p-ADIC CONTINUITY

Berkeley Math Circle class with Masha Vlasenko. April 3, 2019.

Notation.

\mathbb{N}	$=\{1,2,3, \ldots\} \quad$ (natural numbers)
\cap	
\mathbb{Z}	(integers)
\cap	
\mathbb{Q}	(rational numbers)
\cap	
\mathbb{R}	(real numbers)
\cap	
\mathbb{C}	(complex numbers)

$a \equiv b \bmod m \quad$ or $\quad m \mid(a-b) \quad$ means that m divides $a-b$
$\mathbb{Z} / m \mathbb{Z}=\{0,1, \ldots, m-1\} \quad$ is the set of remainders modulo m
$p \in\{2,3,5,7,11, \ldots\}$ is a prime number
\triangleright denotes an exercise
\star are harder exercises; they usually require a few steps and you might need an extra sheet (or a notebook) to solve them

1. Algebra with p-Adic numbers

1.1. Definition, operations, examples. The set of p-adic integers is defined as

$$
\mathbb{Z}_{p}=\left\{x=\left(x_{1}, x_{2}, \ldots\right) \mid x_{n} \in \mathbb{Z} / p^{n} \mathbb{Z}, x_{n+1} \equiv x_{n} \quad \bmod p^{n}\right\} .
$$

Compare this to thinking about real numbers as being approximated by sequences of decimal fractions, e.g.

$$
\pi=(3,3.1,3.14,3.141,3.1415, \ldots)
$$

Remark. The following question is still a mystery for number theorists: what is the p-adic analogue of π ? If you follow our discussion to the very end, you will learn some tools for thinking about this problem.

Observe:

- For each n the component x_{n} defines all preceding components: $x_{1}=x_{n} \bmod p$, $x_{2}=x_{n} \bmod p^{2}$, and so on up to $x_{n-1}=x_{n} \bmod p^{n-1}$.
- For each n, if one knows x_{n} then there are p choices for x_{n+1}.
- One can add, subtract and multiply p-adic numbers:

$$
\begin{aligned}
& x \pm y=\left(x_{1} \pm y_{1}, x_{2} \pm y_{2}, \ldots\right) \\
& x \cdot y=\left(x_{1} \cdot y_{1}, x_{2} \cdot y_{2}, \ldots\right)
\end{aligned}
$$

- p-adic integers contain the usual integers:

$$
\begin{aligned}
& \mathbb{Z} \subset \mathbb{Z}_{p} \\
& m \in \mathbb{Z} \mapsto x=\left(x_{1}, x_{2}, \ldots\right) \text { with } x_{n}=m \quad \bmod p^{n}
\end{aligned}
$$

- An equivalent way to write a p-adic number $x=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{Z}_{p}$ is its p-adic expansion

$$
x=z_{0}+z_{1} p+z_{2} p^{2}+z_{3} p^{3}+\ldots
$$

where $z_{0}, z_{1}, z_{2}, \ldots \in\{0, \ldots, p-1\}$ and $x_{n}=z_{0}+z_{1} p+\ldots+z_{n-1} p^{n-1}$. Note that a p-adic integer whose expansion is finite is a non-negative integer.
\triangleright Write the p-adic expansion of -1 .
\triangleright Give an example of a p-adic integer which is not an integer, that is $x \in \mathbb{Z}_{p} \backslash \mathbb{Z}$.
\triangleright Show that p-integral fractions

$$
\mathbb{Z}_{(p)}=\left\{\left.\frac{m}{n} \right\rvert\, p \nmid n\right\} \subset \mathbb{Q}
$$

are contained in \mathbb{Z}_{p}.
\triangleright Give an example of a p-adic integer which is not a p-integral fraction, that is $x \in$ $\mathbb{Z}_{p} \backslash \mathbb{Z}_{(p)}$.

