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Abstract

A Q̃−representation of real numbers is introduced as a general-
ization of the p−adic and Q−representations. It is shown that the
Q̃−representation may be used as a convenient tool for the construc-
tion and study of fractals and sets with complicated local structure.
Distributions of random variables ξ with independent Q̃−symbols are
studied in details. Necessary and sufficient conditions for the proba-
bility measures µξ associated with ξ to be either absolutely continuous
or singular (resp. pure continuous, or pure point) are found in terms
of the Q̃−representation. In addition the metric-topological and frac-
tal properties for the distribution of ξ are investigated. A number of
examples are presented.
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1 Introduction

As well known there exist only three types of pure probability distributions:
discrete, absolutely continuous and singular. During a long period math-
ematicians had a rather low interest in singular probability distributions,
which was basically caused by the two following reasons: the absence of
effective analytic tools and the widely spread point of view that such dis-
tributions do not have any applications, in particular in physics, and are
interesting only for theoretical reasons. The interest in singular probability
distributions increased however in 1990’s due their deep connections with
the theory of fractals. On the other hand, recent investigations show that
singularity is generic for many classes of random variables, and absolutely
continuous and discrete distributions arise only in exceptional cases (see, e.g.
[8, 13]).

Usually the singular probability distributions are associated with the
Cantor-like distributions. Such distributions are supported by nowhere dense
sets of zero Lebesgue measures. In the sequel we shall call such distributions
the distributions of the C-type. But there exist singular probability distri-
butions with other metric-topological properties of their topological support
S (the minimal closed set supported the distribution):

1) S is the closure of the union of the closed intervals (S-type);
2) S is a nowhere dense set such that for all ε > 0 and x0 ∈ S the set

S ∩ (x0 − ε; x0 + ε) has positive Lebesgue measure (P -type).
In [8] it has been proved that any singular continuous function Fs can be

decompose into the following sum:

Fs = β1Fsc + β2Fss + β3Fsp,

where βi ≥ 0, β1 +β2 +β3 = 1; Fsc, Fss, Fsp are distribution function of C−,
S− or P−type correspondingly.

It is easy to construct examples of singular continuous probability distri-
butions of the C- or S-type (see, e.g. [1, 8]), but a construction of a simple
example of singular continuous probability distributions of the P -type is more
complicated.

The main goal of this paper is to introduce into consideration the so-called
Q̃-representation of real numbers which is a convenient tool for construction
of a wide class of fractals. This class contains Cantor-like sets as well as ev-
erywhere dense noncompact fractals with any desirable Hausdorff-Besicovitch
dimension α0 ∈ [0; 1]. By using the Q̃ -representation we introduce a class
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of random variables with independent Q̃-symbols. This class contains all
possible above mentioned types of singular distributions.

An additional reason for the investigation of the distribution of the ran-
dom variables with independent Q̃-symbols is to extend the so-called Jessen-
Wintner theorem to the case of sums of random variables which are not in-
dependent. In fact this theorem asserts that if a random variable is the sum
of the convergent series of the independent discretely random variables, then
it has a pure distribution. Necessary and sufficient conditions for probability
distributions to be singular resp. absolutely continuous are still unknown.

In this paper we completely investigated the structure of the random
variables with independent Q̃-symbols (necessary and sufficient conditions
for absolutely continuity and singularity will be proven in Section 5). More-
over we investigated in details the metric-topological properties of the above
mentioned class of probability distributions.

2 Q̃-representation of real numbers

We describe the notion of the so-called Q̃−representation for real numbers
x ∈ [0, 1]. Let us consider a Nk × N−matrix Q̃ = ‖qik‖ , i ∈ Nk, k ∈ N,
where N stands for the set of natural numbers and Nk = {0, 1, ..., Nk}, with
0 < Nk ≤ ∞. We suppose that

qik > 0 ∀ i ∈ Nk, k ∈ N. (1)

Besides, we assume that for each k ∈ N:

∑
i∈Nk

qik = 1, (2)

and ∞∏

k=1

max
i∈Nk

{qik} = 0. (3)

Given a Q̃−matrix we consecutively perform decompositions of the seg-
ment [0, 1] as follows.

