
ELLIPTIC CURVES WITH COMPLEX MULTIPLICATION

Abstract. These are notes of lectures for students given by M. Vlasenko
at the Institute of Mathematics of NAS of Ukraine

1. Elliptic curve is an algebraic group

Elliptic curve is an abelian variety of dimension 1, or, what is the same,
an irreducible smooth projective algebraic curve of genus 1 furnished with
a point O, the origin for the group law. If we consider it over the field
K of characteristics 6= 2, 3 it can be given by homogenous equation in 2-
dimensional projective space P 2

(1) y2z = x3 − axz2 + bz3

with some a, b ∈ K. Below we consider elliptic curves over C or its subfields,
so the characteristics is 0.

The affine piece of an elliptic curve. All 3 roots of a cubic polynomial
x3 − ax + b are different iff

∆ = 4a3 − 27b2 6= 0.

Elliptic curve E is an algebraic variety defined by equation {y2 = x3 −
ax + b} with 4a3 − 27b2 6= 0. Let a, b ∈ K and L is any field containing K.
We can consider the set of solutions

E(L) = {(x, y) ∈ L2|y2 = x3 − ax + b}.
These are L-points of an elliptic curve E. scise. Draw E(R) (suppose
a, b ∈ R).

Elliptic curve as a projective curve. Let 4a3−27b2 6= 0. Elliptic curve
E is a smooth projective curve defined by the homogenous polynomial 1 .

Now E(L) = {[x : y : z] ∈ P 2(L)|y2z = x3 − axz2 + bz3}. We see that E
is embedded into 2-dimensional projective space P 2 in this definition, and
(over any field L) all but one points of E(L) lie in the affine piece of P 2(L)
defined by {z 6= 0}. Indeed,

E(L) ∩ {z = 0} = [0 : 1 : 0]

since z = 0 implies x = 0. Note that the point O = [0 : 1 : 0] exists over any
field. In previous subsection we considered the curve without this point in
fact.

Below we often write E, P 2 instead of E(C) and P 2(C).
The group law. Exercise. Check that any line Ax + By + Cz = 0 in

P 2(C) intersects E(C) at 3 points counting multiplicities.
It is known that the following rule describes an abelian group law E ×

E→E with neutral element O = [0 : 1 : 0]. For each three points P, Q,R
of intersection of any line with E we put P + Q + R = 0. In particular,
−[x : y : z] = [x : −y : z]. The map E × E→E is algebraic. Indeed,
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let us show it in affine coordinates. Take (xi, yi) ∈ E, i = 1, 2. Then
(x,−y) = (x1, y1)+(x2, y2) should satisfy the equation y = y2−y1

x2−x1
(x−x1)+y1

and the equation of E. So, for x we get the qubic equation

F (x) = x3 − ax + b−
(

y2 − y1

x2 − x1
(x− x1) + y1

)2

= 0,

and we know this is satisfied by x1 and x2. Then

− F (x)
(x− x1)(x− x2)

∣∣∣
x=0

is the third solution, and it is now given by the rational function

x =

(
y1 − y2−y1

x2−x1
x1

)2
− b

x1x2
.

Definition 1. An algebraic group G is an algebraic variety which is also
a group, such that the inverse map G→G and the multiplication map G×
G→G are algebraic.

We see that elliptic curve is an algebraic group. It is a smooth projective
curve with an abelian group law.

2. Riemann surfaces and Riemann-Roch theorem

See e.g. [1].

3. Jacobian of an elliptic curve

Let us consider 3 types of groups.
(I) Elliptic curve E(C) = {(x, y) ∈ C2y2 = x3 − ax + b} ∪ {∞} with the

group law described above.
(II) The quotient C/{Zw1 + Zw2} where w1, w2 ∈ C with w1

w2
∈ C − R.

Since the lattice {Zw1+Zw2} is a subgroup of C w.r.t. addition the quotient
is an abelian group.