Hint: look at the next section.
1.2. Hensel's lemma: Let $P(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\ldots+a_{1} x+a_{0}$ be a polynomial with $a_{m}, \ldots, a_{0} \in \mathbb{Z}$ (or even \mathbb{Z}_{p}). Suppose that $z_{0} \in \mathbb{Z} / p \mathbb{Z}$ is such that $P\left(z_{0}\right) \equiv 0 \bmod p$ but $P^{\prime}\left(z_{0}\right) \not \equiv 0 \bmod p$. Then there is a unique $x \in \mathbb{Z}_{p}$ such that $P(x)=0$ and $x \equiv z_{0}$ $\bmod p$.

This is a tool to construct more interesting p-adic numbers!

$$
\begin{array}{r}
(p=7) \quad \sqrt{2}=3+1 \cdot 7+2 \cdot 7^{2}+6 \cdot 7^{3}+1 \cdot 7^{4}+2 \cdot 7^{5}+\ldots \\
\\
\text { or } 4+5 \cdot 7+4 \cdot 7^{2}+0 \cdot 7^{3}+5 \cdot 7^{4}+4 \cdot 7^{5}+\ldots
\end{array}
$$

\triangleright Explain why there are no $\sqrt{2}$ in $\mathbb{Z}_{3}, \mathbb{Z}_{5}$. Is there $\sqrt{2}$ in \mathbb{Z}_{2} ?

The next p for which $\sqrt{2} \in \mathbb{Z}_{p}$ are $p=17$ and $p=23$, e.g.

$$
\begin{array}{r}
(p=23) \quad \sqrt{2} \\
=5+16 \cdot 23+22 \cdot 23^{2}+8 \cdot 23^{3}+\ldots \\
\\
\text { or } 18+6 \cdot 23+0 \cdot 23^{2}+14 \cdot 23^{3}+\ldots
\end{array}
$$

\triangleright Show that \mathbb{Z}_{p} contains $p-1$ different numbers x such that $x^{p-1}=1$.

$$
\begin{aligned}
(p=5) \quad & 1 \\
& 2+1 \cdot 5+2 \cdot 5^{2}+5^{3}+\ldots \\
& 3+3 \cdot 5+2 \cdot 5^{2}+3 \cdot 5^{3}+\ldots \\
-1= & 4+4 \cdot 5+4 \cdot 5^{2}+4 \cdot 5^{3}+\ldots
\end{aligned}
$$

If you solved the last exercise, you should know that for every $z_{0} \in \mathbb{Z} / p \mathbb{Z}, z_{0} \neq 0$ there is a solution to $x^{p-1}=1$ such that $x \equiv z_{0} \bmod p$. These p-adic numbers are called Teichmüller units. They are $(p-1)$ st roots of unity, similarly to the complex numbers $e^{\frac{2 \pi i}{p-1}}, e^{\frac{4 \pi i}{p-1}}, \ldots, e^{\frac{2(p-1) \pi i}{p-1}}=1 \in \mathbb{C}$.
\star Are there other roots of unity in \mathbb{Z}_{p} ? Prove that if $x \in \mathbb{Z}_{p}$ satisfies $x^{m}=1$ for some $m \geq 1$ then x is one of the the Teichmüller units, that is, it satisfies $x^{p-1}=1$.
1.3. p-adic numbers and division. A number $x \in \mathbb{Z}_{p}$ is called a p-adic unit if there is $y \in \mathbb{Z}_{p}$ such that $x \cdot y=1$. The set of p-adic units is denoted \mathbb{Z}_{p}^{\times}.
\triangleright Show that $2 \in \mathbb{Z}_{p}^{\times}$for $p \neq 2$.
\triangleright Prove that $x \in \mathbb{Z}_{p}^{\times}$if and only if $x \not \equiv 0 \bmod p$.

