
Problems ofnonlinear Analysis 
in Engineering Systems No.1(33), vol.16, 2010 Kazan 

Comparison and ordering problems for dynamic systems set 
A.G.Mazko 

Institute of mathematics ofNAS of Ukraine
 
3, Tereshchenkivs'kaStr. , 01601, Kyiv, Ukraine
 

This paper develop s a compari son principle in stability theory of dynamic system s. We consider the comparison 
and ordering problems for a set of different ial systems. The comparison techn ique suggested is based on 
mapp ing of the state spaces of specified set of system s in the partially ordered space with a solid cone. We 
describe the invariant sets of differential system s in the form of cone inequalities using a differentiation operator 
along systems trajectories. We also generalize known positiv ity conditions for linear and nonlinear differential 
systems with respect to typical classes of cones. 

1. Introduction 

-x. The well known comparison methods for dynamic systems are essential development and 
generalization of Lyapunov function s method in stability theory. These methods allow to 
reduce the stability and state estimation problems for complicated differential and difference 
systems to studying similar problems for more simple systems in a partially ordered space. 
Vector , matrix and operator analogs of Lyapunov functions and their derivatives along 
considered systems solutions are used (see, for example, [1-4]). 
In this work, the comparison problem for finite set of differential systems is formulated in the 
form of a cone inequality for some operator. We construct the conditions ensuring realization 
of the inequality on the basis of generalized derivation of a comparison operator and using 
elements of a dual cone. Arrangement problems for a set of systems and, in particular, 
selection of a dominant system agree with certain structure of a comparison operator. Besides, 
the technique for construction and research of invariant sets of the differential systems 
described in the form of cone inequalities is proposed. Known positivity conditions with 
respect to typical classes of cones are generalized for linear and nonlinear differential 
systems. 

2. Definitions and auxiliary results 

A convex closed set K in a real normed spaces 3 is called a cone if K +K c K , 

aK c K Va ~ 0 and K n-K = {O}. The dual cone K' consists of linear functionals cp E S" 

taking nonnegative values on elements of K . A space containing a cone is partially ordered. 

The inequality X~y (x ~ y) means that X - YE K (X-Y E intK) , where intK is a set of 

inner points of K. Bodily, reproducing and normal cone are defined accordingl y by 

int K '* 0, S =K - K and 0 ::; X ::; Y => IIXII ::; clifll, where c is a universal constant. A cone .. 
K is normal ¢:::> K' is reproducing. 
Let 3) (32 ) be a Banach space with a cone K ) (KJ. The linear operator M: 3 1 022 is 

K, K, 
called monotone if X ~ Y implies MX ~ MY. Monotonic property of a linear operator is 

K 1 K 2 

equivalent to its positivity property: X ~ 0 => MX ~ O. The operator inequality M ::; L means 
that L - M is positive. The operator M is called positively invertible, if the inverse operator 

M-1 is positive . If the cone K 2 is normal and reproducing, then the inequaliti es 

M 1 ::; AI ::; M 2 with positively invertible operators M , and M 2 imply that M is also 

positively invertible and u ; ::; M-l <M
J
-

1 [5]. If K 2 is normal and solid and M ::; L, where 



- - - -

- -
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L is a positively invertible operator, then po sitive invertibility of M is equivalent to a 
K, Kl 

solvability of the equation MX = Y in the form.of X ~ 0 for any Y > O. 
Monotonic and positivity properties are similarly defined for nonlinear operators 

Kl 

F :3] ~ 3 
2

, If F3] c K 2 , then an operator F is called everywhere positive. If FX > FY 
K, K1 

for X ~ Y ~ 0, then F is monotone on the cone K I . 

