Lecture 2: Calabi-Yau differential operators

Masha Vlasenko (IMPAN, Warsaw)
joint work with Frits Beukers

Bhaskaracharya Pratishthana, Pune

July 28, 2022

Mirror theorem

Theorem (Givental, Lian-Liu-Yau, mid 90's) $n_{d}(A)=n_{d}(B)$.

Beginnings of mirror symmetry

P. Candelas, X. de la Ossa, P. Green, L. Parkes, An exactly soluble superconformal theory from a mirror pair of Calabi-Yau manifolds, Phys. Lett. B 258 (1991), no.1-2, 118-126

$$
L=\theta^{4}-5^{5} t\left(\theta+\frac{1}{5}\right)\left(\theta+\frac{2}{5}\right)\left(\theta+\frac{3}{5}\right)\left(\theta+\frac{4}{5}\right), \quad \theta=t \frac{d}{d t}
$$

The differential equation $L y=0$ has solutions

$$
y_{0}(t)=\sum_{n=0}^{\infty} \frac{(5 n)!}{n!^{5}} t^{n}=1+120 t+113400 t^{2}+\ldots=: f_{0}(t) \in \mathbb{Z} \llbracket t \rrbracket
$$

and

$$
y_{1}(t)=f_{0}(t) \log (t)+f_{1}(t), \quad f_{1}(t):=\sum_{n=1}^{\infty} \frac{(5 n)!}{n!^{5}}\left(\sum_{j=1}^{5 n} \frac{5}{j}\right) t^{n} \in t \mathbb{Q} \llbracket t \rrbracket
$$

Observation: $q(t):=\exp \left(\frac{y_{1}(t)}{y_{0}(t)}\right)=t \exp \left(\frac{f_{1}(t)}{f_{0}(t)}\right) \in t \mathbb{Z} \llbracket t \rrbracket$
(proved by B.-H.Lian and S.-T.Yau in 1996)

Canonical coordinate and Yukawa coupling

 $q(t)=\exp \left(y_{1}(t) / y_{0}(t)\right)=t+770 t^{2}+1014275 t^{3}+$is called the canonical coordinate. The mirror map is the inverse series $t(q) \in q+q^{2} \mathbb{Q} \llbracket q \rrbracket$.

Solutions to $L y=0$:

$$
\begin{aligned}
& y_{0}(t)=f_{0}, \quad y_{1}(t)=f_{0} \log (t)+f_{1}, \\
& y_{2}(t)=f_{0} \frac{\log (t)^{2}}{2!}+f_{1} \log (t)+f_{2}, \quad f_{2} \in t \mathbb{Q} \llbracket t \rrbracket
\end{aligned}
$$

Express the ratios y_{i} / y_{0} in terms of $q=q(t)$:

$$
\begin{aligned}
& \frac{y_{0}}{y_{0}}=1, \quad \frac{y_{1}}{y_{0}}=\log (q) \\
& \frac{y_{2}}{y_{0}}=\frac{1}{2} \log (q)^{2}+575 q+\frac{975375}{4} q^{2}+\frac{1712915000}{9} q^{3}+\ldots
\end{aligned}
$$

$Y(q):=\left(q \frac{d}{d q}\right)^{2} \frac{y_{2}}{y_{0}}=1+575 q+975375 q^{2}+\ldots$
is called the Yukawa coupling.

Physics wins!

$$
\begin{aligned}
& Y(q)=\left(q \frac{d}{d q}\right)^{2} \frac{y_{2}}{y_{0}}=1+575 q+\ldots=\frac{1}{5} \sum_{d \geq 0} n_{d} d^{3} \frac{q^{d}}{1-q^{d}} \\
& n_{0}=5, \quad n_{1}=2875, \quad n_{2}=609250, \\
& n_{3}=317206375, \quad n_{4}=242467530000, \ldots
\end{aligned}
$$

are called instanton numbers.
Observation / prediction: The numbers n_{d} coincide with the numbers of degree d rational curves that lie on a generic threefold of degree 5 in \mathbb{P}^{4}.

Only the first two numbers were known at that time! In 1993 G.Ellingsrud and S.Strømme computed the number of cubic curves on the quintic threefold. Their result served as a crucial cross-check for the above physicists' prediction.

