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The classes of positive and monotone differential systems with respect to prescribed cone in a
phase space are studied. The stability criteria of linear positive systems are formulated in terms of
monotonically invertible linear operators. The methods for robust stability analysis and comparison
of systems in partially ordered space are developed.

1 Introduction. Various natural systems are positive and monotone. Positivity
(monotonicity) of the dynamic system is equivalent to positivity (monotonicity) of some
operator describing its motion with respect to the cone of a phase space [1-3]. These
properties of systems should be taken into consideration and be used in analysis and synthesis
problems especially in stability and spectral characteristics investigation, in numerical
procedures of construction of the solutions and appropriate control etc. Stability investigation
of linear autonomous positive systems is reduced to solving algebraic equations defined by
operator coefficients of the systems [4-6]. The differential Lyapunov and Riccati equations
are examples of positive systems concerning the cone of symmetrical positive semi-definite
matrices.

In present article, the classes of positive and monotone differential systems in the
partially ordered Banach space are studied. The main research results are the criteria of a
positivity and asymptotic stability of linear systems formulated in terms of the monotone and
monotonically invertible operators. The methods for robust stability study and analogs of
comparison systems in partially ordered space are offered.

2. Operators in space with a cone. The convex closed set K of real normalized
space Z is called a cone if KN-K ={0} and aX + BY eK forany X,Y eK and a, 8>0.

A space containing the cone is partially ordered. The inequality X <Y (X <Y) means that
X -Y eK (X-Y eK,), where K, is a set of internal points of K . The solid, reproducing
and normal cones are defined accordingly by K, =&, E=K-K and 0<X<Y =
| X]|< d||Y|, where ¢ is a universal constant.

Let =, (2,) be the Banach space with a cone K,(K,). The linear operator
M :=, > E, is called monotone if from X <Yit follows that MX < MY . The property of
monotonicity of a linear operator is equivalent to the positivity: X >0—= MX >0. Inequality
M <L means that the operator L—M is positive. The monotone operator L is called a
majorant (minorant) of the monotone operator M if M < L(M > L). The monotone operator
is called extremal if he can’t be expressed by a sum of linearly independent minorants. The
operator is called strictly monotone (strongly monotone) if MX>MY for
X>Y(X>Y,X#Y). Strongly monotone (extremal) operators are internal (exterior) points
of a cone of linear monotone operators. Necessary and sufficient condition for the strictly
monotonicity of monotone operator A is the inequality MX, >0 for some X, >0.
The operator M is called monotonically invertible if the equation
MX =Y 1)
has a solution X eK, for any Y eK,. If the cone K, is normal and reproducing, then
inequalities M, <M < M, with monotone invertible operators M, and M, imply that M is
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also monotone invertible and ' <M ™' <M, '[1]. If cone K, is normal and solid and

M <L, where L is a monotone invertible operator, then monotone invertibility of the
operator M is equivalent to a solvability of (1) in the form of X >0 for some Y >0.

In the space = with normal reproducing cone K, we eliminate the class of linear
operators [6]

M=L-P, PKcKclIK. (2)
The monotone invertibility criterion for operator (2) is the inequality
p(T) <1, )

where p(T) is a spectral radius of the operator pencil 7(1)=P—AL. When K is solid, the

inequality (3) is equivalent to solvability of (1) in the form of X >0, Y >0.
The properties of a monotonicity and positivity are similarly determined for the non-
linear operators F:E, > =,. If FE, cK,, then the operator is called completely positive. If

FX >FY for X>Y >0, then F is monotone on the cone K, .

3. Positive and monotone systems. Let = be the Banach space partially ordered by
the cone K. Let X(t) € = be a state of continuous or discrete time dynamic system. The

system is called (z,7,)—positive if X(z,)=X, eK implies X(#) K. The system is called
positive if it is (z,7,)—positive for >z, >0. This property of the system is equivalent to
positivity of the operator V(z,¢,):E — E determining transition from the state X, to the
state X(¢1)=V(t,¢,)X, for t>¢,>0. The system is called monotone (monotone on the cone
K) if its motion operator ¥ (z,¢,) is monotone (monotone on the cone K) for >¢,>0.