A dynamic system, whose state X(t ) =O(l ,ta)Xa for every l > to ~ 0 is defined by a positive 

(monotone) operator Q(l,ta): X ~ X, is positive (monotone) with respect to a cone. The 

system has a time-varying invariant set I [ c X if for any la ~ 0 from X 0 E 1[0 follows 

X(l) E I, at The system with invariant cone K( is positive with respect to K,.l > ta. 
Positivity and monotonic properties of the differential system 

x=F(X,l), X EX, t ~ 0 (1) 

with respect to a solid cone K, under the restrictions 

intK o =f- 0 , K[~K r ' t « t (2) 

follow from corresponding conditions 

K, • 
X ~ 0, qJ E x ., !p(X) = 0 => !p(F(X,l)) ~ 0, (3) 

K, 
X ~ Y, !p E K;, !p(X) = !p(y) => !p(F(X ,t)) ~ !p(F(Y,l )) (4) 

where K; is a dual cone and l ~ 0 [4]. In the case of a constant cone K[ =K the condition (3) 

((4)) is equivalent to positivity (monotonic) of the system (1). 

Through M we denote a class of systems (1) between whose solutions and solutions of the 
. K, 

differential inequalities 2 ~ F(Z,t) it is possible to establish such correspondence, that for any 

K~ ~ 

to~o from Z(l o) ~ X(to) follows Z(t) ~X(t) for t >to' The extensions M, and M2 of Mare 

defined under additional requirements X(ta) E K, and 2(10) E K 1 accordingly. The classes of 
o 0 

systems M, M] and M 2 are similarly defmed using instead of K[ a negative cone - K[. 

Obviously, M ~ M 1 C M 2 and M ~ M 1 ~ M 2 ' A system from M u M is monotone with 

respect to K[. If F(O,t) E K{ (F(O,t) E -K{), then a system of the class M2(M 2) is positive 

with respect to KJ -K() and it is monotone in K[( -KJ. Under conditions (2) and (4) with 

a solid cone K r ' the system (1) belongs to both classes M and M [4]. 

The isolated equilibrium state X=O of a dynamic system is called stable in II if for any &:>0 and
 

to~O there exists 8>0 such that from XOES<S<:tO) follows X(t)ES Ii (t) at t>to, where
 

S E: (t) = {X E I [ : IIXii < [;}. If, in addition, for some 8>0 from XoES<S<:tO) follows IIX(1)11~ 0 as
 

l~oo, the state X=O is asymptotically stable in 1/. If the state X=O of the system with a
 
invariant set II is stable (asymptotically stable) by Lyapunov, then it is stable (asymptotically
 
stable) in It.
 
Invariant sets, positivity, monotonic and stability in II are similarly defi ned for if.= ::", ~ ~:e
 

time dynamic systems.
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3. Constructing of invariant sets of differential systems 

We define invariant sets of the differential system of order s ~ 2 

G(X,%, . ..,X(S),t)=O, XEX, t~O, 

in a phase space X= X x .. . x X of the corresponding differential first order system 

Xl = X 2 , ••• ' %,_1= X" G(Xj, ... ,X"Xs,t)= 0, 

where XI =X. If operator G admits to eliminate the higher derivative X (s), then given 

system can be represented in the form of (1). 
We consider in a Banach space the system (1) with an operator F ensuring existence of a 

unique solution X(t) in some domain 0 ~ X with X(ta) =X a E 0. We describe invariant 

sets of the system in the form 

I[={XE0:V(X,t) ~0} (5) 

where V: X x [0, (jJ) ~ E is an operator-function continuously differentiated in e x L0, (jJ) ,
 

and K ( is some cone in space E .
 

Let's define an operator of derivation along the system trajectories as a strong derivative of a
 
composite function
 

d 
DY(X,t) = dt V(\f'(r,t,X),r)IT:/ (6) 

where X(r) =qJ(r,t,X) is a solution of system (1) with X(t) =X. If X =enand E =em, 
then 

DY(X,t) = V; (X ,t)F(X,t) + V:'(X,t), 

where V;(X,t) is a Jacobi mxn matrix composed of partial derivatives V with respect to 

X . We shall consider generalization of this relation using Gateaux and Freshet types 

derivatives of a nonlinear operator [6]. For example, it is possible to consider that V:'(X,t) is 

a strong time derivative, and V; (X,t) is the Gateaux derivative with respect to X, i.e. a 

linear bounded operator of the type V; (X ,t)H =:r VeX + rH,t)\ T:a . 

