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The classes of positive and monotone differential systems with respect to prescribed cone in a 

phase space are studied. The stability criteria of linear positive systems are formulated in terms of 

monotonically invertible linear operators. The methods for robust stability analysis and comparison 

of systems in partially ordered space are developed. 

 

1 Introduction. Various natural systems are positive and monotone. Positivity 

(monotonicity) of the dynamic system is equivalent to positivity (monotonicity) of some 

operator describing its motion with respect to the cone of a phase space [1-3]. These 

properties of systems should be taken into consideration and be used in analysis and synthesis 

problems especially in stability and spectral characteristics investigation, in numerical 

procedures of construction of the solutions and appropriate control etc. Stability investigation 

of linear autonomous positive systems is reduced to solving algebraic equations defined by 

operator coefficients of the systems [4-6]. The differential Lyapunov and Riccati equations 

are examples of positive systems concerning the cone of symmetrical positive semi-definite 

matrices. 

In present article, the classes of positive and monotone differential systems in the 

partially ordered Banach space are studied. The main research results are the criteria of a 

positivity and asymptotic stability of linear systems formulated in terms of the monotone and 

monotonically invertible operators. The methods for robust stability study and analogs of 

comparison systems in partially ordered space are offered. 

2. Operators in space with a cone. The convex closed set   of real normalized 

space   is called a cone if  0  and  YX   for any YX ,  and .0,    

A space containing the cone is partially ordered. The inequality YX   YX   means that 

YX   0YX , where 0  is a set of internal points of  . The solid, reproducing 

and normal cones are defined accordingly by  0 ,   and YX 0   

YcX  , where c  is a universal constant.  

Let 1  2  be the Banach space with a cone 1  2 . The linear operator 

21: M  is called monotone if from YX  it follows that MYMX  . The property of 

monotonicity of a linear operator is equivalent to the positivity: 00  MXX . Inequality 

LM   means that the operator ML  is positive. The monotone operator L  is called a 

majorant (minorant) of the monotone operator M  if )( LMLM  . The monotone operator 

is called extremal if he can’t be expressed by a sum of linearly independent minorants. The 

operator is called strictly monotone (strongly monotone) if MYMX   for 

),( YXYXYX  . Strongly monotone (extremal) operators are internal (exterior) points 

of a cone of linear monotone operators. Necessary and sufficient condition for the strictly 

monotonicity of monotone operator M  is the inequality 00 MX  for some 00 X .  

The operator M  is called monotonically invertible if the equation  

YMX         (1) 

has a solution 1X  for any 2Y . If the cone 2  is normal and reproducing, then 

inequalities 21 MMM   with monotone invertible operators 1M  and 2M  imply that M  is 
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also monotone invertible and 1

1

11

2

  MMM [1]. If cone 2  is normal and solid and 

LM  , where L  is a monotone invertible operator, then monotone invertibility of the 

operator M  is equivalent to a solvability of (1) in the form of 0X  for some 0Y . 

In the space   with normal reproducing cone  , we eliminate the class of linear 

operators [6] 

PLM  ,    LP .    (2) 

The monotone invertibility criterion for operator (2) is the inequality 

,1)( T       (3) 

where )(T  is a spectral radius of the operator pencil LPT  )( . When   is solid, the 

inequality (3) is equivalent to solvability of (1) in the form of 0X , 0Y . 

The properties of a monotonicity and positivity are similarly determined for the non-

linear operators 21: F . If 21 F , then the operator is called completely positive. If 

FYFX   for 0YX , then F  is monotone on the cone 1 . 

3.  Positive and monotone systems.  Let   be the Banach space partially ordered by 

the cone  . Let )(tX  be a state of continuous or discrete time dynamic system. The 

system is called ),( 0tt positive if  00 )( XtX  implies )(tX . The system is called 

positive if it is ),( 0tt positive for 00  tt . This property of the system is equivalent to 

positivity of the operator :),( 0ttV  determining transition from the state 0X  to the 

state 00 ),()( XttVtX   for 00  tt . The system is called monotone (monotone on the cone 

 ) if its motion operator ),( 0ttV  is monotone (monotone on the cone  ) for 00  tt . 