Step 1. We decompose [0, 1] (from the left to the right) into the union of
closed intervals ∆i ≡ ∆i1 , i1 ∈ N1 (without common interior points) of the
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length |∆i1| = qi11,

[0, 1] =
⋃

i1∈N1

∆i1 .

Each interval ∆i1 is called a 1-rank interval.
Step 2. Each 1-rank interval ∆i1 is decomposed (from the left to the right)

into the union of smaller closed intervals ∆i1i2 , i2 ∈ N2 without common
interior points,

∆i1 =
⋃

i2∈N2

∆i1i2 ,

where the lengths |∆i1i2| of ∆i1i2 are related as follows

|∆i10| : |∆i11| : · · · : |∆i1i2| : · · · = q02 : q12 : · · · : qi22 : · · ·

Each interval ∆i1i2 is called a 2-rank interval. It is easy to see that

|∆i1i2| = qi11 · qi22.

Further, we decompose each interval ∆i1i2 by using the collection of
smaller intervals ∆i1i2i3 , and so on.

Step k ≥ 2. We decompose (from the left to the right) each closed (k−1)-
rank interval ∆i1i2...ik−1

into the union of closed k−rank intervals ∆i1i2...ik ,

∆i1i2...ik−1
=

⋃
ik∈Nk

∆i1i2...ik ,

where their lengths

|∆i1i2...ik | = qi11 · qi22 · · · qikk =
k∏

s=1

qiss (4)

are related as follows

∣∣∆i1i2...ik−10

∣∣ :
∣∣∆i1i2...ik−11

∣∣ : · · · :
∣∣∆i1i2...ik−1ik

∣∣ : · · · = q0k : q1k : · · · : qikk : · · ·

Thus, for any sequence of indices {ik}, ik ∈ Nk, there corresponds the
sequence of embedded closed intervals

∆i1 ⊃ ∆
i1i2

⊃ · · · ⊃ ∆
i1i2...ik

⊃ · · ·
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such that |∆i1...ik | → 0, k → ∞, due to (3) and (4). Therefore, there exists
a unique point x ∈ [0, 1] belonging to all intervals ∆i1 , ∆i1i2 , ..., ∆i1i2...ik , ....
Conversely, for any point x ∈ [0, 1] there exists a sequence of embedded
intervals ∆i1 ⊃ ∆i1i2 ⊃ ... ⊃ ∆i1i2...ik ⊃ ... containing x, i.e.,

x =
∞⋂

k=1

∆i1i2...ik =
∞⋂

k=1

∆i1(x)i2(x)...ik(x) =: ∆i1(x)i2(x)...ik(x)... (5)

This means that every point x ∈ [0, 1] is defined by the sequence of indices

ik = ik(x) ∈ Nk, k = 1, 2, ... Notation (5) is called the Q̃−representation
of the point x ∈ [0, 1] .

Obviously a point x ∈ [0, 1] has a unique Q̃−representation, if x is not
an end-point of any closed interval ∆i1i2...ik .

Remark 1. The correspondence [0, 1] ∈ x ⇔ {i1(x)i2(x)...ik(x)...} in (5)

is one-to-one , i.e., the Q̃−representation is unique for every point x ∈ [0, 1],

provided that the Q̃-matrix contains an infinite number of columns with an
infinite number of elements. However in the case, where Nk < ∞, ∀k > k0 for
some k0, there exists a countable set of points x ∈ [0, 1] having two different

Q̃−representations. Precisely, this is the set of all end-points of intervals
∆i1i2...ik with k > k0.

