΦsWsΦ

∗
s +Hs,

(4.4.30)
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where

Ψs =

[
Is−1 0

usX
−1
s−1 1

]
, Ws = Γs ⊗

[
Xs−1 0
0 0

]
, Hs =

[
0 0
0 κs ωss

]
,

Φs = [E11Ψs, E21Ψs, . . . , Es1Ψs, . . . , EssΨs] , κs = xs − usX
−1
s−1u

∗
s.

Note that all entries of the matrix Ys, except ys, do not depend on
xs. If Xs−1 > 0, then Xs > 0 for κs > 0. Similarly, if Ys−1 > 0 and
ys > vsY

−1
s−1v

∗
s , then Ys > 0.

Under the conditions (4.4.25) we can select the entries xs of the
matrices Xs successively so that the inequalities κsωss > 0, Ys > 0
and the equalities

i±(X1) = i±(ω11), i±(Xs) = i±(Xs−1) + i±(ωss), s = 2, α. (4.4.31)

hold true. This means that there exists a matrix X̂ with indices of
inertia (4.4.29) such that M̂X̂ > 0. In particular, X̂ > 0 under the
conditions (4.4.20).

To prove the inverse statements of Theorems 4.4.1 and 4.4.2, also
use the relations (4.4.30). Let Ŷ = M̂X̂ > 0. Then under the condi-
tions (4.4.27) the relations

s = i+(Ys) > i+(Ws) = i+(Γs) i+(Xs−1)+ i−(Γs) i−(Xs−1) (4.4.32)

hold true, and taking into consideration the monotonicity of the num-
bers i+(·) we have the inequalities Hs ≥ 0 and Hs 6= 0 which mean
that κsωss > 0. The signs of the numbers κs and ωss coincide, and
the equalities (4.4.26), (4.4.29), and (4.4.31) hold true. If X̂ > 0,
then the relations (4.4.32) are also true under the condition (4.4.18).
In this case we similarly arrive at the inequalities (4.4.20).

Let us move on to the proof of Theorem 4.4.3 The inclusion
(4.4.28) means that for any matrix Ŷ > 0 the equation (4.4.8) has
a solution X̂ > 0. The inequalities (4.4.7) are equivalent to the in-
vertibility of the operator (4.4.11). Using the spectral expansion of
entries of the matrix Θ

θijtτ =

r∑

s=1

σs g
(s)
ti g

(s)
τj , σs ∈ σ(Θ), r = rankΘ,
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transform the formula of the inverse operator (4.4.12) to the form

M̂−1Ŷ =

r∑

s=1

σsGsŶ G
∗
s, (4.4.33)

where

Gs =




g
(s)
11 0 . . . 0

g
(s)
21 g

(s)
22 . . . 0

· · · · · · · · · · · ·
g
(s)
α1 g

(s)
α2 . . . g

(s)
αα


 , tr(GsG

∗
q) = δsq =

{
1 s = q
0 s 6= q

.

The matrix inequality (4.4.19) is equivalent to the scalar inequalities
σs > 0, s = 1, . . . , r. For any matrix Ŷ ≥ 0 the equation (4.4.8) has a
solution X̂ = M̂−1Ŷ ≥ 0. Moreover, if Ŷ > 0, then for a sufficiently
small ε > 0 the inequalities X̂ ≥ εX̂0 > 0 and Ŷ > εŶ0 hold true,
where X̂0 > 0 and Ŷ0 = M̂X̂0 > 0 are some matrices existing under
the conditions (4.4.20).

Show that the inequalities (4.4.7), (4.4.20), and (4.4.24) are the
consequence of the inclusion (4.4.28). If the equation (4.4.8) has a
solution for Ŷ > 0, then it is also solvable for any right-hand side Ŷ .
Indeed, an arbitrary matrix Ŷ and the respective solution X̂ of the
equation (4.4.8) can be represented in the form of linear combina-
tions of Hermitian positive definite matrices (see the proof of Lemma
1.3.3). Therefore under the condition (4.4.28) the inequalities (4.4.7)
hold true, and the operator M̂ is invertible.

For any vectors a = [a1, . . . , aα]
T and b = [b1, . . . , bα]T , according

to (4.4.33), the relations

b∗M̂−1(aa∗)b =

r∑

s=1

σs |tr(Gsab∗)|2 ≥ 0

hold true. In particular, if bt = εt and at = c̄t/ε
t, then for ε → 0 we

have c∗∆c ≥ 0, where c = [c1, . . . , cα]T is an arbitrary vector. Hence
(4.4.28) implies (4.4.20) and (4.4.24).

Theorems 4.4.1–4.4.3 are proved.

Remark 4.4.1 In Lemmas 4.4.3, 4.4.4 and Theorems 4.4.1–4.4.3
instead of the conditions (4.4.18), (4.4.23), (4.4.27), similar limita-
tions on the indices of inertia of the matrices C and D can be used.
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The matrix (4.4.15) is representable in the form

Γ = ZDZ∗, Z =



Z1
...
Zα


 , Zt =



l
(1)
t1 . . . l

(k̂)
t1

· · · · · · · · ·
l
(1)
tt . . . l

(k̂)
tt


 , t = 1, α.

Therefore the inequalities i±(Γ) ≤ i±(D) hold true. If the transfor-
mation systems (4.4.4) and (4.4.5) are used, then i±(D) ≤ i±(C).
For the systems (4.4.2) and (4.4.3) the opposite inequalities hold
true.

Remark 4.4.2 If all matrices (4.4.6) are diagonal, then the op-
erators (4.4.11) and (4.4.12) reduce to Schur products of the form
(4.3.21). In this case the limitations (4.4.27) and (4.4.18) used in
Lemma 4.4.3 and Theorems 4.4.1 and 4.4.2 are equivalent to the re-
lations i±(Ω) ≤ 1 and i+(Ω) = 1 respectively, and in Theorem 4.4.3
following from Lemma 4.4.5 the inclusion (4.4.28) is equivalent to
the system of inequalities (4.4.7) and (4.4.24). If in the expansion
(4.4.12) θijtτ = 0 for (t, i) 6∈ σ or (τ, j) 6∈ σ, where

σ = {(t, i)/max(t− 1, 1) ≤ i ≤ t ≤ α},

then the matrices Gs in (4.4.33) have the left two-diagonal form,
and the inclusion (4.4.28) is equivalent to the system of inequalities
(4.4.7) and (4.4.19) (see Section 6.1).

4.5 Distribution of Property of a Matrix

Collective

Let a family of n×m matrices Aλ be given, where λ ∈ Λ is some set
of indices. As Aλ we can take a scalar function uniquely determined
on a scalar or vector set of parameters Λ. If Λ is a finite (countable)
set, then we consider a finite (countable) set of matrices Aλ,

Determine the classes of matrix families, using the transforma-
tions

P1AλP2 = Lλ (λ ∈ Λ), (4.5.1)

P1Aλ = LλP4 (λ ∈ Λ), (4.5.2)
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AλP2 = P3Lλ (λ ∈ Λ), (4.5.3)

Aλ = P3LλP4 (λ ∈ Λ), (4.5.4)

where P1, . . . , P4 are matrices of full rank α, independent of λ,
Lλ ∈ Cα×α. The family Aλ is called a collective of order α, if there
exist matrices P1 ∈ Cα×n and P2 ∈ Cm×α of full rank α such that
all square matrices Lλ of the form (4.5.1) have triangular form of
the same type (lower or upper one). In particular, if all matrices
Lλ are diagonal, then Aλ is an ideal collective of order α. Similarly,
by using the relations (4.5.2), (4.5.3), and (4.5.4), the left, the right,
and the neutral collective of order α are respectively determined. All
square matrices Lλ of order α also have triangular form and, owing to
the rank limitations on the transformation matrices P3 ∈ Cn×α and
P4 ∈ Cα×m, are representable in the form (4.5.1). Vectors lλ of or-
der α, composed of diagonal elements (eigenvalues) of the triangular
matrices Lλ, form the property of the collective Aλ,

Definitions of collectives by using the transformations (4.5.1)–
(4.5.4) for α = n = m are equivalent. If P2 = P−1

1 , then the col-
lective Aλ of order n represents a family of matrices simultaneously
reducible to triangular form by using the similarity transformation
(4.5.1). In this case the property vectors lλ consist of eigenvalues of
the respective matrices Aλ.

See examples of matrix families that are collectives.
1. A family of analytic functions of the matrix Af = f(A). This

collective is ideal if the matrix A has a simple structure. Using the
Jordan form of the matrix A, one can construct property vectors
lf with the values of functions f on the spectrum of the matrix A
serving as their components.

2. Families of pairwise commutative and quasi-commutative ma-
trices:

Ak(AiAj −AjAi) = (AiAj −AjAi)Ak, ∀i, j, k.
Their properties with respect to the similarity transformation are the
vectors composed of the eigenvalues of each matrix.

3. The analytic matrix function

Aλ =
∑

k

fk(λ)Ak, λ ∈ C1,
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where fk are scalar functions, and Ak is a given collective. In parti-
cular, the regular pencil of n× n matrices

Aλ = A− λB, detAλ 6≡ 0,

is a collective of order n. Its property vectors can be constructed,
proceeding from the canonical Kronecker form.

Consider the matrix equation (4.4.1) and assume that the fam-
ily of matrix coefficients A is a collective of order α ≤ min{n, p}.
Then we can construct a transformation system (4.4.2) leading to
the equation (4.4.8) with triangular coefficients (4.4.6). The scalar
coefficients can be left unchanged, assuming C = D. If the collective
A is left, right, or neutral, we will use the respective transforma-
tion systems (4.4.4), (4.4.3), or (4.4.5). The matrix Ω composed of
eigenvalues ωij of the operator M̂ is representable in the form

Ω = ΣC Σ∗, Σ = [l1, . . . , lk],

where lt ∈ Cα are property vectors of the collective A. Theorems
4.4.1–4.4.3 give the general technique of study and estimation of
property elements of the collective A in terms of inertia of Hermitian
solutions of the equation (4.4.8). See the corollaries of these theorems
in the case α = n = p.

Theorem 4.5.1 The matrix inequality

k∑

i,j=1

cij AiXA
∗
j > 0 (4.5.5)

is solvable if and only if ωii 6= 0, i = 1, n. There exists a solution
X = X∗ satisfying the relations

i+(X) =

n∑

s=1

i+(ωss), i−(X) =

n∑

s=1

i−(ωss), i0(X) = 0. (4.5.6)

If X = X∗ is an arbitrary solution of the matrix inequality (4.5.5)
under the limitations i±(C) ≤ 1, then the relations (4.5.6) hold true.

Theorem 4.5.2 If ωii > 0, i = 1, n, then there exists a positive
definite solution X > 0 of the matrix inequality (4.5.5). The converse
proposition is true under the limitation i+(C) = 1.
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Theorem 4.5.3 The inequalities
∥∥∥∥

1

ωij

∥∥∥∥
n

1

≥ 0, ωij 6= 0, i, j = 1, n

are necessary and the relations

i+(C) = 1, ωii > 0, i = 1, n

are sufficient for the equation (4.4.1) to have a positive definite so-
lution X > 0 for any positive definite right-hand side Y > 0.

These statements can be strengthened in the case of an ideal col-
lective A (see Remark 4.4.2).

Example 4.5.1 Consider the equation (4.4.1) with the operator

MX = A1XA
∗
2 +A2XA

∗
1 + cA3XA

∗
3,

A1 =

[
a 1
1 0

]
, A2 =

[
0 2
1 0

]
, A3 =

[
0 0
1 0

]
,

C =




0 1 0
1 0 0
0 0 c


 ,

where c 6= −2 and a are real parameters. The matrices Ai are not si-
multaneously reducible to triangular form through a similarity trans-
formation, but form a neutral collective A of order 2:

PA1 =

[
1 0
a 1

]
, PA2 =

[
1 0
0 2

]
, PA3 =

[
1 0
0 0

]
,

P =

[
0 1
1 0

]
, Σ =

[
1 1 1
1 2 0

]
,

Ω =

[
c+ 2 3
3 4

]
, ∆ =

[
1/(c + 2) 1/3

1/3 1/4

]
.

The operators M and M̂ are connected by the relation
M̂X = P (MX)P ∗, and the matrices (4.4.15) and (4.4.16) have the
form

Γ =



c+ 2 a 3
a 0 2a
3 2a 4


 ,
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Θ =




1/(c + 2) −a/(3c + 6) 1/3
−a/(3c+ 6) a2/(3c + 6) −a/6

1/3 −a/6 1/4


 .

The condition c 6= −2 is equivalent to the invertibility of the operator
M and to the solvability of the inequality (4.5.5) as well.

Consider the following cases.

a) a = 0. In this case the collective A is ideal, and in Theorems
4.4.1, 4.4.2, 4.5.1, and 4.5.2 one can assume

X =

[
c+ 2 0

0 4

]
, MX =

[
16 0
0 (c+ 2)2

]
> 0.

The conditions i±(Ω) ≤ 1, i+(Ω) = 1 and ∆ ≥ 0 reduce to the re-
spective inequalities c ≤ 1/4, c ≤ 1/4, and −2 < c ≤ 1/4. If c ≤ 1/4,
then for any solution X of the inequality (4.5.5) i+(X) = i+(c+2)+1
and i−(X) = i−(c+ 2). The inequality (4.5.5) has a solution X > 0
for c > −2. For any matrix Y > 0 the equation (4.4.1) has a solution
X > 0 if and only if −2 < c ≤ 1/4.

b) a 6= 0. The relations i±(Γ) ≤ 1, i+(Γ) = 1 and Θ ≥ 0 are equiv-
alent to the corresponding conditions c = 0, c ≤ 0, and −2 < c ≤ 0.
In Theorems 4.4.1, 4.4.2, 4.5.1, and 4.5.2 one can assume

X =

[
c+ 2 0

0 α

]
, MX =

[
4α a(c+ 2)

a(c+ 2) (c+ 2)2

]
> 0,

where α > a2/4. Here i+(X) = i+(c+ 2) + 1, i−(X) = i−(c+ 2). In
particular, with c = 0 the arbitrary solution of the inequality (4.5.5)
is positive definite. If X > 0 is a solution of (4.5.5) with c ≤ 0, then
it is necessary that c > −2. The equation (4.4.1) for any matrix
Y > 0 has a solution X > 0 if and only if −2 < c ≤ 0.

4.6 Construction of Solutions of Matrix Equations

1. Methods of reduction. The matrix equation (4.1.1) is equiva-
lent to the system of linear algebraic equations

Gx = y, (4.6.1)
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where

G =
∑

i,j

cij Ai ⊗BT
j , x = [x1∗, . . . , xn∗]

T , y = [y1∗, . . . , yp∗]
T .

In this case the vectors x and y are composed from elements of the
matricesX and Y ordered by rows. It is possible to construct systems
similar to (4.6.1) by using other methods of ordering the elements X
and Y.

The criterion of compatibility of the system (4.6.1) and hence of
the matrix equation (4.1.1) is the equality rank[G, y] = rankG. For
any matrix Y ∈ Cp×q the equation (4.1.1) has a solution X ∈ Cn×m
if and only if rankG = p q. Here x = G−y. In the case p q = nm,
detG 6= 0 we have the unique solution x = G−1y.

2. Methods of transformations. The essence of transforma-
tion techniques is presented by Theorem 4.3.1 and its corollaries.
For the matrix equation (4.3.1) construct the system (4.3.3) trans-
forming it to a simpler form (4.3.2). If the matrix coefficients of the
equation (4.3.2) have quasitriangular, in particular, triangular struc-
ture (4.3.15), then under the conditions of Lemma 4.3.1 the solution
of the equation (4.3.2) is constructed in the form (4.3.19), and the
solution of the original equation (4.3.1) is determined by using the
relations (4.3.4).

For the class of matrix equations (4.4.1) one can use the trans-
formation systems (4.4.2)–(4.4.5), and while constructing their solu-
tions, use the formulae (4.4.12) and (4.4.14).

As an example take the binomial Sylvester equation

A1XB2 −A2XB1 = Y. (4.6.2)

The operator of the left-hand side of this equation is representable
in the form

MX =
1

w
[(a1A1 + a2A2)X(b1B1 + b2B2) −

−(b1A1 + b2A2)X(a1B1 + a2B2)],

where w = a1b2 − a2b1 6= 0. In particular, obtain the representation

MX =
1

λ− µ
[A(λ)XB(µ) −A(µ)XB(λ)], λ 6= µ, (4.6.3)
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where A(λ) = A1−λA2 and B(λ) = B1−λB2 are pencils of matrices
of dimensions p× n and m× q respectively.

At the study of solvability conditions and at construction of algo-
rithms of the solution of the equation (4.6.2) one can use the equiv-
alent transformations of the matrix pencils A(λ) and B(λ) to the
canonical form:

P1A(λ)P2 = Â1 − λÂ2, Q1B(λ)Q2 = B̂1 − λB̂2,

where P1, P2, Q1, and Q2 are square nonsingular matrices. As a
result, instead of (4.6.2) it is necessary to solve a simpler equation

Â1X̂B̂2 − Â2X̂B̂1 = Ŷ , (4.6.4)

where X = P2X̂Q1, Ŷ = P1Y Q2,
The canonical form of an arbitrary singular pencil of matrices has

the following structure:




J − λI 0 0 0 0
0 I − λN 0 0 0
0 0 U(λ) 0 0
0 0 0 V (λ) 0
0 0 0 0 0



, (4.6.5)

where the first two diagonal blocks form a regular kernel correspond-
ing to the finite and infinite elementary divisors of the pencil, and
the diagonal blocks of the block-triangular matrices U(λ) and V (λ)
have the form

Ui(λ) = [0, Iki
] + λ [Iki

, 0], Vj(λ) = [0, Isj
]T + λ [Isj

, 0]T .

Here Ir is a unit matrix of order r, 0 is a zero vector of appropriate
dimensions and the numbers ki, i = 1, t (sj, j = 1, τ ) coincide with
nonzero minimal indices for the columns (rows) of the pencil. The
dimensions of the nonzero diagonal block 0 ∈ Cξ×η in (4.6.5) are
determined by the number η(ξ) of its zero minimal indices for the
columns (rows).

Denote the full set of minimal indices for the columns (rows) of
a pencil A(λ) by ∆(A) (∆(AT )) and determine the set of points
σp(A) = {λ : rankA(λ) < p}, generalizing the concept of spectrum.
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Theorem 4.6.1 For any matrix Y ∈ Cp×q the equation (4.6.2)
has a solution X ∈ Cn×m if and only if the following relations hold
true:

(rankA2 − p)(rankB2 − q) = 0, (4.6.6)

rank [A1, A2] = p, rank

[
B1

B2

]
= q, (4.6.7)

σp(A) ∩ σq(B) = ∅, (4.6.8)

k ∈ ∆(A), s ∈ ∆(B) =⇒ k ≤ s, (4.6.9)

k ∈ ∆(AT ), s ∈ ∆(BT ) =⇒ k ≥ s. (4.6.10)

The solution X is unique if p q = nm.

This statement is determined through reduction of the matrix
pencils A(λ) and B(λ) to the canonical form (4.6.5) and the us-
age of the relations (4.6.3) and (4.6.4). The matrix equation (4.6.4)
breaks out into independent matrix equations, the analysis of whose
solvability leads to the relations (4.6.6)–(4.6.10). In particular, the
inequalities k ≤ s in (4.6.9) are equivalent to the solvability for any
right-hand side of matrix equations of the type

[Ik, 0]X̃ [0, Is] − [0, Ik]X̃ [Is, 0] = Ỹ

occurring in the presence of nonzero minimal indices for the rows of
the pencils A(λ) and B(λ). The equalities (4.6.7) express the absence
of zero minimal indices for the rows A(λ) and the columns B(λ).

Note that the criterion of one-valued solvability of the equation
(4.6.2) (i.e. the invertibility of the operator M) is the fulfillment
of one of the following requirements: a) the matrix pencils A(λ)
and B(λ) are regular and satisfy the conditions (4.6.6)–(4.6.8); b)
the matrix pencils A(λ) and B(λ) do not have regular kernels and
minimal indices for rows, and all elements of the set ∆(A) ∪ ∆(B)
are nonzero and coincide; c) the matrix pencils A(λ) and B(λ) do
not have regular kernels and minimal indices for columns, and all
elements of the set ∆(AT ) ∪ ∆(BT ) are nonzero and coincide. In
each of the cases a), b), and c) the equality pq = nm holds true.
In the case of regular matrix pencils A(λ) and B(λ) the conditions
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(4.6.7), (4.6.9), and (4.6.10) always hold true, and the relation (4.6.8)
is a limitation on the spectra σ(A) ∩ σ(B) = ∅.

The described technique of analysis and construction of solutions
of the equation (4.6.2) is the generalization of techniques of the trans-
formation type, based on the reduction of matrices to the Schur form
by using orthogonal transformations.

3. Method of series. Consider the class of matrix equations

X −WX = Y, ρ(W ) < 1, (4.6.11)

where ρ(W ) is the spectral radius of the operator
W : Cn×m → Cn×m. Solutions of such equations are repre-
sented in the form of a convergent series

X = lim
s→∞

Xs, Xs = Y +WY + . . .+W s−1Y, s = 1, 2, . . . .

Direct computation of partial sumsXs for large n andm is ineffective.
For faster construction of a solution X with given accuracy, one can
use the following recurrent relations:

Xs0 = Y, Xsk+1
= Xsk

+W skXsk
, W sk+1 = (W sk)2,

where sk = 2k, k = 0, 1, . . . .
The method of series is preferable to that of reduction when it

is required to save computer memory and computation time. The
main weak point of the method of series is related to the limita-
tion on the spectral radius of the operator W . For example, in the
case of the Lyapunov equation for discrete systems in (4.6.11) as-
sume WX = AXA∗, where the matrix A must be convergent, i.e.
ρ(A) < 1.