The properties of positivity and monotonicity of control systems are similarly 

determined with respect to the cones in state and control spaces. If the operator 

21:)( tW  determines a system with input )(tU  and output )()()( tUtWtX  , then its 

positivity (monotonicity) with respect to the cones 11   and 22   is equivalent to 

positivity (monotonicity) of given control system. The operator )(tW  can be defined explicit 

or in form of solutions of differential, difference, integro-differential and other types of 

systems [1]. 

Let us consider the differential system 

),()( tGXtMX       (4) 

where )(tM  is a linear bounded operator acting in a partially ordered Banach space   with 

the normal reproducing cone  . Assume that for any initial condition 00 )( XtX  , there is 

the unique solution 



t

t

dssGstWXttWtX

0

)(),(),()( 00 ,  00  tt ,    (5) 

where 1

00 ),(),(),(  tsWttWstW  is an evolutional operator being the unique solution of the 

Cauchy problem 

.  0)(  WtMW ,  IsW )( ,  st  .     (6) 

The linear operator ),( 0ttW  can be represented by uniformly converged on the norm series 

 
2

000

2112110 )()()(),(

t

t

t

t

t

t

dtdttMtMdttMIttW ,     (7) 

According to (5), )(tX  for any initial condition 0X  if 
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,0),( 0 ttW    ,0)(),(

0


t

t

dssGstW    .00  tt      (8) 

Here first inequality means a monotonicity of the operator with respect to the cone  , and 

second one is an ownership to the cone. The inverse statement is easily established taking into 

account a closure of  . Therefore, system (4) is positive if and only if (8) holds.  

Using (5) and (8), we establish an equivalence of the following statements: (a) system 

(4) is (t, 0)-positive for any function 0)( tG  and 0t ; (b) the operator ),( stW  is monotone 

for 0 st ; (c) system (4) is monotone; (d) for any function )(tZ  satisfying the inequality 

0)(  ZtMZ , 0)0( Z  implies 0)( tZ  for any 0t . If 0)( tG , then each of the 

statements (a)-(d) is equivalent to positivity of system (4). If MtM )(  is a constant 

operator, then )(),( stMestW   and conditions for monotonicity of the operators ),( stW  and 

)0,(tW  for 0 st  coincide.  

Note the properties of the evolutional operators which follow from (6) and (7). The 

relations  

IttW ),( , ),(),( 1 tsWstW  , ),(),(),(  sWstWtW   

hold for  st . If )()()( 21 tMtMtM  , then ),(),(),(
31

stWstWstW MM , where 

),(
1

stWM  and ),(
3

stWM  are evolutional operators corresponding to )(1 tM  and 

),()(),()(
11 23 stWtMtsWtM MM . Thus, ),( stW  is monotone if the operators ),(

1
stWM  and 

),(
3

stWM  are monotone. 

Lemma 1. The evolutional operator ),( stW  is monotone for 0 st  if and only if 

the exponential operator htMe )(  is monotone for 0t , 0h . 

Proof. We use representation for ),( stW  in the form of multiplicative integral [7]. 

Breaking the section ],[ ts  by points nkn khst  , where nsthn /)(  , nk ,,0 , for large 

n , we have  

),(),(),( 011 nnnnnn ttWttWstW  , )(),(
)(

1 n

hM

nkkn hoettW nkn 




 , nk ,,1 , 

where ],[ 1 knnkkn tt   are some intermediate points. Therefore,  

 nnnnn hMhM

n
eestW

)()( 1lim),(
 


  . 

If 0)(  htMe  for any 0t  and 0h , then ),( stW  is a limit of some sequence of monotone 

operators. It should be monotone due to closure of the cone of linear monotone operators. 

The converse is similarly established on basis of the relations 

)/1()/,(
/)(

noenhttW
nhM n 

 
,  n

n

htM nhttWe )/,(lim)( 


 ,  

where ],/[ tnhtn  , ,2,1n  . 

Lemma 2. If )()()( 21 tMtMtM   and the operators ),(
1

stWM  and ),(
2

stWM  are     

monotone for 0 st , then the operator ),( stWM  is also monotone for 0 st . 

Proof. We use Lemma 1 and present the exponential operator by  
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where  hMhMhMhM
eeeehE 1221

2
1)(


 ,    



 
k
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ikiikii
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k

k MMMMCMMS
0

12212
1

21
. 