Lemma 1. Let the cone K[ satisfi es (2). Then (5) is an invariant set ofsystem (1) if and only if 
for any t ~ 0 

X E 1( , rp E K; , rp(V(X,t)) =0 => rp(DY(X,t)) ~ O. (7) 

Proof. Let X(t) be a solution of (1) with the initial conditions X(t9 ) = X o E 1 [1)' Then by 

definition of D1 we have the relation 
( 

fDY(X(s),s)ds = V(X(t),t) - V(Xo,ta). 
10 

Let's assume that for some r ~ ta the value of V(X r , r}, where X r = X(r), reaches the 

boundary of K r . Then rp(V(XT,r)) = 0 for some rp 7: 0 E K~ . 

We define a neighborhood of the set (5) in the form 

I:= {X E 0: V,,(X,t)~ o}, V£(X,t) = V(X,t) + czu(t)y , 
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K, 
where e > 0, Y > 0, and wet) 2: 0 is a scalar continuously differentiable function such that
 

WeT ) = 0 and liJ(T) > O. For example, we can suppose that wet) =arctan(t - r) . Then I, c r;
 
and I; ~ I, as e ~ 0, t 2: T .
 

Since tp(Y) > 0 and V (X" T) =VeX" ~ T) according to (7) for the some 6 > 0 we have
o 

e 
tp(D,V/i (X,t» = tp(D,v(X, t» + ? tp(Y) 2: 0, T ~ t ~ T+ £5 ,

l+(t-T) 
r + () 

{tp(D,ve(X(t),t »dt = tp(Vc(X(T + 6),T+ 6» 2: O. 

It means that the trajectory X(t) at the instant T cannot leave the limits of I ~, i.e. 

Ve(XU),t) 
K

20 for T ~ t ~ T+ ;;. Otherwise for some tp E K: and arbitrarily small £5 > 0 it 

would be hold the relations <p(V(X"T» = 0 and tp(Vc(X(T+£5),T+ 5» < 0 . Taking into 

account (2), we have X(t) E I ; for T ~ t ~ T + 6. Since K, is a closed set , for e ~ 0 we have 
K; 

Vc(X(t) ,t) ~ V(X(t),t) 2: 0, T ~ t ~ T+ 5 .
 
Thus, (5) is an invariant set of the system (1).
 
The converse follows from the Lagrange's theorem:
 

tp(V (X (T+ 6),T+ 5» - tp(V(X (T),T» = 6tp(D,y(X(c;), c;» , 

where c; E (r, T+ 5). If tp(V(X(T ),r ) =0 and X(T + 5) E 1,+3 for small enough 5> 0, then 

it is necessary that tp(Dy (X (T),r ) 2: O. 

Note 1. The condition (7) holds if for some continuous scalar function a(X,t) 
K, 

D,v(X,t) + a(X,t)V(X,t) 2: 0, X E aI" t 2: 0 (8) 

Example 1. For the nonlinear system 

x= !(x,t), x E C', t 2: 0 (9) 

we construct invariance conditions of the time-varying ellipsoidal cone I, described by (5) 

with the operator V (x, t ) = [x'Q(t)x,x*h(t)y, whe re Q(t) is a nonsingular Hermit matrix 

having only one positive eigenvalue q(t) , and h(t ) is an eigenvector of Q(t) corresponding to 

qU). Here as K ( we use the constant cone of nonnegative vectors R ~. Therefore in (7), 

where 

D,V(x,t) = [x*6x+ !'(x,t)QU)x+x*QU)!(x,t),x*h(t )+ ! '(x,t)hU)Y, 

we can use only two functionals from K· . If tp(y) = Yl with Y = [Yl' Y2f , then according to 
(7) we have 

x ' Qx+ ! '( x ,t )Q(t )x + x' Q(t)! (x , t ) 2: 0, xE aI" t2:0 (10) 

where aI/ ={xEI , :x'Q(t )x=0}.lftp(Y)=Y2,then 

r (O ,t)hU) 2:0, t 2: 0 (11) 

