
ALGEBRAIC VALUES OF MODULAR FUNCTIONS

Abstract. These are notes of lectures for students given by M. Vlasenko
at the Institute of Mathematics of NAS of Ukraine

1. The Riemann sphere CP 1

CP 1 = C ∪ {∞} is a compact complex manifold obtained by glueing of
two complex planes C and C by the map z 7→ 1

z . The underlying topological
space is the 2-dimensional sphere S2.

Theorem 1. Any complex structure on S2 is isomorphic to CP 1.

Theorem 2. The only holomorphic maps f : CP 1→CP 1 are rational func-
tions, i.e. f(z) = P (z)

Q(z) with P,Q ∈ C[X].

Proof. f is either constant or takes every value in a finite number of points.
Indeed, suppose {x|f(x) = a} is infinite. Since CP 1 is compact there exist
a limit point x0. Since f is holomorphic it follows that f(x) ≡ a in a
neighbourhood of x0. Hence f(x) ≡ a everywhere.

Thus f |C has finite number of zeros and poles. We multiply f by a rational
function so that g(z) = f(z)Q(z)

P (z) has no zeros or poles in C. g is defined on
CP 1, i.e. g(1

z ) is meromorphic at z = 0. Hence g(z) has limit on ∞, either
finite or infinite. Thus either |g| or 1/|g| is bounded, and g is constant by
Liouville’s boundedness theorem. ¤

Note that deg f = max(deg P, deg Q), and the only 1-to-1 holomorphic
maps are f(z) = az+b

cz+d with ad− bc 6= 0.

2. The function j

The group PSL2(Z) = SL2(Z)/{±1} acts on H = {z ∈ C| Im z > 0} by(
a b
c d

)
: z 7→ az + b

cz + d
.

This action is free and discontinious. The set

∆ = {−1
2

< Re z ≤ 1
2
, |z| > 1} ∪ {z = eiφ,

π

3
≤ φ ≤ π

2
}

is a fundamental domain. The boundary of ∆ is glued by T =
(

1 1
0 1

)

and S

(
0 −1
1 0

)
, so the quotient X = H/PSL2(Z) is topologically a sphere

without one point. This quotient X inherits the complex structure from
H. In fact we can compactify X introducing a proper complex coordinate
in a neighbourhood of this missed point. Consider the map q : H→{0 <
|z| < 1}, q(z) = e2πiz. Then q(z) = q(z′) implies z′ = z + n = Tnz,
so complex structure on X factors through q. Since q(∞) = 0, we have
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2 ALGEBRAIC VALUES OF MODULAR FUNCTIONS

complex structure on X arround the missed point. Due to Theorem 1 we
now have that

Theorem 3.
X = H ∪QP 1/PSL2(Z) ∼= CP 1

Consider the holomorphic map making an isomorphism of the Theorem
above explicit. We can fix any value at any point, so we want it to map
the additional point ∞ = X −X to ∞ ∈ CP 1. Now the map is fixed up to
a composition with a linear map z 7→ az + b (a 6= 0) since such maps only
preserve ∞ ∈ CP 1. Let us lift this map to H, so we have a holomorphic
function j : H → C such that
1) j(gz) = j(z) for any g ∈ PSL2(Z)
2) j(q) has a pole of order 1 at q = 0
Indeed, j can be considered as a function of q due to 1) and the order of
pole is 1 since j represents a map from X to CP 1 which is 1-to-1. Since
j is defined up to composition with a linear function, we can fix first two
Laurent coefficients to be arbitrary. They are traditionally chosen as below:

Definition 1. j is a unique holomorphic function on H such that j(gz) =
j(z) for g ∈ PSL2(Z) and

j(q) =
1
q

+ 744 + o(q), q→ 0.

Theorem 4. j has integer Fourier coefficients, i.e. j(q) = 1
q +

∑∞
n=0 anqn

whith an ∈ Z.

To prove this theorem we need to construct j in another way.

3. Modular forms and Eisenstein series

For each nonnegative integer k we define the action “of weight 2k” of
PSL2(Z) on functions in H by

f
∣∣∣
2k

(
a b
c d

)
(z) = (cz + d)−2kf(

az + b

cz + d
).

(Note that this is a right action.)

Definition 2. Modular form f of weight 2k is a holomorphic function on
H which
1) is invariant under this action, i.e. f

∣∣∣
2k

g = f for any g ∈ PSL2(Z);

2) has finite limit at ∞, i.e. f(q) =
∑∞

n=0 anqn.

The space of modular forms is denoted by M2k, the subspace of forms
with a0 = 0 is denoted by S2k. Elements of S2k are called cusp forms.