We conclude that $\mathbb{Z}_{p}=\mathbb{Z}_{p}^{\times} \cup p \mathbb{Z}_{p}$. Every non-zero p-adic integer $x \in \mathbb{Z}_{p}, x \neq 0$ can be uniquely written as $x=p^{k} \cdot y$ with $y \in \mathbb{Z}_{p}^{\times}$and $k \geq 0$:

$$
\begin{aligned}
& \mathbb{Z}_{p}=\{0\} \cup \mathbb{Z}_{p}^{\times} \cup p \mathbb{Z}_{p}^{\times} \cup p^{2} \mathbb{Z}_{p}^{\times} \cup \ldots \\
& \mathbb{Z}_{p} \backslash\{0\}=\bigcup_{k \geq 0} p^{k} \mathbb{Z}_{p}^{\times}
\end{aligned}
$$

The minimal set that contains p-adic integers and the fraction $\frac{1}{p}$, and such that we can add and multiply within this set, is called p-adic numbers:

$$
\begin{aligned}
& \mathbb{Q}_{p}=\mathbb{Z}_{p}\left[\frac{1}{p}\right]=\mathbb{Z}_{p} \cup p^{-1} \mathbb{Z}_{p}^{\times} \cup p^{-2} \mathbb{Z}_{p}^{\times} \cup \ldots \\
& \mathbb{Q}_{p} \backslash\{0\}=\underset{k \in \mathbb{Z}}{\cup} p^{k} \mathbb{Z}_{p}^{\times}
\end{aligned}
$$

Now p-adic expansions may contain negative powers of p :

$$
(p=5) \quad \begin{aligned}
\frac{1}{50}=5^{-2} \cdot \frac{1}{2} & =5^{-2} \cdot\left(3+2 \cdot 5+2 \cdot 5^{2}+2 \cdot 5^{3}+\ldots\right) \\
& =3 \cdot 5^{-2}+2 \cdot 5^{-1}+2+2 \cdot 5+2 \cdot 5^{2}+2 \cdot 5^{3} \ldots
\end{aligned}
$$

Observe that if $x \in \mathbb{Q}_{p}, x \neq 0$ we have $\frac{1}{x} \in \mathbb{Q}_{p}$. This property is the same as for the usual rational numbers: if $x \in \mathbb{Q}, x \neq 0$ we have $\frac{1}{x} \in \mathbb{Q}$.
\triangleright Observe that $\mathbb{Q} \subset \mathbb{Q}_{p}$.

2. p-ADIC DISTANCE AND CONTINUOUS FUNCTIONS

Warm-up:
we are back in the usual world of real numbers.
\triangleright Compute $\lim _{n \rightarrow \infty} \frac{3 n+5}{9-7 n}=$
\star Compute $\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}=$
where $\left\{f_{n}\right\}=\{1,1,2,3,5,8, \ldots\}$ is the sequence of Fibonacci numbers (it is generated by the rule $\left.f_{n}=f_{n-1}+f_{n-2}\right)$.

The notation

$$
\lim _{n \rightarrow \infty} a_{n}=\alpha \quad \text { or } \quad a_{n} \rightarrow \alpha \text { as } n \rightarrow \infty
$$

(in words: the limit of the sequence $\left\{a_{n}\right\}$ is equal to α, or a_{n} converge to α as n grows) means that the distance $\left|\alpha-a_{n}\right|$ tends to 0 as n increases. Here is the formal definition: for every $\varepsilon>0$ there exists N such that $\left|a_{n}-\alpha\right|<\varepsilon$ for all $n \geq N$.
\triangleright Give an example of a sequence which does not converge to any number.

A sequence $\left\{a_{n}\right\}$ is called convergent if there exists an α such that $a_{n} \rightarrow \alpha$ as $n \rightarrow \infty$. One can detect convergence (without knowing the limit value α) as follows: for every $\varepsilon>0$ there exists N such that $\left|a_{n}-a_{m}\right|<\varepsilon$ for all $n, m \geq N$.

With this definition in hand, one can view real numbers \mathbb{R} as the set of possible limits of convergent sequences of rational numbers. This procedure is called completion: \mathbb{R} is the completion of \mathbb{Q}.
2.1. p-adic distance. For $x \in \mathbb{Z}, x \neq 0$ we denote

$$
\operatorname{ord}_{p}(x)=\text { integer } m \text { such that } p^{m} \mid x \text { but } p^{m+1} \nmid x
$$

(we say: p-adic order of x). This the exact power of p that divides x.
\triangleright Compute $\operatorname{ord}_{3}(54), \operatorname{ord}_{3}(-45), \operatorname{ord}_{5}(12)$.