Here the dependence 1M  and 2M  from t  is omitted for a simplicity. If we set 
k

h  , then  

  k
k

k

MM
Ee 




 lim

)( 21 . 

Taking into account Lemma 1 and our assumptions, it completes the proof of monotonicity 

for ),( stWM , 0 st .  

Positivity of system can be utilized for estimation of its solutions. If the functions 

 tX1  and  tX 2  satisfy the inequalities )()( 111 tGXtMX  , )()( 222 tGXtMX   and 

   0201 tXtX  , then subject to (8) we obtain 

       0)(),(),()(

0

0102012  
t

t

dssGstWtXtXttWtXtX  

where      tGtGtG 12  . Hence, the following statement holds. 

Lemma 3. Let  tX  be a solution of the positive system (4) and the functions  tX1  

and  tX 2  satisfy the inequalities )()( 1111 tGXtMX  , )()( 2222 tGXtMX  , where 

11  , 12  . Then      02001 tXtXtX   implies that      tXtXtX 21   for 0tt  . 

If 01  , then the lower estimation for the solution of (4) in Lemma 3 does not 

depend on its right part. In the case of 121  , Lemma 3 holds provided that the operator 

),( stW  is monotone for 0tst  . 

We now give the examples of linear positive systems with respect to the cones of 

nonnegative vectors and positive semi-definite matrices. 

Example 1. Let us consider the linear differential system  

       tgtxtAtx . ,  0t ,      (9) 

where  tA  is a continuous nn  matrix function. It is known [1], that monotonicity of 

evolutional operator of system (9) with respect to the cone nR  of nonnegative vectors is 

equivalent to off-diagonal nonpositivity of the matrix  tA . Therefore, system (9) is positive 

under the restrictions   0taij , ji  ,   0tg , 0t . 

Example 2. Let us consider the Lyapunov matrix differential equation  

           tYtAtXtXtAtX
T
. , 0t ,      (10) 

where  tA  and     0
T

tYtY  are given matrix functions. In this case 

     TtXAXtAXtM  and evolutional operator has the form      TAA stXWstWXstW ,,,  , 

where  stWA ,  is an evolutional operator (matriciant) of system (9). Obviously, the operator 

 stW ,  is monotone with respect to the cone nnR   of symmetric positive semi-definite 

matrices. Therefore, (10) is a positive system with respect to the cone.  

Let's extend the differential system (4) in the form  

),,()( tXGXtMX   0t ,      (11) 

where  tXG ,  is a non-linear operator ensuring an existence and uniqueness of a solution 

  tX  for 00  tt ,    00 XtX . Let  0,ttV  be a shift operator on trajectories of  

(12) determining a transition from  0tX  to the state      00, tXttVtX  , 0tt  . Then 
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positivity (monotonicity) of system (11) is equivalent to positivity (monotonicity) of the 

operator  0,ttV  for any 00  tt . 

Solutions of system (11) satisfy the integral equation 

  

t

t

dsssXGstWXttWtX

0

,),(),()( 00
,      (12) 

where  stW ,  is an evolutional operator of linear system (4). From (12), it follows that system 

(11) is positive if  tXG ,  is completely positive and  stW ,  is monotone for 0 st . 

Lemma 4. Let  tX  be a solution of system (11) with monotone operator  stW ,  and 

the functions  tX1  and  tX 2  satisfy the relations 

)()( 111 tGXtMX  , )()( 222 tGXtMX  ,       tGttXGtG 21 ,  , 0tt  . 

Then from      02001 tXtXtX   it follows that      tXtXtX 21  , 0tt  . 

Given statement is established by using (12) and the proof method of a lemma 3. 

Example 3. The non-linear differential system 

       txgtxtAtx ,.  , 0t ,      (13) 

where  tA  is a matrix with nonpositive off-diagonal elements, is positive with respect to the 

cone nR  of nonnegative vectors if the vector function  txg ,  satisfies [2] 

0x , 0ix      0, txg i   ni ,,1 , 

and the system is monotone with respect to same cone if  txg ,  is semi-monotonic non-

decreasing on x  (Vazhevsky condition):  

yx  , ii yx        tygtxg ii ,,    ni ,,1 . 

