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This paper develops a comparison principle in stability theory of dynamic systems. We consider the comparison
and ordering proglems for a set of differential systems. The comparison technique suggested is based on
mapping of the state spaces of specified set of systems in the partially ordered space with a solid cone. We
describe the invariant sets of differential systems in the form of cone inequalities using a differentiation operator
along systems frajectories. We also generalize known positivity conditions for linear and nonlinear differential
systems with respect to typical classes of cones.

1. Introduction

The well known comparison methods for dynamic systems are essential development and
generalization of Lyapunov functions method in stability theory. These methods allow to
reduce the stability and state estimation problems for complicated differential and difference
systems to studying similar problems for more simple systems in a partially ordered space.
Vector, matrix and operator analogs of Lyapunov functions and their derivatives along
considered systems solutions are used (see, for example, [1-4]).

In this work, the comparison problem for finite set of differential systems is formulated in the
form of a cone inequality for some operator. We construct the conditions ensuring realization
of the inequality on the basis of generalized derivation of a comparison operator and using
elements of a dual cone. Arrangement problems for a set of systems and, in particular,
selection of a dominant system agree with certain structure of a comparison operator. Besides,
the technique for construction and research of invariant sets of the differential systems
described in the form of cone inequalities is proposed. Known positivity conditions with
respect to typical classes of cones are generalized for linear and nonlinear differential
systems.

2. Definitions and auxiliary results

A convex closed set K in a real normed spaces Z 1s called a cone if K+K K,
aK c K Va 20 and KN-K ={0}. The dual cone K" consists of linear functionals ¢ € &°

taking nonnegative values on elements of K. A space containing a cone is partially ordered.

O KN

X>Y | means that X Y e K (X —Y € intK), where intK is a set of
\ /

inner points of K. Bodily, reproducing and normal cone are defined accordingly by

intK # @, E=K-K and 0< X <V = |X] < c[Y]

K
The inequality X >Y

, Where ¢ is a universal constant. A cone

K isnormal <> K’ is reproducing.
Let =, (Ez) be a Banach space with a cone K, (Kz). The linear operator M : =, = Z, is

K, K,

called monotone if X >Y implies MX > MY . Monotonic property of a linear operator 1s
K, K,

equivalent to its positivity property: X 20 = MX > 0. The operator inequality M < L means

that L — M is positive. The operator M is called positively invertible, if the inverse operator

M™ is positive. If the cone K, is normal and reproducing, then the inequalities
M, <M <M, with positively invertible operators M, and M, imply that M is also
positively invertible and M, <M~ <M. [5].1f K, is normal and solid and M < L, where
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L is a positively invertible operator, then positive invertibility of M is equivalent w0 a

X, K,
solvability of the equation MX =7 in the form.of X >0 forany ¥ >0.
Monotonic and positivity properties are similarly defined for nonlinear operators

}\2
F:8 —»E,. If FE, cK,, then an operator F is called everywhere positive. If FX > FY
K, K,
for X >Y >0, then F is monotone on the cone K.

A dynamic system, whose state X(¢) = Q(z,¢,) X, forevery >1, >0 is defined by a positive
(monotone) operator €(¢,7,): X —» X, Is positive (monotone) with respect to a cone. The
system has a time-varying invariant set 1, < X if for any £, >0 from X, eI, follows
X(t)el, at t>1,. The system with invariant cone K, is positive with respect to K,.
Positivity and monotonic properties of the differential system

X=F(X,t), XeX, t20 (1)

with respect to a solid cone K, under the restrictions

intK,#<, K, cK,, 1<z (2)
follow from corresponding conditions
K" +
X20, peK,, p(X)=0 = o(F(X,0)) 20, 3)
K‘ *
X=2Y, peK,, oX)=0) = o(FX.0)29(FT.0) (4)

where K is a dual cone and ¢ > 0 [4]. In the case of a constant cone K, = K the condition (3)
((4)) 1s equivalent to positivily (monotonic) of the system (1).