The properties of positivity and monotonicity of control systems are similarly
determined with respect to the cones in state and control spaces. If the operator
W(t):2, > E, determines a system with input U(z) and output X () =W (1)U(¢), then its
positivity (monotonicity) with respect to the cones K, c =, and K, — E, is equivalent to
positivity (monotonicity) of given control system. The operator W (¢) can be defined explicit
or in form of solutions of differential, difference, integro-differential and other types of
systems [1].

Let us consider the differential system

X+M@®X =G@), (4)
where M (t) is a linear bounded operator acting in a partially ordered Banach space = with
the normal reproducing cone K. Assume that for any initial condition X(z,) =X, there is

the unique solution

X(0) =W(t,t,)X, + [W(t,$)G(s)ds, t>1,20, (5)
ty
where W (t,s) =W (t,t,)W(s,t,) " is an evolutional operator being the unique solution of the
Cauchy problem
W+M@OW =0, W(s)=1, t>s. (6)
The linear operator W (t,t,) can be represented by uniformly converged on the norm series

W(t,to)zl—jM(tl)a’t1 +jM(t2)TM(tl)dtldt2 —, (7)

According to (5), X (¢) eK for any initial condition X, eK if
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Wi(t,t,) >0, j W(t,5)G(s)ds =0, t>t,>0. (8)
Here first inequality means a monotonicity of the operator with respect to the cone K, and
second one is an ownership to the cone. The inverse statement is easily established taking into
account a closure of K. Therefore, system (4) is positive if and only if (8) holds.
Using (5) and (8), we establish an equivalence of the following statements: (a) system
(4) is (t, 0)-positive for any function G(z) >0 and ¢ > 0; (b) the operator W (z,s) is monotone
for t>s>0; (c) system (4) is monotone; (d) for any function Z(¢) satisfying the inequality
Z+M(@t)Z>0, Z(0)>0 implies Z(r)>0 for any ¢>0. If G(t)>0, then each of the
statements (a)-(d) is equivalent to positivity of system (4). If M(t)=M is a constant
operator, then W (t,s) =e ™ and conditions for monotonicity of the operators W (t,s) and
W (t,0) for t >s >0 coincide.

Note the properties of the evolutional operators which follow from (6) and (7). The
relations

Wi(t,t)=1, W(t,s)™" =W(s,t), W(t,7) =W(t,s)W(s,7)
hold for t>s=z. If M(t)=M,([t)+M,(), then W(t,s)=W, (t,s)W,, (t,s), where
Wy, (t,s) and W, (t,s) are evolutional operators corresponding to M,(t) and
M, (t) =Wy (s, )M, ()W, (t,s). Thus, W(t,s) is monotone if the operators W, (t,s) and
Wy, (t,s) are monotone.
Lemma 1. The evolutional operator W (t,s) is monotone for t >s >0 if and only if

the exponential operator e ™®" is monotone for t >0, h>0.
Proof. We use representation for W (t,s) in the form of multiplicative integral [7].

Breaking the section [s,t] by points t,, =s+kh,, where h, =(t—-s)/n, k=0,---,n, for large
n, we have
W(t,s) =W(t, ,t, ) W(t, t,), Wt .t )=e"%"% 1o ), k=1--,n,
where 6, €[t ,,,t,,] are some intermediate points. Therefore,
W (t,s) = lim(e™ " ...e 7™ )

If e™®" >0 forany t>0 and h>0, then W(t,s) is a limit of some sequence of monotone

operators. It should be monotone due to closure of the cone of linear monotone operators.
The converse is similarly established on basis of the relations