Integrality of instanton numbers

$$
\begin{aligned}
& L=\theta^{4}-5^{5} t\left(\theta+\frac{1}{5}\right)\left(\theta+\frac{2}{5}\right)\left(\theta+\frac{3}{5}\right)\left(\theta+\frac{4}{5}\right), \quad \theta=t \frac{d}{d t} \\
& y_{0}=f_{0}, \quad y_{1}=f_{0} \log (t)+f_{1}, y_{2}=f_{0} \frac{\log (t)^{2}}{2!}+f_{1} \log (t)+f_{2} \\
& q=\exp \left(y_{1} / y_{0}\right), \quad Y(q)=\left(q \frac{d}{d q}\right)^{2}\left(y_{2} / y_{0}\right)=\frac{1}{5} \sum_{d \geq 0} n_{d} d^{3} \frac{q^{d}}{1-q^{d}}
\end{aligned}
$$

Observation / prediction: $n_{d} \in \mathbb{Z}$ for every d.
Theorem (MV-Frits Beukers, 2020) ${ }^{1}$ For the quintic case, the denominators of instanton numbers n_{d} can only have prime divisors 2, 3, 5.
> ${ }^{1}$ Our proof is essentially elementary, we will stay on B-side. An alternative proof is possible on A-side, via the mirror theorem. Around 1998 R.Gopakumar and C.Vafa introduced the BPS-numbers for Calabi-Yau threefolds, which include the Gromov-Witten invariants as $g=0$ case. E.N. Ionel and T.H. Parker proved that BPS-numbers are integers by using methods from symplectic topology in The Gopakumar -Vafa formula for symplectic manifolds, Annals of Math. 187 (2018), 1-64.

Calabi-Yau differential operators

In 2003 Gert Almkvist wrote to Duco van Straten asking if he knows more operators like the one for the quintic. ${ }^{2}$ In subsequent years many similar examples were constructed by Gert Almkvist, Christian van Enckevort, Duco van Straten and Wadim Zudulin.
A 4th order differential operator

$$
L=\theta^{4}+\sum_{j=1}^{4} a_{j}(t) \theta^{4-j}, \quad \theta=t \frac{d}{d t}, \quad a_{j} \in \mathbb{Q}(t), 1 \leq j \leq 4
$$

is called a Calabi-Yau operator if:

- its singularities are regular
- $t=0$ is a point of maximally unipotent monodromy (MUM), that is

$$
a_{j}(0)=0,1 \leq j \leq 4
$$

- it is self-dual
- it satisfies the integrality conditions:
- the holomorphic solution $y_{0}(t) \in \mathbb{Z} \llbracket t \rrbracket$
- the canonical coordinate $q=\exp \left(y_{1} / y_{0}\right) \in \mathbb{Z} \llbracket t \rrbracket$
- the instanton numbers $n_{d} \in \mathbb{Z}$
${ }^{2}$ D. van Straten, Calabi-Yau operators in Adv. Lect. Math. 42 (2018), p. 7

Calabi-Yau differential operators

If one allows N-integrality instead of integrality, about 500 such operators were found experimentally in Tables of Calabi-Yau operators by G. Almkvist, C. van Enckevort, D. van Straten, W. Zudilin, (arXiv:math/0507430) "AESZ tables" (2010).

In some cases the power series solution to L can be written as a period function of a family of toric hypersurfaces ${ }^{3}$:

$$
y_{0}(t)=\frac{1}{(2 \pi i)^{n}} \oint \ldots \oint \frac{1}{1-\operatorname{tg}(\mathbf{x})} \frac{d x_{1}}{x_{1}} \ldots \frac{d x_{n}}{x_{n}}
$$

for a Laurent polynomial $g(\mathbf{x}) \in \mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$. This fact then explains integrality of the analytic solution $y_{0}(t)=\sum_{k=0}^{\infty} c_{k} t^{k}$ where c_{k} is the constant term of $g(\mathbf{x})^{k}$.

