ALGEBRAIC VALUES OF MODULAR FUNCTIONS

Abstract

These are notes of lectures for students given by M. Vlasenko at the Institute of Mathematics of NAS of Ukraine

1. The Riemann sphere $\mathbb{C} P^{1}$

$\mathbb{C} P^{1}=\mathbb{C} \cup\{\infty\}$ is a compact complex manifold obtained by glueing of two complex planes \mathbb{C} and \mathbb{C} by the map $z \mapsto \frac{1}{z}$. The underlying topological space is the 2 -dimensional sphere S^{2}.
Theorem 1. Any complex structure on S^{2} is isomorphic to $\mathbb{C} P^{1}$.
Theorem 2. The only holomorphic maps $f: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{1}$ are rational functions, i.e. $f(z)=\frac{P(z)}{Q(z)}$ with $P, Q \in \mathbb{C}[X]$.
Proof. f is either constant or takes every value in a finite number of points. Indeed, suppose $\{x \mid f(x)=a\}$ is infinite. Since $\mathbb{C} P^{1}$ is compact there exist a limit point x_{0}. Since f is holomorphic it follows that $f(x) \equiv a$ in a neighbourhood of x_{0}. Hence $f(x) \equiv a$ everywhere.

Thus $\left.f\right|_{\mathbb{C}}$ has finite number of zeros and poles. We multiply f by a rational function so that $g(z)=f(z) \frac{Q(z)}{P(z)}$ has no zeros or poles in $\mathbb{C} . g$ is defined on $\mathbb{C} P^{1}$, i.e. $g\left(\frac{1}{z}\right)$ is meromorphic at $z=0$. Hence $g(z)$ has limit on ∞, either finite or infinite. Thus either $|g|$ or $1 /|g|$ is bounded, and g is constant by Liouville's boundedness theorem.

Note that $\operatorname{deg} f=\max (\operatorname{deg} P, \operatorname{deg} Q)$, and the only 1-to-1 holomorphic maps are $f(z)=\frac{a z+b}{c z+d}$ with $a d-b c \neq 0$.

2. The function j

The group $P S L_{2}(\mathbb{Z})=S L_{2}(\mathbb{Z}) /\{ \pm 1\}$ acts on $H=\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$ by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): z \mapsto \frac{a z+b}{c z+d} .
$$

This action is free and discontinious. The set

$$
\Delta=\left\{-\frac{1}{2}<\operatorname{Re} z \leq \frac{1}{2},|z|>1\right\} \cup\left\{z=e^{i \phi}, \frac{\pi}{3} \leq \phi \leq \frac{\pi}{2}\right\}
$$

is a fundamental domain. The boundary of Δ is glued by $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $S\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, so the quotient $X=H / P S L_{2}(\mathbb{Z})$ is topologically a sphere without one point. This quotient X inherits the complex structure from H. In fact we can compactify X introducing a proper complex coordinate in a neighbourhood of this missed point. Consider the map $q: H \rightarrow\{0<$ $|z|<1\}, q(z)=e^{2 \pi i z}$. Then $q(z)=q\left(z^{\prime}\right)$ implies $z^{\prime}=z+n=T^{n} z$, so complex structure on X factors through q. Since $q(\infty)=0$, we have
complex structure on X arround the missed point. Due to Theorem 1 we now have that

Theorem 3.

$$
\bar{X}=H \cup \mathbb{Q} P^{1} / P S L_{2}(\mathbb{Z}) \cong \mathbb{C} P^{1}
$$

Consider the holomorphic map making an isomorphism of the Theorem above explicit. We can fix any value at any point, so we want it to map the additional point $\infty=\bar{X}-X$ to $\infty \in \mathbb{C} P^{1}$. Now the map is fixed up to a composition with a linear map $z \mapsto a z+b(a \neq 0)$ since such maps only preserve $\infty \in \mathbb{C} P^{1}$. Let us lift this map to H, so we have a holomorphic function $j: H \rightarrow \mathbb{C}$ such that