W(t,t—h/n)=e™%"" L o@/n), e™O" = limW t,t—h/n))",
where 6, e[t—h/n,t], n=12,.-- .1
Lemma 2. If M(t) = M, (t) + M, (t) and the operators W, (t,s) and W,, (t,s) are

monotone for t > s >0, then the operator W,, (t,s) is also monotone for t >s>0.
Proof. We use Lemma 1 and present the exponential operator by

—(M;+My)h _ _ h2 S (_h)kiz
e = E(h) hkz:; X S,
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k
where E(h) =4(e™"e ™" +e ™M) S, = (M, +M, ) ~1Y C(M{MST + MIMST).
i=0

Here the dependence M, and M, from t is omitted for a simplicity. If we set h=£, then
e — fm[E(E )
Taking into account Lemma 1 and our assumptions, it completes the proof of monotonicity
for w,, (t,s), t>s>0. W
Positivity of system can be utilized for estimation of its solutions. If the functions
X,(t) and X,(t) satisfy the inequalities X, + M ()X, <G,(t), X, +M ()X, >G,(t) and
X, (t,)< X, (t, ), then subject to (8) we obtain

t
X, (1) = X, (1) 2 W (tt)[ X, (t )= X, (to )]+ [W (¢, 5)G(s)ds > 0
t
where G(t)=G,(t)-G,(t). Hence, the following statement holds.

Lemma 3. Let X(t) be a solution of the positive system (4) and the functions X,(t)
and X,(t) satisfy the inequalities X, + M (t)X, <a,G,(t), X, + M(t)X, > a,G, (t), where
a, <1, a, 1. Then X,(t,)< X(t,)< X, (t,) implies that X, (t)< X (t)< X, (t) for t >t,.

If o, =0, then the lower estimation for the solution of (4) in Lemma 3 does not
depend on its right part. In the case of &, =, =1, Lemma 3 holds provided that the operator
W(t,s) is monotone for t >s >t,.

We now give the examples of linear positive systems with respect to the cones of
nonnegative vectors and positive semi-definite matrices.
Example 1. Let us consider the linear differential system

x(t)+ Alt)x(t)=g(t), t=0, (9)
where A(t) is a continuous nxn matrix function. It is known [1], that monotonicity of

evolutional operator of system (9) with respect to the cone K = R" of nonnegative vectors is
equivalent to off-diagonal nonpositivity of the matrix A(t). Therefore, system (9) is positive

under the restrictions a;(t)<0, i = j, g(t)>0, t>0.
Example 2. Let us consider the Lyapunov matrix differential equation
X (t)+ A)X(t)+ X(t)At) =Y(t), t>0, (10)
where At) and Y(t)=Y() >0 are given matrix functions. In this case
M(t)X = At)X + XA(t)" and evolutional operator has the form W(t,s)X =W, (t,s)XW,(t,s)",
where W, (t,s) is an evolutional operator (matriciant) of system (9). Obviously, the operator

W(t,s) is monotone with respect to the cone K = R™ of symmetric positive semi-definite

matrices. Therefore, (10) is a positive system with respect to the cone.
Let's extend the differential system (4) in the form

X +M(@t)X =G(X,t), t>0, (11)
where G(X,t) is a non-linear operator ensuring an existence and uniqueness of a solution
X(t)e= for t>t,>0, X(t,)=X,€Z. Let V(t,t,) be a shift operator on trajectories of
(12) determining a transition from X(t,) to the state X(t)=V(tt,)X(t,), t>t,. Then



PROBLEMS OF NONLINEAR AN ALYSIS IN ENGINEERING SYSTEMS,— 2002.— No. 1(15).—8. C. 37-48.

positivity (monotonicity) of system (11) is equivalent to positivity (monotonicity) of the
operator V(t,t,) forany t >t, >0.

Solutions of system (11) satisfy the integral equation
t
X () =W (t,ts) Xo + [W (t,5)G(X (s) s)ds, (12)
f
where W(t, s) is an evolutional operator of linear system (4). From (12), it follows that system
(11) is positive if G(X,t) is completely positive and W(t,s) is monotone for t >s>0.
Lemma 4. Let X (t) be a solution of system (11) with monotone operator W(t,s) and
the functions X, (t) and X, (t) satisfy the relations
X, +Mt)X, =G, (t), X, +M({)X, =G,(t), G,(t)<G(X(t)t)<G,(t), t>t,.
Then from X, (t,)< X(t,) < X, (t,) it follows that X, (t)< X(t)< X, (t), t>t,.