(III) Riemann surface X of genus 1 with fixed point O ∈ X. Let us intro-
duce the group law with neutral element O on X. Since we fixed a point O
there is a canonical way to construct for any two points P1, P2 ∈ X the third
point P3. For simplicity we assume that P1, P2 and O are all different. We
take the divizor D = (P1) + (P2), then the space of meromorphic functions
on X with poles of order not greater than D

L(D) = {f | div(F ) + D ≥ 0}
has dimension 2 due to the Riemann-Roch theorem. So there is some non-
constant function f ∈ L(D). Consider g = f−f(O). Since

∑
x∈X Resxg = 0

then g has simple poles at Pi with opposite residues. Since g has no other
poles, we see that g has exactly 2 zeros (counting multiplicities). So there
is a well defined point P3 ∈ X s.t. div(g) = (O) + (P3) − (P1) − (P2). We
put (P3) = (P1) + (P2).

Remark. We say they all are groups, but it is not obvious that the binary
operation in (I) and (III) is a group law in fact. This will follow from the theo-
rem below, where we identify them with objects of type (II) by means of analytic
isomorphisms preserving our binary operation.
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Theorem 1. For any group of any type as above there is an analytically
isomorphic group of any one of other types.

We prove it below with a serie of lemmas and exercises.

Lemma 1. E(C) is a torus.

Proof. Let us check E(C) is a smooth variety of dimension 1 over C. Indeed,
on the affine piece {z 6= 0} the rank of

(
∂Φ
∂x , ∂Φ

∂y

)
is 1 since x3 − ax + b has

no double roots. Analogously near the point [0 : 1 : 0] we consider the affine
piece {y 6= 0}, where for Φ(x, z) = x3 − ax + b− z the rank of

(
∂Φ
∂x , ∂Φ

∂z

)
is 1

at (0, 0).
P 2(C) is compact, so E(C) is a compact Riemann surface. It remains to

calculate its genus g. The map from E(C) to P 1(C) defined by [x : y : z] 7→
[y : z] is well-defined because y = z = 0 on E implies x = 0. So, it is a
covering of a Riemann sphere of degree 3 (i.e. all but finite number of points
have 3 preimages). To find exceptional points we look at the equation

X3 − (az2)X + (bz3 − y2z) = 0.

If a = 0 all exceptional points are defined by bz3 − y2z = 0 and each such
point has 1 preimage. There are 3 such points: [1 : 0] and [±

√
b : 1]. We

join them by 3 edges and calculate Euler characteristics of the preimage
as 3 ∗ 1 − 3 ∗ 3 + 2 ∗ 3 = 0 = 2 − 2g, so g = 1. If a 6= 0 then the point
[1 : 0] still has 1 preimage, and 4 more points have 2 preimages each. Latter

points are defined by
(y

z

)2 = b±
√

27
4 a3. We join them by 5 edges, so Euler

characteristics is (1 ∗ 1 + 4 ∗ 2)− 5 ∗ 3 + 2 ∗ 3 = 0 and g = 1 again. ¤

Exercise. Let Ax + By + Cz = 0 be any projective line in P 2(C).
Let Pi = [xi : yi : zi] for i = 1, 2, 3 be points of intersection with E(C).
(Suppose they all are different and different from O = [0 : 1 : 0].) Construct
the rational function g on P 2(C) (a quotient of two homogenous polynomials
of the same degree) with poles at P1 and P2 on E(C) of order 1, and zeros
at “− P ′′

3 = [x3 : −y3 : z3] and O = [0 : 1 : 0].
This Exercise together with Lemma show (I)⇒(III).
The map (III)⇒(II) is the classical Abel-Jacoby map from Riemann sur-

face to its Jacobian, which is an isomorphism if genus is 1, i.e. in our case.
Due to the Riemann-Roch theorem the space of holomorhic differentials of X
has dimension 1 over C, so we pick any holomorphic differential ω. Consider
for x ∈ X

x ∈ X 7→
∫ x

O
ω.