[^0]
Calabi-Yau differential operators

AESZ\#1 $\quad L=\theta^{4}-5^{5} t^{5}(\theta+1)(\theta+2)(\theta+4)(\theta+5)$

$$
g(\mathbf{x})=x_{1}+x_{2}+x_{3}+x_{4}+\frac{1}{x_{1} x_{2} x_{3} x_{4}}
$$

AESZ\#8 $L=\theta^{4}-108^{2} t^{6}(\theta+1)(\theta+2)(\theta+4)(\theta+5)$

$$
g(\mathbf{x})=x_{1}+x_{2}+x_{3}+x_{4}+\frac{1}{x_{1}^{2} x_{2} x_{3} x_{4}}
$$

(operators up to AESZ\#14 are hypergeometric)
AESZ\#15 $L=\theta^{4}-3^{3} t^{3}(\theta+1)(\theta+2)\left(7 \theta^{2}+21 \theta+18\right)$

$$
+18^{3} t^{6}(\theta+1)(\theta+2)(\theta+4)(\theta+5)
$$

$$
g(\mathbf{x})=x_{1}+x_{2}+x_{3}+x_{4}+\frac{1}{x_{1} x_{2}}+\frac{1}{x_{3} x_{4}}
$$

AESZ\#16 $L=\left(1024 t^{4}-80 t^{2}+1\right) \theta^{4}+64\left(128 t^{4}-5 t^{2}\right) \theta^{3}$
$+16\left(1472 t^{4}-33 t^{2}\right) \theta^{2}+32\left(896 t^{4}-13 t^{2}\right) \theta+128\left(96 t^{4}-t^{2}\right)$

$$
g(\mathbf{x})=x_{1}+\frac{1}{x_{1}}+x_{2}+\frac{1}{x_{2}}+x_{3}+\frac{1}{x_{3}}+x_{4}+\frac{1}{x_{4}}
$$

Towards the proof of integrality of instanton numbers

Lemma. For a power series $Y(q) \in \mathbb{Q} \llbracket q \rrbracket$, consider the Lambert expansion

$$
Y(q)=\sum_{d \geq 0} a_{d} \frac{q^{d}}{1-q^{d}}
$$

Take a prime number p. Suppose $\exists \phi \in \mathbb{Z}_{p} \llbracket q \rrbracket$ such that

$$
Y\left(q^{p}\right)-Y(q)=\left(q \frac{d}{d q}\right)^{s} \phi(q)
$$

Then $a_{d} / d^{s} \in \mathbb{Z}_{p}$ for all $d \geq 1$.

Towards the proof of integrality of instanton numbers

Take $s=3$ and write the respective $\phi \in \mathbb{Q} \llbracket q \rrbracket$ explicitly:

$$
\begin{aligned}
& \begin{aligned}
& \sum_{d \geq 1} n_{d} d^{3} \frac{q^{d}}{1-q^{d}}=\left(q \frac{d}{d q}\right)^{3} Z, \quad Z(q)=\sum_{d \geq 1} n_{d} L i_{3}\left(q^{d}\right) \in \mathbb{Q} \llbracket q \rrbracket \\
& L i_{3}(x)=\sum_{m \geq 1} \frac{x^{m}}{m^{3}}, \quad\left(x \frac{d}{d x}\right)^{3} L i_{3}(x)=\frac{x}{1-x} \\
& \phi:=p^{-3} Z\left(q^{p}\right)-Z(q) \stackrel{? ?}{\in} \mathbb{Z}_{p} \llbracket q \rrbracket
\end{aligned}
\end{aligned}
$$

J. Stienstra, Ordinary Calabi-Yau-3 Crystals, Fields Inst. Commun., 38 (2003): one can prove p-integrality of ϕ by relating it to a matrix coefficient of the p-adic Frobenius structure for the differential operator L
M. Kontsevich, A. Schwarz, V. Vologodsky, Integrality of instanton numbers and p-adic B-model, Phys. Lett. B 637 (2006), no. 1-2
V. Vologodsky, On the N-integrality of instanton numbers, arXiv:0707.4617

Frobenius structure (after Dwork)

A p-adic Frobenius structure is an equivalence between the differential system corresponding to L and its pullback under the change of variable $t \mapsto t^{p}$, over the field $E_{p}=\widehat{\mathbb{Q}(t)}$ of p-adic analytic functions.

$$
\begin{aligned}
& L=\theta^{4}+\sum_{j=1}^{4} a_{j}(t) \theta^{4-j} \quad \text { with MUM point at } t=0 \\
& y_{0}=f_{0}, y_{1}=f_{0} \log (t)+f_{1}, y_{2}=f_{0} \frac{\log (t)^{2}}{2!}+f_{1} \log (t)+f_{2} \\
& y_{3}=f_{0} \frac{\log (t)^{3}}{3!}+f_{1} \frac{\log (t)^{2}}{2!}+f_{2} \log (t)+f_{3}, f_{i} \in \mathbb{Q} \llbracket t \rrbracket \\
& U=\left(\theta^{i} y_{j}\right)_{i, j=0}^{3} \text { fundamental solution matrix }
\end{aligned}
$$