1) $j(g z)=j(z)$ for any $g \in P S L_{2}(\mathbb{Z})$
2) $j(q)$ has a pole of order 1 at $q=0$

Indeed, j can be considered as a function of q due to 1) and the order of pole is 1 since j represents a map from \bar{X} to $\mathbb{C} P^{1}$ which is 1-to- 1 . Since j is defined up to composition with a linear function, we can fix first two Laurent coefficients to be arbitrary. They are traditionally chosen as below:

Definition 1. j is a unique holomorphic function on H such that $j(g z)=$ $j(z)$ for $g \in P S L_{2}(\mathbb{Z})$ and

$$
j(q)=\frac{1}{q}+744+o(q), q \rightarrow 0
$$

Theorem 4. j has integer Fourier coefficients, i.e. $j(q)=\frac{1}{q}+\sum_{n=0}^{\infty} a_{n} q^{n}$ whith $a_{n} \in \mathbb{Z}$.

To prove this theorem we need to construct j in another way.

3. Modular forms and Eisenstein series

For each nonnegative integer k we define the action "of weight $2 k$ " of $P S L_{2}(\mathbb{Z})$ on functions in H by

$$
\left.f\right|_{2 k}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(z)=(c z+d)^{-2 k} f\left(\frac{a z+b}{c z+d}\right) .
$$

(Note that this is a right action.)
Definition 2. Modular form f of weight $2 k$ is a holomorphic function on H which

1) is invariant under this action, i.e. $\left.f\right|_{2 k} g=f$ for any $g \in P S L_{2}(\mathbb{Z})$;
2) has finite limit at ∞, i.e. $f(q)=\sum_{n=0}^{\infty} a_{n} q^{n}$.

The space of modular forms is denoted by $M_{2 k}$, the subspace of forms with $a_{0}=0$ is denoted by $S_{2 k}$. Elements of $S_{2 k}$ are called cusp forms.

Example. For $k>1$ the function $G_{2 k}(z)=\sum_{m, n \in \mathbb{Z}}^{\prime} \frac{1}{(m z+n)^{2 k}} \in M_{2 k}$. It is called an Eisenstein series of weight $2 k$. Let us calculate Fourier coefficients of $G_{2 k}$. It is known (see [1]) that $\pi \operatorname{ctg}(\pi z)=\lim _{N \rightarrow \infty} \sum_{n=-N}^{N} \frac{1}{z+n}$. So

$$
\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^{2 k}}=-\frac{1}{(2 k-1)!}\left(\frac{d}{d z}\right)^{2 k-1} \pi \operatorname{ctg}(\pi z)
$$

$$
\begin{gathered}
=-\frac{1}{(2 k-1)!}\left(2 \pi i q \frac{d}{d q}\right)^{2 k-1} \pi i \frac{q+1}{q-1} \\
=\frac{(2 \pi i)^{2 k}}{(2 k-1)!}\left(q \frac{d}{d q}\right)^{2 k-1} \sum_{n=0}^{\infty} q^{n}=\frac{(2 \pi i)^{2 k}}{(2 k-1)!} \sum_{n=0}^{\infty} n^{2 k-1} q^{n} .
\end{gathered}
$$

Thus we have

$$
G_{2 k}(z)=2 \zeta(2 k)+\frac{2(2 \pi i)^{2 k}}{(2 k-1)!} \sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n}
$$

where $\sigma_{m}(n)=\sum_{d \mid n} d^{m}$.
So, $G_{2 k}$ is not a cusp form and $M_{2 k}=S_{2 k}+\mathbb{C} G_{2 k}$ for $k>1$. In fact all $M_{2 k}$ are finite dimensional vector spaces (see [2]).