If both above limitations on  txg ,  hold for yx 0 , then system (13) is monotone on  . 

Example 4. Let us consider a matrix system extending the Lyapunov and Riccati 

differential equations in the form 

           tDXtXCtXBtBtXAXtAX
k

T

kk

T
 . , 0t ,    (14) 

where  tA ,  tBk ,  tC  and  tD  are given  matrix functions. The operator  tM  has the form 

     tPtLtM  ,       TtXAXtAXtL  ,       
k

T

kk tXBtBtP , 

and  stW ,  is monotone with respect to a cone of symmetric positive semi-definite matrices 

(see Example 2 and Lemma 2). If     0
T

tCtC  and     0
T

tDtD , then the operator in 

right side of (14) is completely positive and the system is positive. In the case of   0tC , the 

system is also monotone. 

 Note, that matrix equation (14) with zero right side is known as equation of moments 

for the stochastic system Ito 

           
k

kk tdwtxtBdttxtAtdx , 

where kw  are components of standard Wiener process. This equation is positive, and it is used 

in studying the mean quadratic stability of mentioned stochastic system. 

 4. Stability of linear positive systems.  Stability problem for class of the non-

stationary systems (4) without additional constraints is enough complicated. There is not to 

date constructive methods for its solving. Stability of the system has been studied by using the 

Lyapunov functions method, theory of characteristic indexes, methods of compare systems, 
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theory of reducible and periodic systems etc. (see, for example, [6-9]). We show that an 

asymptotic stability analysis of system (4) under some additional conditions can be reduced to 

solution of simple equations such as (1) with monotonically invertible operator. One of such 

conditions is a positivity of original or auxiliary system with respect to normal reproducing 

cone of a phase space. 

Stability study of system (4) for any bounded function  tG  is reduced to learning 

stability conditions of a trivial solution of the homogeneous system 

,0)(  XtMX  0t .      (15) 

Stability and asymptotic stability of system (15) are equivalent to the appropriate conditions 

  


0,sup
0

ttW
tt

,   0, 0 YttW , Y , t . System (15) is exponential stable if its 

arbitrary solution satisfies the estimation 

  0

)( 0 XaetX
ttb 

 , 0tt  ,      (16) 

where 0a  and 0b  are some constants. Asymptotic stability of system (15) follows from 

its exponential stability. For classes of autonomous and periodic systems, the properties of 

exponential and asymptotic stability are equivalent. 

Solutions of asymptotically stable system (15) satisfy the equality 

    YdttXtM

t

t


0

,       (17) 

where   YtX 0 . Thus,   0tX  if 0Y  and system (15) is positive. We consider a class of 

the linear autonomous systems 

,0MXX  0t ,       (18) 

where M  is a bounded operator,   M . The equality (17) is reduced to form (1), where 

 
t

t

YdtttWX

0

0, ,   )(

0
0,

ttM
ettW


 . 

Positivity of system (18) is equivalent to monotonicity of the exponential operator Mte  for 

0t .  For operator exponent, we define the growth border by  



Mt

t
t

M elnlim 1  and the 

spectral edge  )(:Reinf MM   . From theorem on transformation of spectrum for 

bounded operators, it follows that MM    [3]. Spectral radius of monotone operator is a 

point of its spectrum (Kreyn-Bonsall-Carlin theorems [1]). Therefore, for positive system 

(18), )(MM   . 

Lemma 5. For positive system (18), the operator IM   is monotonically invertible ft 

and only if M  . If the operator IM   is  monotonically invertible for any 0  , then 

system (18) is positive and M 0 . 

Proof. If system (18) is positive, then for any M  , we have 

  0
0

1
 




dteeIM Mtt . 

Back, if the operator IM   is monotonically invertible for any value 0  , then 

   0lim
1







k

kk
k

Mt ItMte , tktk  , 0t . 
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For positive system (18), we show that the operator IM   is not monotonically 

invertible for M  . Assume that for some 1  and 2 , the operators IMM 11   and 

IMM 22   are monotonically invertible and 21   M . Since 21 MIMM M   , 

then according to the theorem on two-sided estimation of monotonically invertible operators, 

the operator IM M  should be also monotonically invertible [1]. However, it contradicts to 

the condition  MMM   . Therefore, for positive system (18), the operator IM   is 

monotonically invertible only for M  . 