Through M we denote a class of systems (1) between whose solutions and solutions of the
. Kl .
differential inequalities Z < F(Z,¢) it is possible to establish such correspondence, that for any

K X, _ — —
1,20 from Z(t,) < X(1,) follows Z(f)<X(¢) for ¢ >1,. The extensions M, and M, of M are
defined under additional requirements X(¢,) € K, and Z(1,) €K, accordingly. The classes of

systems M, M, and M, are similarly defined using mnstead of K, a negative cone — K.

respect to K,. If 7(0,1) e K, (F(0,1) € =K, ), then a system of the class Mz(Mz) is positive
with respect to K, (- K, ) and it is monotone in K,(—K,). Under conditions (2) and (4) with

a solid cone K, , the system (1) belongs to both classes M and M [4].

The isolated equilibrium state X=0 of a dynamic system is called stable in I, if for any £0 and
1p=0 there exists &0 such that from XyeSgt) follows X(HeS, () at r>t,, where
S, (0 ={X €1, :|X] < &}. If, in addition, for some 3>0 from XpeSsto) follows | X (1) - 0 as
—>0, the state X=0 is asymptotically stable in I. If the state X=0 of the system with an
invariant set 1, is stable (asymptotically stable) by Lyapunov, then it is stable (asymptoticalls
stable) in 1.

Invariant sets, positivity, monotonic and stability in [, are similarly defined for the iscronc
time dynamic systems.
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3. Constructing of invariant sets of differential systems

We define invariant sets of the differential system of order 5 =2
G(X, X,..,. X9 1)=0, XeX, 120,

in a phase space X = Xx---x X of the corresponding differential first order system

X=X, o X=X, Glx,..x . X.1)=0,
where X, =X . If operator G admits to eliminate the higher derivative X', then given
system can be represented in the form of (1).
We consider in a Banach space the system (1) with an operator F ensuring existence of a
unique solution X (#) in some domain ® ¢ X with X(¢,)= X, € ®. We describe invariant

sets of the system in the form
K,
1, ={Xe®:V(X,t)ZO} (5)

where V' :Xx[0,00) - E is an operator-function continuously differentiated in @ x|0,),
and K, is some cone in space E.

Let's define an operator of derivation along the system trajectories as a strong derivative of a
composite function

DV(X,t)= %V(\P(r,t, X),7)

e (6)

where X (7)=¥(7,t,X) is a solution of system (1) with X(#)=X.[lf X=C"and E=C",
then
DV(X., )=V, (X,0)F(X,t) +V/(X,1),

where V', (X,f) is a Jacobi mxn matrix composed of partial derivatives ' with respect to
X . We shall consider generalization of this relation using Gateaux and Freshet types
derivatives of a nonlinear operator [6]. For example, it 1s possible to consider that V(X ,f) 1s

a strong time derivative, and V, (X,t) is the Gateaux derivative with respect to X, i.e. a

=0 *

linear bounded operator of the type V, (X, 0)H = diV(X +7H, 1)
7

Lemma 1. Let the cone K, satisfies (2). Then (5) is an invariant set of system (1) if and only if
forany t >0

Xel, peK,, oV (X,0))=0 = @DV (X,)=0. (7)
Proof. Let X(#) be a solution of (1) with the initial conditions X () =X, €1, . Then by
definition of D, we have the relation

ij(X(s),s)ds =V(X(0),)) =V (X,,1,).