The value is defined up to the integrals of ω arround the loops in X, and
integrals along homotopic loops are equal. So, there is an image of H1(X) ∼=
Z2 in C, which is a lattice Zw1 + Zw2 since H1(X) ∼= Z2. w1 and w2 are
integrals of ω along any two loops generating H1(X). And the map above
is from X to C/{Zw1 + Zw2}. Since it is an isomorphism (we don’t prove
this fact here) we have w1

w2
∈ C − R. Let us explain why it transforms one

“group” law into another one. This map can be extended to divizors by
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linearity:

(2) D =
∑

i

ni(xi) 7→
∑

i

ni

∫ x

O
ω ∈ C/{Zw1 + Zw2}.

Proposition 2. The map (2) transforms principal divizors to 0.

Proof. Let us take two differentials of third kind ω1, ω2 on X. Let us fix
any generators γ1, γ2 of H1(X) on X so that they don’t go through residues
and poles of ωi. We cut X along this loops, so we get a rectangle. For
each differential we join poles to zeros inside of our rectangle obtaining an
oriented graph which we denote by arr(ωi). Exercise. Prove the formula

∫

γ1

ω1

∫

γ2

ω2 −
∫

γ2

ω1

∫

γ1

ω2 = ±2πi

(∫

arr(ω2)
ω1 −

∫

arr(ω1)
ω2

)
.

Let g be any meromorphic function. Then ω1 = dg
g is a differential of

third kind and we take ω2 = ω to be our holomorphic differential. Then∫
γi

dg
g ∈ 2πiZ and the above formula implies that

∫
arr(ω1) ω ∈ Zw1 + Zw2.

Note that arr(ω1) differs from the join of pathes from O to div(g) by a
number of loops, what implies our statement. ¤

For the implication (II)⇒(I) we consider the Weierstrass function

ρ(z) =
1
z2

+ lim
M,N →∞

M∑

m=−M

N∑

n=−N

1
(z + mw1 + nw2)2

.

It is periodic w.r.t. the lattice, so giving a meromorphic functions on the
quotient torus. Let us suppose for simplicity that w1 = τ , w2 = 1. Then
the Laurent expression of ρ at z = 0 starts with

ρ(z) =
1
z

2

+ 3G4(τ)z2 + 5G6(τ)z4 + . . .

where G2k(τ) =
∑

m,n
1

(mz+n)2k are Eisenstein series (see [2]). Then one can
easily check that

(ρ′(z))2 − 4ρ(z)3 + g4ρ(z) + g6 = o(z), z→ 0

with g4 = 60G4(τ) and g6 = 140G6(τ). Since there is no holomorphicfunc-
tions on torus except constants the above expression iz 0 everywhere. So,
functions x = ρ(z) and y = ρ′(z) are coordinates on elliptic curve. To prove
that this map transforms group law into group law one needs to construct
a periodic analytic function whith zeros exactly at z1, z2 and poles exactly
at 0 and z1 + z2. (Exercise.)

Now our theorem is proved.

4. The endomorphism ring of an elliptic curve. Complex
multiplication.

Let E1, E2 be elliptic curves. Hom(E1, E2) is the set of algebraic maps
from E1 to E2 which intertwin group laws. Then Hom(E1, E2) is an abelian
group (we can add such maps pointwise). End(E) = Hom(E, E)is a ring
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with composition as multiplication. Note that always Z ⊂ End(E) where
for n > 0

n : x 7→ x + x + · · ·+ x

(n times), −1 means inverse and 0 maps everything to 0.
By Homan(·, ·) and Endan(·) we denote corresponding hom’s in category

of analytic spaces.
We denote Eτ = C/{Zτ+Z} for τ in upper halfplane. Due to Theorem (1)

for every elliptic curve there is an analytic isomorphism to one of Eτ . We
now see how easy one can describe Hom of two elliptic curves in analytic
category.

Proposition 3.