4. Method of matrix sign-function. If the real parts of all
eigenvalues of the matrices A ∈ Cn×n and B ∈ Cm×m are negative,
then to solve the equation

−AX −XB = Y (4.6.12)

one can use the method of matrix sign-function, which is based on
the computation of sequences of matrices

Ak+1 =
1

2
(Ak +A−1

k ), Bk+1 =
1

2
(Bk +B−1

k ),
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Yk+1 =
1

2
(Yk +A−1

k YkB
−1
k ),

where A0 = A, B0 = B, Y0 = Y . Here the relations

−AkX −XBk = Yk, k = 0, 1, . . . ,

X =
1

2
lim
k→∞

Yk, sgnA = lim
k→∞

Ak, sgnB = lim
k→∞

Bk.

A matrix sign-function sgnA is determined under the condition of
dichotomy of the spectrum σ(A), i.e. the absence of eigenvalues on
the imaginary axis. And

(sgnA) x =

{
x, x ∈ A+

−x, x ∈ A−
,

where A+(A−) is an invariant subspace of the matrix A, correspond-
ing to a part of spectrum in the right (left) half-plane. In our case,
sgnA = −In and sgnB = −Im,

It should be noted that the speed of convergence of the method
of matrix sign-function essentially depends on the closeness of the
spectra of the matrices A and B to the imaginary axis.

5. Integral methods. In theoretical studies integral representa-
tions of solutions of matrix equations are used. Thus, in the theory
of controllable and observable systems an important role is played
by the integral of the form

X =

∞∫

0

eAtY eBtdt, (4.6.13)

which is a solution of the matrix equation (4.6.12). The matrices
A and B must be stable. The solution of a more general class of
equations

MX = Y, (4.6.14)

where M is a linear operator with all its eigenvalues having positive
real parts, is also representable in the integral form

X =

∞∫

0

Z(t)dt, Z(t) = e−MtY. (4.6.15)



174 Matrix Equations and Law of Inertia

Here Z(t) is a solution of the following Cauchy problem:

Ż(t) +MZ(t) = 0, Z(0) = Y. (4.6.16)

If M is an operator of the matrix equation (4.6.12), then the integral
(4.6.15) is reducible to the form (4.6.13).

Let the operatorM preserve the set of Hermitian matrices and the
system (4.6.16) be positive with respect to the cone of nonnegative
definite matrices K, i.e. Y = Y ∗ ≥ 0 =⇒ Z(t) = Z(t)∗ ≥ 0, ∀t > 0.
This property of the system is equivalent to the positivity of the
evolutional operator e−Mt with respect to K.

Theorem 4.6.2 The positive system (4.6.16) is asymptotically
stable if and only if for any matrix Y = Y ∗ > 0 the equation (4.6.14)
has a unique solution X = X∗ > 0.

The statement of the necessity of this criterion follows from the in-
tegral representation (4.6.15) of the solution of the equation (4.6.14).
The statement of sufficiency can be proved by using the generalized
Frobenius theorem on spectral radius of a positive operator. Indeed,
the spectral radius of the positive operator f(M) = M−1e−Mt is a
point of its spectrum, i.e.

∣∣∣∣
e−λt

λ

∣∣∣∣ ≤
e−at

a
, ∀λ ∈ σ(M),

where a > 0 is the minimum real point of σ(M). For this inequality
to hold true for large values of t > 0 it is necessary that the spectrum
of the operator M be located in the half-plane Reλ ≥ a (asymptotic
stability of the system (4.6.16) with a reserve a).

Note that for the class of operators

M = L− P, LX = −A∗X −XA, PX =

s∑

k=1

B∗
kXBk, (4.6.17)

the differential system (4.6.16) is positive. This fact is proved on the
basis of the relations

e−Mt = W (t) + t3R(t) = lim
k→∞

[
W

(
t

k

)]k
, (4.6.18)



Notes and References 175

where W (t) = 1
2(e−LtePt + ePte−Lt), and R(t) is an entire operator-

function. In this case, the positivity of the operators

e−LtX = eA
∗tXeAt, ePt =

∞∑

k=0

tk

k!
P k

and the closedness of the cone of positive operators implies the pos-
itivity of the operator e−Mt. The relations (4.6.18) hold true for a
wide class of bounded operators L and P .

The solution of the system (4.6.16) with the operator (4.6.17) can
be considered as a second-moment matrix for the stochastic system
(3.4.16). The mean-square asymptotic stability of this system is
equivalent to the asymptotic stability of the system (4.6.16) and,
according to Theorem 4.6.2, to the existence of a positive definite
solution of the equation (4.6.14) for any positive definite right-hand
side.

The positivity of the system (4.6.16) and the statements similar
to Theorem 4.6.2 will be proved in Chapter 5 for more general classes
of operators of the form

M = L− P, PK ⊆ K ⊆ LK, K ⊆ eLtK, ∀t ≥ 0,

acting in partially ordered space with a cone K.
If K is a cone of nonnegative matrices, then the positivity of the

system (4.6.16), determined in the form K ⊆ eMtK, ∀t ≥ 0, comes
to the fact that all off-diagonal elements of the matrix G of the
operator M are not positive. In this case the asymptotic stability of
the system (4.6.16) is equivalent to the nonnegativity of the matrix
G−1, and also to the positivity of all principal leading minors of the
matrix G.

4.7 Notes and References

4.1 Representation of linear matrix equations by using the Kronecker
product can be found in Lancaster [1], Ikramov [1], and others. The-
orem 4.1.1 and its Corollaries 4.1.1–4.1.4 are proved in Mazko [13,
16, 17, 19]. The usage of the semi-inversion operation during com-
putation of the rank of a block matrix is also described in Korsukov
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[1]. Theory of generalized inverse matrices is given in Zuhair Nashed
[1].

4.2 Theorem 4.2.1 and its Corollaries 4.2.1–4.2.6 are given in
Mazko [13, 16, 17, 19]. The statement of Corollary 4.2.5 is proved in
Mazko, Kharitonov [1].

4.3 The method of transformations to binomial matrix equations
was used in Ikramov [1]. The generalization of this method, formu-
lated in the form of Theorem 4.3.1 and its corollaries, was obtained
in Mazko [20, 21, 23].

4.4 In Hill [1] and Schneider [1] see the theory of inertia of a family
of matrices simultaneously reducible to triangular form through simi-
larity transformation. Lemmas 4.4.1–4.4.5 and Theorems 4.4.1–4.4.3
developing the inertia theory for the transformation systems (4.4.2)–
(4.4.5) of the matrix equation (4.4.1) were obtained by Mazko [19–21,
23].

4.5 Matrix collectives generalizing the families of matrices simul-
taneously reducible to triangular form were introduced by Mazko
[19]. The main properties of matrix equations constructed with the
use of collections are formulated as Theorems 4.5.1–4.5.3.

4.6 The known methods of solving matrix equations are described
in Lancaster [1], Ikramov [1], Afanasiev, Kolmanovskii, Nosov [1],
Larin [1], Vetter [1], Vicente, Maite [1], Ran, Reurings [1]), and oth-
ers. The estimation of solutions of operator equations on the basis
of the Cayley transformation is available in Gavrilyuk, Makarov [1].

Note that the method of series was successfully used for the so-
lution of the Lyapunov equation of large dimension at calculation of
control systems of aerospace equipment of the USA and USSR (see,
e.g., Afanasiev, Kolmanovskii, Nosov [1] and Larin [2]).

Spectral conditions of solvability of the equation (4.6.2) under
some limitations on matrix coefficients are described in Ikramov [1],
Korenevskii, Mazko [1] and Lewis, Mertzios [1]. Theorem 4.6.1 gives
the criterion of solvability of this equation without any limitations.
Concepts of minimal indices of a singular pencil of matrices and its
canonical form are available in Gantmacher [1].

Theorem 4.6.2 follows from the integral representation of the so-
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lution of the equation (4.6.14) and the theorem of the spectral radius
of a monotone operator (see Krein, Rutman [1] and Glazman, Lyu-
bich [1]). The conditions of positiveness of linear differential systems
with respect to a cone of nonnegative vectors follow from Fiedler,
Pták [1] and Krasnoselskii, Lifshits, Sobolev [1]).





5

STABILITY OF DYNAMIC SYSTEMS IN

PARTIALLY ORDERED SPACE

5.0 Introduction

This chapter is devoted to the study of dynamic systems in a partially
ordered Banach space. The ordering relationship in a phase space
is determined by some normal reproducing cone. In the considered
stability problems for differential systems a given cone can be both
constant and changing in time.

In Section 5.1 the main concepts of the theory of convex cones are
given, and some classes of operators with respect to given cones of
normalized space are described.

In Section 5.2 classes of positive and monotone dynamic systems
with respect to given cones of phase space are defined. Conditions
of positivity and monotonicity of linear and nonlinear systems are
formulated by using the elements of a conjugate cone. Examples
of differential and difference systems with the above properties are
given.

In Section 5.3 stability conditions for linear positive systems are
described in terms of positive and positively invertible operators.
Autonomous and positively reducible systems are described, as well
as systems with functionally commutative operators.

Classes of nonlinear systems that have properties like monotonic-
ity with respect to two cones are considered in Section 5.4. Under
additional limitations with respect to given cones, stability condi-
tions for the considered systems are successfully formulated.

In Section 5.5 stability conditions for given families of differen-

179
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tial systems (robust stability) are formulated that are determined in
space by given cones and the corresponding operator inequalities.

In Section 5.6 the known technique of comparison of systems in a
partially ordered space is developed, applied to the study of stability
of complex nonlinear systems.

In Section 5.7 a generalized comparison principle of systems in
a partially ordered space with a variable cone is given, as well as
conditions of robust stability of a family of nonlinear systems.

5.1 Properties of Operators with Respect to Cones

A convex closed set K of a real normalized space E is called a cone
if the following conditions hold true:

1)X ∈ K, α ≥ 0 =⇒ αX ∈ K;

2)X ∈ K, Y ∈ K =⇒ X + Y ∈ K;

3)X ∈ K, −X ∈ K =⇒ X = 0.

The concept of a wedge is defined by the conditions 1) and 2) only.
A wedge K is a cone if its blade K ∩ −K consists of a zero element.

A space containing the wedge, a cone in particular, is partially
ordered. The inequality X ≥ Y (X > Y ) means that X − Y ∈ K
(X − Y ∈ K0), where K0 is a set of interior points of K. For a solid
wedge K0 6= ∅. If several cones are taken in a space, then, when using
inequalities between the elements, we will indicate their generating

cone. For example, X
K
≥ Y , X

K
> Y , etc.

Hereinafter we will use the properties of normal and reproducing
cones. A cone K is normal if the norm in E is semi-monotone, i.e.
from 0 ≤ X ≤ Y it follows that ‖X‖ ≤ ν‖Y ‖, where ν is a universal
constant independent of X and Y . Minimum of such numbers ν is a
normality constant of K. A wedge, in particular a cone K in a space
E is reproducing if E = K−K, i.e. any element X ∈ E is representable
in the form X = X+ −X−, where X+ ≥ 0 and X− ≥ 0.

Let in the Banach spaces E and E0 the cones K ⊂ E and K0 ⊂ E0 be
taken, determining the corresponding ordering relationship between
the elements. Let M : E0 → E be a linear operator acting from E0

into E . An operator M is called monotone if any X,Y ∈ E0 from

X
K0≥ Y implies MX

K
≥MY .
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The property of monotonicity of a linear operator is equivalent to

its positivity: X
K0≥ 0 =⇒MX

K
≥ 0. A set of linear positive operators

is a cone. The inequality between the operators M ≤ L means that
the operator L −M is positive. A positive operator M̂ is called a
majorant (minorant) of a positive operator M , if M ≤ M̂ (M ≥ M̂ ).
A positive operator M is called extremal if it cannot be represented
in the form of a sum of linear independent minorants. All minorants
of the extremal operator M have the form αM , 0 ≤ α ≤ 1. An

operator M is called strictly positive (strongly positive) ifMX
K
> MY

for X
K0

> Y (X
K0≥ Y,X 6= Y ). Strongly positive (extremal) operators

are inner (extreme) points of a solid cone of linear positive operators.

Note that an operator M in a Hilbert space is positive if and only
if the conjugate operator M∗ is positive. Similarly, the properties of
strict and strong positivity must be true or not true simultaneously
for the operators M and M∗. For the positive operator M to be
strictly positive with respect to solid cones it is necessary and suffi-

cient that for some X0

K0≥ 0 the inequality MX0
K
> 0 be true. Indeed,

for any X
K0

> 0 there exists ε > 0 such that X
K0≥ εX0, and hence

MX
K
≥MX0

K
> 0.

An operator M is called positively invertible if for any Y
K
≥ 0 the

equation

MX = Y (5.1.1)

has a solution X
K0≥ 0. If the cone K in the space E is reproducing,

then the positively invertible operator is invertible.

Classes of positive, strictly positive, strongly positive, and posi-
tively invertible operators can be described in the form of the corre-
sponding inclusions

MK0 ⊆ K, MK0
0 ⊆ K0, MK0\{0} ⊆ K0, K ⊆MK0,

where K0
0(K0) is a set of inner points of the cone K0(K).

In the further study we will use the classes of positive and pos-
itively invertible operators with respect to normal and reproducing
cones. Such operators, as in the case of matrices (Chapters 1-4), play
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an important role in problems of spectrum localization and stability
analysis of dynamic systems.

We eliminate a class of linear operators representable in the form

M = L− P, PK0 ⊆ K ⊆ LK0. (5.1.2)

If the cone K is normal and reproducing, then the criterion of positive
invertibility of the operator (5.1.2) is the inequality

ρ(T ) < 1, (5.1.3)

where ρ(T ) is a spectral radius of the operator pencil T (λ) = P −λL
(see Section 6.2). If the cone K is normal and solid, then the in-

equality (5.1.3) holds true if and only if for some Y
K0

> 0 the equation

(5.1.1) has a solution X
K
≥ 0.

In the study of the conditions of positive invertibility of operators
one can use operator inequalities. For instance, if a cone K is normal
and reproducing, and for a prescribed operator M the two-sided
estimate M1 ≤ M ≤ M2 is true, then the positive invertibility of
the operators M1 and M2 implies the positive invertibility of the
operator M , and M−1

2 ≤ M−1 ≤ M−1
1 . In the case of a normal

solid cone K the positive invertibility of the operator M under the
conditions M ≤ L and L−1 ≥ 0 is equivalent to the existence of

X
K0≥ 0 and Y

K
> 0 in the equation (5.1.1).

The properties of monotonicity and positivity are similarly de-
termined for the nonlinear operators F : E0 → E . Generally, the
property of monotonicity of a nonlinear operator

X
K0≥ Y =⇒ F (X)

K
≥ F (Y ) (5.1.4)

does not add up to its positivity. The classes of monotone and pos-
itive operators, defined by given cones in E0 and E , will be denoted
respectively by M and M0. Furthermore, define classes of operators
M+

1 , M+
2 , M−

1 , and M−
2 that have the property (5.1.4) under the

additional requirements X ∈ K0, Y ∈ K0, Y ∈ −K0 and X ∈ −K0

respectively. Obviously, M ⊆ M±
1 ⊆ M±

2 . Operators of the class
M+

2 (M−
2 ) are monotone in the cone K0 (−K0). If F (X) ∈ K for

any X ∈ E0, then the operator F is everywhere positive.



Positive and Monotone Systems 183

5.2 Positive and Monotone Systems

Numerous real systems posses the properties of positivity and mono-
tonicity. These properties should be taken into account and used in
analysis and synthesis problems, in particular during the study of
stability conditions and spectral characteristics, in numerical proce-
dures of construction of solutions and appropriate control laws, etc.

In a Banach space E containing cones K0 and K consider an ab-
stract dynamic system with continuous or discrete time t ≥ θ. Let
Ω(t, t0) : E → E be some operator uniquely determining the transi-
tion of the system from the state X0 into the state

X(t) = Ω(t, t0)X0, Ω(t0, t0) = E, t ≥ t0 ≥ θ. (5.2.1)

where E is an identity operator. For the given points of time t > t0
define the properties of (t, t0)–positivity and (t, t0)–monotonicity of
the system in the form of the respective conditions

X(t0) = X0

K0≥ 0 =⇒ X(t)
K
≥ 0,

X1(t0) = X10

K0≥ X2(t0) = X20 =⇒ X1(t)
K
≥ X2(t),

where Xk(t) = Ω(t, t0)Xk0, k = 1, 2. A system is called posi-
tive (monotone) if it is (t, t0)–positive ((t, t0)–monotone) for any
t > t0 ≥ θ.

The properties of positivity (monotonicity) of a system is equiva-
lent to the positivity (monotonicity) of the operator Ω(t, t0) for
t > t0 ≥ θ. In other words, to the operator Ω(t, t0) of the class
M0 (M) with respect to cones K0 and K a system of the class M0

(M) corresponds (see Section 5.1). Similarly, to the operator Ω(t, t0)
of the class M±

k a system of the class M±
k corresponds, k = 1, 2. A

cone K is an invariant set of a system positive with respect to K and
of a corresponding positive operator Ω(t, t0) (the case K0 = K). A
system of the class M+

2 (M−
2 ) is monotone in K0 (−K0). If Ω(t, t0)

is an operator of the class M0 (M) with respect to one of the embed-
ded cones K0 ⊆ K, then the respective system belongs to the class
M0 (M) with respect to K0 and K. A similar statement is true for
systems of the classes M±

1 and M±
2 .
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Properties of positivity and monotonicity of control systems are
similarly determined with respect to given cones in state and control
spaces. If an operator Φ(t) : E0 → E determines the functioning
of a system with input U(t) and output X(t) = Φ(t)U(t), then its
positivity (monotonicity) with respect to the cones K0 ⊂ E0 and
K ⊂ E is equivalent to the positivity (monotonicity) of the given
control system. The operator Φ(t) can be prescribed explicitly or
in the form of solutions of differential, difference, integro-differential
and other types of systems.

We will show the properties of some classes of positive and mono-
tone dynamic systems described by differential and difference equa-
tions, in the case K0 = K, and provide a number of typical examples.

1. Consider a linear differential system

Ẋ(t) +M(t)X(t) = G(t), t ≥ θ, (5.2.2)

where M(t) is a linear bounded operator acting in a partially ordered
Banach space E with a normal reproducing cone K, and G(t) ∈ E
is a prescribed function. Each initial condition X(t0) = X0 ∈ E for
t ≥ t0 ≥ θ determines the unique solution

X(t) = W (t, t0)X0 +

∫ t

t0

W (t, s)G(s)ds, (5.2.3)

where W (t, s) = W (t, t0)[W (s, t0)]
−1 is an evolutionary operator

which is the unique solution of the Cauchy problem

Ẇ (t) +M(t)W (t) = 0, W (s) = E, t ≥ s, (5.2.4)

where E is an identity operator. The linear operator W (t, t0) is
developed as series

W (t, t0) = E−
∫ t

t0

M(t1) dt1+

∫ t

t0

M(t2)

∫ t2

t0

M(t1) dt1dt2−· · · , (5.2.5)

uniformly converging in operator norm.
According to (5.2.3), X0 ≥ 0 implies X(t) ≥ 0 for t > t0, if

W (t, t0) ≥ 0,

∫ t

t0

W (t, s)G(s)ds ≥ 0. (5.2.6)
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Here the first inequality means the monotonicity of the operator with
respect to the cone K,, and the second one means the belonging of
the function value to the given cone. The converse proposition is
easily proved with consideration for the closedness of the cone K.

Consequently, the system (5.2.2) is positive if and only if the rela-
tions (5.2.6) hold true for t > t0 ≥ θ. Using (5.2.3) and (5.2.6), one
can easily prove the equivalence of the following statements:

(a) the system (5.2.2) is (t, θ)–positive for any function G(t) ≥ 0;
(b) the operator W (t, s) is positive for t ≥ s ≥ θ;
(c) the system (5.2.2) is positive;
(d) for any function Z(t) satisfying the relations

Ż(t) +M(t)Z(t) ≥ 0, Z(θ) = Zθ,

Zθ ≥ 0 implies Z(t) ≥ 0 for t > θ.

If G(t) ≥ 0, in particular, G(t) ≡ 0, then each of the state-
ments (a)–(d) is equivalent to the positivity of the system (5.2.2).
If M(t) = M is a constant operator, then W (t, s) = e−M(t−s), and
the positivity conditions for W (t, s) and W (t, θ) for t ≥ s ≥ θ coin-
cide.

Note the properties of an evolutionary operator, following from
(5.2.4) and (5.2.5). For t ≥ s ≥ τ the relations

W (t, t) = E, [W (t, s)]−1 = W (s, t), W (t, τ) = W (t, s)W (s, τ)

hold true. If M = M1 + M2, then W (t, s) = WM1
(t, s)WM3

(t, s),
where WM1

(t, s) and WM3
(t, s) are evolutionary operators of sys-

tems of the type (5.2.2) with the respective operators M1(t) and
M3(t) = WM1

(s, t)M2(t)WM1
(t, s). The operator W (t, s) is positive

if such are the operators WM1
(t, s) and WM3

(t, s).

Lemma 5.2.1 For an evolutionary operator W (t, s) to be positive
under t ≥ s ≥ θ, it is necessary and sufficient that an exponential
operator e−M(t)h be positive under t ≥ 0 and h ≥ 0.