Note. From the theorems on spectrum mapping and spectral radius of a monotone 

operator, it follows that under the conditions 0Mte  and   0
1



IM  , there are such 

points of spectrum  M ** , , that for any  M , the inequalities 
tt ee *Re    ,     



*

Re *tt ee . 

are hold. The right sides of these inequalities are real positive values for 0t . The first 

inequality (for small  Mt 2 ) implies that *  is a real point of spectrum and *Re   , 

 M . According to the second inequality for large value t  and  M , we have 

to put   M** . 

Lemma 6. If the operator IM  is monotonically invertible for any 0  , then the 

spectrum  M  lies in the half-plane 0Re   . 

Proof. Since IM   is invertible operator for 0  , the operator M  has no real 

points of a spectrum in the interval  0, . Spectral radius of the monotone operator 

  1
 IM   is equal to   *1 , where *  is a real point of the spectrum  M  such that 

0*   . Thus,   0*  and *  does not depend of  . If 0Re    then for 

some value  , the inverse inequality   *  holds. Therefore, 0Re   , 

 M  and *  coincides with M . 

If 0M , then for any solution of (18), the estimation (16) holds with M 0 .  

Conversely, if system (18) is exponential stable and positive, then inequality (16) for the 

partial solution    
VetX

ttM 0



( 0V ) implies that 0M . Using lemmas 8 and 9, we 

obtain the following result.  

Theorem 1. Positive system (18) is exponential stable if and only if the operator M  is 

monotonically invertible. If the operator IM  is monotonically invertible for any 0 , 

then system (18) is positive and exponential stable. 

Note, if the operators M  and IM   with enough large   are monotonically 

invertible, then system (18) is exponential stable (see proofs of Lemma 5 and Lemma 6). 

Well-known criteria for a mean quadratic asymptotic stability of the Ito stochastic systems are 

corollaries of Theorem 1. 

Now, we consider the classes of non-stationary systems (15). System (15) is called 

positively reducible if there is the Lyapunov transformation HtQX )(  reducing to the 

positive stationary system 

,00  HMH       (19) 
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where 0M  is a constant operator. In this definition,  tQ  is uniformly bounded differentiable 

operator having uniformly bounded inverse  tQ 1  and satisfying the operator differential 

equation  

  00  QMQtMQ . 

Theorem 2. Positively reducible system (15) is exponential stable if and only if the 

operator 0M  is monotonically invertible. 

The  periodic systems of type (15) is reducible and 

)()( tMtM  , )()()(  WtWtW  , 0t , 

where )0,()( tWtW  . In addition, the spectrum of the monodromy operator  W  does not 

enclose zero. Operator of the Lyapunov transformation has the form 
tM

etWtQ 0)()(  , where 

)(ln1

0  WM  . Therefore, positively reducible  periodic system (15) is exponential 

stable if and only if the operator 0M  is monotonically invertible. 

Consider the systems (15) with functionally commutative operator  tM : 

)()()()( tMsMsMtM  , 0,  st .      (20) 

In this case, the evolutional operator is determined by 

),(),( stNestW  , 
t

s

dMstN  )(),( , st  .     (21) 

Assume that there is the bounded limit operator 




t

t
t

dM
t

M

0

)(
)(

1
lim0 


,       (22) 

where 0)( t  is some function such that   t  for t . 

Theorem 3. Let conditions (20) hold and system (19) with operator (22) be positive. 

Then asymptotic stability of system (15) follows from monotone invertibility of operator (22). 

Proof. Following [8], from (20)-(22) we obtain the relations 

       tMtNtNtM  ,,  ,     0000 ,, MttNttNM  , 

    0000 ,, MttttM  ,       00

1

0 ,, MttNttt 


 , 

where   0, 0  tt , t . Therefore, arbitrary solution of (15) subject to (21) can be 

presented by   

            
0

,

0

, 0000 XeeXetX
tttMtttMt 




. 

Let   00 :Reinf M  . Then according to Lemma 6, 00   and for any 

positive number 2/0   there is an instant 1t  such that    0,tt  for 1tt   and 

         
0

2

0
00 XeXeetX

tttt   
 , 

where 0  is some constant. Since   t  and  20  , we have   0tX  for t . 