Here we use the fact that under specified spectral restrictions on QU) from x' Q(t)x 2: 0 and 

x*h(t) = 0 follows that x =o. 
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Conditions (1a) and (11) are equivalent to an invariance of the cone I I for system (9). The lat 
c inequality (11) holds always for systems with zero equilibrium state, i.e. fca,t) == a. Such is, 

for example, the differential system 

x =A(x,t)x, (12) 

where A(x,t) is a continuous matrix function. In this case, according to (8) we have the 
matrix inequality 

Q(t)+a(x,t)Q(t)+A·(x,t)Q(t)+Q(t)A(x,t) ~a, . x E ol" t ~a (13) 

If there exists a continuous function a(x,t) which satisfies (13), then (12) is a positive system 

with respect to II' 

Note, that the matrix inequality (13) is a generalization of known invariance conditions of 
ellipsoidal cone for linear systems [7, 8]. 
Example 2. For the linear system 

:0 x=A(t)x+B(t)u, u=C(t)x+D(t)u, x e R"; u e R"; t~a (14) 

ve we define the set I I : m:xlxk [ ::; a(t)m}nu" where aCt) > a is a differentiable function. I [ is a 

normal solid cone described in the form of (5) with the operator 

a 'CI en em 'CI X [x]2u2 /VI - /VI 2 ]	 T 11 

V(X,t) =
[ 

u ' X = u ' en = [1, ... ,1) E R , 

where (8) is Kronecker product and x2	 is an element wise vector operation. Here as K I we 
n 1use a cone of nonnegative vectors R: c+ ) . The criterion (7) for positivity property of the 

systems (14) with respect to I( is reduced to the system of inequalities 

ad,) ~ l bkl l , ji' S, a±a(acsk+akk)+I(adsj+bkJ ~a(I lacs;+ak; I ), t~a, 
J	 { ~k 

where k, i =1, n , s, j =1, m. Here for simplicity a time dependence is omitted for a and 

elements of the matrices A, B, C and D. 

:.) Example 3. The autonomous second order differential system 

x+Bx+Ax=O, x e R"; zz O (15)x 

:0 has the invariant set I : x ' (S + BTRB~ + 2iTRBx + x ' Rx ~ a if for some a < a the system of 
matrix correlations 

a2S-a(BTS+SB)-(S-ATR)R-l(s-RA)~a, S =S7, R=R T <a , 

holds. If in addition A r R + RA =S > a, then by the Lyapunov theorem the matrices A and B 
should be asymptotically stable. 

,-' 
The system (15) has the invariant cone I I : mfxlxk[::; a(t)m}nxs' where aCt) > a if 

)	 abSj+1::;a, j*s, a-aIbsj~11+a2askl+a2I ' il, t~a,la
j	 l~k 

where i,j,k,s = I,n . Last statement is true also for a non-autonomous system of the type (15). 
. ) 

4. Comparison methods for a set of systems 
.d 

In stability theory the comparison methods based on a map of the state space of a complicated 
system in the state space of auxiliary system are applied [1-3]. The comparison systems are 

5
 



A.G.Mazko 

constructed in the classes of positive and monotone systems with respect to some cones. The 
time- varying cones in comparison problems are offered in [4]. 
We state the generalized comparison technique based on construction of invariant sets (see 
section 3). This technique allows to compare the dynamics of a finite set of dynamic systems 
functioned in different spaces. 
We consider a set of the independent systems 

(2:J x, =F;(X i,t ), X I E X i' t ~ 0, i =l ,s (16) 

For simplicity of presentations, we introduce the following notations 

X = (Xl' " ., x j F (X,t) = (F; (Xl't ), ... ,Fs (X " t )), X =XI x -,· x X,. 

