p-ADIC CONTINUITY

Berkeley Math Circle class with Masha Vlasenko. April 3, 2019.

Notation.

 $\mathbb{N} = \{1, 2, 3, \ldots\} \quad (\text{natural numbers})$ $\mathbb{C} \quad (\text{integers})$ $\mathbb{Q} \quad (\text{rational numbers})$ $\mathbb{Q} \quad (\text{rational numbers})$ $\mathbb{R} \quad (\text{real numbers})$ $\mathbb{C} \quad (\text{complex numbers})$ $\mathbb{C} \quad (\text{complex numbers})$

 $a \equiv b \mod m$ or m | (a - b) means that m divides a - b $\mathbb{Z}/m\mathbb{Z} = \{0, 1, \dots, m - 1\}$ is the set of remainders modulo m $p \in \{2, 3, 5, 7, 11, \dots\}$ is a prime number \triangleright denotes an exercise

 \bigstar are harder exercises; they usually require a few steps and you might need an extra sheet (or a notebook) to solve them

1. Algebra with p-adic numbers

1.1. Definition, operations, examples. The set of *p*-adic integers is defined as

$$\mathbb{Z}_p = \left\{ x = (x_1, x_2, \ldots) \mid x_n \in \mathbb{Z}/p^n \mathbb{Z}, \ x_{n+1} \equiv x_n \mod p^n \right\}.$$

Compare this to thinking about real numbers as being approximated by sequences of decimal fractions, e.g.

 $\pi = (3, 3.1, 3.14, 3.141, 3.1415, \ldots)$

Remark. The following question is still a mystery for number theorists: what is the *p*-adic analogue of π ? If you follow our discussion to the very end, you will learn some tools for thinking about this problem.

Observe:

- For each *n* the component x_n defines all preceding components: $x_1 = x_n \mod p$, $x_2 = x_n \mod p^2$, and so on up to $x_{n-1} = x_n \mod p^{n-1}$.
- For each n, if one knows x_n then there are p choices for x_{n+1} .
- One can add, subtract and multiply *p*-adic numbers:

$$x \pm y = (x_1 \pm y_1, x_2 \pm y_2, \ldots)$$

 $x \cdot y = (x_1 \cdot y_1, x_2 \cdot y_2, \ldots)$

• *p*-adic integers contain the usual integers:

$$\mathbb{Z} \subset \mathbb{Z}_p$$

 $m \in \mathbb{Z} \mapsto x = (x_1, x_2, \ldots)$ with $x_n = m \mod p^n$

• An equivalent way to write a *p*-adic number $x = (x_1, x_2, \ldots) \in \mathbb{Z}_p$ is its *p*-adic expansion

$$x = z_0 + z_1 p + z_2 p^2 + z_3 p^3 + \dots$$

where $z_0, z_1, z_2, \ldots \in \{0, \ldots, p-1\}$ and $x_n = z_0 + z_1 p + \ldots + z_{n-1} p^{n-1}$. Note that a *p*-adic integer whose expansion is finite is a non-negative integer.

- \triangleright Write the p-adic expansion of -1.
- \triangleright Give an example of a p-adic integer which is not an integer, that is $x \in \mathbb{Z}_p \setminus \mathbb{Z}$.
- \triangleright Show that p-integral fractions

$$\mathbb{Z}_{(p)} = \left\{ \frac{m}{n} \mid p \not n \right\} \subset \mathbb{Q}$$

are contained in \mathbb{Z}_p .

 \triangleright Give an example of a p-adic integer which is not a p-integral fraction, that is $x \in \mathbb{Z}_p \setminus \mathbb{Z}_{(p)}$.

Hint: look at the next section.

1.2. Hensel's lemma: Let $P(x) = a_m x^m + a_{m-1} x^{m-1} + \ldots + a_1 x + a_0$ be a polynomial with $a_m, \ldots, a_0 \in \mathbb{Z}$ (or even \mathbb{Z}_p). Suppose that $z_0 \in \mathbb{Z}/p\mathbb{Z}$ is such that $P(z_0) \equiv 0 \mod p$ but $P'(z_0) \not\equiv 0 \mod p$. Then there is a unique $x \in \mathbb{Z}_p$ such that P(x) = 0 and $x \equiv z_0 \mod p$.