Given statement is established by using (12) and the proof method of a lemma 3.
Example 3. The non-linear differential system

x(t)+ At)x(t)=g(xt), t>0, (13)
where A(t) is a matrix with nonpositive off-diagonal elements, is positive with respect to the
cone K — R" of nonnegative vectors if the vector function g(x,t) satisfies [2]

x>0, x, =0 = g;(xt)>0 (i=1...,n),
and the system is monotone with respect to same cone if g(x,t) is semi-monotonic non-
decreasing on x (Vazhevsky condition):
x<y, x =y, = g(xt)<g(y,t) (i=L...,n).
If both above limitations on g(x,t) hold for 0 < x <y, then system (13) is monotone on K .

Example 4. Let us consider a matrix system extending the Lyapunov and Riccati
differential equations in the form

X.+ Alt)X + XA(t) ZB )" = XC(t)X +D(t), t>0, (14)

where A(t),B,(t),C(t) and D(t) are given matrix functions The operator M( ) has the form
M(t)=L({)-P(), L)X = Alt)X + XA(t) ZB
and W(t, s) IS monotone with respect to a cone of symmetric posmve semi-definite matrices

(see Example 2 and Lemma 2). If C(t)=C(t)’ >0 and D(t)=D(t)" >0, then the operator in
right side of (14) is completely positive and the system is positive. In the case of C(t)=0, the

system is also monotone.
Note, that matrix equation (14) with zero right side is known as equation of moments

for the stochastic system Ito
dx(t)+ Altx(E)dt =3B, (Ux(t)dw (t),

where w, are components of standard Wiener process. This equation is positive, and it is used

in studying the mean quadratic stability of mentioned stochastic system.

4. Stability of linear positive systems. Stability problem for class of the non-
stationary systems (4) without additional constraints is enough complicated. There is not to
date constructive methods for its solving. Stability of the system has been studied by using the
Lyapunov functions method, theory of characteristic indexes, methods of compare systems,
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theory of reducible and periodic systems etc. (see, for example, [6-9]). We show that an
asymptotic stability analysis of system (4) under some additional conditions can be reduced to
solution of simple equations such as (1) with monotonically invertible operator. One of such
conditions is a positivity of original or auxiliary system with respect to normal reproducing
cone of a phase space.

Stability study of system (4) for any bounded function G(t) Is reduced to learning
stability conditions of a trivial solution of the homogeneous system

X +M()X =0, t=>0. (15)

Stability and asymptotic stability of system (15) are equivalent to the appropriate conditions
supW(t,t, )| <o, W(t,t,)Y| >0, Y €E, t—>o0. System (15) is exponential stable if its
t>t,

arbitrary solution satisfies the estimation
|X (1) < ae™ X, |, t=t,, (16)

where a>0 and b >0 are some constants. Asymptotic stability of system (15) follows from
its exponential stability. For classes of autonomous and periodic systems, the properties of
exponential and asymptotic stability are equivalent.

Solutions of asymptotically stable system (15) satisfy the equality

[MEX (=Y. (17)

where X(t,)=Y . Thus, X(t)>0 if Y >0 and system (15) is positive. We consider a class of
the linear autonomous systems

X+MX =0, t>0, (18)
where M is a bounded operator, U(I\/I);t . The equality (17) is reduced to form (1), where

t
X = [W(tt)vdt, W(tt,)=e ™.

tO
Positivity of system (18) is equivalent to monotonicity of the exponential operator e ™ for
t>0. For operator exponent, we define the growth border by y,, = !im : InHe*Mt H < oo and the

spectral edge «,, =inf {Reﬂ A ea(M)}. From theorem on transformation of spectrum for
bounded operators, it follows that y,, =-«,, [3]. Spectral radius of monotone operator is a
point of its spectrum (Kreyn-Bonsall-Carlin theorems [1]). Therefore, for positive system
(18), ay e a(M).