Proof. Use the procedure of representation of an operator W (t, s)
in the form of a so-called multiplicative integral. Splitting the seg-
ment [s, t] by points tkn = s+khn, where hn = (t−s)/n, k = 0, . . . , n,
for large n we have

W (t, s) = W (tnn, tn−1n)W (tn−1n, tn−2n) . . . W (t1n, t0n) ,
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W (tkn, tk−1n) = e−M(θkn)hn + o(hn), k = 1, . . . , n,

where θkn ∈ [tk−1n, tkn] are some intermediate points. Therefore

W (t, s) = lim
n→∞

[
e−M(θnn)hn . . . e−M(θ1n)hn

]
.

If e−M(t)h ≥ 0 for any t ≥ 0 and h ≥ 0, then the operator W (t, s)
is a limit of some sequence of positive operators and, due to the
closedness of the cone of linear positive operators, must be positive.

The converse proposition is similarly proved on the basis of the
relations

W

(
t, t− h

n

)
= e−M(θn) h

n + o

(
1

n

)
,

e−M(t)h = lim
n→∞

[
W

(
t, t− h

n

)]n
,

where θn ∈ [t− h/n, t], n = 1, 2, . . . .

The lemma is proved.

Lemma 5.2.2 If M(t) = M1(t) + M2(t) and the operators
WM1

(t, s) and WM2
(t, s) are positive for t ≥ s ≥ θ, then the ope-

rator WM (t, s) is also positive for t ≥ s ≥ θ.

Proof. Use Lemma 5.2.1 to represent the exponential operator in
the form

e−(M1+M2)h ≡ R(h) − h3
∞∑

k=3

(−h)k−3

k!
Sk,

where

R(h) =
1

2

(
e−M1he−M2h + e−M2he−M1h

)
,

Sk = (M1 +M2)
k − 1

2

k∑

i=0

Cik

(
M i

1M
k−i
2 +M i

2M
k−i
1

)
.

For simplicity here the dependence of M1 and M2 from t is not indi-
cated. Assuming h = τ/k, obtain the relation

e−(M1+M2)τ = lim
k→∞

[
R
(τ
k

)]k
.
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Taking into account Lemma 5.2.1 and the assumptions, hence follows
the positivity of the operator WM (t, s) for t ≥ s ≥ θ.

The lemma is proved.

The positivity of a system can be used for estimation of its solu-
tions. If the functions X1(t) and X2(t) satisfy the inequalities

Ẋ1(t) +M(t)X1(t) ≤ G1(t), Ẋ2(t) +M(t)X2(t) ≥ G2(t),

then under the conditions (5.2.6) and Z0 ≥ 0 the relations

X2(t) −X1(t) ≥W (t, t0)Z0 +

∫ t

t0

W (t, s)G(s)ds ≥ 0

hold true, where Z0 = X2(t0)−X1(t0), G(t) = G2(t)−G1(t). Hence
follows the next proposition.

Lemma 5.2.3 Let X(t) be a solution of the positive system
(5.2.2), and let functions X1(t) and X1(t) satisfy the inequalities

Ẋ1(t) +M(t)X1(t) ≤ α1G(t), Ẋ2(t) +M(t)X2(t) ≥ α2G(t),

where α1 ≤ 1 ≤ α2. Then X10 ≤ X0 ≤ X20 implies

X1(t) ≤ X(t) ≤ X2(t) for t > t0.

If α1 = 0, then in this statement the lower estimate X1(t) of the
solution of the system (5.2.2) does not depend on its right-hand side
G(t). In the case α1 = α2 = 1 Lemma 5.2.3 holds true under the
condition of positivity of the operator W (t, s), t ≥ s ≥ t0.

Let us give examples of linear positive systems with respect to
cones of nonnegative vectors and nonnegative definite matrices.

Example 5.2.1 Consider the differential system

ẋ+A(t)x = g(t), x ∈ Rn, (5.2.7)

where A(t) is a continuous matrix function of dimension n× n. It is
known that the positivity of an evolutionary operator of the system
(5.2.7) with respect to the cone of nonnegative vectors

K = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}
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is equivalent to the off-diagonal non-positivity of the entries of the
matrix A(t). Consequently, the system (5.2.7) under the conditions

aij(t) ≤ 0, i 6= j, g(t) ≥ 0, t ≥ θ,

is positive. For its solutions one can construct double-sided esti-
mates, using Lemma 5.2.3.

Example 5.2.2 Consider the matrix differential Lyapunov equa-
tion

Ẋ +A(t)X +XAT (t) = Y (t), X ∈ Rn×n, (5.2.8)

where A(t) and Y (t) are given matrix functions. In this case the
operator of the system (5.2.2) and its evolutionary operator in con-
sideration of (5.2.5) are determined in the form

M(t)X = A(t)X +XAT (t), W (t, s)X = WA(t, s)XW T
A (t, s),

where WA(t, s) is an evolutionary operator (matrizant) of the system
(5.2.7). Obviously, the operator W (t, s) is positive with respect to
the cone of symmetric nonnegative definite matrices

K = {X ∈ Rn×n : X = XT ≥ 0}.

Therefore if Y (t) = Y T (t) ≥ 0 for t ≥ θ, then the matrix differential
equation (5.2.8) is a positive system with respect to the prescribed
cone K.

2. Generalize the differential system (5.2.2) in the form

Ẋ +M(t)X = G(X, t), t ≥ θ, (5.2.9)

where G(X, t) is a nonlinear operator ensuring the existence and
uniqueness of the solution X(t) for t ≥ t0 ≥ θ, X(t0) = X0.

Let Ω(t, t0) be a shift operator along the paths of the system
(5.2.9), determining the transition from the state X(t0) into the state
X(t) = Ω(t, t0)X(t0) for t > t0. Then the property of positivity
(monotonicity) of the system (5.2.9) with respect to the cone K is
equivalent to the positivity (monotonicity) of the operator Ω(t, t0)
for any t > t0 ≥ θ.
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The solutions of the systems (5.2.9) satisfy the integral equation

X(t) = W (t, t0)X0 +

∫ t

t0

W (t, s)G(X(s), s) ds, (5.2.10)

whereW (t, s) is an evolutionary operator of the linear system (5.2.2).
From (5.2.10) it follows, in particular, that the system (5.2.9) is
positive if the operator W (t, t0) is positive and the operator-function
W (t, s)G(X, t) is positive for any t ≥ s ≥ t0.

Formulate the condition of positivity and monotonicity for the
system (5.2.9), using the conjugate cone of linear functionals

K∗ = {ϕ ∈ E∗ : ϕ(X) ≥ 0,∀X ∈ K}.

Let F0 and F denote the families of continuous operator-functions
F (X, t) satisfying the following conditions for t ≥ θ:

X ≥ 0, ϕ(X) = 0 =⇒ ϕ (F (X, t)) ≥ 0, (5.2.11)

X ≥ Y, ϕ(X − Y ) = 0 =⇒ ϕ (F (X, t) − F (Y, t)) ≥ 0, (5.2.12)

where ϕ ∈ K∗. We will also determine the families of the operator-
functions F+

1 , F+
2 , F−

1 , and F−
2 which have the property (5.2.12)

under the additional requirements X ≥ 0, Y ≥ 0, Y ≤ 0, and X ≤ 0
respectively. Obviously, F ⊆ F±

1 ⊆ F±
2 .

Lemma 5.2.4 If the cone K is solid, the evolutionary ope-
rator of the system (5.2.2) is positive, and G ∈ F0 (G ∈ F),
then the system (5.2.9) is positive (monotone). If the system
(5.2.9) is positive (monotone), then F ∈ F0 (F ∈ F), where
F (X, t) = G(X, t) −M(t)X.

Proof. Consider an auxiliary system

Ż = F (Z, t) + εQ, t ≥ θ,

where ε > 0, Q > 0 is an internal element K. Let Z(t) be its solution
satisfying the conditions Z(t0) = Z0 ≥ 0, Z(τ) = Zτ ∈ ∂K be a
point of the boundary of K for some τ ≥ t0 ≥ θ. Then ϕ(Zτ ) = 0
and ϕ(Q) > 0 for some ϕ ∈ K∗ and ϕ 6= 0.
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The positivity of the exponential operator e−M(t)h and the relation
(see the proof of Lemma 5.2.1)

M(t)Z = lim
h→0+

1

h

(
Z − e−M(t)hZ

)

imply the inequality ϕ (M(τ)Zτ ) ≤ 0. If, in addition, G ∈ F0, then
F ∈ F0 and under the conditions of continuity for some δ > 0 obtain
the relations

ϕ
(
Ż(τ)

)
= ϕ (F (Zτ , τ)) + εϕ(Q) > 0,

τ+δ∫

τ

ϕ
(
Ż(t)

)
dt = ϕ (Z(τ + δ)) > 0.

Consequently, the trajectory Z(t) cannot exceed the bounds of the
cone K at the time t = τ , i.e. Z(t) ≥ 0 for τ ≤ t ≤ τ + δ. Otherwise,
for some ϕ ∈ K∗ and δ > 0 the relations ϕ (Z(τ + δ)) < 0 and
ϕ (Z(τ)) = 0 must hold true which leads to contradiction. Due to
the closedness of the cone, under ε→ 0 obtain Z(t) → X(t) ≥ 0 for
any Z0 = X0 ≥ 0 and t ≥ t0, i.e. the system (5.2.9) is positive.

The fact that the condition F ∈ F0 is necessary for the positive
system (5.2.9) follows from the relations

ϕ (X(t0 + δ)) = δϕ (F (X(ξ), ξ)) , ϕ(X0) = 0,

where X(t0) = X0 ∈ ∂K, ϕ ∈ K∗, t0 < ξ < t0 + δ, for sufficiently
small values δ > 0.

The formulated necessary and sufficient conditions of the mono-
tonicity of the system (5.2.9) are proved analogously.

The lemma is proved.

From Lemma 5.2.4 it follows, in particular, that in the case of a
solid cone K the positivity (monotonicity) of the differential systems
Ẋ = F1(X, t) and Ẋ = F2(X, t) implies the positivity (monotonicity)
of the differential system

Ẋ = αF1(X, t) + βF2(X, t), α ≥ 0, β ≥ 0.
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It can be proved that the positive system Ẋ = F (X, t) with re-
spect to the solid cone K (−K) belongs to the classes M+

1 and M+
2

(M−
1 and M−

2 ) if and only if respectively F ∈ F+
1 and F ∈ F+

2

(F ∈ F−
1 and F ∈ F−

2 ).
A technique of construction of double-sided estimates with respect

to a cone for the solutions of the class of monotone systems follows
from the next proposition below.

Lemma 5.2.5 Let X(t) be a solution of the system (5.2.9), the
operator W (t, s) be positive with respect to the solid cone K, G ∈ F ,
and the functions X1(t) and X2(t) satisfy the relations

Ẋ1 +M(t)X1 ≤ G(X1, t), Ẋ2 +M(t)X2 ≥ G(X2, t), t ≥ t0.

Then X10 ≤ X0 ≤ X20 implies X1(t) ≤ X(t) ≤ X2(t) for t ≥ t0.

This proposition is proved by using the method of the proof of
Lemma 5.2.4.

Example 5.2.3 Consider the nonlinear system

ẋ+A(t)x = g(x, t), x ∈ Rn, (5.2.13)

where A(t) is a matrix with non-positive off-diagonal entries. Let
K ⊂ Rn be a cone of nonnegative vectors. The system (5.2.13)
is positive with respect to K and −K if the vector-function g(x, t)
satisfies the respective conditions

x ≥ 0, xi = 0 =⇒ gi(x, t) ≥ 0, (5.2.14)

x ≤ 0, xi = 0 =⇒ gi(x, t) ≤ 0, (5.2.15)

where i = 1, n, t ≥ θ. The system (5.2.13) is monotone if g(x, t) is a
quasimonotone nondecreasing with respect to x (Wazewski’s condi-
tion):

x ≥ y, xi = yi =⇒ gi(x, t) ≥ gi(y, t), (5.2.16)

where i = 1, n, t ≥ θ. The system (5.2.13) under the condition
(5.2.14) ((5.2.15)) belongs to the classes F+

1 and F+
2 (F−

1 and F−
2 ) if

(5.2.16) holds true under the auxiliary requirements x ≥ 0 and y ≥ 0
(y ≤ 0 and x ≤ 0). In particular, the system (5.2.13) is monotone in
K if (5.2.14) and (5.2.16) hold true for x ≥ y ≥ 0.
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Example 5.2.4 Consider the nonlinear control system with a
dynamic feedback

ẋ = f(x, u, t), u̇ = g(x, u, t), (5.2.17)

where x ∈ Rn, u ∈ R1, t ≥ θ, and assign the circular Minkovsky cone

K =

{
z : z =

[
x
u

]
, ‖x‖ ≤ u

}
. (5.2.18)

This cone is normal, solid, and self-conjugate. The property of self-
conjugacy of a cone means that lT z ≥ 0, ∀z ∈ K ⇐⇒ l ∈ K. The
criterion of the positivity of the system (5.2.17) can be presented, by
using Lemma 5.2.4, in the form

xT f(x, u, t) ≤ u g(x, u, t), u = ‖x‖, x ∈ Rn.

In the case of a linear system assume

f(x, u, t) = A(t)x+ b(t)u, g(x, u, t) = cT (t)x+ d(t)u,

and foregoing inequality can be presented as

zT
(
MT (t)∆ + ∆M(t)

)
z = zT

(
MT (t)∆ + ∆M(t) − γ(t)∆

)
z ≥ 0,

where

M(t) =

[
A(t) b(t)
cT (t) d(t)

]
, ∆ =

[
−I 0
0 1

]
, z =

[
x
u

]
, u = ‖x‖,

γ(t) is any bounded function. Therefore each of the conditions

1

2
λmax (AS(t)) + ‖b(t) − c(t)‖ ≤ d(t),

MT (t)∆ + ∆M(t) − γ(t)∆ =

[
γ(t)I −AS(t) c(t) − b(t)
cT (t) − bT (t) 2d(t) − γ(t)

]
≥ 0,

where AS(t) = A(t)+AT (t), and λmax(·) is the maximal eigenvalue of
a symmetric matrix, provides this system the properties of positivity
and monotonicity with respect to the cone (5.2.18).
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Example 5.2.5 Consider the matrix differential equation

Ẋ+A(X, t)X+XAT (X, t) = P(X, t), X = XT ∈ Rn×n, (5.2.19)

where A and P are given operators. Let the operator P preserve
the cone of symmetric nonnegative definite matrices K ⊂ Rn×n, and
the equation (5.2.19) have a continuous solution X(t) for t ≥ t0,
X(t0) = X0 ≥ 0. Then K is an invariant set of this equation. Indeed,
for any functional ϕ ∈ K∗ represented in the form ϕ(X) = tr(SX),
where S = HHT ≥ 0, the equality ϕ(X) = 0 for X ≥ 0 means that
XH = 0, and, taking into consideration the permutation of matrices
within the operation tr, obtain the relations

ϕ
(
A(X, t)X +XAT (X, t)

)
= 0, ϕ(P(X, t)) ≥ 0.

Basing on Lemma 5.2.4, we assert that the equation (5.2.19) is pos-
itive with respect to K.

Let’s reduce particular cases of the matrix equation (5.2.19).

The generalized Riccati equation of the form

Ẋ +A(t)X +XAT (t) = XR(X, t)X

under the above mentioned assumptions and the condition of mono-
tonicity of the operator R(X, t), is monotone with respect to the
cone K.

The linear matrix equation

Ẋ +A(t)X +XAT (t) =
∑

k

Bk(t)XB
T
k (t)

is known as a second-moment equation for the stochastic Ito’s system

dx(t) +A(t)x(t) dt =
∑

k

Bk(t)x(t) dwk(t),

where wk are components of the standard Wiener process. The mean-
square asymptotic stability of the solution x ≡ 0 of the given system
is equivalent to the asymptotic stability by Lyapunov of the solution
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X ≡ 0 of the second-moment matrix equation. To the linear operator
M(t) = L(t) − P (t), where

L(t)X = A(t)X +XAT (t), P (t)X =
∑

k

Bk(t)XB
T
k (t),

an evolutionary operator W (t, s) corresponds which is positive with
respect to the cone K (see Example 5.2.2 and Lemma 5.2.2). There-
fore the second-moment equation is positive and monotone with re-
spect to K.

3. Consider the discrete system

Xk+1 = MkXk +G(Xk, k), k = 0, 1, . . . , (5.2.20)

where Mk : E → E are linear operators, and G(X, k) is a nonlinear
operator-function. Let E be a Banach space partially ordered by the
cone K. If X0 ∈ K entails Xk ∈ K for any k = 0, 1, . . . , then the
system (5.2.20) is positive.

Each solution of the system satisfies the relation

Xk+1 = Wk0X0 +

k∑

s=0

Wks+1G(Xs, s),

where Wkk+1 = E, Wks = Mk · · ·Ms, k ≥ s. Therefore the sys-
tem (5.2.20) is positive with respect to K if the operators Wk0 and
Wks+1G(X, s) are positive for k ≥ s ≥ 0. In the general case, these
conditions are not necessary for the positivity of the system (5.2.20).
If G(X, k) ≡ 0, then the positivity of the system (5.2.20) is equivalent
to the positivity of all operators Wk0, k ≥ 0.

Example 5.2.6 Consider a discrete control system with a dy-
namic feedback

xk+1 = Axk + buk, uk+1 = cTxk + duk, k = 0, 1, . . . , (5.2.21)

where xk is a state vector, uk is a control. Rewrite it in the form

zk+1 = Mzk, M =

[
A b
cT d

]
, zk =

[
xk
uk

]
,
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and formulate the conditions of positivity with respect to the
Minkovsky cone K ⊂ Rn+1 of the form (5.2.18).

The positivity of the system (5.2.21) is equivalent to the inclusion
MK ⊆ K and, taking into account the self-conjugacy of the cone K,
adds up to the inequality lTMz ≥ 0 which must hold true for any
l, z ∈ K. Using the Cauchy inequality, obtain the sufficient condition
of the positivity of the system (5.2.21)

√
λmax(ATA) + ‖b‖ + ‖c‖ ≤ d.

The belonging of a vector to the cone K can be described in terms
of nonnegative definite matrices:

z =

[
x
u

]
∈ K ⇐⇒ u ≥ 0, u2I ≥ xxT ⇐⇒ S(z) =

[
uI x
xT u

]
≥ 0.

Therefore the positivity of the system (5.2.21) is equivalent to the
condition

S(z) ≥ 0 =⇒ S(Mz) =

[
(cTx+ du)I Ax+ bu
xTAT + ubT cTx+ du

]
≥ 0.

For any vectors z ∈ K and g ∈ Rn+1 the inequality
gTS(Mz)g = lTg z ≥ 0 must hold true, where

lg =




gTS(h1)g
...

gTS(hn)g
gTS(h)g


 , h1 =

[
a1

c1

]
, . . . , hn =

[
an
cn

]
, h =

[
b
d

]
,

ai are columns of the matrix A, and ci are components of the vector
c.

The condition lg ∈ K equivalent to the inequality S(lg) ≥ 0 holds
true if

S =




S(h) · · · 0 S(h1)
...

. . .
...

...
0 · · · S(h) S(hn)

S(h1) · · · S(hn) S(h)


 ≥ 0,
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where

S(h) =

[
d I b
bT d

]
, S(hi) =

[
ci I ai
aTi ci

]
, i = 1, . . . , n.

If h > 0 is an inner point of K, then the positivity conditions for the
system (5.2.21) have the form

S(h) > 0, S(h) ≥
∑

i

S(hi)S
−1(h)S(hi).

The condition h > 0 means that d >
√
bT b. If d =

√
bT b > 0,

then for the positivity of the system it is necessary that the relation
dcT = bTA holds true.

We rewrite the condition lg ∈ K as

gTS(h) g = wTh ≥ 0, (gTS(h) g)2 −
n∑

i=1

(gTS(hi) g)
2 = wTSw ≥ 0,

where

g =

[
y
v

]
, w = Φ(g) =

[
2vy

yT y + v2

]
,

S = hhT −
n∑

i=1

hih
T
i = M∆MT , ∆ =

[
−I 0
0 1

]
.

It is to be noted that the nonlinear transformation
Φ : Rn+1 → Rn+1 preserves the cone K. Moreover, Φ(K) = K and
wTSw ≥ 0 for any w ∈ K if and only if there is γ ≥ 0 such that
S ≥ γ∆ (see Loewy, Schneider [1]).

Hence, necessary and sufficient for positivity of the system (5.2.21)
with respect to the cone K is the existence of γ ≥ 0 such that

M∆MT ≥ γ∆, ‖b‖ ≤ d. (5.2.22)

We generalize this result for the ellipsoidal cone

K(Q) = {z ∈ Rn+1 : zTQz ≥ 0, zT q ≥ 0}, (5.2.23)

where Q is a symmetric matrix with inertia i(Q) = {1, n, 0}, and q
is a unit eigenvector of Q corresponding to its positive eigenvalue.



Stability of Linear Positive Systems 197

Necessary and sufficient for positivity of the system (5.2.21) with
respect to the cone K(Q) is the existence of γ ≥ 0 such that

MTQM ≥ γQ, qTMq ≥ 0, qTMQ−1MT q ≥ 0. (5.2.24)

If Q = ∆, then the inequalities (5.2.24) reduce to the form (5.2.22).

5.3 Stability of Linear Positive Systems

The stability problem for the class of nonstationary system (5.2.2)
without additional limitations is quite complex and has not yet been
fully solved for applications. Among the well-known directions of
stability analysis of such systems one can mark out the Lyapunov
function method, theory of characteristic measures, method of com-
parison systems, theory of reducible and periodic systems, etc.