Recall that $\zeta(2 k) \in \pi^{2 k} \mathbb{Q}$. Then the modular form $E_{2 k}$ such that $G_{2 k}=$ $2 \zeta(2 k) E_{2 k}$ has rational Fourier coefficients. We will need

$$
E_{4}(z)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}, E_{6}(z)=1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}
$$

This forms obviously have integer fourier coefficients. E_{4}^{3} and E_{6}^{2} are in M_{12} both. Then

$$
E_{4}^{3}-E_{6}^{2}=1728 q+\ldots \in S_{12}
$$

Let us introduce the cusp form $\Delta=\frac{E_{4}^{3}-E_{6}^{2}}{1728}$.
Theorem 5. (Jacobi)

$$
\Delta(z)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}
$$

Proof. See [2].
Exercise. Show that $\Delta(z) \neq 0$ for $z \in H$ (as a concequence of Jacobi theorem).

Due to this exercise the function $f=\frac{E_{4}^{3}}{\Delta}$ is holomorphic in H. It is $P S L_{2}(\mathbb{Z})$-invariant since numerator and denominator are modular forms of the same weight. Calculating two first Fourier coefficients we get

$$
f=\frac{1}{q}+744+\ldots
$$

So, $f=j$. We have proved the identity

$$
j=\frac{1728 E_{4}^{3}}{E_{4}^{3}-E_{6}^{2}}
$$

Now we can prove Theorem 4. Due to Jacobi theorem $\frac{\Delta}{q} \in \mathbb{Z}[[q]]^{\times}$, i.e. $\frac{q}{\Delta}$ has integer Fourier coefficients. Thus j also has.

4. Algebraic values

Theorem 6. Let $z \in \underline{H}$ is quadratic over \mathbb{Q}, i.e. $z^{2}+p z+q=0$ for some $p, q \in \mathbb{Q}$. Then $j(z) \in \overline{\mathbb{Z}}$.

This means that $j(z)$ satisfies a monic equation with integer coefficients. The proof occupies the rest of this section.

Let A be a 2×2 matrix with integer coefficients, and $\operatorname{det} A=N>0$. Then for $z \in H$ we have $A z \in H$. If $M P S L_{2}(\mathbb{Z}) \neq P S L_{2}(\mathbb{Z}) M$ then $j \circ M$ is not a modular function. But we can construct modular functions as follows. Let M_{N} be the set of integer matrices with determinant N, let A_{1}, \ldots, A_{K} be all representatives of the orbits $S L_{2}(\mathbb{Z}) \backslash M_{N}$. Then obviously $\left(j\left(A_{1} g z\right), \ldots, j\left(A_{K} g z\right)\right)$ is a permutation of $\left(j\left(A_{1} z\right), \ldots, j\left(A_{K} z\right)\right)$ for any $g \in$ $S L_{2}(\mathbb{Z})$. Thus for any symmetric polynomial $P\left(X_{1}, \ldots, X_{K}\right)$ the function

$$
f_{P}(z)=P\left(j\left(A_{1} z\right), \ldots, j\left(A_{K} z\right)\right)
$$

is modular. Then due to Theorem 2 it is a rational function of j. Moreover, it is a polynomial of j since f_{P} has no poles in H. So, there exist a polynomial $Q_{P} \in \mathbb{C}[X]$ such that

$$
f_{P}(z)=Q_{P}(j(z))
$$

for any $z \in H$.
Now we can explain the idea of the proof of the Theorem 6. For each $N \geq 1$ we have a polynomial in two variables Q_{N} such that

$$
Q_{N}(j(z), j(w))=\prod_{A \in P S L_{2}(\mathbb{Z}) \backslash M_{N}}(j(z)-j(A w))
$$