Are there constants $\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{Q}_{p}$ such that

$$
\Phi(t)=U(t)\left(\begin{array}{cccc}
\alpha_{0} & p \alpha_{1} & p^{2} \alpha_{2} & p^{3} \alpha_{3} \\
0 & p \alpha_{0} & p^{2} \alpha_{1} & p^{3} \alpha_{2} \\
0 & 0 & p^{2} \alpha_{0} & p^{3} \alpha_{1} \\
0 & 0 & 0 & p^{3} \alpha_{0}
\end{array}\right) U\left(t^{p}\right)^{-1} \in E_{p}^{4 \times 4} \quad ?
$$

Frobenius structure: definition adapted to our problem

$$
\begin{aligned}
& U=\left(\theta^{i} y_{j}\right)_{i, j=0}^{3} \text { fundamental solution matrix for } L \\
& \Phi(t)=U(t)\left(\begin{array}{cccc}
\alpha_{0} & p \alpha_{1} & p^{2} \alpha_{2} & p^{3} \alpha_{3} \\
0 & p \alpha_{0} & p^{2} \alpha_{1} & p^{3} \alpha_{2} \\
0 & 0 & p^{2} \alpha_{0} & p^{3} \alpha_{1} \\
0 & 0 & 0 & p^{3} \alpha_{0}
\end{array}\right) U\left(t^{p}\right)^{-1} \in \mathbb{Q} \llbracket t \rrbracket^{4 \times 4}
\end{aligned}
$$

Definition. We say that L has a p-adic Frobenius structure if there exist p-adic constants $\alpha_{0}=1, \alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{Z}_{p}$ such that

$$
\Phi_{i j} \in p^{j} \mathbb{Z}_{p} \llbracket t \rrbracket, \quad 0 \leq i, j \leq 3 .
$$

Conjecture. ${ }^{4}$ Calabi-Yau differential operators have p-adic Frobenius structure for almost all p. Moreover, $\alpha_{1}=\alpha_{2}=0$ and $\alpha_{3}=r \zeta_{p}(3)$, where $r \in \mathbb{Q}$ is independent of p and can be expressed via geometric invariants of the mirror manifold.

[^1]
p-Integrality of instanton numbers

$L=\theta^{4}+a_{1}(t) \theta^{3}+a_{2}(t) \theta^{2}+a_{3}(t) \theta+a_{4}(t)$
$a_{i}(0)=0, i=1, \ldots, 4 \quad($ MUM point at $t=0)$
Theorem (MV-Frits Beukers, 2020). Suppose that a p-adic
Frobenius structure exists for L. Then

- the analytic solution is p-integral: $y_{0} \in \mathbb{Z}_{p} \llbracket t \rrbracket$
- the canonical coordinate is p-integral: $q=\exp \left(y_{1} / y_{0}\right) \in \mathbb{Z}_{p} \llbracket t \rrbracket$
- if in addition L is self-dual and $\alpha_{1}=0$, then the instanton numbers of L are p-integral: $n_{d} \in \mathbb{Z}_{p}$ for all $d \geq 1$

In the latter case, the series ϕ such that $Y\left(q^{p}\right)-Y(q)=\left(q \frac{d}{d q}\right)^{3} \phi$ is basically given by the top right Frobenius matrix entry:
$\phi \approx p^{-3} \Phi_{03}$.

The hard part: existence of Φ with required properties

Given $L=\theta^{r}+\ldots$, we would like to construct the Frobenius structure matrix Φ and show that $\alpha_{1}=0$. We need a geometric model, a family of hypersurfaces whose periods are solutions of L.