The p-adic absolute value is defined as follows. Fix any real number $0<\nu<1$ and define

$$
|x|_{p}= \begin{cases}\nu^{\operatorname{ord}_{p}(x)}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

(The standard choice in textbooks would be $\nu=p^{-1}$, but in fact it dos not matter.) Let us try to think of this number as the distance between x and 0 ! Note that since $\nu<0$, the bigger $\operatorname{ord}_{p}(x)$ is the smaller is $|x|_{p}$. So we now think of an integer as being small when it is divisible by a big power of p.

Though $|x|_{p}$ seems weird, it satisfies the following properties of the usual absolute value for real (and complex) numbers:

$$
\begin{aligned}
& |x \cdot y|_{p}=|x|_{p} \cdot|y|_{p} \\
& |x|_{p}=0 \Leftrightarrow x=0 \\
& |x+y|_{p} \leq|x|_{p}+\left|y_{p}\right| \quad \text { (triangle inequality) }
\end{aligned}
$$

The triangle inequality becomes even sharper:
\triangleright Show that $|x+y|_{p} \leq \max \left(|x|_{p},|y|_{p}\right)$.
\triangleright Show that $|x+y|_{p}=\max \left(|x|_{p},|y|_{p}\right)$ if $|x|_{p} \neq|y|_{p}$.

If $|x|_{p}$ is (our new) distance between 0 and x, then one should also think of $|x-y|_{p}$ as the distance between integers $x, y \in \mathbb{Z}$. So, now x and y are close to each other when their difference is divisible by a large power of p.
2.2. Limits. Now we should rethink the idea of limits. The definitions are just as in the warm-up, but with $|\cdot|_{p}$ in place of $|\cdot|$:
\triangleright Compute $\lim _{n \rightarrow \infty}\left(p^{n}-1\right)=$
\triangleright Compute $\lim _{n \rightarrow \infty}\left(1+p+\ldots+p^{n}\right)=$

A sequence of integer numpbers $\left\{a_{n}\right\}$ is convergent p-adically (or in p-adic distance) if for every real $\varepsilon>0$ there is an index $N \overline{\text { such that }\left|a_{n}-a_{m}\right|_{p}}<\varepsilon$ for all $m, n \geq N$. Now, the limits are naturally p-adic integers: \mathbb{Z}_{p} is the completion of \mathbb{Z} with respect to the p-adic absolute value. To explain this rigorously, let us do two exercises:
\triangleright Define $\operatorname{ord}_{p}(x)$ for $x \in \mathbb{Z}_{p}, x \neq 0$ (so that it takes the same values on $x \in \mathbb{Z} \subset \mathbb{Z}_{p}$).

One can extend the absolute value: $|x|_{p}=\nu^{\operatorname{ord}_{p}(x)}$ if $x \in \mathbb{Z}_{p}, x \neq 0$.
\triangleright Let $\left\{a_{n}\right\}$ be a p-adically convergent sequence of integer numbers. Construct $\alpha \in \mathbb{Z}_{p}$ such that $\left|\alpha-a_{n}\right|_{p} \rightarrow 0$ as $n \rightarrow \infty$.

Now we are done. One interesting computational exercise at the end:
\triangleright Take some integer $a \in \mathbb{Z}$. Show that the sequence $a_{n}=a^{p^{n}}$ is p-adically convergent and compute its limit.