Note that z is a quadratic irrationality iff there exist for some $N>1$ a matrix A with integer coefficients and $\operatorname{det} A=N$ such that $A z=z$. Moreover, N can be chosen to be nonsquare. Then

$$
Q_{N}(j(z), j(z))=0 .
$$

We have found an equation for $j(z)$! It remains to show that $Q_{N}(X, X)$ is a nontrivial monic polynomial with integer coefficients for nonsquare N. (If $N=N_{1}^{2}$, then $Q_{N}(j, j)=0$.) We do it below.
Lemma 1. $K=\sigma_{1}(N)$ and for representatives A_{i} one can take all matrices

$$
\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)
$$

with $a d=N, a, d>0,0 \leq b<d$.
Exercise. Prove the lemma.
The idea of the next lemma is often called the q-expansion principle.
Lemma 2. If $P \in \mathbb{Z}\left[X_{1}, \ldots, X_{K}\right]$ then the modular function f_{P} has integer Fourier coefficients.
Proof. We denote $\zeta_{m}=e^{\frac{2 \pi i}{m}}, q^{\frac{1}{m}}=e^{\frac{2 \pi i z}{m}}$. Then for $A=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$ we have $q(A z)=\zeta_{d}^{b} q^{\frac{a}{d}}$. Since Fourier coefficients of j are integers f_{P} has expansion of the form

$$
f_{P}(z)=\sum_{n=n_{0}}^{\infty} b_{n}\left(\zeta_{N}\right) q^{\frac{n}{N}}
$$

with $b_{n} \in \mathbb{Z}[X]$. This can be considered as Fourier expansion for $f_{P}(N z)$. By uniqueness of such expansion we get $b_{n}=0$ if $N \nmid n$.

Let's show that remaining b_{n} doesn't depend on ζ_{N} in fact. Take h such that $(h, N)=1$ and substitute ζ_{N} by ζ_{N}^{h} in our expression. Then $q(A z)=$ $\zeta_{d}^{b} q^{\frac{a}{d}}$ becomes $\zeta_{d}^{b h} q^{\frac{a}{d}}=q\left(A^{\prime} z\right)$ where $A^{\prime}=\left(\begin{array}{ll}a & b^{\prime} \\ 0 & d\end{array}\right), b^{\prime}=b h(\bmod d)$. Since $(h, d)=1$ the mapping $b \mapsto b^{\prime}=b h(\bmod d)$ permutes matrices with given a and d. So, our expression doesn't change. We have

$$
\sum_{n=n_{0}}^{\infty} b_{n}\left(\zeta_{N}\right) q^{\frac{n}{N}}=\sum_{n=n_{0}}^{\infty} b_{n}\left(\zeta_{N}^{h}\right) q^{\frac{n}{N}},
$$

so $b_{n}\left(\zeta_{N}\right)=b_{n}\left(\zeta_{N}^{h}\right)$ due to the uniqueness of the Fourier expansion again. So $b_{n}\left(\zeta_{N}\right) \in \mathbb{Q}\left(\zeta_{N}\right)$ is integer and is stable under the action of Galois group. Thus $b_{n} \in \mathbb{Z}$.

Lemma 3. Let $Q \in \mathbb{C}[X]$. Then $Q(j)$ has integer Fourier coefficients iff $Q \in \mathbb{Z}[X]$.

Exercise. Prove the lemma (look at the Fourier expansion of j).
The last two lemmas imply that $Q_{N}(X, Y) \in \mathbb{Z}[X, Y]$. To show that $Q_{N}(X, X)$ is nontrivial for nonsquare N we look at the lowest term in the Fourier expansion of $Q_{N}(j, j)$:

$$
Q_{N}(j, j)=\prod_{a d=N, a, d>0,0 \leq b<d}\left(\frac{1}{q}-\frac{1}{\zeta_{d}^{b} q^{\frac{a}{d}}}+o(1)\right)=\frac{(-1)^{u(N)}}{q^{v(N)}}+\ldots
$$

where $v(N)=\sum_{a \mid N} \max \left(a, \frac{N}{a}\right)$ and $u(N)=\sum_{d \mid N, d^{2}<N} d$.

5. Some consequences

Definition 3. The field of definition of a modular form $f \in M_{2 k}, f=$ $\sum_{n=0}^{\infty} a_{n} q^{n}$ is the field $\mathbb{Q}\left(a_{0}, a_{1}, \ldots\right)$ generated over \mathbb{Q} by its Fourier coefficients.