One has the formula

x = S1(x) +
∞∑

k=2

[
Sk(x)

k−1∏
s=1

qis(x)s

]
=

∞∑

k=1

Sk(x)Lk−1(x) (6)

where Sk(x) :=





0, if ik(x) = 0,
ik(x)−1∑

i=0

qik, if ik(x) ≥ 1
and where we put (see (4))

Lk−1(x) :=| ∆i1(x)...ik−1(x) |=
k−1∏
s=1

qis(x)s

for k > 1, and Lk−1(x) = 1, if k = 1.
We note that (6) follows from (5) since the common length of all intervals

lying on the left side of a point x = ∆i1(x)...ik(x)... can be calculate as the sum
of all 1−rank intervals lying on the left from x (it is the first term S1(x) in
(5)), plus the sum of all 2−rank intervals from ∆i1(x), lying on the left side
from x (the second term S2(x) · qi1(x)1 in (5)), and so on.
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Remark 2. If qik = qi ,∀k ∈ N, then the Q̃−representation coincides

with the Q−representation (see [10]); moreover, if qik = 1
s

, for some natural

number s > 1, then the Q̃−representation coincides with the classical s−adic

representation of real numbers.

3 Q̃(V)−representation for fractals

The Q̃-representation allows to construct in a convenient way a wide class of
fractals on R1 and other mathematical objects with fractal properties.

Firstly we consider compact fractals from R1.
Let V := {Vk}∞k=1, Vk ⊆ Nk. If in the Q̃−representation the symbols ik

run not along all set Nk but only along some of its subsets Vk, then we say
that we have the Q̃(V)−representation.

Let us consider the set

Γ eQ(V) ≡ Γ := {x ∈ [0, 1] : x = ∆i1i2...ik..., ik ∈ Vk} . (7)

This subset of [0, 1] consists of points, which can be Q̃−represented
by using only symbols ik from the set Vk on each k-th position of their
Q̃−representation.

Of course, if Vk = Nk for all k, then Γ = [0, 1].
If Vk 6= Nk at least for one k < k0, and Vk = Nk for all k ≥ k0 with

some fixed k0 > 1, then Γ is a union of closed intervals. In this case one
can get Γ removing from [0, 1] all open intervals ∆̇i1...ik , k < k0 with ik /∈ Vk

(where a point over ∆ means that an interval is open).
If the condition Vk 6= Nk holds for infinitely many values of k, then

obviously Γ is a nowhere dense set. All fractals from the unit segment have
zero Lebesgue measure. Firstly, we shall study the metric properties of the
sets Γ eQ(V).

Let Sk(V) denote the sum of all elements qik such that ik ∈ Vk, i.e.,

Sk(V) :=
∑
i∈Vk

qik.

We note that 0 < Sk(V) ≤ 1 due to (1), (2).
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Lemma 1. The Lebesgue measure λ(Γ) of the set Γ defined by (7) is
equal to

λ(Γ) =
∞∏

k=1

Sk(V). (8)

Proof. Let Γ1 :=
⋃

i1∈V1

∆i1 . Then λ(Γ1) = S1(V). Let further Γ2 :=
⋃

i1∈V1,i2∈V2

∆i1i2 ⊂ Γ1. Then

λ(Γ2) =
∑

i1∈V1,i2∈V2

qi11qi22 = S1(V)S2(V).

Similarly, for any n ∈ N, let Γn :=
⋃

i1∈V1...in∈Vn

∆i1...in , Γn ⊆ Γn−1. Then

λ(Γn) =
∑

i1∈V1,...,ik∈Vk

qi11...qinn =
n∏

k=1

Sk(V).

It is easy to see that Γ =
∞⋂

n=1

Γn and Γk−1 ⊃ Γk. Therefore,

λ(Γ) = lim
n−→∞

λ(Γn)

which coincides with (8). ¥
Let Wk(V) = 1− Sk(V) ≥ 0.
Lemma 2. The set Γ defined by (7) has zero Lebesgue measure if and

only if
∞∑

k=1

Wk(V) = ∞, (9)

Proof. This assertion is a direct consequence of the previous lemma and the
well known relation between infinite products and infinite series. Namely, for

a sequence 0 ≤ ak < 1, the product
∞∏

k=1

(1 − ak) = 0 if and only if the sum

∞∑
k=1

ak = ∞. In our case ak = 1− Sk(V). ¥
The above mentioned procedure allows to construct nowhere dense com-

pact fractal sets E with desirable Hausdorff-Besicovitch dimension (includ-
ing the anomalously fractal case (α0(E) = 0) and the superfractal case
(α0(E) = 1)) in a very compact way.
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Theorem 1. Let Nk = N0
s−1 := {0, 1, ..., s − 1} ∀k ∈ N and let the

matrix Q̃ have the following asymptotic property:

lim
k→∞

qik = qi, i ∈ N0
s−1.