Lemma 5. For positive system (18), the operator M + /1 is monotonically invertible ft
and only if ¥ > y,, . If the operator M +/ is monotonically invertible for any y > y,, then
system (18) is positive and y, > y,, -

Proof. If system (18) is positive, then for any » > y,,, we have

(M +7)" =[e7e™dt>0.
0

Back, if the operator M + /1 is monotonically invertible for any value y > y,, then

e =limlt, (M +1,1)* 20, t, =k/t, t=0.
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For positive system (18), we show that the operator M + 4 is not monotonically
invertible for y <y,,. Assume that for some y, and y,, the operators M, =M +y,l and
M, =M +y,l are monotonically invertible and y, <y, <y,. Since M; <M +y,1 <M,,

then according to the theorem on two-sided estimation of monotonically invertible operators,
the operator M + y,,1 should be also monotonically invertible [1]. However, it contradicts to

the condition «,, =—y,, € o(M ). Therefore, for positive system (18), the operator M + 1 is
monotonically invertible only for y > y,, .l

Note. From the theorems on spectrum mapping and spectral radius of a monotone
operator, it follows that under the conditions e™ >0 and (M —al)™ >0, there are such
points of spectrum c., B. € 5(M), that for any 1 € (M), the inequalities

et <e™, e ™ /|i-d<e/B —d.

are hold. The right sides of these inequalities are real positive values for t>0. The first
inequality (for small t < 270(M)) implies that . is a real point of spectrum and Re A > a.,
VA e o(M). According to the second inequality for large value t and VA € o(M), we have
toput g.=a. =, >.

Lemma 6. If the operator M —al is monotonically invertible for any « < «,, then the
spectrum (M ) lies in the half-plane Re A >« .

Proof. Since M —al is invertible operator for « < «,, the operator M has no real
points of a spectrum in the interval (—oo,ao]. Spectral radius of the monotone operator

(M —ad )™ is equal tol/(a. —), where a. is a real point of the spectrum o(M) such that
A-a|>a.—a>0.Thus, a. >, >a and a. does not depend of «. If Red <, then for

some value «, the inverse inequality |[1-—a|<a.—a holds. Therefore, Rel>a,,

VA ea(M)and a. coincides with ¢,, .l

If «,, >0, then for any solution of (18), the estimation (16) holds with 0<y <¢«,, .
Conversely, if system (18) is exponential stable and positive, then inequality (16) for the
partial solution X(t)ze’“M("tO)\/ (V #0) implies that «,, >0. Using lemmas 8 and 9, we

obtain the following result.
Theorem 1. Positive system (18) is exponential stable if and only if the operator M is
monotonically invertible. If the operator M + 1 is monotonically invertible for any » >0,

then system (18) is positive and exponential stable.
Note, if the operators M and M +/4 with enough large » are monotonically

invertible, then system (18) is exponential stable (see proofs of Lemma 5 and Lemma 6).
Well-known criteria for a mean quadratic asymptotic stability of the Ito stochastic systems are
corollaries of Theorem 1.

Now, we consider the classes of non-stationary systems (15). System (15) is called
positively reducible if there is the Lyapunov transformation X =Q(t)H reducing to the

positive stationary system
H+M,H =0, (19)
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where M, is a constant operator. In this definition, Q(t) is uniformly bounded differentiable

operator having uniformly bounded inverse Q‘l(t) and satisfying the operator differential
equation
Q+M(t)Q-QM, =0.
Theorem 2. Positively reducible system (15) is exponential stable if and only if the
operator M, is monotonically invertible.