We will show that, under some additional conditions, the estimate
of the asymptotic stability of the system (5.2.2) can add up to the
solution of linear equations of the type (5.1.1) with positively invert-
ible operator. One such condition is the existence of a cone in a
phase space, with respect to which a given or some auxiliary system
has the positivity property.

The stability analysis of the system (5.2.2) for any bounded func-
tion G(t) adds up to the study of the conditions of stability of the
zero solution of the homogeneous system

Ẋ +M(t)X = 0. (5.3.1)

The system (5.3.1) is stable, if each of its solutions

X(t) = W (t, t0)X0, t ≥ t0, X0 = X(t0),

is bounded. At the same time we have asymptotic stability, if
‖X(t)‖ → 0 for t → ∞. The properties of stability and asymp-
totic stability of the system (5.3.1) are equivalent to the respective
conditions

sup
t≥t0

‖W (t, t0)‖ <∞; ‖W (t, t0)Y ‖ → 0, Y ∈ E , t→ ∞.

The heterogeneous system (5.2.2) is stable (asymptotically stable)
if and only if the corresponding homogeneous system (5.3.1) is stable
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(asymptotically stable). The system (5.3.1) is exponentially stable if
each of its solutions with ‖X0‖ ≤ δ satisfies the estimate

‖X(t)‖ ≤ βe−γ(t−t0)‖X0‖, t ≥ t0, (5.3.2)

where γ and β are positive constants independent of the selection of
a solution. The exponential stability of the system (5.3.1) implies
its asymptotic stability. For autonomous and periodic systems, the
properties of exponential and asymptotic stability are equivalent.

Let a cone K be given in the phase space of the system (5.3.1).
If the system (5.3.1) is asymptotically stable, then for any solution
X(t) the following relation is true:

∫ ∞

t0

M(t)X(t)dt = Y, (5.3.3)

where X(t0) = Y . If Y ≥ 0 and the system (5.3.1) is positive then
X(t) ≥ 0 for t ≥ t0.

Consider a class of stationary systems

Ẋ +MX = 0, (5.3.4)

where M is a linear bounded operator, σ(M) 6= ∅. The evolutionary
operator of the system (5.3.4) in consideration of (5.2.5) has the form

W (t, s) =
∞∑

k=0

(s− t)k

k!
Mk = e−M(t−s),

and (5.3.3) reduces to the form (5.1.1), where

X =

∫ ∞

t0

X(t) dt, X(t) = e−M(t−t0)Y.

The positivity of the system (5.3.4) is equivalent to the positivity
of the exponential operator e−Mt for t ≥ 0. Therefore it is possible
to use the theory of one-parameter positive semigroups.

Determine the bound of the increase of the operator exponent in
the form

γM = lim
t→∞

1

t
ln ‖e−Mt‖ <∞.



Stability of Linear Positive Systems 199

From the theorem on mapping of the spectrum of bounded operators
it follows that γM = −αM , where

αM = inf{Reλ : λ ∈ σ(M)}.

The spectral radius of a positive operator is a point of its spectrum.
Therefore for the positive system (5.3.4) αM ∈ σ(M).

Lemma 5.3.1 If the system (5.3.4) is positive, then the operator
M + γE is positively invertible if and only if γ > γM . If the operator
M + γE is positively invertible for each γ ≥ γ0, then the system
(5.3.4) is positive, and γ0 > γM .

Proof. If the system (5.3.4) is positive, then for any γ > γM the
relation

(M + γE)−1 =

∫ ∞

0
e−γte−Mtdt ≥ 0

holds true. Conversely, if the operator M+γE is positively invertible
for any γ ≥ γ0, where γ0 is some real number, then

e−Mt = lim
k→∞

[
k

t

(
M +

k

t
E

)−1
]k

≥ 0, t > 0.

We will show that for the positive system (5.3.4) the operator
M + γE is not positively invertible for γ ≤ γM . Suppose that for
some numbers γ1 and γ2 such that γ1 < γM < γ2 the operators
M1 = M + γ1E and M2 = M + γ2E are positively invertible. Then
from the relation

M1 ≤M + γME ≤M2

and the theorem on two-sided estimate of positively invertible
operators it follows that the operator M + γME must also be
positively invertible. However, this is contrary to the condition
αM = −γM ∈ σ(M).

Hence, under the condition of positivity of the system (5.3.4) the
operator M + γE is positively invertible for γ > γM only.

The lemma is proved.

Remark 5.3.1 From the theorems on mapping of the spectrum
and on the spectral radius of a positive operator it follows that under
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the conditions e−Mt ≥ 0 and (M−αE)−1 ≥ 0 there exist such points
of spectrum α∗ and β∗ of the operator M that for any λ ∈ σ(M) the
inequalities

e−Reλ t ≤ e−α∗t ,
e−Reλ t

| λ− α | ≤
e−β∗t

β∗ − α
,

hold true. The right-hand sides of these inequalities take on real
positive values for t ≥ 0. From the first inequality (for sufficiently
small t < 2π/ρ(M)) it follows that α∗ is a real point of the spectrum,
such that Reλ ≥ α∗,∀λ ∈ σ(M). For the second inequality to hold
true for any arbitrary large t and ∀λ ∈ σ(M) it is necessary to assume
β∗ = α∗ = αM > α.

Lemma 5.3.2 If the operator M −αE is positively invertible for
any α ≤ α0, then the spectrum of the operator M is located on the
half-plane Reλ > α0.

Proof. From the invertibility of the operator M − αE for α ≤ α0

it follows that the operator M does not have real points of spectrum
in the interval (−∞, α0]. The spectral radius of the positive inverse
operator (M − αE)−1 equals 1/(α∗ − α), where α∗ is a real point of
the spectrum σ(M) such that

|λ− α| ≥ α∗ − α > 0, ∀λ ∈ σ(M).

Here α∗ > α0 ≥ α and α∗ do not depend on α.
If Reλ ≤ α0 then it is possible to select such a value of α that the

opposite inequality |λ− α| < α∗ − α would be true. Consequently,
Reλ > α0 for λ ∈ σ(M). Here α∗ coincides with αM .

The lemma is proved.

If αM > 0, then for any solution of the system (5.3.4) the estimate
(5.3.2) holds true, where 0 < γ < αM , i.e. the system (5.3.4) is ex-
ponentially stable. Conversely, if the system (5.3.4) is exponentially
stable and positive then from the inequality (5.3.2) for the partial
solution

X(t) = e−αM (t−t0)V, V 6= 0,

it follows that αM > 0. Using Lemmas 5.3.1 and 5.3.2 respectively
for γ0 = 0 and α0 = 0, obtain the following result.
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Theorem 5.3.1 The positive system (5.3.4) is exponentially sta-
ble if and only if the operator M is positively invertible. If the oper-
ator M + γE is positively invertible for any γ ≥ 0, then the system
(5.3.4) is positive and exponentially stable.

Note that the exponential stability of the system (5.3.4) follows
from the positive invertibility of the two operators M and M + γ0E,
where γ0 > 0 is a sufficiently large number. Indeed, each oper-
ator M + γE for γ ∈ [0, γ0] must be positively invertible, and
|λ+ γ0| ≥ αM + γ0 > 0, ∀λ ∈ σ(M) (see the proofs of Lemmas 5.3.1
and 5.3.2). Hence for sufficiently large γ0 the inequality αM > 0
follows for which the system (5.3.4) is exponentially stable.

Corollaries of Theorem 5.3.1 are the known criteria of asymptotic
stability in the mean square of stochastic Ito’s systems (see Section
3.4).

Example 5.3.1 Consider the system (5.3.4) in Rn+1 with
(n + 1) × (n + 1) matrix M and the ellipsoidal cone K(Q) ⊂ Rn+1

of the form (5.2.23). The system is positive with respect to K(Q) if
and only if there is α ∈ R1 such that

MTQ+QM + αQ ≤ 0. (5.3.5)

The inverse matrix M−1 preserves the cone K(Q) if and only if there
is β > 0 such that (see Example 5.2.6)

MTQM ≤ βQ, qTM−1q ≥ 0, qT (MTQM)−1q ≥ 0. (5.3.6)

Hence Theorem 5.3.1 implies that the system (5.3.4) is exponentially
stable and positive with respect to K(Q) if there are the matrix
Q = QT with the inertia i(Q) = {1, n, 0} and the constants α ∈ R1

and β > 0 satisfying the inequalities (5.3.5) and (5.3.6).

Let us move on to the study of non-autonomous systems. The
system (5.3.1) will be called positively reducible, if there exists a
Lyapunov transformation X(t) = Q(t)H(t) resulting in a positive
autonomous system

Ḣ +M0H = 0, (5.3.7)

where M0 is some constant operator. In this definition Q(t) is a
uniformly bounded differentiable operator which has a uniformly
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bounded inverse Q−1(t) and satisfies the operator differential equa-
tion

Q̇+M(t)Q−QM0 = 0.

The stability conditions of the systems (5.3.1) and (5.3.7) are equi-
valent.

Theorem 5.3.2 The positive reducible system (5.3.1) is exponen-
tially stable if and only if the operator M0 is positively invertible.

An important subclass of reducible systems of the form (5.3.1)
includes ω-periodic systems for which

M(t+ ω) = M(t), W (t+ ω) = W (t)W (ω), t ≥ θ,

where W (t) = W (t, θ). If the spectrum of a monodromy operator
W (ω) does not surround zero, then the system (5.3.1) is reducible.
The operator of the Lyapunov transformation has the form

Q(t) = W (t)eM0t, M0 = − 1

ω
lnW (ω).

Hence, the positive reducible ω–periodic system (5.3.1) is exponen-
tially stable if and only if the operator M0 is positively invertible.

Consider a subclass of systems (5.3.1) described by a functionally
commutative operator M(t), i.e.

M(t)M(τ) = M(τ)M(t), ∀t, τ ≥ θ. (5.3.8)

In this case the evolutionary operator is determined by

W (t, s) = e−N(t,s), N(t, s) =

∫ t

s
M(τ)dτ , t ≥ s. (5.3.9)

Suppose that there exists a limiting bounded operator

M0 = lim
t→∞

1

ϕ(t)

∫ t

t0

M(τ)dτ , (5.3.10)

where ϕ(t) > 0 is some function such that ϕ(t) → ∞ while t→ ∞.

Theorem 5.3.3 Let the conditions (5.3.8) be satisfied and the sys-
tem (5.3.7) with the operator (5.3.10) be positive. Then the positive
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invertibility of the operator (5.3.10) implies the asymptotic stability
of the system (5.3.1).

Proof. From (5.3.8)–(5.3.10) follow the relations

M(t)N(t, τ) = N(t, τ)M(t), M0N(t, t0) = N(t, t0)M0,

M0∆(t, t0) = ∆(t, t0)M0, ∆(t, t0) =
1

ϕ(t)
N(t, t0) −M0,

and ∆(t, t0) → 0 while t → ∞. Therefore an arbitrary solution of
the system (5.3.1) in consideration of (5.3.9) can be represented in
the form

X(t) = e−ϕ(t)[M0+∆(t,t0)]X0 = e−ϕ(t)M0e−ϕ(t)∆(t,t0)X0.

Let α0 = inf{Reλ : λ ∈ σ(M0)}. Then, according to Lemma 5.3.2,
α0 > 0 and for any positive number ε < α0/2 there exists t1 such
that ‖∆(t, t0)‖ < ε for t > t1. The following estimate holds true:

‖X(t)‖ ≤ βe−ϕ(t)(α0−ε)eϕ(t)ε‖X0‖ = βe−ϕ(t)(α0−2ε)‖X0‖,

where β > 0 is some constant. Since ϕ(t) → ∞ and α0 > 2ε,
then ‖X(t)‖ → 0 while t → ∞. Consequently, the system (5.3.1) is
asymptotically stable.

The theorem is proved.

Example 5.3.2 Consider a matrix system (5.3.1), assuming

M(t) =

[
a(t) −b(t)

−b(t) a(t)

]
,

where a(t) and b(t) are prescribed functions. Obviously, the matrix
M(t) satisfies the condition of functional commutativity (5.3.8).

Suppose that

ϕ(t) =

∫ t

t0

b(s)ds→ ∞,
1

ϕ(t)

∫ t

t0

a(s)ds → α, t→ ∞.

Then the limiting matrix (5.3.10) has the form

M0 =

[
α −1

−1 α

]
.
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The autonomous system (5.3.7) with the matrix M0 is positive with
respect to a cone of nonnegative vectors (see Section 5.2). The condi-
tion of positive invertibility of the matrix M0 adds up to the inequal-
ity α > 1. According to Theorem 5.3.3, the initial system (5.3.1) is
asymptotically stable.

5.4 Stability of Nonlinear Monotone Systems

Consider the autonomous differential system

ẋ+Ax = g(x), x(t0) = x0 ∈ Rn, (5.4.1)

where A ∈ Rn×n is a matrix with nonpositive off-diagonal elements,
g(x) a continuous vector-function satisfying Wazewski’s conditions
(5.2.16). Let f(0) = 0 and x = 0 be an isolated equilibrium state of
the system (5.4.1). Suppose that a solution of the Cauchy problem
(5.4.1) exists and is locally unique for any x0 ∈ Rn.

It is known that under the above mentioned assumptions the sys-
tem (5.4.1) has the property of monotonicity with respect to the cone
of nonnegative vectors K ⊂ Rn, and the following statement is true
(see Martynyuk, Obolenskii [1]).

Theorem 5.4.1 The solution x ≡ 0 of the system (5.4.1) is
asymptotically stable in the cone K if and only if for some vector
x > 0 the inequality g(x) < Ax is true.

The solution x ≡ 0 of the system (5.4.1) has the property of
stability in a cone K if for any ε > 0 and t0 ≥ θ it is possible to
indicate such δ > 0 that

‖x0‖ ≤ δ, x0 ∈ K =⇒ ‖x(t)‖ ≤ ε, x(t) ∈ K, t > t0.

If, in addition, for some δ0 > 0 ‖x0‖ ≤ δ0 implies ‖x(t)‖ → 0 while
t→ ∞, then the solution x ≡ 0 is asymptotically stable in K.

The statement of Theorem 5.4.1 applies to some more general
classes of systems and cones in the space Rn. Limitations of the type
(5.2.12) are provided to the considered systems by their monotonicity
with respect to the given cones.
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We set out the generalized stability analysis technique for linear
and nonlinear dynamic systems with their states X(t) ∈ E deter-
mined as (5.2.1). Suppose that X(t) ≡ 0 is an equilibrium state, i.e.
Ω(t, t0)0 ≡ 0.

Let in a space E two cones K and K0 ⊆ K be given. The cone K
must be normal, and the cone K0, reproducing.

Note that the normality of the cone K is equivalent to the condi-
tion

U
K
≤ X

K
≤ V =⇒ ‖X‖ ≤ ν1‖U‖ + ν2‖V ‖, (5.4.2)

where ν1 > 0 and ν2 > 0 are universal constants. Indeed, this
condition for U = 0 coincides with the definition of normality of the

cone. If the cone is normal, then from 0
K
≤ X−U

K
≤ V −U , it follows

that

‖X‖ − ‖U‖ ≤ ‖X − U‖ ≤ ν‖V − U‖ ≤ ν‖V ‖ + ν‖U‖

and in (5.4.2), in particular, one can assume ν1 = ν + 1 and ν2 = ν,
where ν is a normality constant of K.

The state X ≡ 0 of the system (5.2.1) will be called stable from
K0 into K, if for any ε > 0 and t0 ≥ θ it is possible to point out such
δ > 0 that X0 ∈ Sδ(K0) would imply X(t) ∈ Sε(K) for t > t0, where

Sε(K) = {X ∈ K : ‖X‖ ≤ ε}.

If for some δ0 > 0 from X0 ∈ Sδ0(K0) follows ‖X(t)‖ → 0 while
t → ∞, then the state X ≡ 0 is asymptotically stable from K0 into
K.

If the system (5.2.1) is positive with respect to K0 and K, and
its state X ≡ 0 is stable (asymptotically stable) by Lyapunov, it is
stable (asymptotically stable) from K0 into K.

Lemma 5.4.1 If the following conditions are satisfied

X0

K0≥ 0 =⇒ X(t)
K
≥ 0, Ẋ(t)

K
≤ 0, (5.4.3)

X0 = X+−X−, X±

K0≥ 0 =⇒ −PX−(t)
K
≤ X(t)

K
≤ QX+(t), (5.4.4)
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where X±(t) = Ω(t, t0)X±, t ≥ t0, P and Q are positive linear oper-
ators with respect to the cone K, then the equilibrium state X ≡ 0 of
the system (5.2.1) is stable by Lyapunov.

Proof. a) X0 ∈ K0. According to the Lagrange theorem,

X(t) −X(t0) = Ẋ(ξ)(t− t0), ξ ∈ (t, t0), t > t0.

Taking into account (5.4.3), we obtain the inequalities

0
K
≤ X(t)

K
≤ X0, hence follows ‖X(t)‖ ≤ ν ‖X0‖, where ν > 0

is the normality constant of K. Therefore for any ε > 0 from
‖X0‖ ≤ δ = ε/ν follows ‖X(t)‖ ≤ ε.

b) X0 ∈ E . Since the cone K0 is reproducing, then X0 = X+−X−,
where X± ∈ K0. There exists a universal constant γ > 0 such that
‖X±‖ ≤ γ‖X0‖ (the property of unflattenedness of a cone).

Let ε > 0. Select δ± in accordance with item a) so that
‖X±‖ ≤ δ± implies ‖X+(t)‖ ≤ ε/(2ν2q) and ‖X−(t)‖ ≤ ε/(2ν1p),
where p = ‖P‖, q = ‖Q‖. For this one can assume δ+ = ε/(2νν2q)
and δ− = ε/(2νν1p). Here we use the fact that positive linear op-
erators with respect to a normal reproducing cone are limited by
norm. If ‖X0‖ ≤ δ, where δ = min{δ+, δ−}/γ, then, taking into
consideration (5.4.2) and (5.4.4), obtain the inequality

‖X(t)‖ ≤ ν1p ‖X−(t)‖ + ν2q ‖X+(t)‖ ≤ ε, t ≥ t0.

Consequently, the zero state of the system is stable by Lyapunov.

The lemma is proved.

The condition (5.4.3) of Lemma 5.4.1 provides the property of
stability from K0 into K of the zero state of the system (5.2.1). For
the class of linear positive systems (5.3.1) the condition (5.4.4) fol-
lows, e.g., from the operator inequalities P ≥ E and Q ≥ E (with
respect to K), and the conditions (5.4.3) can be rewritten in terms
of the evolutionary operator W (t, t0).

Theorem 5.4.2 The state X ≡ 0 of the system of classes M±
1 is

stable by Lyapunov if

X0 ∈ ±K0 =⇒ Ẋ(t) ∈ ∓K, t > t0.
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Proof. Use the properties of the operator Ω(t, t0) belonging to
the classes M±

1 . From the condition Ω(t, t0)0 ≡ 0 it follows that

X(t) ∈ ±K for any X0 ∈ ±K0. If X0 ∈ K0, then 0
K
≤ X(t)

K
≤ X0

and hence ‖X(t)‖ ≤ ν‖X0‖ (see the proof of Lemma 5.4.1). This
estimate also holds true in the case X0 ∈ −K0, because in this case

0
K
≤ −X(t)

K
≤ −X0. In a general case X0 = X+ − X− ∈ E and,

taking into account the properties of the operator Ω(t, t0), we have
the inequalities

Ω(t, t0)(−X−)
K
≤ X(t)

K
≤ Ω(t, t0)X+,

where X±

K0≥ 0. Hence, taking into consideration (5.4.2) and the
unflattenedness of the reproducing cone K0, obtain the estimate

‖X(t)‖ ≤ γν (ν1 + ν2)‖X0‖

guaranteeing the stability of the state X ≡ 0.

The theorem is proved.

Theorem 5.4.2 can be used for construction of stability condi-
tions of the class of monotone differential systems (5.2.9) expressed
in terms of operators M(t) and G(X, t). The conditions of Theorem
5.4.2 for the system (5.2.9) are the inequalities

G(X, t)
K
≤M(t)X, G(X, t)

K
≥M(t)X

that hold true over its solutions with initial values from K0 and −K0

respectively.

Under the conditions of Theorem 5.4.2 the state X ≡ 0 of the
system (5.2.1) has the properties of stability from K0 into K and from
−K0 into −K. These properties ensure the stability by Lyapunov of
the state X ≡ 0 of this system. The inverse statement is also true,
because under the condition Ω(t, t0)0 ≡ 0 a system of the class M+

1

(M−
1 ) must be positive with respect to K0 and K (−K0 and −K).

Theorem 5.4.3 The state X ≡ 0 of the system (5.2.1) belonging
to the classes M±

1 is stable (asymptotically stable) by Lyapunov if
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and only if it is stable (asymptotically stable) from K0 into K and
from −K0 into −K.

Note that for the class of linear systems, the properties of sta-
bility from K0 into K and from −K0 into −K of the zero state are
equivalent.