Example. For k > 1 the function G2k(z) =
∑′

m,n∈Z
1

(mz+n)2k ∈ M2k.
It is called an Eisenstein series of weight 2k. Let us calculate Fourier co-
efficients of G2k. It is known (see [1]) that π ctg(πz) = lim

N →∞
∑N

n=−N
1

z+n .

So
∑

n∈Z

1
(z + n)2k

= − 1
(2k − 1)!

(
d

dz

)2k−1

π ctg(πz)
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= − 1
(2k − 1)!

(
2πiq

d

dq

)2k−1

πi
q + 1
q − 1

=
(2πi)2k

(2k − 1)!

(
q

d

dq

)2k−1 ∞∑

n=0

qn =
(2πi)2k

(2k − 1)!

∞∑

n=0

n2k−1qn.

Thus we have

G2k(z) = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑

n=1

σ2k−1(n)qn

where σm(n) =
∑

d|n dm.
So, G2k is not a cusp form and M2k = S2k + CG2k for k > 1. In fact all

M2k are finite dimensional vector spaces (see [2]).
Recall that ζ(2k) ∈ π2kQ. Then the modular form E2k such that G2k =

2ζ(2k)E2k has rational Fourier coefficients. We will need

E4(z) = 1 + 240
∞∑

n=1

σ3(n)qn, E6(z) = 1− 504
∞∑

n=1

σ5(n)qn.

This forms obviously have integer fourier coefficients. E3
4 and E2

6 are in M12

both. Then

E3
4 − E2

6 = 1728q + ... ∈ S12.

Let us introduce the cusp form ∆ = E3
4−E2

6
1728 .

Theorem 5. (Jacobi)

∆(z) = q

∞∏

n=1

(1− qn)24

Proof. See [2]. ¤

Exercise. Show that ∆(z) 6= 0 for z ∈ H (as a concequence of Jacobi
theorem).

Due to this exercise the function f = E3
4

∆ is holomorphic in H. It is
PSL2(Z)-invariant since numerator and denominator are modular forms of
the same weight. Calculating two first Fourier coefficients we get

f =
1
q

+ 744 + . . .

So, f = j. We have proved the identity

j =
1728E3

4

E3
4 −E2

6

.

Now we can prove Theorem 4. Due to Jacobi theorem ∆
q ∈ Z[[q]]×, i.e.

q
∆ has integer Fourier coefficients. Thus j also has.
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4. Algebraic values

Theorem 6. Let z ∈ H is quadratic over Q, i.e. z2 + pz + q = 0 for some
p, q ∈ Q. Then j(z) ∈ Z.

This means that j(z) satisfies a monic equation with integer coefficients.
The proof occupies the rest of this section.

Let A be a 2 × 2 matrix with integer coefficients, and detA = N > 0.
Then for z ∈ H we have Az ∈ H. If MPSL2(Z) 6= PSL2(Z)M then
j ◦M is not a modular function. But we can construct modular functions
as follows. Let MN be the set of integer matrices with determinant N , let
A1, . . . , AK be all representatives of the orbits SL2(Z)\MN . Then obviously
(j(A1gz), . . . , j(AKgz)) is a permutation of (j(A1z), . . . , j(AKz)) for any g ∈
SL2(Z). Thus for any symmetric polynomial P (X1, . . . , XK) the function

fP (z) = P (j(A1z), . . . , j(AKz))

is modular. Then due to Theorem 2 it is a rational function of j. Moreover, it
is a polynomial of j since fP has no poles in H. So, there exist a polynomial
QP ∈ C[X] such that

fP (z) = QP (j(z))
for any z ∈ H.

Now we can explain the idea of the proof of the Theorem 6. For each
N ≥ 1 we have a polynomial in two variables QN such that

QN (j(z), j(w)) =
∏

A∈PSL2(Z)\MN

(j(z)− j(Aw)).

Note that z is a quadratic irrationality iff there exist for some N > 1 a matrix
A with integer coefficients and detA = N such that Az = z. Moreover, N
can be chosen to be nonsquare. Then

QN (j(z), j(z)) = 0.

We have found an equation for j(z)! It remains to show that QN (X, X) is
a nontrivial monic polynomial with integer coefficients for nonsquare N . (If
N = N2

1 , then QN (j, j) = 0.) We do it below.

Lemma 1. K = σ1(N) and for representatives Ai one can take all matrices(
a b
0 d

)

with ad = N , a, d > 0, 0 ≤ b < d.

Exercise. Prove the lemma.
The idea of the next lemma is often called the q-expansion principle.

Lemma 2. If P ∈ Z[X1, . . . , XK ] then the modular function fP has integer
Fourier coefficients.