We assume that for each initial condition X (t0 ) = X 0 E e there corresponds a unique 

solution X(t) of (16) in some domain e ~ X, t > to ~ 0, 

Let E be a space with the wedge K ,. We specify the map W: X x [0, co) ---+ E which is 

continuously differentiated in e=ex [0, co) . We assume also that W (X ,t) is not everywhere
 

positive with respect to K, operator-function.
 

Definition. The set of systems (16) is comparable if for any to ~ °
 
K,o K, 

W(Xo ,to) ~O =? W(X (t) ,t)~ O , t i- t; (17) 

At the same time W is a comparison operator of the set (16). 
Now, we define the operator DJ¥(X,t) as generalized derivation along the trajectories of 

(16) and formulate a corollary of Lemma 1, 
Theorem 1. Let K{ be a solid cone satisfying (2). Then the set of systems (16) is comparable 

if and only if for any t ~ 0 
K, 

W(X ,t)~ 0, rp E K;, rp(W(X ,t )) =0 =? rp(D,W(X,f)) ~ ° (18) 

We formulate the basic statements of well known comparison principle for two and three 
systems with zero states equilibrium. In a phase spaces of the comparison systems we shall 
use only normal reproducing cones with bounded normality constants. 

Let s = 2 and W(X,t) = X l - VeX, ,t) , where V: X. x [0,(0) ~ X ? is an everywhere positive 

operator with respect to the cone K, c X 2 , If (2: 2 ) is a system of the class M 2, then from the 

inequality 
K, 

D,V(XJ ,t ) S F2 (V(X, ,f),f) (19) 

follows that 
K,o K,o K, K, °S VeX, (to),to) < X l (to) =? 0 s vex, (t) ,t) s X 2 (t) , t > to~ O. 

It means that (17) holds, i.e. two systems (16) are comparable. 
We assume that the operator V has the additional properties 

V(O,t)=O, IIV(X , t)I I ~ v (X» O , X:;tO , t~ O (20) 

where veX) is a continuous nonnegative function such that v(O) = 0 veX) s v(y) 

=? IIXIIs Ilyll· Then the following statement is true. 
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Ihe Theorem 2. Let the everywhere positive operator V satisfies (19 ), (20), and (~ 2) is a system of 

the class M2. Then the solution Xj ==O of (~l) is stable (asymptotically stable) by Ly apunov, if 
see 

the solution X2==0 of (~2) is stable (asymptotically stable) in K/.-ms 
Let 's consider the case s=3 assuming that the spaces Xl and X3 coincide and contain the cone 

K ~ . We define a comparison operator in the block form as follow 

W(X,t) = (V(X 2,t) - X p X 3 - V(X2,t)], V : X 2 x [0, (0) -) XI ' 
J 6) 

If the cone inequalities 
K: K: 

F;(V(X 2, t ),/) ~ Dy (X 2 ,t ) ~ F;(V(X 2,t) ,t)	 (21) 

ue hold and the systems (~ l) and (~ 3) belong to corresponding classes M] and M], then the 

solutions of (~2) can be compared with the solutions of (~ J) and (~3) in the form of 
. 15 K~o K;o K: K; 

Xl(tO)~V(X2(tO ) ,tO ) ~ X3(tO) => Xj(t) ~ V (X2 (t) ,t) ~X3(t), t >lo ;:::O . 
.... :\.