Let's assume that for some 7 >/, the value of V(X ,7), where X, = X(r), reaches the

boundary of X, . Then ¢p(V(X,,7))=0 forsome p 0K .
We define a neighborhood of the set (5) in the form

KI
I; ={Xe®:Vﬁ(X,t)20}, VX, )=V(X,)+ew(®)Y,
L
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}’.I - . .
where £>0,Y >0, and @(t) 2 0 is a scalar continuously differentiable function such that

@(r) =0 and @ (r) > 0. For example, we can suppose that @ (r) = arctan(r — 7). Then I, < I}
and I} > 1, as e >0, 127.
Since o(¥) >0 and V_(X,,7) =V (X,,7) according to (7) for the some & > 0 we have

P(DV, (X.1)) = p(DV (X.1)) + — d

( )Zgo(Y)ZO, T<t<1+6,
-7

T+
[o(D YV, (X(e.0)dt = oV, (X (z +6),7+6)) 2 0.

T

It means that the trajectory X (f) at the instant 7 cannot leave the limits of I, ie.

N * . . .
V(X({),)20 for 7 <t<7+&. Otherwise for some ¢ € K_ and arbitranly small 6 >0 it
would be hold the relations ¢(V(X,,7))=0 and ¢@(V, (X (r+6),7+6))<0. Taking mnto

account (2), we have X(f)elf for r <t <7+ . Since K, isaclosed set, for &£ - 0 we have

K,

VA(X(@),) >V (X(1),H)20,1<t<1+6.

Thus, (5) 1s an invariant set of the system (1).

The converse follows from the Lagrange's theorem:

p(V(X(z+6),7+6)~p(V(X(1),7)) = 6p(LV (X(£),5)),
where & e(r,7+8). If p(V(X(1r),7))=0 and X(r+5)el.,; for small enough 6 >0, then
it 1s necessary that (D V(X (1),7))>0.
Note 1. The condition (7) holds if for some continuous scalar function a(X,?)

Kl
DV(X,0)+a(X,n)V(X,H=20, Xeol,, t20 (8)
Example 1. For the nonlinear system
= f(x,0), xe€C", t20 9

we construct invariance conditions of the time-varying ellipsoidal cone I, described by (5)
with the operator V(x,t) = [x‘Q(l)x,x'h(t)]], where Q(f) is a nonsingular Hermit matrix
having only one positive eigenvalue ¢(1), and A(f) is an eigenvector of Q(¢) corresponding to

q(t). Here as K, we use the constant cone of nonnegative vectors R.. Therefore in (7),
where

DY (x,0) =[x Ox+ £ (00 +x°00) /(.05 h1) + £ ek
we can use only two functionals from K. If ¢(») =y, with y=[y,,y,]", then according to
(7) we have

X Oxt £ (x,000)x+x" 00 f(x,0)20, xedl, (20 (10)
where a1, = {r e, :x'Q(1)x = 0}. If @(y) = y,, then
F0,0h(1) 20, t20 (11)

Here we use the fact that under specified spectral restrictions on O(¢) from x'Q(f)x 2 0 and
x h(t) =0 follows'that x = 0.
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Conditions (10) and (11) are equivalent to an invariance of the cone I, for system (9). The
inequality (11) holds always for systems with zero equilibrium state, i.e. (0,¢) = 0. Such is,
for example, the differential system
X = A(x,t)x, (12)

where A(x,t) is a continuous matrix function. In this case, according to (8) we have the
matrix inequality

Q)+ a(x,H)0) + 4" (x,DQ1) + QO A(x,6) 20, - xedl,, >0 (13)
If there exists a continuous function «(x,#) which satisfies (13), then (12) is a positive system
with respect to I, .

Note, that the matrix inequality (13) is a generalization of known invariance conditions of
ellipsoidal cone for linear systems [7, §8].
Example 2. For the linear system

x=A)x+BOu, u=C{O)x+Dtu, xeR", uekR”, t>0 (14)
we define the set I, : mlfix{xk‘ <a(t)minu , where a(f) > 0 is a differentiable function. I, isa

normal solid cone described in the form of (5) with the operator
VXD :{oﬂlﬂ e, ~e, ®x2} P :{x}, e =L a] eR".
u U
where ® is Kronecker product and x’ is an element wise vector operation. Here as K, we
use a cone of nonnegative vectors R, The criterion (7) for positivity property of the
systems (14) with respect to I, is reduced to the system of inequalities