This is a tool to construct more interesting *p*-adic numbers!

$$(p = 7) \qquad \sqrt{2} = 3 + 1 \cdot 7 + 2 \cdot 7^2 + 6 \cdot 7^3 + 1 \cdot 7^4 + 2 \cdot 7^5 + \dots$$

or $4 + 5 \cdot 7 + 4 \cdot 7^2 + 0 \cdot 7^3 + 5 \cdot 7^4 + 4 \cdot 7^5 + \dots$

 \triangleright Explain why there are no $\sqrt{2}$ in $\mathbb{Z}_3, \mathbb{Z}_5$. Is there $\sqrt{2}$ in \mathbb{Z}_2 ?

The next p for which $\sqrt{2} \in \mathbb{Z}_p$ are p = 17 and p = 23, e.g.

$$(p = 23) \qquad \sqrt{2} = 5 + 16 \cdot 23 + 22 \cdot 23^2 + 8 \cdot 23^3 + \dots$$

or $18 + 6 \cdot 23 + 0 \cdot 23^2 + 14 \cdot 23^3 + \dots$

 \triangleright Show that \mathbb{Z}_p contains p-1 different numbers x such that $x^{p-1} = 1$.

$$(p = 5) \qquad 1$$

$$2 + 1 \cdot 5 + 2 \cdot 5^{2} + 5^{3} + \dots$$

$$3 + 3 \cdot 5 + 2 \cdot 5^{2} + 3 \cdot 5^{3} + \dots$$

$$-1 = 4 + 4 \cdot 5 + 4 \cdot 5^{2} + 4 \cdot 5^{3} + \dots$$

If you solved the last exercise, you should know that for every $z_0 \in \mathbb{Z}/p\mathbb{Z}$, $z_0 \neq 0$ there is a solution to $x^{p-1} = 1$ such that $x \equiv z_0 \mod p$. These *p*-adic numbers are called <u>Teichmüller units</u>. They are (p-1)st roots of unity, similarly to the complex numbers $e^{\frac{2\pi i}{p-1}}, e^{\frac{4\pi i}{p-1}}, \ldots, e^{\frac{2(p-1)\pi i}{p-1}} = 1 \in \mathbb{C}$.

★ Are there other roots of unity in \mathbb{Z}_p ? Prove that if $x \in \mathbb{Z}_p$ satisfies $x^m = 1$ for some $m \ge 1$ then x is one of the the Teichmüller units, that is, it satisfies $x^{p-1} = 1$.

1.3. *p*-adic numbers and division. A number $x \in \mathbb{Z}_p$ is called a *p*-adic unit if there is $y \in \mathbb{Z}_p$ such that $x \cdot y = 1$. The set of *p*-adic units is denoted \mathbb{Z}_p^{\times} . \triangleright Show that $2 \in \mathbb{Z}_p^{\times}$ for $p \neq 2$.

 \triangleright Prove that $x \in \mathbb{Z}_p^{\times}$ if and only if $x \not\equiv 0 \mod p$.

We conclude that $\mathbb{Z}_p = \mathbb{Z}_p^{\times} \cup p\mathbb{Z}_p$. Every non-zero *p*-adic integer $x \in \mathbb{Z}_p$, $x \neq 0$ can be uniquely written as $x = p^k \cdot y$ with $y \in \mathbb{Z}_p^{\times}$ and $k \geq 0$:

$$\mathbb{Z}_p = \{0\} \cup \mathbb{Z}_p^{\times} \cup p\mathbb{Z}_p^{\times} \cup p^2\mathbb{Z}_p^{\times} \cup \dots$$
$$\mathbb{Z}_p \setminus \{0\} = \bigcup_{k \ge 0} p^k\mathbb{Z}_p^{\times}$$

The minimal set that contains *p*-adic integers and the fraction $\frac{1}{p}$, and such that we can add and multiply within this set, is called *p*-adic numbers:

$$\mathbb{Q}_p = \mathbb{Z}_p \left[\frac{1}{p} \right] = \mathbb{Z}_p \cup p^{-1} \mathbb{Z}_p^{\times} \cup p^{-2} \mathbb{Z}_p^{\times} \cup \dots \\
\mathbb{Q}_p \setminus \{0\} = \bigcup_{k \in \mathbb{Z}} p^k \mathbb{Z}_p^{\times}$$

Now *p*-adic expansions may contain negative powers of *p*:

$$(p = 5) \qquad \frac{1}{50} = 5^{-2} \cdot \frac{1}{2} = 5^{-2} \cdot (3 + 2 \cdot 5 + 2 \cdot 5^2 + 2 \cdot 5^3 + \dots)$$
$$= 3 \cdot 5^{-2} + 2 \cdot 5^{-1} + 2 + 2 \cdot 5 + 2 \cdot 5^2 + 2 \cdot 5^3 \dots$$

Observe that if $x \in \mathbb{Q}_p$, $x \neq 0$ we have $\frac{1}{x} \in \mathbb{Q}_p$. This property is the same as for the usual rational numbers: if $x \in \mathbb{Q}$, $x \neq 0$ we have $\frac{1}{x} \in \mathbb{Q}$.