Homan(Eτ , Eτ ′) ∼= {α ∈ C | α(Zτ + Z) ⊂ Zτ ′ + Z}
Proof. Any analytic map f : Eτ →Eτ ′ can be lifted to the analytic map of
universal coverings f̄ : C→C with f̄(0) = 0. Then for λ ∈ Zτ + Z we have
g(z) = f̄(z + λ) − f̄(z) is an analytic function with values in discrete set
Zτ ′ + Z, hence it is constant. Thus f is a linear map f(z) = α. Obviously
every such a map with α as in the statement intertwins group laws. ¤

Evidently Hom(E1, E2) ⊂ Homan(E1, E2), since every algebraic map is
analytic. But in case of projective varieties we can state the converse! This
is due to the Theorem of Chow which allows to pass between analytic and
algebraic categories:

Theorem 2. (Chow) An analytic subset of a projective space which is closed
in the strong topology is algebraic.

By strong topology we mean usual topology on Pn(C) restricted from
Cn+1. This theorem implies that Hom(E1, E2) = Homan(E1, E2). So,

End(E) = {α ∈ C | α(Zτ + Z) ⊂ Zτ + Z}.
This means that every algebraic map E→E preserves group law (see the
proof of the Proposition above).

Exercise. Show that Eτ and Eτ ′ are isomorphic as complex manifolds
if and only if τ = gτ ′ for some g ∈ SL2(Z), or equivalently C/Λ and C/Λ′
are isomorphic if and only if lattices Λ and Λ′ are homotetic. Show that
under isomorphism of Eτ and Egτ the numbers in End(Eτ ) go to the same
numbers in End(Egτ ).

Thus we have embedding Z ⊂ End(E) ⊂ C, although τ is defined
nonuniquely (up to the action of PSL2(Z)). Any algebraic endomorphism
of E can be canonically represented by a complex number.

Exercise. Show that End(Eτ ) 6= Z iff τ is a quadratic irrationality.
So, generically End(E) = Z. Let us consider the case when τ is quadratic

irrationality. Let K = Q(τ).
Exercise. Show that if α ∈ End(E) then α ∈ OK , i.e. it satisfies monic

equation with integer coefficients.
So, End(E) ⊂ OK . It is known from algebraic number theory (see [3])

that there exist w ∈ OK s.t. OK = Z + wZ. For K = Q(
√

d) where d is a
square free negative integer we put w = 1+

√
d

2 if d ≡ 1 (mod 4) and w =
√

d
if d ≡ 2, 3 (mod 4).
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Exercise. Show that End(E) is of finite index in OK . (Use that OK =
Z+wZ and End(E) 6= Z.) Show that there exists f ∈ Z such that End(E) =
Z+ fOK .

This f is called a conductor of an elliptic curve E.

Theorem 3. Let Rf = Z + fOK for an imaginary quadratic field K and
f ∈ Z. There exists a finitely many nonisomorphic elliptic curves E with
End(E) = Rf .

Sketch of proof. See [4]. Let Cl(Rf ) be the group of (isomorphism classes)
of projective modules of rank 1 over Rf . Then the elliptic curves with given
endomorphism ring Rf correspond one to one (up to isomorphism) with
Cl(Rf ). The last group is known from algebraic number theory to be finite.
(For f = 1 this is the class group of the field K.) Correspondence is given
by C/Λ ←→ Λ. ¤

5. Algebraicity of j-invariant

Theorem 4. If τ in upper half-plane is quadratic then j(τ) ∈ Q.

Proof. Eτ is isomorphic to the elliptic curve

y2 = 4x3 − g4(τ)x− g6(τ).

Let σ ∈ Aut(C) be any automorphism of C over Q. For the curve E =
{y2z = x3 − axz2 + bz3} we put Eσ = {y2z = x3 − aσxz2 + bσz3}. Then
j(Eσ) = j(E)σ since j(E) = 1728 4a3

4a3−27b2
. Note that End(Eσ) = End(E)

since all endomorphisms of E are described by rational fuctions and we
simply act on their coefficients to get endomorphisms of Eσ and vice versa.
Now due to Theorem 3 there is only finitely many σ ∈ Aut(C) s.t. j(τ)σ 6=
j(τ). So j(τ) ∈ Q. ¤
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