. JES, dia(acsk1akk)+2(c¢d5jibkj.)Za[Zacﬂ.iak,J, 120,
itk

J

od,) > b,

where k,i=1n, s, j= 1,m. Here for simplicity a time dependence is omitted for o and
elements of the matrices 4,B,C and D.
Example 3. The autonomous second order differential system

X+Bx+Ax=0, xeR", t20 (15)
has the invariant set I:x" (S + BTRB)x +2%" RBx+ X" Rx > 0 if for some « <0 the system of
matrix correlations
S -alB"S +SB)- (S~ ATRR(S-R4)<0, S=S", R=R" <0,
holds. If in addition 4" R + R4 = S > 0, then by the Lyapunov theorem the matrices 4 and B
should be asymptotically stable.
The system (15) has the invariant cone I, : m;ax}xkl <at) msm x,, where a(f) >0 if

aby +1<0, j#s, d-ay by z|l+a’a,|+a’y |a,], 120,
:

1=k

where i, j,k,s =1,n. Last statement is true also for a non-autonomous system of the type (15).

4. Comparison methods for a set of systems

In stability theory the comparison methods based on a map of the state space of a complicated
system in the state space of auxiliary system are applied [1-3]. The comparison systems are
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constructed in the classes of positive and monotone systems with respect to some cones. The
time-varying cones in comparison problems are offered in [4].

We state the generalized comparison technique based on construction of invariant sets (see
section 3). This technique allows to compare the dynamics of a finite set of dynamic systems
functioned in different spaces.

We consider a set of the independent systems

() X, =F(X,.n, X, eX, 120, i=Ls (16)

For simplicity of presentations, we introduce the following notations
X =(X,,.. ., X)) FX,0=(F(X,0,..F(X,0), X=X xxX.

We assume that for each initial condition X(f,) =X, € ® there corresponds a unique
solution X (f) of (16) in some domain @ ¢ X, t >£,20.
Let E be a space with the wedge K,. We specify the map W :Xx[0,0) = E which is
continuously differentiated in © = ® x[0,0). We assume also that W (.X,¢) is not everywhere
positive with respect to K, operator-function.

Definition. The set of systems (16) is comparable if for any £, >0

X4, K,
W(X,,0,)20 = W(X(0),0)20, t>1, (17)

At the same time W is a comparison operator of the set (16).

Now, we define the operator D W(X,r) as generalized derivation along the trajectories of

(16) and formulate a corollary of I.emma 1.
Theorem 1. Let K, be a solid cone satisfying (2). Then the set of systems (16) is comparable

if and only if for any 7 >0

W(X,z); 0, peK, oW (X,0)=0 = o(DW(X,1))>0 (18)
We formulate the basic statements of well known comparison principle for two and three
systems with zero states equilibrium. In a phase spaces of the comparison systems we shall
use only normal reproducing cones with bounded normality constants.
Let s=2 and W(X.t)= X, -V(X,.t), where V' : X x[0,00) — X, is an everywhere positive
operator with respect to the cone K, < X,. If (Z,) is a system of the class M, then from the
inequality

DY(X,0)< Fy(V (X0, (19)

follows that
K,

¢ K’0 K{ K:
0 < VX, (t)t,) € X, (1)) = 0SV(X,(),0)S X, (1), t>1,20.

It means that (17) holds, i.e. two systems (16) are comparable.
We assume that the operator ¥ has the additional properties
V(0,0)=0, | >v(X)>0, X#0, 120 (20)

where v(X) is a continuous nonnegative function such that v(0) = v(X) <v(Y)

hY“ Then the following statement is true.
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Theorem 2. Let the everywhere poSitive operator V satisfies (19), (20), and (Z) is a system of

the class M. Then the solution X,=0 of (%) is stable (asymptotically stable) by Lyapunov, if
the solution X>=0 of (£,) is stable (asymptotically stable) in K,.
Let's consider the case s=3 assuming that the spaces X; and X3 coincide and contain the cone

K! We define a comparison operator in the block form as follow
WX, =V (X0 - X, X, -V (X,,0], V:iX,x[0,0) > X,.