Let us take to modular forms $f \in M_{2 p}, g \in M_{2 q}$ defined over \mathbb{Q} both. Then

$$
\frac{f^{2 q}}{g^{2 p}}
$$

is a modular function (with poles), hence a rational function of j by Theorem 2.

Exercise. Prove that $\frac{f^{2 q}}{g^{2 p}}$ has rational Fourier coefficients. Prove that

$$
\frac{f^{2 q}}{g^{2 p}}=F(j) \text { with } F \in \mathbb{Q}(X)
$$

i.e. F is a rational function with rational coefficients. (Use ideas of qexpansion principle. See Lemma 2.)
Corollary 4. Let $z \in H$ is quadratic over \mathbb{Q}, i.e. $z^{2}+p z+q=0$ with some $p, q \in \mathbb{Q}$. Then for any $f \in M_{2 p}, g \in M_{2 q}$ defined over \mathbb{Q} one has

$$
f^{\frac{1}{2 p}}(z) \in \overline{\mathbb{Q}} g^{\frac{1}{2 q}}(z) .
$$

Another generalization of our proofs can be as follows. Take two modular forms $f, g \in M_{2 k}$ defined over \mathbb{Q}. Then the polynomial

$$
P_{N}(X)=\prod_{A \in P S L_{2}(\mathbb{Z}) \backslash M_{N}}\left(X-\frac{\left.f\right|_{2 k} A(z)}{g(z)}\right)=\sum_{n} b_{n}(z) X^{n}
$$

has modular coefficients whith rational q-expansions again. Here

$$
\left.f\right|_{2 k}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)(z)=\frac{1}{(c z+d)^{2 k}} f\left(\frac{a z+b}{c z+d}\right)
$$

as usual. So, b_{n} are rational functions of j with rational coefficients. Thus $b_{n}(z) \in \mathbb{Q}(j(z))$, and finally we have

Theorem 7. Let $f, g \in M_{2 k}$ are defined over \mathbb{Q}. Then

$$
\frac{\left.f\right|_{2 k} A(z)}{g(z)} \in \overline{\mathbb{Q}}
$$

for any integer matrix A with $\operatorname{det} A>0$ and quadratic $z \in H$.
In particular, $\frac{f(N z)}{f(z)} \in \overline{\mathbb{Q}}$ for any rational $f \in M_{2 k}$.
Theorem 8. Let $f_{1}, f_{2} \in M_{2 k}$ have Fourier expansions of the form $q^{n_{0}^{(i)}}+$ $\sum_{n>n_{0}^{(i)}} a_{n}^{(i)} q^{n}$ with $a_{n}^{(i)} \in \mathbb{Z}, i=1,2$ correspondingly. Suppose f_{1} has no poles in H and f_{2} has no zeros. Then

$$
(\operatorname{det} A)^{2 k} \frac{\left.f_{1}\right|_{2 k} A(z)}{f_{2}(z)} \in \overline{\mathbb{Z}}
$$

for any integer matrix A with $\operatorname{det} A>0$ and quadratic $z \in H$.
Exercise. Check numerically that $f_{N}(z)=N^{12} \frac{\Delta(N z)}{\Delta(z)} \in \overline{\mathbb{Z}}$ for different N and quadratic $z \in H$. For example,

$$
f_{2}(I)=8, f_{2}(2 I)=0.01428534987281966273436738835 . .=198 \sqrt{2}-280
$$

Exercise. Prove Theorem 7 and Theorem 8.

References

[1] A.Weil, Elliptic functions according to Eisenstein and Kronecker // Springer-Verlag, 1976
[2] J.-P.Serre, A course in arithmetic // Springer-Verlag, 1973
[3] D.Zagier, Aspects of complex multiplication // notes of the seminar written by J. Voight (2000) http://www.ima.umn.edu/ voight/notes/274-Zagier.pdf
[4] H.M.Stark, Values of L-functions at $\mathrm{s}=1 \mathrm{I}$. L-functions of quadratic forms //Advances in Mathematics 7 (1971), 301-343 (chapter 4 only !)