Remark. The notion of p-adic order $\operatorname{ord}_{p}(x)$ can be defined for $x \in \mathbb{Q}$ and $x \in \mathbb{Q}_{p}$. Namely, for a fraction $\frac{n}{m} \in \mathbb{Q}$ one has $\operatorname{ord}_{p}\left(\frac{n}{m}\right)=\operatorname{ord}_{p}(n)-\operatorname{ord}_{p}(m)$. If $x \in \mathbb{Q}_{p}, x \neq 0$ one can uniquely write this number as $x=p^{k} y$ with $k \in \mathbb{Z}$ and $y \in \mathbb{Z}_{p}^{\times}$. We then put $\operatorname{ord}_{p}(x)=k . \triangleright$ As an exercise, you could check that on $\mathbb{Q} \subset \mathbb{Q}_{p}$ this agrees with the definition for fractions given in the previous sentence. Since we have $\operatorname{ord}_{p}(\cdot)$, we have the p-adic absolute value $|\cdot|_{p}$ on \mathbb{Q}_{p}. \triangleright Another exercise: show that for $x \in \mathbb{Q}_{p}$ the statements $|x|_{p} \leq 1$ and $x \in \mathbb{Z}_{p}$ are equivalent; also, $|x|_{p}=1$ if and only if $x \in \mathbb{Z}_{p}^{\times}$. Finally, let us say that \mathbb{Q}_{p} is the completion of \mathbb{Q} with respect to $|\cdot|_{p}$, just as \mathbb{R} is the completion of \mathbb{Q} with respect to the usual absolute value $|\cdot|$.
2.3. Continuous functions. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called continuous if for every convergent sequence of arguments $x_{n} \rightarrow x$ the values of the function also converge: $f\left(x_{n}\right) \rightarrow f(x)$.

Equivalently, one can say that if the two arguments x, y are close, then the values $f(x), f(y)$ are close.

Most functions that you know (polynomials, $e^{x}, \sin (x), \ldots$) are continuous.
\triangleright Give an example of a function, which is not continuous.

Of course, the same definition can be given for $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$ or $f: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$. But what is it useful for, if we can't even draw their graphs?

Let us call a function $f: \mathbb{N} \rightarrow \mathbb{Z}$ or $f: \mathbb{Z} \rightarrow \mathbb{Z}$ continuous p-adically if for every integer $M>0$ there exists an integer $N>0$ such that $\overline{p^{N} \mid(x-y) \text { implies } p^{M}} \mid(f(x)-f(y))$.
\triangleright Show that the sum of continuous functions is continuous.
\triangleright Show that polynomials are continuous.
\star Let $a \in \mathbb{N}$. Prove that $f(n)=a^{n}$ is p-adically continuous if and only if $a \equiv 1$ $\bmod p$.

Here is a curious fact about such functions. Suppose you have a p-adically continuous $f: \mathbb{N} \rightarrow \mathbb{Z}$. This is just a sequence of integers $\{f(n)\}$, but due to continuity our function can be evaluated at any $x \in \mathbb{Z}_{p}$. To see this,
\triangleright Observe that any $x \in \mathbb{Z}_{p}$ is a p-adic limit of a sequence of natural numbers.

In particular, there are well defined values $f(-1), f(-2), \ldots$ at negative integers and values $f(m / n)$ at rational numbers without p in the denominator (remember, $\mathbb{Z}_{(p)} \subset \mathbb{Z}_{p}$). Well, this perspective does not sound exciting for polynomial functions. But what if $f(n)=n$! was p-adically continuous? This is not quite true, but in the next section we will make a modification of the factorial which works.
2.4. p-adic factorial. The following exercise might be difficult, it requires a few steps:
\star Prove that function $f: \mathbb{N} \rightarrow \mathbb{Z}$ given by

$$
f(n)=(-1)^{n+1} \prod_{1 \leq m \leq n, p \downharpoonright\lfloor n} m=(-1)^{n+1} \frac{n!}{\left\lfloor\frac{n}{p}\right\rfloor!p^{\left\lfloor\frac{n}{p}\right\rfloor}}
$$

is p-adically continuous. More precisely, $p^{N} \mid(n-k)$ implies $p^{N} \mid(f(n)-f(k))$.
A proof can be found in books on p-adic analysis such as " p-adic numbers, p-adic analysis and zeta functions" by Neal Koblitz (this is a truly great book!) or in my notes. We shall discuss it in class if there is time left.

One should think of $f(n)$ as the p-adic analogue of n ! \triangleright Let $p=3$. Compute $f(2), f(3), f(10)$.
\triangleright Observe that $f(n)$ is not divisible by p.