 \triangleright Observe that $\mathbb{Q} \subset \mathbb{Q}_p$.

2. *p*-ADIC DISTANCE AND CONTINUOUS FUNCTIONS

Warm-up:

we are back in the usual world of real numbers. \triangleright Compute $\lim_{n\to\infty} \frac{3n+5}{9-7n} =$

★ Compute $\lim_{n\to\infty} \frac{f_{n+1}}{f_n} =$ where $\{f_n\} = \{1, 1, 2, 3, 5, 8, ...\}$ is the sequence of Fibonacci numbers (it is generated by the rule $f_n = f_{n-1} + f_{n-2}$).

The notation

$$\lim_{n \to \infty} a_n = \alpha \quad \text{or} \quad a_n \to \alpha \text{ as } n \to \infty$$

(in words: the <u>limit</u> of the sequence $\{a_n\}$ is equal to α , or a_n converge to α as n grows) means that the <u>distance</u> $|\alpha - a_n|$ tends to 0 as n increases. Here is the formal definition: for every $\varepsilon > 0$ there exists N such that $|a_n - \alpha| < \varepsilon$ for all $n \ge N$.

 \triangleright Give an example of a sequence which does not converge to any number.

A sequence $\{a_n\}$ is called <u>convergent</u> if there exists an α such that $a_n \to \alpha$ as $n \to \infty$. One can detect convergence (without knowing the limit value α) as follows: for every $\varepsilon > 0$ there exists N such that $|a_n - a_m| < \varepsilon$ for all $n, m \ge N$.

With this definition in hand, one can view real numbers \mathbb{R} as the set of possible limits of convergent sequences of rational numbers. This procedure is called <u>completion</u>: \mathbb{R} is the completion of \mathbb{Q} .

2.1. *p*-adic distance. For $x \in \mathbb{Z}, x \neq 0$ we denote

 $\operatorname{ord}_p(x) = \operatorname{integer} m$ such that $p^m | x$ but $p^{m+1} \not| x$

(we say: p-adic order of x). This the exact power of p that divides x.

 \triangleright Compute ord₃(54), ord₃(-45), ord₅(12).

The *p*-adic absolute value is defined as follows. Fix any real number $0 < \nu < 1$ and define

$$|x|_p = \begin{cases} \nu^{\operatorname{ord}_p(x)}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases}$$

(The standard choice in textbooks would be $\nu = p^{-1}$, but in fact it dos not matter.) Let us try to think of this number as the distance between x and 0! Note that since $\nu < 0$, the bigger $\operatorname{ord}_p(x)$ is the smaller is $|x|_p$. So we now think of an integer as being small when it is divisible by a big power of p. Though $|x|_p$ seems weird, it satisfies the following properties of the usual absolute value for real (and complex) numbers:

$$\begin{aligned} |x \cdot y|_p &= |x|_p \cdot |y|_p \\ |x|_p &= 0 \Leftrightarrow x = 0 \\ |x + y|_p &\leq |x|_p + |y_p| \quad \text{(triangle inequality)} \end{aligned}$$

The triangle inequality becomes even sharper:

 $\triangleright Show that |x+y|_p \le \max(|x|_p, |y|_p).$

$$\triangleright$$
 Show that $|x+y|_p = \max(|x|_p, |y|_p)$ if $|x|_p \neq |y|_p$.

If $|x|_p$ is (our new) distance between 0 and x, then one should also think of $|x - y|_p$ as the distance between integers $x, y \in \mathbb{Z}$. So, now x and y are close to each other when their difference is divisible by a large power of p.

2.2. Limits. Now we should rethink the idea of limits. The definitions are just as in the warm-up, but with $|\cdot|_p$ in place of $|\cdot|$:

- \triangleright Compute $\lim_{n\to\infty} (p^n 1) =$
- \triangleright Compute $\lim_{n\to\infty}(1+p+\ldots+p^n) =$

A sequence of integer numpbers $\{a_n\}$ is convergent *p*-adically (or in *p*-adic distance) if for every real $\varepsilon > 0$ there is an index N such that $|a_n - a_m|_p < \varepsilon$ for all $m, n \ge N$. Now, the limits are naturally *p*-adic integers: \mathbb{Z}_p is the completion of \mathbb{Z} with respect to the *p*-adic absolute value. To explain this rigorously, let us do two exercises:

 \triangleright Define $\operatorname{ord}_p(x)$ for $x \in \mathbb{Z}_p$, $x \neq 0$ (so that it takes the same values on $x \in \mathbb{Z} \subset \mathbb{Z}_p$).