- Find $g(\mathbf{x}) \in \mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ such that

$$
y_{0}(t)=\frac{1}{(2 \pi i)^{n}} \oint \ldots \oint \frac{1}{1-\operatorname{tg}(\mathbf{x})} \frac{d x_{1}}{x_{1}} \ldots \frac{d x_{n}}{x_{n}}
$$

$$
\text { e.g. } n=4, g(\mathbf{x})=x_{1}+x_{2}+x_{3}+x_{4}+\frac{1}{x_{1} x_{2} x_{3} x_{4}}
$$

$$
L=\theta^{4}-(5 t)^{5}(\theta+1)(\theta+2)(\theta+3)(\theta+4)
$$

More generally, consider a Laurent polynomial $f(\mathbf{x})$ with coefficients in $\mathbb{Z}[t]$ and let $X_{f}=\{f(\mathbf{x})=0\} \subset \mathbb{T}^{n}$ be the toric hypersurface of its zeroes. Assume that the cohomology class

$$
\omega=\frac{1}{f(\mathbf{x})} \frac{d x_{1}}{x_{1}} \ldots \frac{d x_{n}}{x_{n}} \in H^{n}\left(\mathbb{T}^{n} \backslash X_{f}\right)
$$

is annihilated by L.

- In the above example, take $f(\mathbf{x})=1-\operatorname{tg}(\mathbf{x})$.

Cohomology and differential forms

$f(\mathbf{x}) \in R\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right], R$ is a localization of $\mathbb{Z}[t]$, $X_{f}=\{f(\mathbf{x})=0\} \subset \mathbb{T}^{n}, \Delta \subset \mathbb{R}^{n}$ Newton polytope of $f(\mathbf{x})$

$$
\begin{aligned}
& \Omega_{f}=\left\{\frac{h(\mathbf{x})}{f(\mathbf{x})^{m}} \left\lvert\, \begin{array}{l}
m \geq 1, h \in R\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \\
\operatorname{supp}(h) \subset m \Delta
\end{array}\right.\right\} \quad R \text {-module } \\
& \cup \\
& d \Omega_{f}=R \text {-module generated by } x_{i} \frac{\partial \nu}{\partial x_{i}}, \nu \in \Omega_{f}, i=1, \ldots, n
\end{aligned}
$$

$$
\begin{aligned}
\Omega_{f} / d \Omega_{f} & \cong H_{D R}^{n}\left(\mathbb{T}^{n} \backslash X_{f}\right) \quad \text { (Griffiths, Batyrev) } \\
\Omega_{f} \ni \frac{h(\mathbf{x})}{f(\mathbf{x})^{m}} & \mapsto \frac{h(\mathbf{x})}{f(\mathbf{x})^{m}} \frac{d x_{1}}{x_{1}} \cdots \frac{d x_{n}}{x_{n}} \\
d \Omega_{f} & \leftrightarrow \text { exact forms } \\
\Omega_{f}(\cdot)=\{m \leq \cdot\} & \leftrightarrow \text { Hodge filtration }
\end{aligned}
$$

p-adic Cartier operation

fix p prime

$$
\mathcal{C}_{p}: \frac{h(\mathbf{x})}{f(\mathbf{x})^{m}}=\sum_{\mathbf{u} \in \mathbb{Z}^{n}} a_{\mathbf{u}}(t) \mathbf{x}^{\mathbf{u}} \mapsto \sum_{\mathbf{u} \in \mathbb{Z}^{n}} a_{p \mathbf{u}}(t) \mathbf{x}^{\mathbf{u}} \notin \Omega_{f}
$$

formal expansion, e.g. $\frac{1}{1-\operatorname{tg}(\mathbf{x})}=\sum_{k \geq 0} t^{k} g(\mathbf{x})^{k}=\sum_{\mathbf{u} \in \mathbb{Z}^{n}} a_{\mathbf{u}}(t) \mathbf{x}^{\mathbf{u}}$
Lemma. For $\frac{h(\mathbf{x})}{f(\mathbf{x})^{m}}=\sum a_{\mathbf{u}}(t) \mathbf{x}^{\mathbf{u}}$, the series $\sum a_{p \mathbf{u}}(t) \mathbf{x}^{\mathbf{u}}$ can be approximated p-adically by rational functions with powers of $f^{\sigma}(\mathbf{x})$ in the denominator.