The @ —periodic systems of type (15) is reducible and
Mt+a@)=M@t), Wt+a)=W({tW(@), t>o0,
where W (t) =W (t,0). In addition, the spectrum of the monodromy operator W(a)) does not
enclose zero. Operator of the Lyapunov transformation has the form Q(t) =W (t)e™", where
M, =@ InW (@) . Therefore, positively reducible o —periodic system (15) is exponential
stable if and only if the operator M, is monotonically invertible.

Consider the systems (15) with functionally commutative operator M (t):
MM (s)=M(s)M(t), Vt,s>0. (20)
In this case, the evolutional operator is determined by

t
W(t,s)=e ™", N(t,s)= [M(r)dr, t>s. (21)
Assume that there is the bounded limit operator
.1
M, =lim—— | M(z)dr, (22)
0 t—o ¢(t)t~[

where o(t) > 0 is some function such that ¢(t) — o for t — co.
Theorem 3. Let conditions (20) hold and system (19) with operator (22) be positive.
Then asymptotic stability of system (15) follows from monotone invertibility of operator (22).
Proof. Following [8], from (20)-(22) we obtain the relations
M(EN(t,z)= N(t,z)M(t), M N(t,t,)= N(t,t, )M,
MOA(t’to): A(t’to)Mo’ A(t’to): ‘//(t)_1 N(t’to)_ My,
where A(t,t,) — 0, t —oo. Therefore, arbitrary solution of (15) subject to (21) can be
presented by
X(t) — e*l//(t)[MoJrA(tvto)]XO — e*W(t)Mo e*W(t)A(tvto)Xo )
Let o, =inf{Rel:1ea(M,)}. Then according to Lemma 6, &, >0 and for any
positive number & < a, /2 there is an instant t, such that |A(t,t, )] < & for t>t, and
||X(t)|| < ﬁe—w(t)(ao—t)ew(t)a Xo” - ﬁe—w(t)(ao—k) Xo”’

where >0 is some constant. Since (t) — oo and «, > 2&, we have |X(t)] — 0 for t —oo.

Therefore, system (15) is asymptotically stable. H
Example. We consider the matrix system (15) and assume that

alt) - b(t)} t 1

M(t)=[ , o(t) = |b(s)ds - 0, —

-b(t) a() I o(t)

where a(t) and b(t) are given functions. Obviously, the matrix M (t) satisfies the functional
commutability condition (20) and system (19) with the extreme matrix

t
Ia(s)ds—>c, t—> o0,
t
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| ]

is positive with respect to a cone of nonnegative vectors (see item 2). Monotone invertibility
of the matrix M, is reduced to the inequality ¢ >1. Thus, according to Theorem 3, an original

system (15) is asymptotically stable.

5. Robust stability of positive systems. Some applied investigations give rise a
stability problem for the family of dynamic systems with uncertain parameters (robust
stability problem).

We consider the family of dynamic systems defined by

X+M()X =G(X,t), t>0, (23)
M@E) <M () <SM(t), (24)
G, (1) —M, ()X <G(X,1) <G, (t)— M, ()X, (25)

where all operators are bounded on a set of variables. Inequalities are defined with respect to
the normal reproducing cone K — =. Generally, the double-sided estimation (25) should hold
for any point X € = in a phase space where solution of (23) is determined. If we consider the
solutions X (t)>0, thenin (25), X eK .

In (23) - (25), we eliminate two linear systems

X, +(M @) + M, ()X, =G, (1), (26)
X, +(M(t)+ M, (1))X, =G, (t). (27)

Lemma 7. Let evolutional operator of the system (26) be monotone and the
inequalities (25) hold for X e K. Then the solution X(t)>0 of each system (23)-(25) are
bounded by suitable solutions of (26) and (27):

X, () < X(t,) < X, (t,) = X, (@) < X (@) < X, (), t>t,>0.
If inequalities (25) hold for X € =, then positivity of system (26) leads to positivity of each
system (23)-(25) and
0< X, (t,) < X(t,) < X, (t,) =0 X, (1) < X () < X, (), t>t,>0.