One can extend the absolute value: $|x|_p = \nu^{\operatorname{ord}_p(x)}$ if $x \in \mathbb{Z}_p, x \neq 0$.

 \triangleright Let $\{a_n\}$ be a p-adically convergent sequence of integer numbers. Construct $\alpha \in \mathbb{Z}_p$ such that $|\alpha - a_n|_p \to 0$ as $n \to \infty$.

Now we are done. One interesting computational exercise at the end:

 \triangleright Take some integer $a \in \mathbb{Z}$. Show that the sequence $a_n = a^{p^n}$ is p-adically convergent and compute its limit.

Remark. The notion of *p*-adic order $\operatorname{ord}_p(x)$ can be defined for $x \in \mathbb{Q}$ and $x \in \mathbb{Q}_p$. Namely, for a fraction $\frac{n}{m} \in \mathbb{Q}$ one has $\operatorname{ord}_p(\frac{n}{m}) = \operatorname{ord}_p(n) - \operatorname{ord}_p(m)$. If $x \in \mathbb{Q}_p$, $x \neq 0$ one can uniquely write this number as $x = p^k y$ with $k \in \mathbb{Z}$ and $y \in \mathbb{Z}_p^{\times}$. We then put $\operatorname{ord}_p(x) = k$. \triangleright As an exercise, you could check that on $\mathbb{Q} \subset \mathbb{Q}_p$ this agrees with the definition for fractions given in the previous sentence. Since we have $\operatorname{ord}_p(\cdot)$, we have the *p*-adic absolute value $|\cdot|_p$ on \mathbb{Q}_p . \triangleright Another exercise: show that for $x \in \mathbb{Q}_p$ the statements $|x|_p \leq 1$ and $x \in \mathbb{Z}_p$ are equivalent; also, $|x|_p = 1$ if and only if $x \in \mathbb{Z}_p^{\times}$. Finally, let us say that \mathbb{Q}_p is the completion of \mathbb{Q} with respect to $|\cdot|_p$, just as \mathbb{R} is the completion of \mathbb{Q} with respect to the usual absolute value $|\cdot|$.

2.3. Continuous functions. A function $f : \mathbb{R} \to \mathbb{R}$ is called continuous if for every convergent sequence of arguments $x_n \to x$ the values of the function also converge: $f(x_n) \to f(x)$.

Equivalently, one can say that if the two arguments x, y are close, then the values f(x), f(y) are close.

Most functions that you know (polynomials, e^x , $\sin(x)$, ...) are continuous.

 \triangleright Give an example of a function, which is not continuous.

Of course, the same definition can be given for $f : \mathbb{Z}_p \to \mathbb{Z}_p$ or $f : \mathbb{Q}_p \to \mathbb{Q}_p$. But what is it useful for, if we can't even draw their graphs?

Let us call a function $f : \mathbb{N} \to \mathbb{Z}$ or $f : \mathbb{Z} \to \mathbb{Z}$ continuous *p*-adically if for every integer M > 0 there exists an integer N > 0 such that $p^{\overline{N}|(x-y)}$ implies $p^{\overline{M}}|(f(x) - f(y))$. \triangleright Show that the sum of continuous functions is continuous.

 \triangleright Show that polynomials are continuous.

★ Let $a \in \mathbb{N}$. Prove that $f(n) = a^n$ is p-adically continuous if and only if $a \equiv 1 \mod p$.

Here is a curious fact about such functions. Suppose you have a *p*-adically continuous $f : \mathbb{N} \to \mathbb{Z}$. This is just a sequence of integers $\{f(n)\}$, but due to continuity our function can be evaluated at any $x \in \mathbb{Z}_p$. To see this,

 \triangleright Observe that any $x \in \mathbb{Z}_p$ is a p-adic limit of a sequence of natural numbers.

In particular, there are well defined values $f(-1), f(-2), \ldots$ at negative integers and values f(m/n) at rational numbers without p in the denominator (remember, $\mathbb{Z}_{(p)} \subset \mathbb{Z}_p$). Well, this perspective does not sound exciting for polynomial functions. But what if f(n) = n! was p-adically continuous? This is not quite true, but in the next section we will make a modification of the factorial which works.