Then:
1) the Hausdorff-Besicovitch dimension of the set Γ eQ(V) is the root of the

following equation
∑
i∈V

qx
i = 1, V = {v1, v2, ..., vm};

2) if

M [Q, (ν0, ..., νs−1)] =

{
x : ∆

eQ
α1(x)...αk(x)..., lim

k→∞
Ni(x, k)

k
= νi, i ∈ N0

s−1

}
,

where Ni(x, k) is the amount of symbols ”i” in the Q̃-representation of x until
the k-th position, then

α0(M [Q, (ν0, ..., νs−1)]) =

s−1∑
i=0

νi ln νi

s−1∑
i=0

νi ln qi

. (10)

Proof. Let the matrix Q̃ has the exactly s rows and assume all columns
are the same: (q0, q1, ..., qs−1). In such a case the Q̃-representation reduces
to the Q-representation studied in [8].

It is easy to prove (see, e.g., [10]), that to calculate the Hausdorff-Besicovitch
dimension of any subset E ⊂ [0; 1] it is sufficient to consider a class of cylinder
sets of different ranks generated by Q-partitions of the unit interval.

The Billingsley theorem (see, e.g., [3], p.141) admits a generalization to
the class of Q-cylinders, and, therefore, the set

E =





x : lim
k→∞

ln
k∏

i=1

νci

ln |∆Q
c1...ck |

= δ





has the Hausdorff-Besicovitch dimension α0(E) = δ.
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It is well known (see, e.g., [6, 8]) that the set ΓQ,V is a self-similar fractal
with the Hausdorff-Besicovitch dimension satisfying the condition (10).

It is also not hard to prove (see, e.g., [2]), that the following transforma-
tion f of [0; 1]

f(x) = f(∆
eQ
α1(x)...αk(x)...) = ∆Q

α1(x)...αk(x)...

preserves the Hausdorff-Besicovitch dimension of any subset of [0; 1]. There-
fore, α0(Γ eQ(V)) = α0(ΓQ(V)), which proves the second part the theorem. ¥

By using theorem 1 it is easy to construct compact fractals as well as ev-
erywhere dense noncompact fractals with any desirable Hausdorff-Besicovitch
dimension α0 ∈ [0; 1]

Examples.

1. If again Nk = {0, 1, 2},Vk = {0, 2}, q1k → 0, but
∞∑

k=1

q1k = ∞ with

q0k = q2k = 1−q1k

2
, then Γ is a nowhere dense set of zero Lebesgue measure.

One can check that the Hausdorff dimension of this set is equal 1. In the
terminology of [8] a set of this kind is called a superfractal set.

2. If Nk = {0, 1, 2},Vk = {0, 2}, q1k → 1 (but
∞∏

k=1

q1k = 0), and q0k =

q2k = 1−q1k

2
, then Γ is a nowhere dense set of zero Lebesgue measure and of

zero Hausdorff dimension, i.e., Γ is an anomalously fractal set (see [8]).

4 Random variables with independent Q̃−symbols

Let {ξk}, k ∈ N, be a sequence of independent random variables with the
following distributions

P (ξk = i) := pik, ∀i ∈ Nk, ∀k ∈ N.

We have, of course, ∑
i∈Nk

pik = 1, ∀k ∈ N. (11)

By using ξk and the Q̃-representation we construct a random variable ξ
as follows:

ξ := ∆ξ1ξ2...ξk... . (12)
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Thus, the distribution of ξ is completely fixed by two matrices: Q̃ and
P̃ = ||pik||, i ∈ Nk, k ∈ N, where some elements of the matrix P̃ possibly are

equal to zero. Of course, all sets Nk are the same as those in the Q̃-matrix.
As a rule, the distribution of the r.v. ξ is concentrated on fractals. Our

main aim in this paper is to study the structure of the r.v. ξ, and its metric,
topological and fractal properties.

Let Fξ(x), x ∈ [0, 1] be the distribution function of the r. v. ξ given by
(12).