For the study of stability and asymptotic properties of the sys-
tem (5.2.1) one can use different estimates of the states X(t) or the
operator Ω(t, t0) with respect to the cones K0 and K. For example,
if for any X0 ∈ E the following relations are true

−Ψ(t, t0)|X0|
K
≤ X(t)

K
≤ Φ(t, t0)|X0|, t ≥ t0, (5.4.5)

where X0 = X+ − X−, |X0| = X+ + X−, X± ∈ K0, Ψ(t, t0) and
Φ(t, t0) are uniformly bounded linear operators, then the stability of
the zero state X ≡ 0 follows from the estimate

‖X(t)‖ ≤ 2γ(ν1ρ1 + ν2ρ2)‖X0‖,

where ρ1 = sup ‖Ψ(t, t0)‖, ρ2 = sup ‖Φ(t, t0)‖, which is proved by
using (5.4.2), (5.4.5), and assumptions related to the cones K and
K0. The similar proposition holds true under the condition

−Ψ(t, t0)X+−Φ(t, t0)X−

K
≤ X(t)

K
≤ Φ(t, t0)X++Ψ(t, t0)X−, (5.4.6)

which, in the case of a linear operator Ω(t, t0), is equivalent to the
double-sided estimate

−Ψ(t, t0) ≤ Ω(t, t0) ≤ Φ(t, t0), t ≥ t0.

Note that under the positivity conditions the operators Ψ(t, t0)
and Φ(t, t0) in (5.4.5) and (5.4.6) must be bounded by norm.

Formulate a corollary of Lemma 5.4.1 for the linear system (5.3.1)
in terms of an evolutionary operator W (t, t0).

Theorem 5.4.4 If the conditions

W (t, t0)K0 ⊆ K, M(t)W (t, t0)K0 ⊆ K, t > t0, (5.4.7)

are true, then the linear system (5.3.1) is stable.
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Note that under the conditions (5.4.7) in the case M(t) ≡M and
K ⊆MK0 the following systems of inclusions

K0 ⊆MK0, e−MtK0 ⊆ K0, t > 0, (5.4.8)

K ⊆MK, e−MtK ⊆ K, t > 0, (5.4.9)

hold true, and each of them, according to Theorem 5.3.1, provides the
exponential stability to the stationary system (5.3.4). If MK0 ⊆ K,
in particular, K = MK0, then the conditions (5.4.7) follow from
(5.4.8) or (5.4.9).

5.5 Robust Stability of a Family of Systems

In applied research there occurs a problem of stability of a given
family of dynamic systems described by differential or difference
equations with indefinite parameters (robust stability problem).
Kharitonov’s theorem and its analogues present a solution of this
problem for some classes of autonomous systems. For example, if
the admissible region for the coefficients of characteristic polynomial
of a differential system is a right parallelepiped

{a ∈ Rn : a ≤ a ≤ a},

then its robust asymptotic stability is equivalent to the asymptotic
stability of some set of systems corresponding to the extreme values
of the coefficients a and a.

Consider a family of dynamic systems which is determined by the
relations

Ẋ +M(t)X = G(X, t), t ≥ θ, (5.5.1)

M(t) ≤M(t) ≤M(t), (5.5.2)

G(X, t)
K
≤ G(X, t)

K
≤ G(X, t), (5.5.3)

where

G(X, t) = −M1(t)X +G1(t), G(X, t) = −M2(t)X +G2(t),

M(t),M (t),M1(t), and M2(t) are linear operators, G1(t) and G2(t)
are given functions. Assume that the operators G(X, t) and G(X, t)
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are bounded, and the inequalities between the elements of the phase
space E and the operator inequalities are determined with respect
to the normal cone K ⊂ E . In each initial point of time t0 ≥ θ the
inequalities in E are determined with respect to the reproducing cone
K0 ⊂ K.

The two-sided estimate (5.5.3) for the operator G(X, t) in a gen-
eral case must hold true in each point of the phase space X ∈ E ,
where a solution of the system (5.5.1) is determined. If the positive

solutions X(t)
K
≥ 0 are determined, then one can suppose that the

inequalities (5.5.3) hold true for X ∈ K.
In the family (5.5.1)–(5.5.3) take two systems

Ẋ1 +
[
M(t) +M1(t)

]
X1 = G1(t), (5.5.4)

Ẋ2 + [M(t) +M2(t)]X2 = G2(t). (5.5.5)

Lemma 5.5.1 Let the evolutionary operator of the system (5.5.4)
be positive, and the inequalities (5.5.3) hold true for X ∈ K. Then

the positive solutions X(t)
K
≥ 0 of each system of the family (5.5.1)–

(5.5.3) are bounded by the respective solutions of the linear systems
(5.5.4) and (5.5.5), i. e.

X10

K0≤ X0

K0≤ X20 =⇒ X1(t)
K
≤ X(t)

K
≤ X2(t), t > t0.

Besides, the positivity of the system (5.5.4) implies the positivity of
each system of the given family.

Proof. Subtracting (5.5.4) from (5.5.1) and (5.5.1) from (5.5.5) in
consideration of (5.5.2) and (5.5.3) obtain the inequalities

Ḣ1(t) +
[
M(t) +M1(t)

]
H1(t)

K
≥
[
M(t) −M(t)

]
X(t),

Ḣ1(t) + [M(t) +M1(t)]H1(t)
K
≥
[
M(t) −M(t)

]
X1(t),

Ḣ2(t) + [M(t) +M2(t)]H2(t)
K
≥ [M(t) −M(t)]X2(t),

Ḣ2(t) + [M(t) +M2(t)]H2(t)
K
≥ [M(t) −M(t)]X(t),
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whereH1(t) = X(t)−X1(t), H2(t) = X2(t)−X(t). Here the relations

M (t) +M1(t) ≥M(t) +M1(t) ≥M(t) +M2(t) ≥M(t) +M2(t)

hold true. If the system (5.5.4) is positive, then its evolution-
ary operator WM+M1

(t, s) should be positive. The positivity of
the operator WM+M1

(t, s) implies the positivity of the operators
WM+M1

(t, s),WM+M2
(t, s), and WM+M2

(t, s) (see Section 5.2).

If X(t)
K
≥ 0 or X1(t)

K
≥ 0, then H10

K0≥ 0 implies H1(t)
K
≥ 0, i.e.

X1(t)
K
≤ X(t) for t > t0. Similarly, if X(t)

K
≥ 0 or X2(t)

K
≥ 0, then

H20

K0≥ 0 implies H2(t)
K
≥ 0, i.e. X(t)

K
≤ X2(t) for t > t0. Therefore

the positiveness of the system (5.5.4) implies the positiveness of each

system of the family (5.5.1)–(5.5.3). Since X(t)
K
≥ 0, the inequalities

(5.5.3) above are only used for X ∈ K.
The lemma is proved.

Lemma 5.5.1 can be used for construction of the robust stability
conditions for a family of differential systems of the form (5.5.1),
i.e. asymptotic stability of each system of the given family. As
a consequence of Lemma 5.5.1, formulate the conditions of robust
stability of the family of linear systems

Ẋ +M(t)X = 0, M(t) ≤M(t) ≤M(t). (5.5.6)

In this case the systems (5.5.4) and (5.5.5) have the form

Ẋ1 +M(t)X1 = 0, (5.5.7)

Ẋ2 +M(t)X2 = 0. (5.5.8)

If the initial conditions of the systems (5.5.6) and (5.5.8) satisfy the

inequalities 0
K0≤ X0

K0≤ X20, then the positivity of the evolutionary

operator of the system (5.5.7) implies 0
K
≤ X(t)

K
≤ X2(t) for t > t0. If,

in addition, the system (5.5.8) is asymptotically stable, then, taking
into consideration the normality of the cone K, obtain ‖X(t)‖ → 0
while t→ ∞. SolutionsX(t) have this property for any initialX0 ∈ E
if the cone K0 is reproducing. Here

X(t) = X+(t) −X−(t), X±(t)
K
≥ 0, t ≥ t0,
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where X±(t) are some functions taking values in K and being the
solutions of the system (5.5.6) (due to the uniqueness of the solution
of the Cauchy problem), for which the above reasoning is true.

Thus, obtain the following proposition.

Theorem 5.5.1 If the system (5.5.8) is stable (asymptotically
stable) and the system (5.5.7) is positive, then each system of the
family (5.5.6) is stable (asymptotically stable) and positive.

Note that for the family of stationary systems (5.5.6), the positive
invertibility of the operators M and M implies the positive invert-
ibility of each operator M from the segment M ≤ M ≤ M . From
Theorems 5.3.1 and 5.5.1, in particular, it follows that for the posi-
tive invertibility of the operator M it is sufficient that the operator
e−Mt be positive for t ≥ 0 and the spectrum of the operator M be
located in the half-plane Reλ > 0.

Example 5.5.1 Consider the family of linear systems

ẋ+A(t)x = 0, aij ≤ aij(t) ≤
{

0, i 6= j
aij(t), i = j

, t ≥ θ,

where aij are entries of an off-diagonal non-positive matrix with pos-
itive principal leading minors, and aij(t) are given continuous func-
tions. The system ẋ1 + A(t)x1 = 0 with the diagonal matrix A(t)
is positive with respect to the cone of nonnegative vectors K ⊂ Rn,
and the system ẋ2 + Ax2 = 0 is asymptotically stable. Therefore
each system of this family is asymptotically stable and positive with
respect to K. Here A−1(t) ≥ 0 for any matrix A(t) from the interval
A ≤ A(t) ≤ A(t).

Generalize the described technique of analysis of robust stability
for a family of nonlinear systems

Ẋ = F (X, t), F (0, t) ≡ 0, t ≥ θ, (5.5.9)

F (X, t)
K
≤ F (X, t)

K
≤ F (X, t), X ∈ E , t ≥ θ. (5.5.10)

Suppose that the right-hand sides of the systems are continuous and
satisfy the conditions of existence and uniqueness of solutions for
t ≥ t0 ≥ θ.
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Let F denote a family of operator-functions F (X, t) providing
such correspondence between the solutions of the system (5.5.9) and

the differential inequality Ż
K
≤ F (Z, t) that for any t0 ≥ θ from

Z0

K0≤ X0 it follows that Z(t)
K
≤ X(t) for t > t0. This property

of solutions under the additional requirement X0

K0≥ 0 (Z0

K0≥ 0)
determines some family of operator-functions F ∈ F1 (F ∈ F2), and
F ⊆ F1 ⊆ F2.

Classes F , F1 and F2 are determined in a similar way, by sub-
stituting all the used inequality signs by the opposite ones. Here
F ⊆ F1 ⊆ F2.

Obviously, under the condition F ∈ F ∪ F the system (5.5.9) is

monotone with respect to K0 and K. If F ∈ F2 and F (0, t)
K
≥ 0

(F ∈ F2 and F (0, t)
K
≤ 0), then the system (5.5.9) must be posi-

tive with respect to K0 and K (−K0 and −K). In the given case
F (0, t) ≡ 0 and for F ∈ F2 (F ∈ F2) the system (5.5.9) is monotone
in K0 (−K0).

In the family (5.5.9), (5.5.10) take two systems

Ẋ = F (X, t), F (0, t) ≡ 0, (5.5.11)

Ẋ = F (X, t), F (0, t) ≡ 0. (5.5.12)

If F ∈ F and F ∈ F , then the solutions of each system of the given
family are bounded by the corresponding solutions of the systems
(5.5.11) and (5.5.12), i.e.

X0

K0≤ X0

K0≤ X0 =⇒ X(t)
K
≤ X(t)

K
≤ X(t), t > t0. (5.5.13)

Theorem 5.5.2 If F ∈ F1, F ∈ F1 and the zero solutions of
the systems (5.5.11) and (5.5.12) are stable (asymptotically stable)
respectively from −K0 into −K and from K0 into K, then the zero so-
lution of each system of the family (5.5.9), (5.5.10) is stable (asymp-
totically stable) by Lyapunov.

Proof. Since the cone K0 is reproducing, then X0 = X+ − X−,
where X± ∈ K0. Let X(t) and X(t) be solutions of the respective
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systems (5.5.11) and (5.5.12) for the initial conditions X(t0) = −X−

and X(t0) = X+. If the zero solution of the system (5.5.11) ((5.5.12))
is stable from −K0 into −K (from K0 into K), then for any ε > 0 one
can select δ− > 0 (δ+ > 0) so that from ‖X−‖ < δ− (‖X+‖ < δ+) it
follows that ‖X(t)‖ ≤ ε/(2ν1) (‖X(t)‖ ≤ ε/(2ν2)) for t > t0. Here
X(t) ∈ −K (X(t) ∈ K).

Assuming ‖X0‖ ≤ δ, where δ = min{δ−, δ+}/γ, γ > 0 is the
unflattenedness constant of the cone K0, taking into account (5.4.2)
and (5.5.13), obtain the inequality

‖X(t)‖ ≤ ν1‖X(t)‖ + ν2‖X(t)‖ ≤ ε, t > t0,

where ν1 > 0 and ν2 > 0 are universal constants. This means that
the zero state of the system (5.5.9) is stable, and ‖X(t)‖ → 0, if
‖X(t)‖ → 0 and ‖X(t)‖ → 0 while t→ ∞.

The theorem is proved.

Using Theorem 5.5.2, it is required to construct the estimate
(5.5.10) and determine the belonging of operator-functions to the
classes F1 and F1, in particular, F and F . Belonging to the classes F
and F determined by using the cone of nonnegative vectors K ⊂ Rn

are functions satisfying Wazewski’s conditions (5.2.16). Operator-
functions of the class F that satisfy the conditions (5.2.12) have
the general property of quasi-monotonicity with respect to the cone
K ⊂ E .

Lemma 5.5.2 If the conditions (5.2.12) hold true with respect to
a solid cone K, then F ∈ F ∩ F .

Proof. Use the fact that X ∈ K is only in the case when ϕ(X) ≥ 0

for any ϕ ∈ K∗. Here ϕ(X) > 0, if X
K
> 0 and ϕ 6= 0.

Let F ∈ F and functions Y (t) and Z(t) for t ≥ t0 satisfy the
relations

Ẏ = F (Y, t) + εQ, Ż
K
≤ F (Z, t), Z0

K0≤ Y0,

where ε > 0, Q
K
> 0, and in the point of time τ ≥ t0 the function

Y (t) − Z(t) exceeds the bound of K. Then for some ϕ ∈ K∗ and
δ > 0 the relations

Z(τ)
K
≤ Y (τ), ϕ (Z(τ)) = ϕ (Y (τ)) , ϕ (Z(t)) > ϕ (Y (t)) ,
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where τ < t ≤ τ + δ, hold true. Taking into consideration the
assumptions, obtain the inequalities

Ẏ (τ) − Ż(τ)
K
≥ F (Y (τ), τ) − F (Z(τ), τ) + εQ,

ϕ
(
Ẏ (τ) − Ż(τ)

)
≥ εϕ(Q) > 0.

Therefore for some δ > 0 the inequality

τ+δ∫

τ

ϕ
(
Ẏ (t) − Ż(t)

)
dt = ϕ (Y (τ + δ)) − ϕ (Z(τ + δ)) > 0

is contrary to the assumption.

Consequently, Z(t)
K
≤ Y (t), t ≥ t0, and while ε → 0 obtain

Z(t)
K
≤ X(t), where X(t) is a solution of the system (5.5.9), i.e.

F ∈ F . The inequality Z0

K0≤ X0 can be considered with respect to
an arbitrary cone K0 ⊆ K. In a similar way it can be proved that
under the conditions (5.2.12) F ∈ F .

The lemma is proved.

It can be shown that under the condition of positiveness of the
system (5.5.9) with respect to K0 and K, from F ∈ F+

1 (F ∈ F+
2 )

it follows that F ∈ F1 (F ∈ F2). Similarly, if the system (5.5.9) is
positive with respect to −K0 and −K, then from F ∈ F−

1 (F ∈ F−
2 )

it follows that F ∈ F1 (F ∈ F2).

5.6 Differential Comparison Systems

In applied and theoretical research the methods of comparison of sys-
tems are used, that are based on mapping of the state space of the
initial (complex) system into the state spaces of auxiliary (studied)
systems. In problems of stability analysis, it is expedient to take
as comparison systems the classes of positive and monotone systems
with respect to appropriate cones, as well as nonlinear systems sat-
isfying the conditions of theorems of Chaplygin and Wazewski type.
In this case the above results obtained for such systems may be of
use.
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In a Banach space X consider the differential system

ẋ = f(x, t), x ∈ X , t ≥ θ, (5.6.1)

Let E be a Banach space partially ordered by a normal cone K. In
E construct the classes of differential systems

Ẋ = F (X, t), X ∈ E , t ≥ θ, (5.6.2)

acting as comparison systems for the initial system (5.6.1). Suppose
that the systems (5.6.1) and (5.6.2) have unique continuous solu-
tions for t ≥ t0 and the considered initial conditions x(t0) = x0 and
X(t0) = X0. The inequalities in E between the values of functions
in each initial point of time t0 ≥ θ will be determined with respect
to some reproducing cone K0 ⊆ K.

Let M, Mk, M, and Mk denote the classes of systems (5.6.2)
describing the respective families of operator-functions F , Fk, F ,
and Fk, k = 1, 2 (see Section 5.5). For example, for the solution

X(t) of a system of the class M obtain the estimate X(t)
K
≥ Z(t), if

only X0

K0≥ Z0 and the function Z(t) satisfy the relations Z(t0) = Z0

and Ż
K
≤ F (Z, t) for t > t0. This estimate must only be true for

positive solutions of the positive systems from the classes M1 and
M2 with respect to K0 and K.

Let V (x, t) be an operator continuously mapping some neighbour-
hood D of the point x = 0 ∈ X for t ≥ t0 into the space E . If the
expression V (x, t) and its generalized derivative along the trajecto-
ries of the system (5.6.1) for x ∈ D and t ≥ θ satisfy the relation

DtV (x, t)|(5.6.1)
K
≤ F (V (x, t), t), (5.6.3)

then the system (5.6.2) of the class M is an upper comparison system,
i.e.

V (x0, t0)
K0≤ X0 =⇒ V (x(t), t)

K
≤ X(t), t > t0. (5.6.4)

In (5.6.3) the derivative along the trajectories of the system (5.6.1)
can be determined in the form

DtV (x, t)|(5.6.1) = lim sup
h→0+

1

h
[V (x+ hf(x, t), t+ h) − V (x, t)] .
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The positive system (5.6.2) of the class M1 with respect to K0

and K under the condition (5.6.3) is also an upper comparison system
for the system (5.6.1). If the operator V (x, t) is everywhere positive,
then we have an upper comparison system of the class M2.

Similarly over the classes of systems M, M1 and M2 lower com-
parison systems (5.6.2) are determined for the system (5.6.1) by sub-
stituting all the cone inequalities in (5.6.3) and (5.6.4) by the opposite
ones.

If we require that in (5.6.3) the following equality

DtV (x, t)|(5.6.1) = F (V (x, t), t), (5.6.5)

must hold true, then from definition of monotonicity of the system
(5.6.2) obtain

X10

K0≤ V (x0, t0)
K0≤ X20 =⇒ X1(t)

K
≤ V (x(t), t)

K
≤ X2(t), (5.6.6)

where X1(t) and X2(t) are some solutions of the system (5.6.2) for
t ≥ t0 with the initial conditions X1(t0) = X10 and X2(t0) = X20.
It means that the relation (5.6.5) determines the class of monotone
systems (5.6.2) acting simultaneously as the lower and upper com-
parison systems for the system (5.6.1).

The estimates (5.6.4) and (5.6.6) can be used for the comparison
of dynamic properties of the systems (5.6.1) and (5.6.2), and for
the construction of the attraction domain in the phase space of the
system (5.6.1). For example, if the operator V is selected so that

the inequality V (x, t)
K
≤ 0 is only possible for x = 0, then under the

conditions (5.6.4) X(t) → 0 implies x(t) → 0, t→ ∞.

In the space E consider two systems

Ẋ1 = F1(X1, t), X1 ∈ E , t ≥ θ, (5.6.7)

Ẋ2 = F2(X2, t), X2 ∈ E , t ≥ θ, (5.6.8)

of the class M and M respectively. If for x ∈ D and t ≥ θ

F1(V (x, t), t)
K
≤ DtV (x, t)|(5.6.1)

K
≤ F2(V (x, t), t), (5.6.9)
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then the solution of the initial system (5.6.1) satisfies the estimate
(5.6.6), where X1(t) and X2(t) are the solutions of the corresponding
systems (5.6.7) and (5.6.8).

We formulate the main statement on stability of solutions of
the system (5.6.1), using the comparison systems (5.6.2), (5.6.7),
and (5.6.8). Suppose that the identities f(0, t) ≡ 0 and
F (0, t) ≡ F1(0, t) ≡ F2(0, t) ≡ 0 are true and the operator V has
the additional properties

V (0, t) ≡ 0, ‖V (x, t)‖ ≥ v(x) > 0, x 6= 0, t ≥ θ, (5.6.10)

where v(x) ≥ 0 is a continuous function such that v(0) = 0 and
v(x) ≤ v(y) =⇒ ‖x‖ ≤ ‖y‖.

Theorem 5.6.1 Let the operator V satisfy the relations (5.6.9)
and (5.6.10), F1 ∈ F1 and F2 ∈ F1. Then the solution x ≡ 0 of the
system (5.6.1) is stable (asymptotically stable) by Lyapunov, if the
solution X1 ≡ 0 of the system (5.6.7) is stable (asymptotically stable)
from −K0 into −K and the solution X2 ≡ 0 of the system (5.6.8) is
stable (asymptotically stable) from K0 into K.

Proof. Since the cone K0 is reproducing and has the nonflattened-
ness property, then

−X0
−

K0≤ V (x0, t0) = X0
+ −X0

−

K0≤ X0
+, ‖X0

±‖ ≤ γ‖V (x0, t0)‖,

where X0
± ∈ K0, γ > 0 is a universal constant.