Here f^{σ} is f with t substituted by t^{p}, e.g. for $f(\mathbf{x})=1-\operatorname{tg}(\mathbf{x})$ one has $f^{\sigma}(x)=1-t^{p} g(\mathbf{x})$. We thus have

$$
\mathcal{C}_{p}\left(\Omega_{f}\right) \subset \widehat{\Omega}_{f^{\sigma}}=p \text {-adic completion of } \Omega_{f^{\sigma}}
$$

From Cartier operation to Frobenius structure

The R-linear operation

$$
\mathcal{C}_{p}: \hat{\Omega}_{f} \rightarrow \hat{\Omega}_{f \sigma}, \quad \sum a_{\mathbf{u}}(t) \mathbf{x}^{\mathbf{u}} \mapsto \sum a_{p \mathbf{u}}(t) \mathbf{x}^{\mathbf{u}}
$$

- descends to cohomology:

$$
\begin{aligned}
& \mathcal{C}_{p} \circ x_{i} \frac{\partial}{\partial x_{i}}=p x_{i} \frac{\partial}{\partial x_{i}} \circ \mathcal{C}_{p} \Rightarrow \quad \mathcal{C}_{p}\left(d \widehat{\Omega}_{f}\right) \subset d \widehat{\Omega}_{f^{\sigma}}, \\
& \mathcal{C}_{p}: \widehat{\Omega}_{f} / d \widehat{\Omega}_{f} \rightarrow \widehat{\Omega}_{f^{\sigma}} / d \widehat{\Omega}_{f^{\sigma}}
\end{aligned}
$$

- commutes with derivations $\theta: R \rightarrow R$, e.g. $\theta=t \frac{d}{d t}$,

$$
\mathcal{C}_{p} \circ \theta=\theta \circ \mathcal{C}_{p} .
$$

Matrix of \mathcal{C}_{p} on the cyclic submodule generated by $\omega=1 / f(\mathbf{x})$ yields the Frobenius structure for the differential operator L :

$$
\mathcal{C}_{p}(1 / f)=\sum_{j=0}^{r-1} \Phi_{0 j}(t)\left(\theta^{j} \frac{1}{f}\right)^{\sigma} \quad \bmod d \widehat{\Omega}_{f^{\sigma}}
$$

Supercongruences

Theorem (MV-Frits Beukers, Dwork crystals III). ${ }^{5}$ Let $1 \leq k<p$. Assume that R is p-adically complete and the k 'th Hasse-Witt condition is satisfied. Then

$$
\widehat{\Omega}_{f}=\Omega_{f}(k) \oplus \mathcal{F}_{k},
$$

where

$$
\Omega_{f}(k)=\text { free } R \text {-module generated by } \frac{\mathrm{x}^{\mathrm{u}}}{f(\mathrm{x})^{k}}, \mathbf{u} \in k \Delta \cap \mathbb{Z}^{n}
$$

and

$$
\begin{aligned}
\mathcal{F}_{k} & =\left\{\omega=\sum a_{\mathbf{u}} \mathbf{x}^{\mathbf{u}} \in \widehat{\Omega}_{f} \left\lvert\, \begin{array}{ll}
\forall \mathbf{u} & \left.a_{\mathbf{u}} \in g . c . d .\left(u_{1}, \ldots, u_{n}\right)^{k} R\right\} \\
& =\left\{\omega=\sum a_{\mathbf{u}} \mathbf{x}^{\mathbf{u}} \in \widehat{\Omega}_{f} \mid \forall s \geq 1 \quad \mathcal{C}_{p}^{s}(\omega) \in p^{k s} \widehat{\Omega}_{f^{\sigma}}\right\}
\end{array}\right.\right. \\
& =\widehat{\Omega}_{f} \cap R \text {-module generated by } x_{i_{1}} \frac{\partial}{\partial x_{i_{1}}} \ldots x_{i_{k}} \frac{\partial}{\partial x_{i_{k}}} \sum b_{\mathbf{u}} \mathbf{x}^{\mathbf{u}}
\end{aligned}
$$

is the submodule of formal k th partial derivatives.