Theorem 2. The values of Fξ(x) can be calculated according to the
formula

Fξ(x) = P1(x) +
∞∑

k=2

[
Pk(x)

k−1∏
s=1

pis(x)s

]
=

∞∑

k=1

Pk(x)Tk−1(x) (13)

where we put T0(x)=1, Tk−1(x) :=
k−1∏
s=1

pis(x),s and Pk(x) :=





0, if ik(x) = 0,
ik(x)−1∑

j=0

pjk, if ik(x) ≥ 1.

Proof. By the definition of the r.v. ξ, the event {ξ < x} is equivalent to

{ξ1 < i1(x)}
⋃
{ξ1 = i1(x), ξ2 < i2(x)}

⋃
...

⋃
{ξ1 = i1(x), ξ2 = i2(x), ..., ξk−1 = ik−1(x), ξk < ik(x)}

⋃
...

Since all ξ1, ξ2, ..., ξk, ... are independent and the events in the brackets {·}
are disjoint, we have

Fξ(x) = P{ξ1 < i1(x)}+ P{ξ1 = i1(x)} · P{ξ2 < i2(x)}+ ...

+P{ξ1 = i1(x)} · P{ξ2 = i2(x)} · ... · P{ξk−1 = ik−1(x)} · P{ξk < ik(x)}+ ...

= P1(x) +
∞∑

k=2

[
Pk(x)

k−1∏
s=1

pis(x),s

]
= P1(x) +

∞∑

k=2

Pk(x)Tk−1(x),

where we recall that Pk(x) = P{ξk < ik(x)} and Tk−1(x) = P{ξ1 = i1(x)} ·
... · P{ξk−1 = ik−1(x)}. This proves (13). ¥
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5 Structure of the distributions of random

variables with independent Q̃-symbols

Let µξ be the measure corresponding the distribution of the random variable

ξ with independent Q̃-symbols.
The goal of this section is to prove the purity of the distributions of ran-

dom variables ξ with independent Q̃−symbols. We shall establish necessary
and sufficient conditions for the measure µξ to be pure point, resp., absolute
continuous, or singular continuous.

Theorem 3. The measure µξ is of pure type, i.e., it is either purely
absolutely continuous, resp., purely point, resp., purely singular continuous.
Precisely,

1) µξ is purely absolutely continuous, µξ = (µξ)ac, if and only if

ρ :=
∞∏

k=1

{∑
i∈Nk

√
pik · qik

}
> 0; (14)

2) µξ is purely point, µξ = (µξ)pp, if and only if

Pmax :=
∞∏

k=1

max
i∈Nk

{pik} > 0; (15)

3) µξ is purely singular continuous, µξ = (µξ)sc, if and only if

ρ = 0 = Pmax. (16)

Proof. Let Ωk = Nk = {0, 1, ..., Nk}, Ak = 2Ωk . We define measures µk

and νk in the following way:

∀i ∈ Ωk : µk(i) = pik; νk(i) = qik.

Let

(Ω,A, µ) =
∞∏

k=1

(Ωk,Ak, µk), (Ω,A, ν) =
∞∏

k=1

(Ωk,Ak, νk)

be the infinite products of probability spaces.
Let us consider the measurable mapping f : Ω → [0; 1] defined as follows:

∀ω = (ω1, ω2, ..., ωk, ...) ∈ Ω, f(ω) = x = ∆i1(x)i2(x)...ik(x)...
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with ωk = ik(x) k ∈ N . Here we used the Q̃-representation of x ∈ [0; 1].
We define the measures µ∗ and ν∗ as the image measure of µ resp. ν

under f :

∀B ∈ B, µ∗(B) := µ(f−1(B)); ν∗(B) = ν(f−1(B)).

It is easy to see that ν∗ coincides with Lebesgue measure λ on [0; 1], and
µ∗ ≡ µξ.