Due to the last observation, we obtain a continuous function $f: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}^{\times}$. We make a shift in the argument and define the p-adic gamma function as

$$
\Gamma_{p}(x)=f(x-1) .
$$

This is again a continuous function $\Gamma_{p}: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}^{\times}$satisfying

$$
\operatorname{ord}_{p}\left(\Gamma_{p}(x)-\Gamma_{p}(y)\right) \geq \operatorname{ord}_{p}(x-y)
$$

and

$$
\Gamma_{p}(n)=f(n-1)=(1)^{n} \prod_{1 \leq m<n, p \mid / n} m \quad \text { for all } n \in \mathbb{N}
$$

(The shift in the argument is just a convention. It is motivated by the analogy with the classical gamma function, see the remark below.)
Here are a few useful properties of the p-adic gamma function:

- For any $x \in \mathbb{Z}_{p}$ one has

$$
\frac{\Gamma_{p}(x+1)}{\Gamma_{p}(x)}= \begin{cases}-x, & x \in \mathbb{Z}_{p}^{\times} \\ -1, & x \in p \mathbb{Z}_{p}\end{cases}
$$

- If $x \in \mathbb{Z}_{p}$, write $x=x_{0}+p x_{1}$ where $x_{0} \in\{1,2, \ldots, p\}$ is the first digit in the expansion of x unless $x \in p \mathbb{Z}_{p}$, in which case $x_{0}=p$ rather than 0 . Then

$$
\Gamma_{p}(s) \Gamma_{p}(1-s)=(-1)^{s_{0}}
$$

- Let $m \in \mathbb{N}$ is not divisible by p. Then

$$
\frac{\Gamma_{p}\left(\frac{x}{m}\right) \Gamma_{p}\left(\frac{x+1}{m}\right) \ldots \Gamma_{p}\left(\frac{x+m-1}{m}\right)}{\Gamma_{p}(x) \Gamma_{p}\left(\frac{1}{m}\right) \ldots \Gamma_{p}\left(\frac{m-1}{m}\right)}=m^{1-x_{0}} \cdot\left(m^{-(p-1)}\right)^{x_{1}}
$$

with x_{0} and x_{1} defined for $x \in \mathbb{Z}_{p}$ in the previous property.
\triangleright Explain why the right-hand side in the last property is written in this weird way. (Recall our exercise on p-adic continuity of $n \mapsto a^{n}$.)
\triangleright Compute $\Gamma_{p}(0), \Gamma_{p}(-1), \Gamma_{p}\left(\frac{1}{2}\right)$.

Remark. Let us go back to the world of real numbers. The classical gamma function is a function $\Gamma: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ defined by the integral

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

Let us list some of its properties:

- Show that $\Gamma(x+1)=x \Gamma(x)$. Conclude that $\Gamma(n)=(n-1)$! for $n \in \mathbb{N}$.
- For $0<x<1$ one has $\Gamma(x) \Gamma(1-x)=\frac{\pi}{\sin (\pi x)}$.
- For $m \in \mathbb{N}$ we have

$$
\frac{\Gamma\left(\frac{x}{m}\right) \Gamma\left(\frac{x+1}{m}\right) \ldots \Gamma\left(\frac{x+m-1}{m}\right)}{\Gamma(x)}=(2 \pi)^{\frac{m-1}{2}} m^{\frac{1}{2}-x} .
$$

Proofs can be found in Wikipedia. Now you can see this as a motivation for proving similar properties for p-adic gamma functions. As another exercise, you could
\triangleright rewrite the last property with the left-hand side being the same as in the p-adic case, that is

$$
\frac{\Gamma\left(\frac{x}{m}\right) \Gamma\left(\frac{x+1}{m}\right) \ldots \Gamma\left(\frac{x+m-1}{m}\right)}{\Gamma(x) \Gamma\left(\frac{1}{m}\right) \ldots \Gamma\left(\frac{m-1}{m}\right)}=
$$

Finally, compute

$$
\Gamma\left(\frac{1}{2}\right)=
$$