Proof. Subtracting (26) from (23) and (23) from (27) subject to (24) and (25), we

obtain the differential inequalities
Hy+ MO+ M, OH, = [MO-MOXO), H,+MO+M0OH, 2 [MO-Mo)X,0)
H, +[ME)+ M, (OH, > [ME)-MOIX, (). H, +ME)+M,H, =ME)-MOIXE),
where H,(t)= X (t)- X,(t), H,(t)= X, (t)- X(t) and
M(t)+M,(t)<M(t)+M, ()< M(t)+ M, ()< M(t)+M,(t).

If system (26) is positive, then its evolutional operator should be monotone. Monotonicity of
the operators W,,,,, (t,s) follows from monotonicity of the operators W. . (t,s),

Wiy, (t:5) and W, ,,, (t,s) (see item 2).

If X(t)>0 or X,(t)>0, then H,(t,)>0 implies that H,(t)>0 for t>t,. Similarly,
if X(t)>0 or X,(t)>0, then H,(t,)>0 implies that H,(t)>0 for t>t,. Therefore,
positivity of system (26) implies positivity of each system (23)-(25). In the case of X(t)z 0,
the inequalities (25) are used above only for X eK..

Lemma 7 can be used for studying a robust stability of the family of differential
systems (23). For example, we consider the family of linear systems
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X+M(@)X =0, M(t) <M(t)<M(t), t=>0. (28)

In this case, systems (26) and (27) take the form
X, +M(t)X, =0, t>0, (29)
X, +M(t)X, =0, t>0. (30)

If initial conditions in (28) and (30) satisfy the inequalities 0< X(t,) < X,(t,), then
monotonicity of an evolutional operator of system (29) implies that 0 < X (t) < X, (), t>t,.

Furthermore, if system (30) is asymptotically stable, then from normality of the cone K, we obtain
IX(t)] > 0, t —o0. If K is a reproducing cone, then the solutions X (t) possess this property for

any initial conditions X, € Z and X(t)= X_(t)— X_(t), where functions X (t) e K satisfy (28)
and for which the above stated reasoning hold. Therefore, an asymptotic stability of each positive
system of the family (28) follows from an asymptotic stability of a trivial solution of system (30).

For linear systems from family (23)-(25), in particular, (28), we formulate the
following result.

Theorem 4. If system (27) is asymptotically stable and system (26) is positive, then
each linear system from the family (23) - (25) is asymptotically stable and positive.

Note, that for the family of stationary systems (28), monotone invertibility of the

operators M and M implies monotone invertibility of the operator segment
M <M sﬂ[l]. From Theorems 1 and 4, in particular, follows that the operator M is

monotone invertible if the operator e ™

half-plane Re A > 0.

6. Differential comparison systems. The methods for comparison based on mapping
state space of an original (complicated) system in state space of an auxiliary (investigated)
system are used in various applied and theoretical problems (see, for example, [9-11]). In
stability study, it is expedient to use as comparison systems the classes of positive and
monotone systems, and also non-linear systems satisfying conditions of the Chaplygin and
Wazhevsky type theorems. Thus, there can be useful statements of Theorems 1-4 and
Lemmas 3,4 and 7.

In a Banach space X, we consider the differential system

x=f(xt), xeX, t=0, (31)

where f is an operator ensuring an existence of unique solution x(t)e X. Let Z be a Banach

—

space partially ordered by the normal reproducing cone K. In =, we construct the class of
differential systems

is monotone for t > 0and spectrum of M lies in the

X=F(X,t), XeZ, t>0, (32)
as comparison systems for an original system (31). By X, we denote such class of systems
(32) that between their solutions and solutions of the differential inequalities

Z<F(Zt),Ze=,1t20, (33)
there is a conformity for which X(t,) > Z(t,) implies X(t) >Z(t), t>t,. Apparently, each
system of X, is monotone. If F(0,t) >0 for t >0, then system (32) from X, is positive.