If the matrix Q̃ contains an infinite number of columns with an infinite
number of elements, then the mapping f is bijective. If Nk < +∞ ∀k > k0

for some k0 ∈ N , then there exists a set Ω0 such that ν(Ω0) = µ(Ω0) = 0

and the mapping f : (Ω \ Ω0) → [0; 1] is bijective. If
∞∏

k=k0

p0k = 0, then

Ω0 = {ω : ωj = 0 ∀j > j0(ω)}. If
∞∏

k=k0

pNkk = 0, then Ω0 = {ω : ωj =

Nj, ∀j > j0(ω)}. Therefore, the measure µξ = µ∗ is absolutely continuous
(singular) with respect to Lebesgue measure if and only if the measure µ is
absolutely continuous (singular) with respect to the measure ν.

Since, qik > 0, we conclude that µk ¿ νk ∀k ∈ N . By using Kakutani is
theorem [7], we have

µξ ¿ λ ⇔
∞∏

k=1

∫

Ωk

√
dµk

dνk

dνk > 0 ⇔
∞∏

k=1

(∑

i∈Nk

√
pikqik

)
> 0, (17)

µξ ⊥ λ ⇔
∞∏

k=1

∫

Ωk

√
dµk

dνk

dνk = 0 ⇔
∞∏

k=1

(∑

i∈Nk

√
pikqik

)
= 0. (18)

Of course, a singularly distributed random variable ξ can also be dis-
tributed discretely. For any point x ∈ [0; 1] the set f−1(x) consists of at most
two points from Ω. Therefore, the measure µξ is an atomic measure if and

only if the measure µ is atomic. If
∞∏

k=1

max
i

pik = 0, then

µ(ω) =
∞∏

k=1

pωkk ≤
∞∏

k=1

max
i

pik = 0 for any ω ∈ Ω,

and µ is continuous. Therefore, conditions (15) is necessary for the measure

µ to be pure point. If
∞∏

k=1

max
i

pik > 0, then we consider the subset A+ =

{ω : µ(ω) > 0}.
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The set A+ contains the point ω∗ such that pω∗kk = max
i

pik, It is easy

to see that for all ω ∈ A+ the condition pωkk 6= max
i

pik holds only for a

finite amount of values k. This means that A+ is a countable set and the
event ”ω ∈ A+” does not depend on any finite coordinates of ω. Therefore,
by using Kolmogorov’s ”0 and 1” theorem, we conclude that µ(A+) = 0 or
ν(A+) = 1. Since µ(A+) ≥ µ(ω∗) > 0, we have µ(A+) = 1, which proves the
equality µ = µpp. ¥

Remark 3. If there exists a positive number q+ such that qik ≥ q+,∀k ∈
N, ∀i ∈ Nk, then condition (17) is equivalent to the convergence of the
following series:

∞∑

k=1

{
∑
i∈Nk

(1− pik

qik

)2} < ∞. (19)

If lim
k→∞

qik = 0, then, generally speaking, conditions (17) and (19) are

not equivalent. For example, let us consider the matrices Q̃ and P̃ as
follows:Nk = {0, 1, 2} , q1k = 1

2k , q0k = q2k = 1−q1k

2
, p1k = 0, p0k =

p2k = 1
2
. In this case condition (17) holds, but (19) does not hold.

6 Metric-topological classification and fractal

properties of the distributions of the ran-

dom variables with independent Q̃−symbols

For any probability distribution there exist sets which essentially characterize
the properties of the distribution. We would like to stress the role of the
following sets.

a) Topological support Sψ = {x : F (x + ε)− F (x− ε) > ε, ∀ε > 0}. Sψ

is the smallest closed support of the distribution of ψ.

b) Essential support N∞
ψ =

{
x : lim

ε→0

F (x+ε)−F (x−ε)
2ε

= +∞
}

.

All singular probability distributions are concentrated on sets of zero
Lebesgue measure and they have fractal properties. If the topological support
of a distribution is a fractal, then the corresponding distribution is said to
be externally fractal.

The probability distribution of a random variable ψ is said to be internally
fractal if the essential support of the distribution is a fractal set.
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First of all we shall analyze the metric and topological properties of the
topological support of the random variable with independent Q̃-symbol. We
establish the metric-topological classification of the support of a probability
measure µψ by introducing three disjoint types of closed sets.

We say that a set S is of the pure C-type if it is a perfect nowhere dense
set of zero Lebesgue measure. By definition a probability measure µψ is said
to be of the pure C-type if its support Sψ is a set of the pure C-type.