Let X1(t) and X2(t) be solutions of the systems (5.6.7) and (5.6.8)
with the initial conditions X1(t0) = −X0

− and X2(t0) = X0
+. Since

F1 ∈ F1 and F2 ∈ F1, then X1(t) ∈ −K and X2(t) ∈ K for t ≥ t0.
Taking into consideration (5.6.6) and the normality of the cone K,
obtain the inequality

‖V (x(t), t)‖ ≤ ν1 ‖X1(t)‖ + ν2 ‖X2(t)‖, t ≥ t0,

where ν1 > 0 and ν2 > 0 are universal constants.
From the continuity of the function V (x, t) and the conditions

(5.6.10) it follows that for any ε > 0 there exists δ0 > 0 such that
‖x(t)‖ ≤ ε, as soon as ‖V (x(t), t)‖ ≤ δ0. Use the properties of sta-
bility from −K0 into −K and from K0 into K of zero solutions of the
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systems (5.6.7) and (5.6.8) respectively. Select δ1 > 0 and δ2 > 0 so
that from ‖X0

−‖ ≤ δ1 and ‖X0
+‖ ≤ δ2 the respective inequalities

‖X1(t)‖ ≤ δ0/(2ν1), ‖X2(t)‖ ≤ δ0/(2ν2), t ≥ t0

follow.
Finally, select δ > 0 so that ‖x0‖ ≤ δ implies the inequality

‖V (x0, t0)‖ ≤ min{δ1, δ2}/γ. Then, taking into account the above
reasoning, obtain the inequality ‖x(t)‖ ≤ ε for t > t0, i.e. the zero
solution of the system (5.6.1) is stable by Lyapunov. ‖x(t)‖ → 0, if
‖X1(t)‖ → 0 and ‖X2(t)‖ → 0 while t→ ∞.

The theorem is proved.

The stability of the zero solution of the system (5.6.1) can be
analyzed, basing on construction of upper comparison systems only,
under additional limitations on the operator V .

Theorem 5.6.2 Let the operator V satisfy the relations (5.6.3)

and (5.6.10), and F ∈ F2 and V (x, t)
K
≥ 0 for x ∈ D and t ≥ θ.

Then the solution x ≡ 0 of the system (5.6.1) is stable (asymptoticall
stable) by Lyapunov, if the solution X ≡ 0 of the system (5.6.2) is
stable (asymptotically stable) from K0 into K.

The proof of this proposition is similar to the proof of Theorem
5.6.1.

Remark 5.6.1 The upper comparison systems in Theorems 5.5.2,
5.6.1, and 5.6.2 must be positive. Therefore the conditions of sta-
bility (asymptotic stability) from K0 into K of the zero solutions of
these systems can be replaced by the requirement of their stability
(asymptotic stability) by Lyapunov. Similarly, the conditions of sta-
bility (asymptotic stability) from −K0 into −K of the zero solutions
of the lower comparison systems in Theorems 5.5.2 and 5.6.1 can be
replaced by the requirement of their stability (asymptotic stability)
by Lyapunov. At the construction of positive or monotone upper
comparison systems (5.6.2) the operator V can be selected from the
class of everywhere positive operators. The statement of Theorem

5.6.2 holds true if instead of the condition V (x, t)
K
≥ 0 we require

that for some ϕ0 ∈ K∗ the milder restriction

ϕ0(V (x, t)) > 0, x 6= 0 ∈ D, t ≥ θ.
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must be true. Theorem 5.6.2 is also true if instead of the requirement
F ∈ F2 we use the monotonicity of the system (5.6.2) in the cone
K0. At that the relation (5.6.5) must hold true.

Example 5.6.1 Consider the differential system

ẋ = g(V (x), t) ⊙ x, x ∈ Rn, (5.6.11)

where g is some vector-function, V (x) = x⊙x
K
≥ 0, K ⊂ Rn is a cone

of nonnegative vectors, and ⊙ is an elementwise Schur product. The
derivative of V (x) along trajectories of the system (5.6.11) is equal
to 2g(V (x), t) ⊙ V (x), and we have the comparison system

Ẋ = 2 g(X, t) ⊙X, X ∈ Rn. (5.6.12)

The system (5.6.12) is positive with respect to the cone K. If the
vector-function g satisfies Wazewski’s condition (5.2.16), then the
system (5.6.12) is monotone in K and can be used in Theorem 5.6.2.
For the solutions of the systems (5.6.11) and (5.6.12) the estimate

|x0|
K
≤
√
X0 =⇒ |x(t)|

K
≤
√
X(t), t > t0,

holds true, where the operations of module and root of vector are exe-
cuted elementwise. The stability (asymptotic stability) in K of the
solution X ≡ 0 of the system (5.6.12) implies the stability (asymp-
totic stability) by Lyapunov of the solution x ≡ 0 of the system
(5.6.11).

Example 5.6.2 Consider the differential system

ẋ = A(V (x), t) x, x ∈ Rn, t ≥ θ, (5.6.13)

where A is some operator, and V (x) = xxT ≥ 0. Calculating the
derivative of V (x) along trajectories of the system (5.6.13), based on
the relation (5.6.5) obtain the matrix equation

Ẋ = A(X, t)X +X AT (X, t), X = XT ∈ Rn×n.

Let A(X, t) = −A(t) +XB(X, t). Then this equation reduces to
the form

Ẋ +A(t)X +XAT (t) = XR(X, t)X, (5.6.14)
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where R(X, t) = B(X, t)+BT (X, t). If the operator R(X, t) is mono-
tone with respect to the cone of symmetric nonnegative definite ma-
trices K, then the equation (5.6.14) can be used as an upper com-
parison system in Theorem 5.6.2 for the initial system (5.6.1). Each
solution x(t) of the system (5.6.13) satisfies the estimate

0 ≤ x0 x
T
0 ≤ X0 =⇒ 0 ≤ x(t)xT (t) ≤ X(t),

where X(t) ≥ 0 is a solution of the equation (5.6.14), t ≥ t0. The
stability (asymptotic stability) in K of the solution X ≡ 0 of the
equation (5.6.14) implies the stability (asymptotic stability) by Lya-
punov of the solution x ≡ 0 of the system (5.6.13).

Studying the system (5.6.2) one can use the two-sided estimates of
its right-hand side of the form (5.5.3) or (5.5.10) and the respective
comparison systems constructed in the same space E . For example, if
the estimate (5.5.10) is obtained, then the system (5.5.11) ((5.5.12))
for F ∈ F1 (F ∈ F1) is the lower (upper) comparison system for the
system (5.6.2). The transformation of the phase space is not applied.
The statement of Theorem 5.5.2 for these systems can be obtained
as a corollary of Theorem 5.6.1, assuming V (X, t) ≡ X.

The lower and upper comparison systems

Ẋ1 = F1(X1, t), Ẋ2 = F2(X2, t)

can be constructed in different partially ordered spaces E1 and E2.
The properties of the respective operators V1(x, t) and V2(x, t), as
well as the ordering relationship determined by the selected cones in
the relation

V1(x(t), t)
K1≥ X1(t), V2(x(t), t)

K2≤ X2(t), t ≥ t0,

should be coordinated with the purpose of the study of certain char-
acteristics of the initial system (5.6.1). For example, it can be re-

quired that the conditions V1(x, t)
K1≥ 0 and V2(x, t)

K2≤ 0 must hold
true simultaneously for x = 0 only. In this case it should be ex-
pected that x(t) → 0 as t → ∞ if X1(t) → 0 and X2(t) → 0, where
X1(t)(X2(t)) is a solution of the lower (upper) comparison system.
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If the operators V1(x, t) and V2(x, t) coincide then this property fol-
lows from the lemma on two policemen in a partially ordered space.
Note that if the requirement of the uniqueness of solutions of lower
and upper comparison systems does not hold true, then instead of
X1(t) and X2(t) in the above reasoning one should consider respec-
tively the minimal and maximal solutions of the given systems with
respect to the selected cones K0 and K.

5.7 Dynamics of Systems with Respect to Variable

Cone

The described methods of research of dynamic properties of differen-
tial and difference systems are based on the estimation and compar-
ison of their states with respect to normal reproducing cones K0 and
K. The similar and more general results are established by using the
sets Kt ⊂ E , t ≥ t0 ≥ θ, changed in accordance with the given law.
As Kt for each t one can use, e.g., some cone, polyhedron, etc.

Kt is called an invariant set of the system (5.2.1), if for any t0 ≥ θ
the inclusion Ω(t, t0)K0 ⊆ Kt holds true, where Kt0 = K0, t ≥ t0. If
the systems(5.2.1) have an invariant cone Kt, then it is positive with

respect to Kt. The positivity of systems means that X(t)
Kt≥ 0 for

t ≥ t0 as soon as X0

K0≥ 0 and t0 ≥ θ. The system (5.2.1) is called
monotone with respect to the cone Kt, if for any t0 ≥ θ

X10

K0≤ X20 =⇒ X1(t)
Kt≤ X2(t), t > t0, (5.7.1)

where Xk(t) = Ω(t, t0)Xk0, k = 1, 2. For the classes of positive and
monotone systems, as well as for the systems that have the prop-
erty (5.7.1) under the additional requirements X20 ∈ K0, X10 ∈ K0,
X10 ∈ −K0 and X20 ∈ −K0, as before, use the respective notation
M0, M, M+

1 , M+
2 , M−

1 and M−
2 . A system of the class M+

2 (M−
2 )

is monotone in the cone Kt (−Kt).
The state X ≡ 0 of the system (5.2.1) is stable in Kt, if for any

ε > 0 and t0 ≥ θ it is possible to find such δ > 0 that X0 ∈ Sδ(K0)
implies X(t) ∈ Sε(Kt) at t > t0, where

Sε(Kt) = {X ∈ Kt : ‖X‖ ≤ ε}.
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If for some δ0 > 0 from X0 ∈ Sδ0(K0) follows ‖X(t)‖ → 0 while
t → ∞, then the state X ≡ 0 of the system is asymptotically stable
in Kt.

If the system (5.2.1) is positive with respect to Kt and its state
X ≡ 0 is stable (asymptotically stable) by Lyapunov, then it is stable
(asymptotically stable) in Kt.

For the differential system (5.6.2) and the given cone Kt define
the classes of operator-functions F ∈ F0 and F ∈ F satisfying the
respective conditions

X
Kt≥ 0, ϕ(X) = 0 =⇒ ϕ (F (X, t)) ≥ 0, (5.7.2)

X
Kt≥ Y, ϕ(X − Y ) = 0 =⇒ ϕ (F (X, t) − F (Y, t)) ≥ 0, (5.7.3)

where ϕ ∈ K∗
t , t ≥ θ. We will also define the families of operator-

functions F+
1 , F+

2 , F−
1 and F−

2 that have the property (5.7.3) un-
der the additional requirements X ∈ Kt, Y ∈ Kt, Y ∈ −Kt, and
X ∈ −Kt respectively. The families F0, F , F±

1 and F±
2 are wedges,

and F ⊆ F±
1 ⊆ F±

2 .

In problems of robust stability and comparison of system we will
use the families of operator-functions F and F determined by the
respective conditions

Ẋ = F (X, t), Ż
Kt≤ F (Z, t), X0

K0≥ Z0, =⇒ X(t)
Kt≥ Z(t), (5.7.4)

Ẋ = F (X, t), Ż
Kt≥ F (Z, t), X0

K0≤ Z0, =⇒ X(t)
Kt≤ Z(t). (5.7.5)

These conditions must hold true for t ≥ t0 and any initial point of
time t0 ≥ θ.

The condition (5.7.4) under the additional requirement X0 ∈ K0

(Z0 ∈ K0) determines some family of operator-functions F ∈ F1

(F ∈ F2), and F ⊆ F1 ⊆ F2. Similarly, the family F1 (F2) is
determined by the condition (5.7.5) for X0 ∈ −K0 (Z0 ∈ −K0), and
F ⊆ F1 ⊆ F2. The families F , Fk, F and Fk describe the respective
classes of systems M, Mk, M, and Mk of the form (5.6.2) (k = 1, 2).

Formulate analogues of Lemmas 5.2.4 and 5.5.2, using the variable
cone Kt.
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Lemma 5.7.1 Let Kt be a solid cone with the property

Kt ⊇ Kτ , t > τ ≥ θ. (5.7.6)

Then the system (5.6.2) is positive (monotone) with respect to Kt, if
F ∈ F0 (F ∈ F).

Lemma 5.7.2 Under the conditions of Lemma 5.7.1 the inclusion
F ⊆ F ∩ F holds true.

The positive system (5.6.2) with respect to the solid cone Kt (−Kt)
belongs to the class M+

k (M−
k ) if F ∈ F+

k (F ∈ F−
k ), k = 1, 2. If the

right-hand side of the system (5.6.2) is representable in the form

F (X, t) = αF1(X, t) + βF2(X, t), α ≥ 0, β ≥ 0,

and F1, F2 ∈ F0 (F1, F2 ∈ F), then under the conditions of Lemma
5.7.1 this system is positive (monotone) with respect to Kt.

Let Kt be a normal cone with a bounded normality constant
νt ≤ ν < ∞, and for any t0 ≥ θ the cone K0 is reproducing. We
will also suppose that the cone has the following property:

Kt ⊆ Kτ or Kt ⊇ Kτ , ∀t, τ ≥ θ. (5.7.7)

Show that at the study of the conditions of stability in the cone
and the stability by Lyapunov of the zero state of the system (5.2.1)
one can use the following properties of derivatives:

X0

K0≥ 0 =⇒ Ẋ(t)
Kt≤ 0, t > t0, (5.7.8)

X0

K0≤ 0 =⇒ Ẋ(t)
Kt≥ 0, t > t0. (5.7.9)

Lemma 5.7.3 The state X ≡ 0 of the positive system (5.2.1) with
respect to Kt (−Kt), having the property (5.7.8) ((5.7.9)), is stable
in Kt (−Kt).

Now we formulate analogues of Theorems 5.4.2, 5.4.3, 5.5.2, 5.6.1,
and 5.6.2.

Theorem 5.7.1 The state X ≡ 0 of the system (5.2.1) belong-
ing to the classes M+

1 and M−
1 is stable (asymptotically stable) by
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Lyapunov if and only if it is stable (asymptotically stable) in Kt and
−Kt.

Note that under the conditions of Theorem 5.7.1 the system
(5.2.1) must be positive with respect to the cones ±Kt. This fol-
lows from the assumption Ω(t, t0) 0 ≡ 0 and the belonging of the
operator Ω(t, t0) to the classes M±

1 .

Corollary 5.7.1 If the system (5.2.1) belongs to the classes M+
1

and M−
1 , in particular, if it is monotone with respect to Kt, then

under the conditions (5.7.8) and (5.7.9) its state X ≡ 0 is stable by
Lyapunov.

Corollary 5.7.2 If the evolutionary operator W (t, t0) of the dif-
ferential system (5.3.1) satisfies the relations

W (t, t0)K0 ⊆ Kt, M(t)W (t, t0)K0 ⊆ Kt, t > t0,

then this system is stable by Lyapunov.

Theorem 5.7.2 If F ∈ F1, F ∈ F1 and the zero solutions of
the systems (5.5.11) and (5.5.12) are stable (asymptotically stable)
respectively in −Kt and Kt, then the zero solution of each system
(5.5.9), for which the following relations

F (X, t)
Kt≤ F (X, t)

Kt≤ F (X, t), X ∈ E , t ≥ θ,

hold true, is stable (asymptotically stable) by Lyapunov.

Theorem 5.7.3 Let F1 ∈ F1, F2 ∈ F1 and let the operator
V (x, t) for x ∈ D and t ≥ θ satisfy the relations (5.6.10) and

F1(V (x, t), t)
Kt≤ DtV (x, t)|(5.6.1)

Kt≤ F2(V (x, t), t).

Then the zero solution of the system (5.6.1) is stable (asymptotically
stable) by Lyapunov if the zero solutions of the systems (5.6.7) and
(5.6.8) are stable (asymptotically stable) respectively in −Kt and Kt.

Theorem 5.7.4 Let F ∈ F2 and the operator V (x, t) for x ∈ D
and t ≥ θ satisfy the relations (5.6.10) and

DtV (x, t)|(5.6.1)
Kt≤ F (V (x, t), t), V (x, t)

Kt≥ 0.
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Then the zero solution of the system (5.6.1) is stable (asymptotically
stable) by Lyapunov if the zero solution of the system (5.6.2) is stable
(asymptotically stable) in Kt.

The proof of the above propositions is made in the same way as
in the case of a constant cone in consideration of the supplementary
assumptions with respect to the cone Kt.

Note that in Theorems 5.7.2 – 5.7.4 the property (5.7.7) of the
cone Kt is not used, and the conditions of stability (asymptotic stabil-
ity) in −Kt and Kt of the zero solutions of respectively the lower and
upper comparison systems should be replaced by the requirement of
stability (asymptotic stability) by Lyapunov of these solutions.

In the phase space E consider the sets

Kt = {X : R(t)X ∈ K}, K̂t = {R(t)X : X ∈ K} = R(t)K,

where K is a given cone, R(t) a linear operator, t ≥ θ. These sets are
wedges, and kerR(t) = {X : R(t)X = 0} coincides with the blade of
the wedge Kt.

Suppose that kerR(t) ≡ {0} and the cone K is normal. Then Kt

is a normal cone if the following inequalities

r−(t) ‖X‖ ≤ ‖R(t)X‖ ≤ r+(t) ‖X‖, X ∈ Kt, (5.7.10)

where r±(t) > 0 are some functions independent of X, hold true. In
addition, its normality constant must not exceed νr+(t)/r−(t), where
ν is a normality constant of K. If similar inequalities hold true for
X ∈ K, then the cone K̂t is normal. In the case of Euclidean norm
in Rn, the inequalities (5.7.10) hold true if for instance r2+(t)(r2−(t))
is maximal (minimal) eigenvalue of the matrix RT (t)R(t) > 0.

Let there exist a time derivative Ṙ(t) and an inverse operator
R−1(t) for t ≥ θ. Assuming Y (t) = R(t)X(t), transform the system
(5.6.2) to the form

Ẏ +N(t)Y = G(Y, t), t ≥ θ, (5.7.11)

where N(t) = −Ṙ(t)R−1(t), G(Y, t) = R(t)F
(
R−1(t)Y, t

)
. Then

the positivity conditions of the system (5.6.2) with respect to Kt are
equivalent to the positivity with respect to the constant cone K of
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the system (5.7.11). The system (5.7.11) is positive with respect
to K, if such is the linear system Ż + N(t)Z = 0 and the inclusion
R(t)F (R−1(t)K, t) ⊆ K holds true. The condition Kτ ⊆ Kt is equiva-
lent to the inclusion WN (t, τ)K ⊆ K, where WN (t, τ) = R(t)R−1(τ),
t ≥ τ .

Similarly, the positivity of the system (5.6.2) with respect to K̂t

is equivalent to positivity with respect to the constant cone K of
some system obtained from (5.6.2) with the use of the transform
X(t) = R(t)Y (t).

The above reasoning can be useful in the study of the positivity
conditions with respect to variable cones and the stability of the
solutions of linear and nonlinear systems with the use of Lemmas
5.7.1 – 5.7.3 and Theorems 5.7.1 – 5.7.4.

Example 5.7.1 Consider the linear system (5.3.1) and the set
Kt = {X : R(t)X ∈ K} assuming

M(t) =

[
A(t) b(t)
cT (t) d(t)

]
, K =

{
X : X =

[
x
u

]
, ‖x‖ ≤ u

}
,

where K is a circular cone. If detR(t) 6= 0, then Kt is an ellipsoidal
cone that can be represented as

Kt = {X ∈ Rn+1 : XTQ(t)X ≥ 0, XTQ(t)p(t) ≥ 0},

where the symmetric matrix Q(t) with the inertia i(Q(t)) ≡ {1, n, 0}
and the vector p(t) satisfy the conditions

Q(t) = RT (t)∆R(t), ∆ =

[
−I 0
0 1

]
, pT (t)Q(t)p(t) = ω(t) > 0.

Note, that (see Section 4.2)

S(t) = Q(t) − 1

ω(t)
Q(t)p(t)pT (t)QT (t) ≤ 0, i(S(t)) ≡ {0, n, 1},

and p(t) may be an eigenvector of Q(t) corresponding to unique pos-
itive eigenvalue.

The transformed system (5.7.11) has the form

Ẏ + L(t)Y = 0, L(t) = R(t)M(t)R−1(t) − Ṙ(t)R−1(t).
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It is positive with respect to K if and only if there is γ(t) ∈ R1 such
that

LT (t)∆ + ∆L(t) + γ(t)∆ ≤ 0.

We present the criterion for positivity of the system (5.3.1) with
respect to Kt as the matrix inequality

Q̇ ≥MT (t)Q+QM(t) + γ(t)Q,

where γ(t) is some continuous function. Various sufficient conditions
for positivity of (5.3.1) with respect to Kt can be constructed (see
Example 5.2.4). For example, if

R(t) =

[
I 0
0 r(t)

]
, 0 < r(t) ≤ r0,

then one of such conditions has the form

1

2
λmin

(
A(t) +AT (t)

)
+
ṙ(t)

r(t)
≥ d(t) +

∥∥∥∥
b(t)

r(t)
− r(t)c(t)

∥∥∥∥ .

In that case (5.7.6) hold true if r(t) is a nondecreasing function and
in (5.7.10) one can put

r−(t) = min{r(t), 1}, r+(t) = min{
√

2 r(t),max{r(t), 1}}.

In particular, the normality constant of Kt does not exceed
√

2 if
r0 = 1/

√
2.

5.8 Notes and References

5.1 The main concepts and facts from the theory of operators in a
partially ordered space are described in Kantorovich, Vulih, Pinsker
[1], Krein, Rutman [1], Krasnoselskii, Lifschits, Sobolev [1], Glazman,
Lyubich [1], and others. Classes of operators of the form (5.1.2) were
studied in Schneider [1], Mazko [18] and Korenevskii, Mazko [1]).