Therefore, system (15) is asymptotically stable.  

Example. We consider the matrix system (15) and assume that 















)()(

)()(
)(

tatb

tbta
tM ,  

t

t

dssbt

0

)()( , cdssa
t

t

t


0

)(
)(

1


, t , 

where  ta  and  tb  are given functions. Obviously, the matrix  tM  satisfies the functional 

commutability condition (20) and system (19) with the extreme matrix 
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c

c
M

1

1
0  

is positive with respect to a cone of nonnegative vectors (see item 2). Monotone invertibility 

of the matrix 0M  is reduced to the inequality 1c . Thus, according to Theorem 3, an original 

system (15) is asymptotically stable. 

5. Robust stability of positive systems. Some applied investigations give rise a 

stability problem for the family of dynamic systems with uncertain parameters (robust 

stability problem).  

We consider the family of dynamic systems defined by  

),,()( tXGXtMX   0t ,      (23) 

)()()( tMtMtM  ,      (24) 

XtMtGtXGXtMtG )()(),()()( 2211  ,     (25) 

where all operators are bounded on a set of variables. Inequalities are defined with respect to 

the normal reproducing cone  . Generally, the double-sided estimation (25) should hold 

for any point X  in a phase space where solution of (23) is determined. If we consider the 

solutions   0tX , then in (25), X . 

In (23) - (25), we eliminate two linear systems 

  )()()( 1111 tGXtMtMX  ,      (26) 

                     )()()( 2222 tGXtMtMX  .      (27) 

Lemma 7. Let evolutional operator of the system (26) be monotone and the 

inequalities (25) hold for X . Then the solution   0tX  of each system (23)-(25) are 

bounded by suitable solutions of (26) and (27):     

)()()( 02001 tXtXtX   )()()( 21 tXtXtX  , 00  tt . 

If inequalities (25) hold for X , then positivity of system (26) leads to positivity of each 

system (23)-(25) and 

)()()(0 02001 tXtXtX   )()()(0 21 tXtXtX  , 00  tt . 

Proof. Subtracting (26) from (23) and (23) from (27) subject to (24) and (25), we 

obtain the differential inequalities 

           tXtMtMHtMtMH  111
 ,             tXtMtMHtMtMH 1111  , 

           tXtMtMHtMtMH 1222  ,             tXtMtMHtMtMH  222
 , 

where      tXtXtH 11  ,      tXtXtH  22  and     

               tMtMtMtMtMtMtMtM 2211  . 

If system (26) is positive, then its evolutional operator should be monotone. Monotonicity of 

the operators  stW MM ,
1  follows from monotonicity of the operators  stW

MM
,

1
, 

 stW MM ,
2  and  stW MM ,

2  (see item 2).  

If   0tX  or   01 tX , then   001 tH  implies that   01 tH  for 0tt  . Similarly, 

if   0tX  or   02 tX , then   002 tH  implies that   02 tH  for 0tt  . Therefore, 

positivity of system (26) implies positivity of each system (23)-(25). In the case of   0tX , 

the inequalities (25) are used above only for X . 

Lemma 7 can be used for studying a robust stability of the family of differential 

systems (23). For example, we consider the family of linear systems 
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,0)(  XtMX  )()()( tMtMtM  , 0t .     (28) 

In this case, systems (26) and (27) take the form 

                                    011  XtMX , 0t ,      (29) 

  022  XtMX , 0t .       (30) 

If initial conditions in (28) and (30) satisfy the inequalities )()(0 020 tXtX  , then   

monotonicity of an evolutional operator of system (29) implies that )()(0 2 tXtX  , 0tt  . 

Furthermore, if system (30) is asymptotically stable, then from normality of the cone  , we obtain 

  0tX , t . If   is a reproducing cone, then the solutions  tX  possess this property for 

any initial conditions 0X  and      tXtXtX   , where functions    tX  satisfy (28) 

and for which the above stated reasoning hold. Therefore, an asymptotic stability of each positive 

system of the family (28) follows from an asymptotic stability of a trivial solution of system (30).  

For linear systems from family (23)-(25), in particular, (28), we formulate the 

following result. 