If the cone inequalities

RV (X,,0), t)K<DV(X2,t)<F(V(X7,t) t) (21)
hold and the systems (Z,) and (z,) belong to corresponding classes M, and M., then the
solutions of (Z,) can be compared with the solutions of (Z,) and (2, ) in the form of

X,(0) £V Kaltohie) € K1) = X0 VOGO XD, 154,20

It means that (17) with the cone K, = K| xK| holds, i.e. three systems (16) are comparable in
specified sense. In this case the condition (18) of Theorems 1 follows from (21) and
definitions of the classes M, and M, . In view of (17) (Z,) 1s a Jower comparison system and

(23) 1s an upper comparison system for (£,).
Theorem 3. Let the operator V satisfies (20), (21), and the systems (£;) and (Z3) belong to

corresponding classes M, and M; . Then the solution X3=0 of (%7) 1s stable (asymptotically
stable) by Lyapunov, if the solution Xi=0 of () is stable (asymptotically stable) in =K} and
the solution X5=0 of (Z3) is stable (asymptotically stable) in K.

The problems of arrangement and determination of a dominating system in (16) for s 22 can
be formulated in the form of a general comparison problem using the block comparison
operator

W(X,0 =V, (X, )=V, (X,,0), V(X O =V (X, .0)], VX, x[0,0) > E, (22)

Assume that (17) hold with K, =K x---xK!, where K| is a wedge in the space E,. Then

the solutions of (16) are ordered in the form of
Kiy Xy Xtk

VX, U)ty) < - SVAX,U)t) = V(X (),0< V(X (O,0), (>1,20 (23)

In particular, the solutions are ordered by norms if V,(X,,t) -HX,l 2 is a norm in X,. If all

V. = E are identical operators, then (23) estimates the solutions ordering by Kll. In the case of
a solid cone K satisfying (2), Theorem 1 gives an arrangement criterion for the systems (16)
in the form of (23).

Example 4. Consider a set of the differential systems

X, = A X, 00X, X, eC", 120, i=ls (24)

where 4, are n, xn, matrices continuously depending on X, and ¢. We define the operator
(22) with V(Xl,t) X 0.()X,, where O (1) = O (1) are Hermit matrices. Then

i (HYX X, <DVA(X,,0)=X HX, <A (H)X X, i=1s,
where A, = A, O, +Q. 4, + Q.. Using Theorem 1 it is possible to establish that the systems
(24) are ordered in the form of (23) if in ©
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HEBO, auiasHey, <, j=1, 5] (25)
where B (X, 1) and oy (Xj+1, 1) are some continuous scalar functions. If all Q>0 are
positively defined, then in (25)

,Bj Zﬂ,max(]‘[j—/lQJ), ajHS/?vmin(]—[jH_/leH)

where Amna(-) (Amin(-))is @ maximal (minimal) eigenvalue of a matrix pencil. In this case we
have sufficient arrangement conditions for the systems (24) as follow

L A% _ A (H ; = 20,) < A (H = 20,17,
= — = j=ls-1.

S(Ay) o(As) | o(As)  Let the matrices O, be constant and
— 0 — o positively defined. Then under
Eg_x Ti% % — ”% ‘%E:___ conditions (25) the spectrum o(4,) of
— —— —4‘ — 4 should belong to corresponding
— — Pig. 1 I ——  zone (see, for example, [9] and fig.1).

If all matrices Q, =/ are identity and
the inequalities A, (4 + A)< A (A, +4,,), j=Ls-1,

hold in ® , then the solutions of (24) are ordered by norm, i.e.
Ll s-< o)l = ol <o

, 1>, 20.
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