We say that S is a set of the pure P-type, if for any interval (a, b) the set
(a, b)∩S is either empty or a perfect nowhere dense set of positive Lebesgue
measure. By definition a probability measure µψ is said to be of the pure
P-type, if its support Sψ is a set of the pure P-type.

We say that S is a set of the pure S-type if it is the closure of a union of
an at most countable family of closed intervals, i.e.,

§ψ = (∪i[ai, bi])
cl , ai < bi.

By definition a probability measure µψ is said to be of the pure S-type if its
support Sψ is a set of the pure S-type.

In [1, 8] it was proven that arbitrary singular continuous probability mea-
sures can be decomposed into linear combinations of singular probability
measures of S-, C- and P-types.

We shall prove now that the above considered probability measures µξ

are of the pure above mentioned metric-topological types. Moreover we give
necessary and sufficient conditions for a probability measure to belong to
each of these types.

Theorem 4. The distribution of the random variable ξ with indepen-
dent Q̃−symbols has pure metric-topological type. Namely, the support of the
corresponding measure µξ is one of following three type:

1) it is of the pure S-type, if and only if the matrix P̃ contains only a
finite number of zero elements;

2) it is of the pure C-type, if and only if the matrix P̃ contains infinitely
many columns having some elements pik = 0, and besides

∞∑

k=1

(
∑

i:pik=0

qik) = ∞; (20)
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3) it is of the pure P-type, if and only if the matrix P̃ contains infinitely
many columns having zero elements and besides

∞∑

k=1

(
∑

i:pik=0

qik) < ∞; (21)

Proof. Let us consider the set Γ ≡ Γ eQ(V) (see Sect. 3) with V = {Vk}∞k=1

defined by the P̃−matrix as follows: Vk = {i ∈ Nk : pik 6= 0}. Then it is
not hard to understand (see [8]) that the usual support of the measure µξ

coincides with a set Γ or its closure, i.e.,

Sξ = ΓcleQ(V)
. (22)

Therefore to examine the metric-topological structure of the set Sξ we may
apply the results of section 3.

So, if the matrix P̃ contains only finite number of zero elements, then
Vk = Nk, k > k0 for some k0 > 0. In such a case (see Sect. 3) Γ is the union
of at most of an countable family of closed intervals. Hence (22) implies that
the measure µξ is of the pure S-type. Of course, in this case λ(Γ) > 0.

In the opposite case where the matrix P̃ contains an infinite number of
columns where some elements pik = 0, then obviously Γ is a nowhere dense
set (see Sect. 3). The Lebesgue measure of the set Γ by Lemma 1 is equal to

λ(Γ) =
∞∏

k=1

Sk(V) =
∞∏

k=1

(
∑
i∈Vk

qik) =
∞∏

k=1

(1−
∑

i:pik=0

qik).

Let us set Wk(V) = 1 − Sk(V) =
∑∞

i=1,pik=0 qik. Then, by Theorem
1, either λ(Γ) = 0, provided that condition (20) fulfilled, or λ(Γ) > 0, if
condition (21) holds. Thus the measure µξ either is of the C-type, or it is of
the P-type.

Since the conditions 1), 2) and 3) of this theorem are mutually exclu-
sive and one of them always holds, we conclude that the distribution of the
random variable ξ with independent Q̃-symbols always has a pure metric-
topological type. ¥

By using the latter theorems we can construct measures of 8 kinds: pure
point as well as pure singular continuous of any S-, C-, or P-types, and pure
absolutely continuous but only of the S- and P-types.
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We illustrate this statement by examples.
Example 3.
Let Nk = {0, 1, 2} and let the Q̃−matrix be given by q0k = q1k = q2k =

1
3
, k = 1, 2, ....