Theorem 4. If system (27) is asymptotically stable and system (26) is positive, then 

each linear system from the family (23) - (25) is asymptotically stable and positive. 

Note, that for the family of stationary systems (28), monotone invertibility of the 

operators M  and M  implies monotone invertibility of the operator segment 

MMM  [1]. From Theorems 1 and 4, in particular, follows that the operator M  is 

monotone invertible if the operator tMe  is monotone for 0t and spectrum of M  lies in the 

half-plane 0Re  . 

6. Differential comparison systems. The methods for comparison based on mapping   

state space of an original (complicated) system in state space of an auxiliary (investigated) 

system are used in various applied and theoretical problems (see, for example, [9-11]). In 

stability study, it is expedient to use as comparison systems the classes of positive and 

monotone systems, and also non-linear systems satisfying conditions of the Chaplygin and 

Wazhevsky type theorems. Thus, there can be useful statements of Theorems 1-4 and 

Lemmas 3, 4 and 7. 

In a Banach space  , we consider the differential system 

),( txfx  , x , 0t ,       (31) 

where f  is an operator ensuring an existence of unique solution   tx . Let   be a Banach 

space partially ordered by the normal reproducing cone  . In  , we construct the class of 

differential systems 

),,( tXFX   X , ,0t        (32)  

as comparison systems for an original system (31). By   we denote such class of systems 

(32) that between their solutions and solutions of the differential inequalities 

),( tZFZ  , Z , ,0t       (33) 

there is a conformity for which )()( 00 tZtX   implies )()( tZtX  , 0tt  . Apparently, each 

system of   is monotone. If 0),0( tF  for ,0t  then system (32) from   is positive. 

Let ),( txE  be an operator continuously mapping some neighbourhood of the point 

 0x  for 0t  in  . If ),( txE  and its generalized derivative by virtue of (31) satisfy  

 ttxEFtxEDt ),,(),( )31(  ,       (34) 
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then system (32) from   is an upper comparison system , i.e. 

  )(),( 000 tXttxE       )(),( tXttxE  , 0tt  .     (35) 

In (34), the derivative by virtue of (31) can be defined by   

     txEhttxhfxEtxED
h

h
t ,,,lim),( 1

0
)31( 


. 

Similarly, we determine the class of systems   and lower comparison systems (32) for (31) 

by changing all used inequalities in   by inverse. If we require instead of (34) the equality  

 ttxEFtxEDt ),,(),( )31(  ,       (36) 

then due to a monotonicity of system (32), we have  

  )(),()( 020001 tXttxEtX       )(),()( 21 tXttxEtX  , 0tt  ,   (37) 

where )(1 tX  and )(2 tX  are some solutions of (32). It means, that (36) determines a class of 

monotone systems (32) used as lower and upper comparison systems simultaneously for  (31). 

The estimations (35) and (37) can be used for comparison of dynamic properties of 

systems (31) and (32), and also for construction of attraction region in a phase space of (31). 

For example, if given operator E , the inequality 0),( txE  is possible only for 0x , then 

under conditions (35) and   0tX , we have   0tx , t . Constructing the positive or 

monotone on a cone upper comparison systems, we can choose E  from a class of everywhere 

positive operators. 

As an example, for the linear system 

xtAx )( , 
nRx ,       (38) 

we give the upper matrix comparison system 

      0,  tXGtXAXtAX
T , nnRX  ,     (39) 

constructed by using (34) with 0),(  TxxtxE  [10]. Here   is a cone of symmetric 

positive semi-definite matrices and system (39) is positive. If    XtXPtXG , , where 

    0
T

tPtP , then (39) is the Riccati differential equation. Asymptotic stability of system 

(38) follows from asymptotic stability of the matrix differential equation (39). 

Studying a system (32), we can use comparison systems in a phase space  . Assume, 

that right side of (32) satisfies the estimation 

         XtMtGtXFXtMtG  21 , , X , ,0t    (40) 

where  tM  is a linear operator describing the differential systems 

   tGXtMX 111  , 1X , ,0t     (41) 

   tGXtMX 222  , 2X , ,0t     (42) 

with monotone evolutional operator  stW , . If in Lemma 4,      XtMtXFtXG  ,, , then  

)()()( 02001 tXtXtX   )()()( 21 tXtXtX  , 0tt  . 