2.4. *p*-adic factorial. The following exercise might be difficult, it requires a few steps: \bigstar Prove that function $f : \mathbb{N} \to \mathbb{Z}$ given by

$$f(n) = (-1)^{n+1} \prod_{1 \le m \le n, p \mid m} m = (-1)^{n+1} \frac{n!}{\lfloor \frac{n}{p} \rfloor ! p^{\lfloor \frac{n}{p} \rfloor}}$$

is p-adically continuous. More precisely, $p^{N}|(n-k)$ implies $p^{N}|(f(n) - f(k))$.

A proof can be found in books on *p*-adic analysis such as "*p*-adic numbers, *p*-adic analysis and zeta functions" by Neal Koblitz (this is a truly great book!) or in my notes. We shall discuss it in class if there is time left.

One should think of f(n) as the *p*-adic analogue of n! \triangleright Let p = 3. Compute f(2), f(3), f(10).

 \triangleright Observe that f(n) is not divisible by p.

Due to the last observation, we obtain a continuous function $f : \mathbb{Z}_p \to \mathbb{Z}_p^{\times}$. We make a shift in the argument and define the *p*-adic gamma function as

$$\Gamma_p(x) = f(x-1)$$

This is again a continuous function $\Gamma_p:\mathbb{Z}_p\to\mathbb{Z}_p^\times$ satisfying

$$\operatorname{ord}_p(\Gamma_p(x) - \Gamma_p(y)) \ge \operatorname{ord}_p(x - y)$$

and

$$\Gamma_p(n) = f(n-1) = (1)^n \prod_{1 \le m < n, \ p \not \mid m} m \quad \text{for all } n \in \mathbb{N} \,.$$

(The shift in the argument is just a convention. It is motivated by the analogy with the classical gamma function, see the remark below.)

Here are a few useful properties of the *p*-adic gamma function:

• For any $x \in \mathbb{Z}_p$ one has

$$\frac{\Gamma_p(x+1)}{\Gamma_p(x)} = \begin{cases} -x, & x \in \mathbb{Z}_p^{\times}, \\ -1, & x \in p\mathbb{Z}_p. \end{cases}$$

• If $x \in \mathbb{Z}_p$, write $x = x_0 + px_1$ where $x_0 \in \{1, 2, ..., p\}$ is the first digit in the expansion of x unless $x \in p\mathbb{Z}_p$, in which case $x_0 = p$ rather than 0. Then

$$\Gamma_p(s)\Gamma_p(1-s) = (-1)^{s_0}.$$

• Let $m \in \mathbb{N}$ is not divisible by p. Then

$$\frac{\Gamma_p(\frac{x}{m})\Gamma_p(\frac{x+1}{m})\dots\Gamma_p(\frac{x+m-1}{m})}{\Gamma_p(x)\Gamma_p(\frac{1}{m})\dots\Gamma_p(\frac{m-1}{m})} = m^{1-x_0} \cdot (m^{-(p-1)})^{x_1}$$

with x_0 and x_1 defined for $x \in \mathbb{Z}_p$ in the previous property.

 \triangleright Explain why the right-hand side in the last property is written in this weird way. (Recall our exercise on p-adic continuity of $n \mapsto a^n$.)

 \triangleright Compute $\Gamma_p(0)$, $\Gamma_p(-1)$, $\Gamma_p(\frac{1}{2})$.

Remark. Let us go back to the world of real numbers. The classical gamma function is a function $\Gamma : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ defined by the integral

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.$$

Let us list some of its properties:

• Show that $\Gamma(x+1) = x\Gamma(x)$. Conclude that $\Gamma(n) = (n-1)!$ for $n \in \mathbb{N}$.

- For 0 < x < 1 one has $\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)}$.
- For $m \in \mathbb{N}$ we have

$$\frac{\Gamma(\frac{x}{m})\Gamma(\frac{x+1}{m})\dots\Gamma(\frac{x+m-1}{m})}{\Gamma(x)} = (2\pi)^{\frac{m-1}{2}}m^{\frac{1}{2}-x}.$$

Proofs can be found in Wikipedia. Now you can see this as a motivation for proving similar properties for *p*-adic gamma functions. As another exercise, you could

 \triangleright rewrite the last property with the left-hand side being the same as in the p-adic case, that is

$$\frac{\Gamma(\frac{x}{m})\Gamma(\frac{x+1}{m})\dots\Gamma(\frac{x+m-1}{m})}{\Gamma(x)\Gamma(\frac{1}{m})\dots\Gamma(\frac{m-1}{m})} =$$

Finally, compute

$$\Gamma\left(\frac{1}{2}\right) =$$