Let E(x,t) be an operator continuously mapping some neighbourhood of the point
x=0eX fort>0 in E. If E(x,t) and its generalized derivative by virtue of (31) satisfy

DE(X,1)| 5y < F(E(X,),1), (34)
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then system (32) from X is an upper comparison system , i.e.
E(x(ty),t,)< X(t,) = E(x(t),t)< X(t), t>t,. (35)
In (34), the derivative by virtue of (31) can be defined by
DE(X,1)[ sy = E%[E(x +hf (x,t),t+h)—E(x,t)].
Similarly, we determine the class of systems X_ and lower comparison systems (32) for (31)
by changing all used inequalities in = by inverse. If we require instead of (34) the equality

DE(Xt)| @y = FE(X1),1), (36)
then due to a monotonicity of system (32), we have
Xi(t) S E(X(t). 1) < X, () = X, () SE(X(®),)<X, (), t>t,  (37)

where X, (t) and X,(t) are some solutions of (32). It means, that (36) determines a class of
monotone systems (32) used as lower and upper comparison systems simultaneously for (31).

The estimations (35) and (37) can be used for comparison of dynamic properties of
systems (31) and (32), and also for construction of attraction region in a phase space of (31).
For example, if given operator E, the inequality E(x,t) <0 is possible only for x =0, then

under conditions (35) and X(t)— 0, we have x(t)— 0, t — . Constructing the positive or

monotone on a cone upper comparison systems, we can choose E from a class of everywhere
positive operators.
As an example, for the linear system

Xx=At)x, xeR", (38)
we give the upper matrix comparison system
X — Alt)X = XA(t)" =G(X,t)=0, X eR™, (39)

constructed by using (34) with E(x,t)=xx" >0 [10]. Here K is a cone of symmetric
positive semi-definite matrices and system (39) is positive. If G(X,t)= XP(t)X, where
P(t)=P(t)" >0, then (39) is the Riccati differential equation. Asymptotic stability of system
(38) follows from asymptotic stability of the matrix differential equation (39).

Studying a system (32), we can use comparison systems in a phase space =. Assume,
that right side of (32) satisfies the estimation

G,(t)-M(t)X <F(X,1)<G,([t)-M(t)X, X e=, t>0, (40)

where M (t) is a linear operator describing the differential systems
X, +M(t)X, =G,(t), X, €Z, t>0, (41)
X, +M(t)X, =G,(t), X, €=, t>0, (42)

with monotone evolutional operator W(t,s). If in Lemma 4, G(X,t)= F(X,t)+M(t)X , then
X, () < X(t,) < X, (t,) = X (@) < X (@) < X, (1), t>t,.
It means, that double-sided estimation (40) determines for (32) accordingly the lower and
upper comparison systems (41) and (42). Here E =1, i.e. a phase space transformation is not
used.
Note that we can construct the lower and upper systems of comparison in different partially
ordered spaces =, and =, as follows
X, =F(X,t), X, €&, t>0, (43)
X, =F,(X,,t), X, €E,, t>0, (44)
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In addition, properties of suitable operators E,(x,t) and E,(x,t), and also the order relations
defined by cones K, c &, and K, c E, in

E,(x(),)2 X, (1), E,(x(1),t)< X, (1), (45)
should be defined by the studying characteristics of original system (31). For example, we can
require that the system of inequalities E,(x,t)>0 and E,(x,t) <0 holds only for x=0. In

this case, we have to expect that in (45), x(t) >0 for t > if X,(t) >0 and X,(t) >0,
where X, (t)X,(t)) is a solution of lower (upper) comparison system (43) ((44)). If
E,(x,t)=E,(x,t), then this follows from a lemma on two militiamen in a partially ordered
space [1].
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Alexey G. Mazko

Stability and comparison of systems in partially ordered space

Abstract

The classes of positive and monotone differential systems with respect to prescribed
cone in a phase space are studied. The stability criteria of linear positive systems are
formulated in terms of monotonically invertible linear operators. The methods for robust
stability analysis and comparison of systems in partially ordered space are developed.