Spp: If p0k = 1−p1k

2
, p1k = 1− 1

2k , p2k = 1−p1k

2
, then µξ is a discrete measure

of the pure S-type. In this case Sξ = [0, 1] and N∞
ξ is a countable set which

is dense on [0, 1].
Ssc: If p0k = 1

4
, p1k = 1

2
, p2k = 1

4
, then µξ is a singular continuous measure

of pure S-type. In this case again Sξ = [0, 1] but N∞
ξ is now a fractal set

which is also dense on [0, 1].
Sac: If p0k = p1k = p2k = 1

3
, then µξ coincides with the Lebesgue measure

on [0, 1].
Example 4.
Let again Nk = {0, 1, 2} and let the Q̃−matrix be given by q0k = q1k =

q2k = 1
3
, k = 1, 2, .... Then

Cpp: If p0k = 1− 1
2k , p1k = 0, p2k = 1

2k , then µξ is a pure point measure of
the pure C-type. In this case Sξ ≡ C0 coincides with the classical Cantor set
C0 and its essential support is a countable set which is dense on C0.

Csc: If p0k = 1
2
, p1k = 0, p2k = 1

2
, then µξ is a singular continuous measure

of the pure C-type. In this case again Sξ = C0 and the difference Sξ \N∞
ξ is

a countable set.
Example 5.
Let as above Nk = {0, 1, 2} and let the Q̃−matrix be given by q0k = q2k =

1−q1k

2
, q1k = 1

2k , k = 1, 2, ... Then
Ppp: If p0k = 1− 1

2k , p1k = 0, p2k = 1
2k , then µξ is a pure point measure of

the pure P-type.
Psc: If p0k = 1

4
, p1k = 0, p2k = 3

4
, then µξ is a singular continuous measure

of the pure P-type.
Pac: If p0k = p2k = 1−p1k

2
, p1k = 1

2k , then µξ coincides with Lebesgue
measure.

We would like to stress that the essential support is more suitable to
describe the properties of distributions with complicated local structure.

As we saw above, a discrete probability distribution may be of C-, P -
resp. S-type, and the topological support of discrete distribution can be of
any Hausdorff-Besicovitch dimension α0 ∈ [0; 1]. But the essential support
of a discrete distributions is always at most a countable set.

The essential support is especially suitable for singular distributions be-
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cause of the following fact: a random variable ψ is singularly distributed iff
Pψ(N∞

ψ ) = 1.
For an absolutely continuous distribution the topological support is al-

ways of positive Lebesgue measure. But the essential support may be of very
complicated local structure. In [2] we constructed an example of an abso-
lutely continuous distribution function such that the essential support is an
everywhere dense superfractal set (α0(N

∞
ξ ) = 1). Therefore, the condition

α0(N
∞
ξ ) > 0 does not imply the singularity of the distribution.

The following notion is very important for describing the fractal properties
of probability distributions. Let Aξ be the set of all possible supports of the
distribution of the r.v. ξ, i.e.,

Aξ = {E : E ∈ B, Pξ(E) = 1}.

The number α0(ξ) = inf
E∈Aξ

{α0(E)} is said to be the Hausdorff-Besicovitch

dimension of the distribution of the r.v. ξ.
It is obvious that α0(ξ) = 0 for any discrete distribution; on the other

hand, α0(ξ) = 1 for any absolutely continuous distribution. α0(ξ) can be an
arbitrary number from [0; 1] for a singular continuous distribution.

The problem of determination of the Hausdorff-Besicovitch dimension of
the distribution of the random variable ξ with independent Q̃-symbols is still
open.

In [11] this problem is solved for some partial cases. In particular, we
have the following theorem which is proven in [11].

Theorem 5. If pik = pi, qik = qi ∀k ∈ N , i ∈ N0
s−1, then

α0(ξ) =

s−1∑
i=0

pi ln pi

s−1∑
i=0

pi ln qi

. ¥

Remark 4. Let us consider the set M [Q, (p0, ..., ps−1)] which consists of
the points whose Q-representation contains the digit ”i” with the relative fre-

quency pi. It is known (see, e.g., [10]) that α0(M [Q, (p0, ..., ps−1)]) =

s−1P
i=0

pi ln pi

s−1P
i=0

pi ln qi

.

Therefore, the set M [Q, (p0, ..., ps−1)] can be considered as the ”dimensionally
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minimal” support of the distribution of the random variable with indepen-
dent identically distributed Q̃-symbols.
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