It means, that double-sided estimation (40) determines for (32) accordingly the lower and 

upper comparison systems (41) and (42). Here IE  , i.e. a phase space transformation is not 

used.  

Note that we can construct the lower and upper systems of comparison in different partially 

ordered spaces 1  and 2  as follows  

),,( 111 tXFX   11 X , ,0t       (43) 

),,( 222 tXFX   22 X , ,0t       (44) 
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In addition, properties of suitable operators  txE ,1  and  txE ,2 , and also the order relations 

defined by cones 11   and 22   in  

  )(),( 11 tXttxE  ,   )(),( 22 tXttxE  ,     (45) 

should be defined by the studying characteristics of original system (31). For example, we can 

require that the system of inequalities 0),(1 txE  and 0),(2 txE  holds only for 0x . In 

this case, we have to expect that in (45), 0)( tx  for t  if 0)(1 tX  and 0)(2 tX , 

where     tXtX 21  is a solution of lower (upper) comparison system (43) ((44)). If 

   txEtxE ,, 21  , then this follows from a lemma on two militiamen in a partially ordered 

space [1]. 

 

References 

 

1. М.А.Krasnoselsky, Е.А.Lifshits, А.V.Sobolev. Positive linear systems.- Moskow: Nauka, 

1985.- 256 p. (Russ.). 

2. М.А.Krasnoselsky. Shift operator on trajectories of differential equations.- Moskow: 

Nauka, 1966.- 332 p. (Russ.). 

3. Ph.Clement, H.Heijmans, S.Angenent, C. van Duijn, B. De Pagter. One-parameter 

semigroups .- Moskov: Mir, 1992.- 352 p. (Russ.). 

4. Milshtein G.N. Exponential stability of positive semigroups in linear topological space // 

Izv. vuzov. Matematika.- 1975.- № 9.- P.35-42 (Russ.). 

5. A.G.Mazko. Stability of linear positive systems // Ukrain. Math. Zhurn..- 2001.- vol. 53, № 

3.- P. 323-330 (Russ.).   

6. A.G.Mazko. Localization of a spectrum and stability of dynamic systems.- Kiev: Institute  of  

Mathematics of  NAS of Ukraine, 1999.- 216 p. (Russ.). 

7. Ju.L.Daletsky, M.G.Kreijn. Stability of the solutions of differential equations in a Banach 

space.- Moskow: Nauka, 1970.- 535 p. (Russ.). 

8. B.P.Demidovich. The lectures on a mathematical stability theory.- Moskow: Nauka,  1967.- 

472 p. (Russ.). 

9. V.M.Matrosov, L.Ju.Anapolsky, S.N.Vasiljev. Method of comparison in mathematical 

systems theory. - Novosibirsk: Nauka, 1980.- 480 p. (Russ.). 

10. V.Lakshmikantham, S.Leela, A.A.Martynyuk. Motion stability: method of comparison.-

Kiev: Nauk. dumka, 1991.- 248 c. (Russ.). 

11. N.S.Postnikov, E.F.Sabaev. Matrix comparison systems and their applications in 

automatic control  problems // Avtomatika & telemechanika.- 1980.- № 4.- P. 24-34 (Russ.). 

 

 
Author information: Mazko Alexey Grigorjevich, doctor of physical and mathematical sciences, 

head scientist of Institute of mathematics of Ukraine National Academy of Sciences; area of scientific 

interests: stability and control theory; tel.: (044) 224-02-95; e-mail: mazko@imath.kiev.ua.  

 

 

 

 

 

 

 



PROBLEMS OF NONLINEAR AN ALYSIS IN ENGINEERING SYSTEMS.– 2002.– No. 1(15).– 8. С. 37–48. 

 

 

 

 

 

 

Alexey G. Mazko 

 

Stability and comparison of systems in partially ordered space 
 
 

Abstract 

 

The classes of positive and monotone differential systems with respect to prescribed 

cone in a phase space are studied. The stability criteria of linear positive systems are 

formulated in terms of monotonically invertible linear operators. The methods for robust 

stability analysis and comparison of systems in partially ordered space are developed. 

  