It means that (17) with the cone K / = K ~ x K : holds, i.e. three systems (16) are comparable in 

specified sense. In this cas e the condition (18) of Theorems 1 follows from (2 1) and 

definitions of the classes M ) and M i . In view of (17) (~ J) is a lower comparison system and 

) ( ~3) is an upper comparison system for (~) . 

Theorem 3. Let the operator V satisfies (20), (21) , and the systems (~1) and (~ 3) belong to 

of corresponding classes M] and MJ. Then the solution X2==0 of (~2) is stable (asymptotically 

stable) by Lyapunov, if the solution X1==0 of (~l) is stable (asymptotically stable) in - K ; and 
..., '"	 the solution X3==0 of (~3) is stable (asymptotically stable) in K:. 

The problems of arrangement and determination of a dominating system in ( 16) for s;::: 2 can 
be formulated in the form of a general comparison problem using the block comparison 
op erator 

'ee
 
all W(X,t) = [V2(X2 ,t ) - ~ (X I,t ), ... ,v~ (X~ ,t) - V'_l (Xs _p t) ], V: X, x [0, eo) -) E, (22)
 

Assume that (17) hold with K , = K: x .. -x K;, where K ; is a wedge in the space E ]. Then 

the solutions of (16) are ordered in the form of
 
e
 K ~o K:o K; K; 

VJX1(to ),to ) ~ ... < V,( X s(to),to) => VJ( X I (t), t)~···~Vs(X s( t), t), t >to ;:::O (23) 

In particular, the solutions are ordered by norms if V/x" t)=iIXil lx, is a norm in X i' If all 
,\ 

Vi =E are identical operators, then (23) estimates the solutions ordering by K ;. In the case of 

a solid cone K~ satisfying (2), Theorem 1 gives an arrangement criterion for the systems (16)
 

in the form of (23).
 
Example 4. Consider a set of the differential systems
 

X i =A,(X" t)X j, X i E en" t > 0 , i = 1,s (24) 
0) 

where Ai are ni x n
l 

matrices continuously depending on XI and t. We define the operator 
.' J 

(22 ) with V(X;,t) = Xi' Qi(t)X i , where Q, (t) == «(t) are Hermit matrices. Then 

ArrUn (H ,)X ;X I ~ D,V;(Xj,t) = X :H,X i ~ Amax (H,)X;X" i = 1,s , 

where H , = A: Qi + Q,A, + o. Using Theorem 1 it is possible to establish that the systems 

(24) are ordered in the form of (23) if in e
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HjSof3JQj, 0+ I Qj+1~+ J , f3J So0 +I , j =1, , s- I (25) 

where f3J (A), t) and 0-'-1(A)+ 1, t) are some continuous scalar functions . If all Q;>O are 
positively defined, then in (25)
 

/3; '?.Amax.(!i;-J..Qj), 0 +\So}-min(!i;+ l- J..Qj+\)
 

where )"max.C) (AminC))is a maximal (minimal) eigenvalue of a matrix pencil. In this case we 
have sufficient arrangement conditions for the systems (24) as follow 

Amax ot,- ).Q, ) So ).min (H i+J - /(,Q i+l ) , 
•	 ,j ,j • J . oJ ' 

j =l, s-l. 

Let the matrices Q be constant and 

positively defined. Then under 
conditions (25) the spectrum CJ(A;) of 

Aj	 should belong to corresponding 

zone (see, for example, [9] and fig. 1). 

cr(A4 )0-(A3)
o 

t" 
a(Az) 

2
~I ~z ~~21 ~3t -=1~3 ~4 t== 

§
cr(AI) 

Fig.I . 
If all matrices Qi == 1 are identity and 

the inequalities }.max (A; + Aj ) So }.min (A:+] + Aj+ l ) , j =1, s-=1 , 

hold in e, then the solutions of (24) are ordered by norm, i.e. 

flXl(to)11So ... So IIXs (to )11 => IIXj (t )!!So . .. So fiX,(t)II, t > to '?. 0. 
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