5.2 Positivity of the systems in control problems were used in
Krasnoselskii, Lifschits, Sobolev [1], Berman, Neumann, Stern [1],
Angeli, Sontag [1], Farina, Rinaldi [1], Bru, Coll, Romero, Sánchez
[1], and others. In the works of Hirsch, Smith [1], Farina, Rinaldi [1],
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Mazko [31–37] the classes of positive and monotone dynamic systems
were determined in terms of their solutions with respect to a given
cone.

In the proof of Lemma 5.2.1 the known procedure of representa-
tion of an evolutionary operator of a system in the form of a multi-
plicative integral was used (see Daletsky, Krein [1]).

The positivity conditions for an evolutionary operator of the sys-
tem (5.2.7) with respect to a cone of nonnegative vectors are de-
termined in Krasnoselskii, Lifschits, Sobolev [1]. The conditions of
monotonicity of the shift operator applied along the trajectories of
the system (5.2.13) with respect to a cone of nonnegative vectors are
found in Krasnoselskii [1].

Some properties of the Minkovsky cone are described in Glazman,
Lyubich [1]. The condition of invariance of this cone for linear differ-
ential system in the form of a matrix inequality is obtained in Stern,
Wolkowicz [1].

5.3 The known methods of analysis of stability of the systems of
the form (5.3.1) can be found in Barbashin [1], Demidovich [1], Gru-
jich, Martynyuk, Ribbens–Pavella [1], Kuntsevich, Lychak [1], Lak-
shmikantham, Leela, Martynyuk [1], Matrosov, Anapolskii, Vassilyev
[1], Martynyuk [1], and others.

The proofs of theorems of Krein–Bonsall–Karlin on the spectral
radius of a positive operator and the theorem on a two-sided esti-
mate of positively invertible operators can be found in Krasnoselskii,
Lifshits, Sobolev [1].

The theory of one-parameter positive semigroups is described in
Clement, Heijmans, Angenent, C. van Duijn, B. de Pagter [1].

The statements of Theorems 5.3.1 – 5.3.3 are proved in Mazko [30–
32]. The first proposition of Theorem 5.3.1 in the case of a solid cone
can be also proved on the basis of the results of Milshtein [1]. The
demonstrative example to Theorem 5.3.3 is taken from Demidovich
[1].

5.4 The stability conditions in a cone of nonlinear Wazewski equa-
tions of the type of Theorem 5.4.1 reduce to the solvability of some
systems of algebraic inequalities determined by a given cone in the
space Rn and the right-hand sides of these equations (see, e.g., Mar-
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tynyuk, Obolenskii [1,2]). The described approach to the stability
analysis of positive and monotone dynamic systems with respect to
two cones is obtained in Mazko [33–35].

5.5 The stability conditions of some systems of polynomials are
described in Zhabko, Kharitonov [1], Soh, Berger, Dabke [1]. The
stability conditions of families of linear and nonlinear systems deter-
mined by prescribed cones are formulated in Mazko [32–36].

5.6 The methods for construction of comparison systems satisfy-
ing the conditions of theorems of Chaplygin and Wazewski type are
described in Matrosov, Anapolskii, Vassilyev [1], Lakshmikantham,
Leela, Martynyuk [1], Postnikov, Sabaev [1], Lakshmikantham, Leela
[1], Martynyuk [1, 2], and others.

The problem of comparison of the systems (5.6.1) and (5.6.2) gets
complicated without the requirement for the uniqueness of solutions.
In Matrosov, Anapolskii, Vassilyev [1] and Lakshmikantham, Leela,
Martynyuk [1] the comparison systems of the form (5.6.2) in a par-
tially ordered space Rn are considered, using the concepts of a maxi-
mal and minimal solutions, as well as generalized Dini derivatives of a
vector-function V (x, t) on the solutions of the initial system (5.6.1).
Here V (x, t) must be locally the Lipschitz function of x, and the
vector-function F (X, t) must be quasimonotone nondecreasing with
respect to X in the cone K ⊂ Rn. This limitation on F provides the
monotonicity property to the system (5.6.2) and its belonging to the
classes F±, and in the case of a cone of nonnegative vectors it adds
up to the Wazewski’s conditions (5.2.16).

The lemma on two policemen in a partially ordered space is for-
mulated in Krasnoselskii, Lifshits, Sobolev [1].

5.7 The study of positive and monotone dynamic systems with
respect to a variable cone and some its applications in stability prob-
lems are described in Mazko [36, 37]. In Example 5.7.1, we use some
results by Aliluyko and Mazko [1]. Comparison technique is deve-
loped for a set of dynamical systems (see Aliluyko and Mazko [2]).
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APPENDIX

6.1 Representations of Linear Operators in Matrix

Space

During the study and the use of matrix equations of the general
form an important role is played by different representations of linear
operators M : Cn×m → Cp×q, in particular,

MX =

k∑

i=1

s∑

j=1

cijAiXBj , (6.1.1)

MX =
n∑

t=1

m∑

τ=1

xtτHtτ , (6.1.2)

MX =

ξ∑

t=1

ζ∑

τ=1

(Vtτ ,X)Utτ , (6.1.3)

MX =




(G11,X) . . . (G1q,X)
· · · · · · · · ·

(Gp1,X) . . . (Gpq,X)


 , (6.1.4)

where (P,Q)
∆
= tr(P ∗Q) is a scalar product of the matrices P and

Q. The properties of the operator (6.1.1) are characterized by the
matrix families A, B and the matrix of weighting coefficients C. The
operators (6.1.2) and (6.1.4) define the block matrices

H =



H11 . . . H1m

· · · · · · · · ·
Hn1 . . . Hnm


 , G =



G11 . . . G1q

· · · · · · · · ·
Gp1 . . . Gpq


 .
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The expression (6.1.3) is a product of operators of the type (6.1.2)
and (6.1.4).

If the operatorM is represented in the form (6.1.2) or (6.1.4), then
the construction of solvability conditions of the equation MX = Y
adds up to the determination of linearly independent blocks of the
respective matrices H or G. Thus, in the case nm = pq, the operator
(6.1.2) ( (6.1.4) ) is invertible if and only if all the blocks Htτ (Gtτ )
are linearly independent.

Let the operator M be given in a standard form (6.1.1). Take the
rows and columns of matrix coefficients

Ai = [ai∗1, . . . , a
i
∗n] =



ai1∗
...
aip∗


 , Bj = [bj∗1, . . . , b

j
∗q] =



bj1∗
...

bjm∗


 .

Then in (6.1.2) and (6.1.4) one can assume

H =



a1
∗1 . . . ak∗1
· · · · · · · · ·
a1
∗n . . . ak∗n


C



b11∗ . . . b1m∗

· · · · · · · · ·
bs1∗ . . . bsm∗


 ,

G∗ =



b1∗1 . . . bs∗1
· · · · · · · · ·
b1∗q . . . bs∗q


CT



a1

1∗ . . . a1
p∗

· · · · · · · · ·
ak1∗ . . . akp∗


 .

Here the inequalities

rankH ≤ rankC, rankG ≤ rankC,

hold true. The equalities here are achieved if and only if the sets A
and B consist of linearly independent matrices. Conversely, proceed-
ing from the representations (6.1.2) and (6.1.4) of the operator M , it
is possible to construct expressions of the type (6.1.1). Parameters
A, B, and C are determined ambiguously.

For the determination of a conjugate operator M∗: Cp×q → Cn×m

we use the relation (MX,Y ) = (X,M∗Y ). If the operator M is given
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in the form (6.1.1), then, taking into consideration the permutability
of matrices within the operation tr we have

M∗Y =

k∑

i=1

s∑

j=1

cij A
∗
iY B

∗
j .

Consider the class of operators M : Hn → Hp preserving the
property of self-conjugacy of matrices. This property is peculiar
to operators described by the relations (6.1.1) – (6.1.4) under the
conditions A = B∗, C = C∗, H = H∗, V = V ∗, U = U∗, G = G∗.
The inequalities

i±(H) ≤ i±(C), i±(G) ≤ i±(C),

hold true which can be used for strengthening of Theorems 4.4.1 –
4.4.3 and 4.5.1 – 4.5.3. Thus, in Theorems 4.5.1 – 4.5.3 instead of the
relations i±(C) ≤ 1 and i+(C) = 1 one can use similar limitations
on the indices of inertia of the matrices H and G.

It can be determined that the linear independence of the matrices
A1, . . . , Ak is equivalent to the linear independence of the operator
family AiXA

∗
j , i, j = 1, k. Corresponding to an arbitrary basis in

the space Cp×n is some representation of the given operator M , in
particular

MX =

k∑

i,j=1

cij AiXA
∗
j ≡

n∑

t,τ=1

xtτHtτ , (6.1.5)

where

Htτ = ||hijtτ ||pi,j=1, hijtτ = [a
(1)
it , . . . , a

(k)
it ] C [a

(1)
jτ , . . . , a

(k)
jτ ]∗.

Here the relations MHn ⊆ Hp, C = C∗ and H = H∗ are equiv-
alent. If the matrices A1, . . . , Ak are linearly independent, then
i±(C) = i±(H).

Let Kn ⊂ Hn (K0
n ⊂ Kn) be a set of nonnegative (positive) def-

inite matrices of order n. The set Kn is a normal solid cone in the
space Hn (see Section 5.1). Choose the classes of positive, strictly
positive, strongly positive, and positively invertible operators of the
form (6.1.5), using the respective inclusions

MKn ⊂ Kp, MK0
n ⊂ K0

p, MKn\{0} ⊂ K0
p, Kp ⊂MKn.
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Note that the operator M is positive if and only if the conjugate
operator M∗ is positive. Similarly, the properties of strict and strong
positivity must be true or not true for the operators M and M∗. For
the positive operator M to be strictly positive it is necessary and
sufficient that for some matrix X0 ≥ 0 the inequality MX0 > 0
holds true.

A strictly positive operator can be noninvertible. This fact is
confirmed by the following example:

MX = X +AXA∗, A =

[
a 0
0 −1/ā

]
, a 6= 0.

Moreover, the linear operator MX = (trX)L, where L > 0, is
strictly positive but noninvertible.

Lemma 6.1.1 If AA∗ ≥ BB∗, then B = AC, where A ∈ Cn×k,
B ∈ ∈ Cn×s, C ∈ Ck×s. Here CC∗ ≤ Ik, if rankA = k. Conversely,
the inequality AA∗ ≥ BB∗ is a consequence of the relations B = AC
and CC∗ ≤ Ik.

Using Lemma 6.1.1, it can be found that in a cone of positive oper-
ators, operators of the type AXA∗ and AXTA∗ are extremal. Taking
into consideration Lemmas 4.4.1 – 4.4.5, formulate the properties of
the Schur operator.

Lemma 6.1.2 Let MX = Ω⊙X (Ω ∈ Hn) be the Schur operator,
then:

1) M is invertible ⇐⇒ ωij 6= 0 (∀i, j);

2) M is positive ⇐⇒ Ω ≥ 0;

3) M is strictly positive ⇐⇒ Ω ≥ 0, ωii > 0 (∀i);

4) M is not strongly positive for n > 1;

5) M is positively invertible if i+(Ω) = 1, ωii > 0 (∀i);

6) M is positively invertible ⇐⇒
∥∥∥∥

1

ωij

∥∥∥∥
n

1

≥ 0, ωij 6= 0 (∀i, j).
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Using the spectral expansion of the matrix H, obtain the repre-
sentation of the operator (6.1.5) with orthonormalized matrix coef-
ficients:

MX =

r∑

s=1

σsDsXD
∗
s , (6.1.6)

where σ1, . . . , σr are nonzero eigenvalues of the matrix H,

hijtτ =

r∑

s=1

σs d
(s)
it d

(s)
jτ , Ds = ||d(s)

it ||
p,n
i,t=1, (Ds,Dq) =

{
1, s = q,
0, s 6= q.

The class of positive operators of the type (6.1.6) can be defined
in terms of real matrices. Taking real and imaginary parts of the
matrices X = S + iK and Ds = Rs + iGs, obtain the following
criterion. The operator (6.1.6) is positive if and only if

M̃X̃ =
r∑

s=1

σs D̃sX̃D̃
T
s ≥ 0, ∀X̃ ≥ 0,

where

X̃ =

[
S K

−K S

]
, D̃s =

[
Rs Gs

−Gs Rs

]
,

ST = S, KT = −K, s = 1, . . . , r.

This criterion follows from the equivalence of the matrix inequalities
X ≥ 0 and X̃ ≥ 0.

IfH ≥ 0, in particular C ≥ 0, then the operator (6.1.5) is positive.
However, the operator (6.1.5) can be positive even if i−(H) 6= 0
or i−(C) 6= 0. The simplest example of such an operator is the
transposition operator

XT =

n∑

t,τ=1

xtτ∆τt, ∆ =




∆11 . . . ∆n1

· · · · · · · · ·
∆1n . . . ∆nn


 , i±(∆) =

n(n± 1)

2
,

where each block ∆τt has a single nonzero (τ, t)-entry equal to 1.
It can be proved that if one of the following conditions holds true

rank [A1x, . . . , Akx] = k, rank



z∗a1

∗1 . . . z∗ak∗1
· · · · · · · · ·
z∗a1

∗n . . . z∗ak∗n


 = k,



236 Appendix

where x ∈ Cn, z ∈ Cp are some vectors, the inequality C ≥ 0 is
equivalent to the positivity of the operator M . Similarly, if for some
x ∈ Cn or z ∈ Cp the corresponding condition

rank [D1x, . . . ,Drx] = r, rank



z∗d1

∗1 . . . z∗dr∗1
· · · · · · · · ·
z∗d1

∗n . . . z∗dr∗n


 = r,

holds true, then the positivity criterion of the operator M is the
inequality H ≥ 0.

If for any matrix X ≥ 0 of rank 1 the inequality MX ≥ 0 holds
true, then the operator M is positive. This proposition follows from
the linearity of the operator M and the spectral expansion of non-
negative definite matrices. Therefore the positivity of the operator
(6.1.5) can be determined in the form

Fz
∆
= ||z∗Htτz||n1 ≥ 0, ∀z ∈ Cp. (6.1.7)

The conditions of strict (strong) positivity are equivalent to the re-
lations Fz ≥ 0, Fz 6= 0, ∀z 6= 0 (Fz > 0,∀z 6= 0).

If the following expansion

Htτ = UtU
∗
τ + VτV

∗
t , t, τ = 1, . . . , n , (6.1.8)

holds true, then for any z ∈ Cp

Fz = ||z∗UtU∗
τ z||n1 + ||zTV tV

T
τ z||n1 ≥ 0.

Conversely, under the conditions (6.1.7) the blocks Htτ are repre-
sentable in the form (6.1.8). The last proposition can be proved
based on the relations

Fz = LzL
∗
z, ftτ = z∗Htτz ≡

∑

s

ltslτs , hijtτ =
∂2ftτ
∂zi∂zj

,

zT = [z1, . . . , zp], t, τ = 1, . . . , n, i, j = 1, . . . , p,

where lts are some functions of z and z, comprising the matrix Lz. In
particular, for each vector z 6= 0, as Lz one can select a (unique) Her-
mitian nonnegative definite matrix satisfying the equality Fz = L2

z

and representable in the form of a polynomial of Fz.
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Lemma 6.1.3 The operator (6.1.5) is positive if and only if blocks
of the matrix H are representable in the form (6.1.8).

Using the relations (6.1.6) – (6.1.8), one can obtain different al-
gebraic conditions of positivity of the operator M . For example,
consider the inequalities (6.1.7) and calculate the principal minors of
the matrix Fz , corresponding to the given sets of numbers of rows
and columns t:

µt(z) = w∗
z Φtwz, t = {t1, . . . , tν},

1 ≤ t1 < . . . < tν ≤ n, 1 ≤ ν ≤ n.

Here wz is a vector of order Cνp+ν−1, consisting of the products
zj1 . . . zjν , and Φt is a matrix determined by the expressions

Φt = ||φijt ||, φijt =
∑

ξ,η

det



hξ1η1t1t1 . . . hξ1ην

t1tν
· · · · · · · · ·
hξνη1tν t1 . . . hξνην

tν tν


 ,

ξ = {ξ1, . . . , ξν}, i = {i1, . . . , iν}, 1 ≤ i1 ≤ . . . ≤ iν ≤ p,

η = {η1, . . . , ην}, j = {j1, . . . , jν}, 1 ≤ j1 ≤ . . . ≤ jν ≤ p,

where the summation is made by all sets of indices ξ(η), coinciding
upon the ordering with i(j). The elements of the vector wz, as well
as the rows (columns) of the matrix Φt, corresponding to the sets of
indices i(j), are arranged in lexicographical order. From the above
relations, the algebraic conditions of the positivity of the operator
M follow:

Φt ≥ 0, t = {t1, . . . , tν}, 1 ≤ t1 < . . . < tν ≤ n, ν = 1, . . . , n.

From Lemma 6.1.3 and the relations (6.1.6) and (6.1.8) the general
representation of positive operators follows.

Theorem 6.1.1 The linear operator M is positive if and only if
it is representable in the form

MX =
∑

i

AiXA
∗
i +

∑

j

BjX
TB∗

j . (6.1.9)
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In the expansion (6.1.9) each summand is an extremal operator.
Therefore, in accordance with Theorem 6.1.1, positive operators are
representable in the form of a sum of their extremal minorants. In
the representation (6.1.9) the number of summands of the extremal
minorants can be decreased if some of them are linearly expressed
through the others, in particular, if the matrices Ai (or Bj ) are
linearly dependent.

We pass to the description of a class of positively invertible ope-
rators M : Hn → Hp. Since the cone Kn in the space Hn is repro-
ducing, then the rank of the positively invertible operator is equal
to p2 and hence p ≤ n. The operator MM∗ is invertible, and
M+ = M∗(MM∗)−1 is the right inverse operator of the positively
invertible operator M , i.e. MM+ = E.

Let the operator M be represented in the form

M
∆
= L− P = L(E − S), (6.1.10)

where L and P are given positively invertible and positive opera-
tors respectively. Then the operator S = L+P is positive, and the
spectral inequality ρ(S) < 1 is the criterion of the positive inverti-
bility of the operator E − S. From this inequality the conditions of
the positive invertibility of the initial operator (6.1.10) follow, and
M+ = (E − S)−1L+. In the case p = n the inverse proposition is
true.

Taking into consideration the structure of the positive operator
(6.1.9), take a subclass of positively invertible operators of the form
(6.1.10):

MX = M0X −M1X − . . .−MrX, (6.1.11)

where

MjX =

{
AjXA

∗
j , j ∈ J1,

AjX
TA∗

j , j ∈ J2,
,

Aj ∈ Cn×n, J1, and J2 are the subsets of indices, for which
J1 ∩ J2 = ∅, J1 ∪ J2 = {0, . . . , r}. The action of each operator
Mj in the space of n2 vectors is described by the matrix

Tj =





Aj ⊗ Āj , j ∈ J1,

(Aj ⊗ Āj)
n∑

t,τ=1
∆tτ ⊗ ∆τt, j ∈ J2.



Representations of Linear Operators in Matrix Space 239

Theorem 6.1.2 The linear operator (6.1.11) is positively inver-
tible if and only if the following relations hold true:

ρ(T ) < 1, T (λ) = λT0 − T1 − . . .− Tr, detA0 6= 0, (6.1.12)

where ρ(T ) is a spectral radius of the matrix pencil T (λ).

Let us give an example of a positively invertible operator not
representable in the form (6.1.11):

MX = 6A1XA
∗
1 +5A2XA

∗
2 −3A3XA

∗
3 ≡ S⊙X, M−1Y ≡W ⊙Y,

A1 =




1 0 0
0 1 0
0 0 2


 , A2 =




0 0 0
0 0 0
0 0 1


 , A3 =




0 0 0
0 1 0
0 0 3


 ,

S =




6 6 12
6 3 3
12 3 2


 , i+(S) = 2,

W =




1/6 1/6 1/12
1/6 1/3 1/3
1/12 1/3 1/2


 > 0.

According to Lemma 6.1.2, the operator M is positively invertible.
However, it is not representable in the form (6.1.11) due to the linear
independence of the matrix coefficients A1, A2, and A3.

It can be proved that operators representable in the form (6.1.11)
with linearly independent matrix coefficients A0, . . . , Ar are not pos-
itive. If an operator M is at the same time positive and positively
invertible, then it is an extremal operator of the type AXA∗ or
AXTA∗, where A is some matrix of full rank by column. The re-
lations (6.1.11), (6.1.12) determine some class of positively invertible
operators. The conditions (6.1.12) can be applied to the case p ≤ n
under the limitation rankA0 = p. The most general representation
of linear positively invertible operators has not been found yet.
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6.2 Linear Equations in Partially Ordered Space

Let the Banach space E be partially ordered by a normal reproducing
cone K. Consider the class of equations

MX
∆
= LX − PX = Y, (6.2.1)

where X,Y ∈ E , and L and P are linear operators satisfying the
condition PK ⊆ LK. In particular, suppose that the operator P is
positive and the operator L is positively invertible with respect to
K:

PK ⊆ K ⊆ LK. (6.2.2)

In wide assumptions, equations with linear operators, occurring
in applications, are described in the form (6.2.1), (6.2.2). Thus,
the matrix equations underlying the Lyapunov second method in
stability theory of linear differential, differential-difference, and some
stochastic systems are representable in the form (6.2.1). In this case
K is a cone of Hermitian nonnegative definite n× n matrices.

Define analogues of the concepts of rank, signature, and inertia of
Hermitian matrices for the elements of the space E with a reproducing
cone K.