Proof. We denote ζm = e
2πi
m , q

1
m = e

2πiz
m . Then for A =

(
a b
0 d

)
we have

q(Az) = ζb
dq

a
d . Since Fourier coefficients of j are integers fP has expansion

of the form

fP (z) =
∞∑

n=n0

bn(ζN )q
n
N
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with bn ∈ Z[X]. This can be considered as Fourier expansion for fP (Nz).
By uniqueness of such expansion we get bn = 0 if N - n.

Let’s show that remaining bn doesn’t depend on ζN in fact. Take h such
that (h,N) = 1 and substitute ζN by ζh

N in our expression. Then q(Az) =

ζb
dq

a
d becomes ζbh

d q
a
d = q(A′z) where A′ =

(
a b′
0 d

)
, b′ = bh(mod d). Since

(h, d) = 1 the mapping b 7→ b′ = bh(mod d) permutes matrices with given a
and d. So, our expression doesn’t change. We have

∞∑
n=n0

bn(ζN )q
n
N =

∞∑
n=n0

bn(ζh
N )q

n
N ,

so bn(ζN ) = bn(ζh
N ) due to the uniqueness of the Fourier expansion again.

So bn(ζN ) ∈ Q(ζN ) is integer and is stable under the action of Galois group.
Thus bn ∈ Z. ¤
Lemma 3. Let Q ∈ C[X]. Then Q(j) has integer Fourier coefficients iff
Q ∈ Z[X].

Exercise. Prove the lemma (look at the Fourier expansion of j).
The last two lemmas imply that QN (X,Y ) ∈ Z[X, Y ]. To show that

QN (X, X) is nontrivial for nonsquare N we look at the lowest term in the
Fourier expansion of QN (j, j):

QN (j, j) =
∏

ad=N,a,d>0,0≤b<d

(
1
q
− 1

ζb
dq

a
d

+ o(1)

)
=

(−1)u(N)

qv(N)
+ . . .

where v(N) =
∑

a|N max(a, N
a ) and u(N) =

∑
d|N,d2<N d.

5. Some consequences

Definition 3. The field of definition of a modular form f ∈ M2k, f =∑∞
n=0 anqn is the field Q(a0, a1, . . . ) generated over Q by its Fourier coeffi-

cients.

Let us take to modular forms f ∈ M2p, g ∈ M2q defined over Q both.
Then

f2q

g2p

is a modular function (with poles), hence a rational function of j by Theo-
rem 2.

Exercise. Prove that f2q

g2p has rational Fourier coefficients. Prove that

f2q

g2p
= F (j) with F ∈ Q(X),

i.e. F is a rational function with rational coefficients. (Use ideas of q-
expansion principle. See Lemma 2.)

Corollary 4. Let z ∈ H is quadratic over Q, i.e. z2 +pz + q = 0 with some
p, q ∈ Q. Then for any f ∈ M2p, g ∈ M2q defined over Q one has

f
1
2p (z) ∈ Qg

1
2q (z).
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Another generalization of our proofs can be as follows. Take two modular
forms f, g ∈ M2k defined over Q. Then the polynomial

PN (X) =
∏

A∈PSL2(Z)\MN

(
X − f |2kA(z)

g(z)

)
=

∑
n

bn(z)Xn

has modular coefficients whith rational q-expansions again. Here

f
∣∣∣
2k

(
a b
c d

)
(z) =

1
(cz + d)2k

f

(
az + b

cz + d

)

as usual. So, bn are rational functions of j with rational coefficients. Thus
bn(z) ∈ Q(j(z)), and finally we have

Theorem 7. Let f, g ∈ M2k are defined over Q. Then
f |2kA(z)

g(z)
∈ Q

for any integer matrix A with det A > 0 and quadratic z ∈ H.

In particular, f(Nz)
f(z) ∈ Q for any rational f ∈ M2k.

Theorem 8. Let f1, f2 ∈ M2k have Fourier expansions of the form qn
(i)
0 +∑

n>n
(i)
0

a
(i)
n qn with a

(i)
n ∈ Z, i = 1, 2 correspondingly. Suppose f1 has no

poles in H and f2 has no zeros. Then

(detA)2k f1|2kA(z)
f2(z)

∈ Z

for any integer matrix A with det A > 0 and quadratic z ∈ H.

Exercise. Check numerically that fN (z) = N12 ∆(Nz)
∆(z) ∈ Z for different

N and quadratic z ∈ H. For example,

f2(I) = 8, f2(2I) = 0.01428534987281966273436738835.. = 198
√

2− 280.

Exercise. Prove Theorem 7 and Theorem 8.
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