[^2]
Supercongruences and vanishing of $\Phi_{01}(0)=p \alpha_{1}$

$$
\begin{aligned}
& \Omega_{f}\left(\Delta^{\circ}\right)=\left\{\left.\frac{h(\mathbf{x})}{f(\mathbf{x})^{m}} \right\rvert\, m \geq 1, \operatorname{supp}(h) \subset m \Delta^{\circ}\right\} \\
& G \subset G L_{n}(\mathbb{Z}) \text { group of symmetries of } f(\mathbf{x}) \\
& M=\Omega_{f}\left(\Delta^{\circ}\right)^{G} / d \Omega_{f} \cong \oplus_{j=0}^{3} R \theta^{j}(1 / f), \quad \mathcal{C}_{p}: M \rightarrow M^{\sigma}
\end{aligned}
$$

$d \Omega_{f}=\{$ partial derivatives $\} \subset \mathcal{F}_{1}=\{$ formal partial derivatives $\}$

$$
\mathcal{F}_{2}=\{\text { formal 2nd partial derivatives }\}
$$

In the quintic case and several other cases which have geometric models with sufficiently large symmetry group G, one has

$$
\{\text { partial derivatives }\} \cap \Omega_{f}\left(\Delta^{\circ}\right)^{G} \subset \mathcal{F}_{2} .
$$

Supercongruences and vanishing of $\Phi_{01}(0)=p \alpha_{1}$

$$
\begin{aligned}
& M=\Omega_{f}\left(\Delta^{\circ}\right)^{G} / d \Omega_{f} \cong \oplus_{j=0}^{3} R \theta^{j}(1 / f), \quad \mathcal{C}_{p}: M \rightarrow M^{\sigma} \\
& d \Omega_{f} \cap \Omega_{f}\left(\Delta^{\circ}\right)^{G} \subset \mathcal{F}_{2}, \quad M / \mathcal{F}_{2}=R 1 / f+R \theta(1 / f) \\
& \rightsquigarrow \\
& \mathcal{C}_{p}(1 / f)= \\
& \\
& =\sum_{j=0}^{3} \Phi_{0 j}(t) \theta^{j}(1 / f)^{\sigma} \quad \bmod d \widehat{\Omega}_{f^{\sigma}} \\
& = \\
& \quad \mu_{0}(t) 1 / f^{\sigma}+\mu_{1}(t) \theta(1 / f)^{\sigma} \quad \bmod \mathcal{F}_{2} \\
&
\end{aligned}
$$

For the expansion coefficients $\frac{1}{f(\mathbf{x})}=\sum a_{\mathbf{u}}(t) \mathbf{x}^{\mathbf{u}}$ this yields congruences

$$
a_{p^{s+1}}(t) \equiv \mu_{0}(t) a_{p^{s} \mathbf{u}}\left(t^{p}\right)+\mu_{1}(t)\left(\theta a_{p^{s} \mathbf{u}}\right)\left(t^{p}\right) \quad \bmod p^{2 s} .
$$

These explicit congruences allow us to check the vanishing of $\mu_{1}(0)=p \alpha_{1}$, which is the crusial step in establishing integrality of instanton numbers.
F. Beukers, M. Vlasenko, On p-integrality of instanton numbers, Pure and Applied Mathematics Quarterly, vol. ?

Work in progress:

$$
\begin{aligned}
& M=\Omega_{f}\left(\Delta^{\circ}\right)^{G} / d \Omega_{f} \cong \oplus_{j=0}^{3} R \theta^{j}(1 / f), \quad \mathcal{C}_{p}: M \rightarrow M^{\sigma} \\
& \mathcal{C}_{p}(1 / f)=\sum_{j=0}^{3} \Phi_{0 j}(t) \theta^{j}(1 / f)^{\sigma} \quad \bmod d \widehat{\Omega}_{f^{\sigma}}
\end{aligned}
$$

Considering this identity modulo \mathcal{F}_{3}, we can solve the respective supercongruences to check the vanishing of $\Phi_{02}(0)=p^{2} \alpha_{2}$.
Similarly, working modulo \mathcal{F}_{4} we can compute the value of α_{3} and check the conjecture of Candelas, de la Ossa and van Straten.

Thank you!

[^0]: ${ }^{3}$ When the Newton polytope Δ of $g(\mathbf{x})$ is reflexive then the hypersurfaces $1-\operatorname{tg}(\mathbf{x})=0$ can be compactified to Calabi-Yau hypersurfaces (V. Batyrev).

[^1]: ${ }^{4}$ P. Candelas, X. de la Ossa, D. van Straten, Local Zeta Functions From Calabi-Yau Differential Equations, arXiv:2104.07816 [hep-th], §4.4

[^2]: ${ }^{5}$ For $k=1$ this result is a version of N. Katz's Internal reconstruction of unit-root F-crystals via expansion coefficients (1985).