Let Z ≥ 0 be an arbitrary element of the cone K. Let Z− (Z+)
denote a set of elements X ∈ K, for which there exists a number
α > 0 such that αX ≤ Z (αX ≥ Z). The set Z0 = Z+ ∩ Z−

generates an equivalence relation: X ∼ Y ⇐⇒ X,Y ∈ Z0. If Z > 0
is an internal element of the cone K, then Z− = K and Z+ = K0.
The cone K splits into disjoint classes of equivalent elements of the
type Z0. The class Z0 is called extreme if Z− = Z0

⋃{0}. If the
class Z0 is not extreme, then the set Z− contains nontrivial classes
different from Z0. For a given element Z select an arbitrary sequence
of classes according to the following rule:

Z0
0 = Z0, Z0

t ⊂ Z−
t−1\Z0

t−1, t = 1, 2, . . . . (6.2.3)

If for some step t an extreme class Z0
t = {0} is selected, then the

sequence (6.2.3) has a finite length t. The element Z has a finite rank
r = r(Z) if all sequences of the classes selected in accordance with
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(6.2.3) are finite, and their maximum allowable length equals r. The
cone K has order order n, if

max
Z∈K

r(Z) = n <∞.

Let Z ∈ E . If the cone K is reproducing, then there exists the
decomposition

Z = Z+ − Z−, Z+ ∈ K, Z− ∈ K. (6.2.4)

Let i+(Z) (i−(Z)) denote the least value of the rank r(Z+) (r(Z−))
which the components Z+ (Z−) can have in the decompositions of
the element Z of the type (6.2.4). The decomposition (6.2.4) is
called inertial, if r(Z+) = i+(Z) and r(Z−) = i−(Z). The num-
bers r(Z) = i+(Z) + i−(Z) and s(Z) = i+(Z) − i−(Z) determine
respectively the rank and the signature of the element Z. If n is the
order of the cone K, then the triple of numbers i+(Z), i−(Z), and
i0(Z) = n− r(Z) is the inertia i(Z) of the element Z.

The equivalence relation determined in the cone K is true for the
whole space E . The elements X and Y are equivalent if X+ ∼ Y+

and X− ∼ Y−, where X± and Y± are components of the inertial de-
compositions X and Y . Obviously, inertias of all elements equivalent
to each other coincide.

Note that a minimal decomposition of the form (6.2.4) for ele-
ments of space with a minihedral cone is inertial, and its compo-
nents are uniquely determined by supremum and infimum operations:
Z+ = sup(Z, 0), Z− = − inf(Z, 0). If K is a cone of nonnegative defi-
nite matrices, then the inertial decomposition of a Hermitian matrix
describes its inertia and is determined by congruent transformation
to diagonal form.

The introduced inertial characteristics and invariants of Hermi-
tian matrices have similar properties. In particular, if X ≤ Y ,
then i+(X) ≤ i+(Y ) and i−(X) ≥ i−(Y ). The latter inequali-
ties follow from the definition of the numbers i±(·) and the relation
X+ −X− = Y+ − Y−−Z, where Z ∈ K, X± (Y±) are components of
the inertial decomposition X(Y ). If X ≥ Y ≥ 0, then the relations
r(X) = r(Y ) and X ∼ Y are equivalent. For any X,Y ∈ E the
inequality r(X + Y ) ≤ r(X) + r(Y ) holds true.
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We will set out some properties of inertial characteristics deter-
mined for the solutions of the equation (6.2.1) and the elements of
the iterative process of the convergence method

X0 = G, LXt+1 = PXt + Y, t = 0, 1, . . . , (6.2.5)

where L and P are linear operators satisfying the conditions (6.2.2).
For any initial approximation G ∈ E the inequality

ρ(T ) < 1, (6.2.6)

where ρ(T ) is the spectral radius of the operator pencil
T (λ) = P − λL, ensures the convergence of the sequence (6.2.5)
to the unique solution X of the equation (6.2.1). If MG ≤ Y , then
this series monotone tends to X “from the bottom”:

X0 ≤ X1 ≤ . . . ≤ X.

Similarly, for MG ≥ Y we have the estimates “from the top”:

X0 ≥ X1 ≥ . . . ≥ X.

These statements follow from the assumption (6.2.2) and the known
results in the case of the identity operator L = E. We will formulate
more general statements.

Theorem 6.2.1 Let the initial parameters of the process (6.2.5)
satisfy the conditions

Y + T (α)G ≥ 0, Y − αY ∈ LK, (6.2.7)

where α > 0 is some real number. Then there exists a sequence of
positive numbers αt such that

α0X0 ≤ α1X1 ≤ . . . ≤ αtXt ≤ . . . . (6.2.8)

If
Y + T (β)G ≤ 0, βY − Y ∈ LK, (6.2.9)

where β > 0, then for some βt > 0 the following inequalities

β0X0 ≥ β1X1 ≥ . . . ≥ βtXt ≥ . . . (6.2.10)
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hold true.

Proof. Form a sequence of numbers αt satisfying the conditions

0 < α0 ≤ αα1, α2
t ≤ αt−1αt+1, t = 1, 2, . . . . (6.2.11)

In the case G 6∈ K require that the equality α0 = αα1 hold true.
If Xt+1 6∈ K for some t, then assume α2

t = αt−1αt+1. (6.2.7) and
(6.2.11) imply α0X0 ≤ α1X1. The last inequality is equivalent to
(6.2.7) if, e.g., the operator L is positively invertible and positive at
the same time.

Show that αt−1Xt−1 ≤ αtXt implies αtXt ≤ αt+1Xt+1. According
to (6.2.5), we have

L(αtXt+1 − αt−1Xt) = P (αtXt − αt−1Xt−1) + (αt − αt−1)Y.

If α < 1 (α > 1), then assume αt > αt−1, Y ∈ LK (αt ≤ αt−1,
−Y ∈ LK). If α = 1, then the second condition (6.2.7) is automati-
cally true irrespective of Y .

Taking into consideration the properties (6.2.2) of the operators
L, P and of the sequence (6.2.11), obtain

αt+1Xt+1 − αtXt ≥
αt
αt−1

(αtXt+1 − αt−1Xt) ≥ 0.

Hence, αtXt ≤ αt+1Xt+1, t = 0, 1, . . . .
Similarly, proceeding from (6.2.5), (6.2.9) and the sequence βt of

the form

β0 ≥ ββ1 > 0, β2
t ≥ βt−1βt+1, t = 1, 2, . . . , (6.2.12)

one can find the sequence of inequalities (6.2.10). While finding βt+1

in (6.2.12) a strict inequality is possible if Xt+1 ∈ K.
The theorem is proved.

Remark 6.2.1 All second-order minors of the infinite Hankel
matrices




α0 α1 α2 . . .
α1 α2 α3 . . .
α2 α3 α4 . . .
. . . . . . . . . . . .


 ,




β0 β1 β2 . . .
β1 β2 β3 . . .
β2 β3 β4 . . .
. . . . . . . . . . . .


 ,
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constructed according to (6.2.11) and (6.2.12) are respectively non-
negative and nonpositive. If α = 1 (β = 1), then in (6.2.8) ((6.2.10))
one can assume αt = 1 (βt = 1) for each t. Here there are no limita-
tions on Y . In the other cases Y ∈ LK or −Y ∈ LK.

Remark 6.2.2 If Y ∈ K, then as G in the conditions T (λ) an
arbitrary eigenvector of the operator pencil T (λ) can be chosen,
which corresponds to the eigenvalue α. Taking into consideration
the Krein–Rutman theorem on the spectral radius of a positive op-
erator, one can assume α = ρ(T ), G ∈ K. If in (6.2.8) and (6.2.11)
αt = 1/αt, then Xt+1 ≥ αXt, Xt ≥ αtG, t = 0, 1, . . . . In the case of
convergence of (6.2.6) while t → ∞ we have X ≥ 0. It means that
the operator M = L−P is positively invertible. Note that for α = 1
and Y = LG from (6.2.7) and (6.2.8) the estimate X ≥ G, PX ≥ 0
follows.

Corollary 6.2.1 Under the conditions (6.2.7) the signature of
elements of the process (6.2.5) does not decrease:

s(X0) ≤ s(X1) ≤ . . . ≤ s(Xt).

If its maximum value is achieved for the k-th iteration, then all the
elements Xt for t ≥ k have the same inertia. Similarly, the condi-
tions (6.2.9) ensure the sequence of inequalities

s(X0) ≥ s(X1) ≥ . . . ≥ s(Xt).

Upon attainment of the minimum value of the signature, the inertia
of the elements of the process (6.2.5) does not change.

The proof of the statements of Corollary 6.2.1 follows
from the relations (6.2.8) and (6.2.10), the obvious equality
s(αX) = signα s(X), and the monotonicity of the signature:
X ≤ Y =⇒ s(X) ≤ s(Y ).

Corollary 6.2.2 Let G ∈ K and the conditions (6.2.7) hold true.
Then

r(X0) < r(X1) < . . . < r(Xk) = r(Xk+1) = . . . = m. (6.2.13)

Here from the inequality

c0X0 + . . .+ ctXt +Xt+1 ≤ 0, (6.2.14)
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where c0, . . . , ct are real numbers, the estimate follows:

k ≤ min{t,m− r(G)}. (6.2.15)

If G ∈ K, then Xt ∈ K and in Corollary 6.2.1 s(Xt) = r(Xt),
t = 0, 1, . . . . The maximum value of the rank in (6.2.13) is achieved
for the k-th iteration, when Xk ∼ Xk+1. Here Xt ∼ Xk for all t ≥ k.
This fact is observed at successive comparison of two neighbouring
iterations (6.2.5), taking into account the following properties of the
equivalence relation. If P is a positive operator, then U ∼ V implies
PU ∼ PV ; if the operator L is positively invertible, then LU ∼ LV
implies U ∼ V (U, V ∈ K). The estimate (6.2.15) follows from the
relations (6.2.8) and (6.2.14). Indeed, if the inequality (6.2.14) is
solvable with respect to c0, . . . , ct, then Xt+1 ≤ cXt, where

c = |c0|
αt
α0

+ . . .+ |ct−1|
αt
αt−1

+ |ct| > 0.

On the other hand, Xt+1 ≥ (αt/αt+1)Xt, hence Xt+1 ∼ Xt.

Corollary 6.2.3 Let the conditions (6.2.6), (6.2.7) be true, as
well as the inequality

h(S)Z = (h0E + h1S + . . .+ htS
t)Z ≥ 0, (6.2.16)

where S = PL−1, Z = MG − Y , G ≥ 0, h0, . . . , ht are real coeffi-
cients, ht > 0. Then the solution X ∈ K of the equation (6.2.1) is
equivalent to Xt, and the relations (6.2.13) – (6.2.15) hold true.

The proof of this proposition is made based on Corollary 6.6.2
and the relation

L−1h(S)Z = h0X0 +(h1 −h0)X1 + . . .+(ht−ht−1)Xt−htXt+1 ≥ 0.

Note that the condition (6.2.16) holds true if h is an annihilating
polynomial of the operator S. In the case Z ∈ K for the condition
(6.2.16) to hold true it is sufficient that the operator h(S) be posi-
tive. If the operators L and P commute, then instead of (6.2.16) in
Corollary 6.2.3 one can use the inequality

(h0L
t + h1PL

t−1 + . . . + htP
t)Z ≥ 0.
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The check of the last inequality is not connected with the inversion
of the operator L.

In conclusion we will describe some general properties of the solu-
tions of the equation (6.2.1) and a special technique connecting the
analysis of the class of equations (6.2.1) with the theory of linear
matrix equations.

Lemma 6.2.1 Let L be an invertible operator and the inclusion
PK ⊆ LK be true. Then for any Y ∈ LK the equation (6.2.1) has a
solution X ∈ K if and only if the inequality (6.2.6) holds true.

Proof. Under the condition PK ⊆ LK the operator S = L−1P is
positive, and its spectral radius ρ(S) coincides with ρ(T ). Therefore
the inequality (6.2.6) ensures the existence of an inverse operator

(E − S)−1 = E + S + S2 + . . . = M−1L,

where M = L− P . This operator is positive, which is equivalent to
the inclusion LK ⊆MK. Here K can be a wedge, an arbitrary cone
in particular.

Let the inclusions PK ⊆ LK ⊆ MK hold true. Since L is an
invertible operator and the cone K is reproducing, then the operator
M is also invertible. Here S is a positive operator, and E − S is a
positively invertible operator. Hence, the estimate ρ(S) < 1 holds
true.

The lemma is proved.

If L is a positively invertible operator, then under the condition
LK ⊆ MK the operator M is also positively invertible. Therefore,
from Lemma 6.2.1 and the known properties of positively invertible
operators (see Section 6.3) the next propositions follow.

Theorem 6.2.2 Let the operators L and P satisfy the conditions
(6.2.2) with a normal reproducing cone K. Then the following state-
ments are equivalent:

1) the operator M = L− P is positively invertible (K ⊆MK);
2) the spectral inequality (6.2.6) is true.
If K0 6= ∅ is the set of inner points of the cone K, then the state-

ments 1) and 2) are equivalent to each of the following statements:
3) For any Y ∈ K0 the equation (6.2.1) has the solution X ∈ K0;



Linear Equations in Partially Ordered Space 247

4) there exist X ∈ K0 and Y ∈ K0 satisfying the equation (6.2.1).

Formulate an analogue of Theorem 4.6.2 for the equation (6.2.1).

Theorem 6.2.3 Let the exponential operator e−Mt be positive
with respect to a normal reproducing cone K for all t ≥ 0. Then
the operator M is positively invertible if and only if its spectrum is
located on the open right half-plane Reλ > 0.

The proof of this proposition is made in the same way as in the
case of matrix equations with the use of the theorem on the spectral
radius of a positive operator (see the proof of Theorem 4.6.2 and
Section 5.3).

If in Theorem 6.2.3 M = L − P , and the operators e−Lt and
ePt are positive, then the operator e−Mt is also positive (see Lemma
5.2.2). In particular, one can assume M = aE − P , a > 0. Note
that the positivity of the operator e−Lt is equivalent to the positive
invertibility of the operator eLt, and the operator ePt for t ≥ 0 is pos-
itive if such is the operator P . This follows from the corresponding
relations

e−LteLt ≡ E, ePt =

∞∑

k=0

tk

k!
P k.

Suppose that the positive operator P in (6.2.1) has the following
structure:

PX ≡ QRX =

n∑

i=1

m∑

j=1

rij(X)Qij , (6.2.17)

where

QZ =

n∑

i=1

m∑

j=1

zij Qij, QK̂ ⊆ K,

RX =



r11(X) . . . r1m(X)
· · · · · · · · ·

rn1(X) . . . rnm(X)


 , RK ⊆ K̂,

rij ∈ E∗ are linear functionals, Qij ∈ E , K ⊂ E and K̂ ⊂ Cn×m

are given normal reproducing cones. As K̂ can be, e.g., cones of
nonnegative and nonnegative definite matrices.
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Construct a matrix equation

Z −WZ = G, (6.2.18)

where W is a linear operator acting in the space of matrices Cn×m

and determined by

WZ =

n∑

i=1

m∑

j=1

zijWij , Wij = RHij, LHij = Qij .

This operator is representable in the form W = RL−1Q, and
under the conditions (6.2.2) and (6.2.17) it is positive with respect
to the cone K̂.

Let ρ(W ) be a spectral radius of the operator W and its eigen-
value. If λ ∈ σ(T ) is an eigenvalue of the pencil of operators
T (λ) = P − λL, then λ ∈ σ(W ) or λ = 0. Indeed, the equal-
ity PV = λLV entails WU = λU , where U = RV . If U 6= 0, then
λ ∈ σ(W ). If U = 0, then λ = 0, since V 6= 0. Similarly, if λ ∈ σ(W ),
then either λ ∈ σ(T ), or λ = 0. Consequently, ρ(W ) = ρ(T ), and,
taking into consideration Theorem 6.2.2, obtain the following propo-
sition.

Theorem 6.2.4 Let the relations (6.2.2) and (6.2.17) hold true.
Then the following statements are equivalent:

1) for any Y ∈ K the equation (6.2.1) has the solution X ∈ K;
2) for any matrix G ∈ K̂ the equation (6.2.18) has the solution

Z ∈ K̂;
3) ρ(W ) < 1.

Construct a matrix of the operator W with respect to a unit basis:

Σ =




r11(H11) . . . r11(H1m) . . . r11(Hn1) . . . r11(Hnm)
· · · · · · · · ·

r1m(H11) . . . r1m(H1m) . . . r1m(Hn1) . . . r1m(Hnm)
· · · · · · · · ·

rn1(H11) . . . rn1(H1m) . . . rn1(Hn1) . . . rn1(Hnm)
· · · · · · · · ·

rnm(H11) . . . rnm(H1m) . . . rnm(Hn1) . . . rnm(Hnm)




.

The eigenvalues of this matrix form the spectrum of the operator
W . If in the decomposition (6.2.17) Qij ∈ K, and K̂ is a cone of
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nonnegative n ×m matrices, then all elements of the matrix Σ are
nonnegative. In this case one can use the known methods of estimate
of the spectral radius of nonnegative matrices. Thus, the inequality
ρ(Σ) < r holds true if and only if all the successive principal minors
of the matrix rI − Σ are positive.

Corollary 6.2.4 Let the conditions (6.2.2), (6.2.17) hold true and
all the elements of the matrix Σ be nonnegative. Then the operator
M = L−P is positively invertible if and only if all successive principal
minors of the matrix I − Σ are positive.

Corollary 6.2.5 Let the conditions of Corollary 6.2.4 hold true,
as well as

max
i,j

rij(H) < 1, LH =

n∑

i=1

m∑

j=1

Qij.

Then for any Y ∈ K the equation (6.2.1) has the solution X ∈ K.

In the case of solid cones K and K̂, Theorem 6.2.4 can be strength-
ened and supplemented by statements related to the usage of the
sets of inner points of K0 and K̂0 (see Theorem 6.2.2). Determine
the connection between the conditions of solvability of the respec-
tive equations (6.2.1) and (6.2.18) over K0 and K̂0, supposing that
Y ∈ K, G ∈ K̂ and the relations (6.2.2) and (6.2.17) hold true.

If ρ(W ) < 1, then the equation (6.2.18) has a solution Z ∈ K̂0 if
and only if for some k the condition

G+WG+ · · · +W kG ∈ K̂0

holds true. For the estimate of the number k it is possible to use
Corollary 6.2.2. If Z ∈ K̂0 is a solution of the equation (6.2.18), then
under the condition QK̂0 ⊆ LK0 the equation (6.2.1) is solvable in
the form

X = L−1QZ ∈ K0, Y = QG ∈ K.
Let the right-hand sides of the equations (6.2.1) and (6.2.18) be con-
nected by the relations

Y = LH ∈ K, G = RH ∈ K̂,

where H ∈ K. Then, if X ∈ K0 is a solution of the equation
(6.2.1), and the condition RK0 ⊆ K̂0 holds true, then the matrix
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Z = RX ∈ K̂0 satisfies the equation (6.2.18). Conversely, if the
matrix Z ∈ K̂0 satisfies the equation (6.2.18) under the condition

Y +QK̂0 ⊆ LK0, (6.2.19)

then the equation (6.2.1) has a solution X ∈ K0 for which Z = RX.
The inclusion (6.2.19) means that the equation LX̃ = Ỹ has a solu-
tion X̃ ∈ K0, as soon as Ỹ = Y + QZ and Z ∈ K̂0. For it to hold
true, one of the following conditions is sufficient: Y ∈ K0, H ∈ K0,
QK̂0 ⊆ K0 or QK̂0 ⊆ LK0. In the case kerR = 0 the equation (6.2.1)
has a solution X if and only if the expression Z = RX is a solution
of the matrix equation (6.2.18).

6.3 Notes and References

6.1 The statements of Lemmas 6.1.1–6.1.3 and Theorems 6.1.1 and
6.1.2 were obtained by Mazko [19, 23, 29, 30] on the basis of a number
of facts of the matrix theory, taken from Gantmacher [1], Voevodin,
Kuznetsov [1], Lancaster [1], and Horn, Johnson [1]. Representation
of linear operators in a matrix space see also in Vetter [1], Schneider
[1], Hill [1], and others.

6.2 The class of equations (6.2.1) – (6.2.2) and the respective itera-
tive process (6.2.5) in a partially ordered space were studied in Mazko
[18] and Korenevskii, Mazko [1]. The known results, in the case of
an identity operator L = E, are given in Krasnoselskii, Lifschits,
Sobolev [1], Ran, Reurings [1], and others. Theorems 6.2.2 and 6.2.3
are formulated on the basis of the spectral theory of monotone and
monotone invertible operators (see Krasnoselskii, Lifschits, Sobolev
[1]). Theorem 6.2.4 and its corollaries are formulated in considera-
tion of the special structure of the monotone operator (6.2.17). In
this case one can use the spectral properties of nonnegative matrices
(see, e.g., Gantmacher [1], Horn, Johnson [1], and others).
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This book contains the methods for localization of eigenvalues of matrices
and matrix functions, based on the construction and study of the genera-
lized Lyapunov equation. The theory of linear equations and operators in a
matrix space is developed and the known theorems on the inertia of Hermi-
tian solutions of matrix equations are generalized. New algebraic methods
for stability analysis, an evaluation of spectrum and representation of solu-
tions of linear arbitrary order differential and difference systems are worked
out. The methods for research and comparison of dynamic systems in par-
tially ordered Banach space are developed. The book is intended for re-
searchers, engineers, and postgraduates interested in the theory of stability
and stabilization of dynamic systems, matrix analysis and applications.
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