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ON THE POINT SPECTRUM OF SELF-ADJOINT OPERATORS 
THAT APPEARS UNDER SINGULAR PERTURBATIONS OF FINITE RANK

M. E. Dudkin 
1  and  V. D. Koshmanenko 

2 UDC 517.9

We discuss purely singular finite-rank perturbations of a self-adjoint operator  A  in a Hilbert

space  H.  The perturbed operators  Ã   are defined by the Krein resolvent formula  ( ˜ )A z− −1  =

( )A z Bz− +−1 ,  Im z  ≠   0,  where  Bz   are finite-rank operators such that  
  
dom domB Az I  =

0{ }.  For an arbitrary system of orthonormal vectors  ψ i i

n{ }
=
< ∞

1
  satisfying the condition

span domψ i A{ } { }=I 0   and an arbitrary collection of real numbers  λ i ∈ R
1,  we construct

an operator  Ã   that solves the eigenvalue problem  Ã i i iψ λ ψ= ,   i n= 1, ,K .  We prove the

uniqueness of  Ã   under the condition that  rankB nz = . 

1.  Introduction

In a complex separable Hilbert space  H  with scalar product  ( ·, · )  and norm  || · ||,  we consider an un-

bounded self-adjoint operator  A  =  A*  with the domain of definition  � ( A  )  ≡  dom A.  Another self-adjoint op-

erator  Ã   in  H  is called [1 – 8] (cf. [9, 10]) purely singularly perturbed with respect to  A ;  denote   
˜ ( )A As∈P   if

the domain 

    
� � �: ( ) ( ˜ ) : ˜= ∈ ={ }f A A Af AfI (1)

is dense in  H.  It is clear that, for every    
˜ ( )A As∈P ,  there exists a densely defined symmetric operator 

˙ : ˜A A A= =Û Û� �,      � �( ˙)A = , (2)

with nontrivial deficiency indices 

n± = ± ≠( ˙) dim ( ˙ )*A A iKer 0 .

In the present paper, we consider the subclass of operators    
˜ ( )A As

n∈P ,  where 

n A A= = < ∞+ −n n( ˙) ( ˙) .
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We study the problem of the existence and construction of an operator    
˜ ( )A As

n∈P   that solves the eigen-
value problem 

Ã i i iψ λ ψ= ,      i  =  1, … , n, (3)

for arbitrary preassigned real numbers  λi  and a system of orthonormal vectors  ψ i i
n{ } = 1

  satisfying the condi-

tion  span {ψi} I dom A  =  {0}. 
The spectrum (in particular, point spectrum) of self-adjoint extensions of symmetric operators with finite

deficiency indices in the general form was first studied by M. Krein in [11],  where he proved the existence of at
least one extension with preassigned eigenvalues in the regularity field of a symmetric operator (see also
[12–16]).  In this connection, one should also mention the papers [17, 18], where, in particular, the existence of
an arbitrary component of the spectrum in lacunas of a symmetric operator was proved in terms of boundary-
value spaces and Weyl functions. 

We propose to consider the eigenvalue problem for self-adjoint extensions of a symmetric operator from
the viewpoint of the theory of singularly perturbed operators.  The key point of our result is the fact that points
λi  in (3) are arbitrary, and, in particular, they can belong to the spectrum of the operator  A.  Note that, in [19],

an analogous result was proved in the case where the operator  A  is positive,  λi  ≤  0,  and  Ã   is not necessarily
a purely singularly perturbed operator. 

The statement below is the main result of the present work. 

Theorem 1.  For an unbounded self-adjoint operator  A   in a Hilbert space  H ,  there exists a unique

purely singularly perturbed operator   
˜ ( )A As

n∈P   that solves the eigenvalue problem (3) for arbitrary preas-

signed numbers  λ i ∈  R1,  i  =  1, … , n  <  ∞ ,  and any set of orthonormal vectors  ψ i i
n{ } = 1

  satisfying the

condition 

    
span ψ i i

n
A{ } = { }= 1

0I �( ) . (4)

Note that the proof of this theorem is constructive.  We successively construct the resolvent of the operator
A  using a purely singular perturbation of rank one at each step. 

2.  Singular Perturbations of Rank One

Let  ˙ ˙*A A⊂   be a closed symmetric operator with the domain of definition    �( ˙)A   dense in  H.  Assume

that its deficiency indices are  n± =( ˙)A 1.  Then 

H  =  �z � �z  ,      Im z  ≠  0,

where 

�z  =   (
˙ ) ( ˙)A z A− �

is the range of values of the operator  Ȧ z−   and 
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 � �z z A z: ( ˙ )*= = −⊥ Ker

is the deficiency subspace  (dim �z  =  1). 

Let    A ( ˙)A   be the set of all self-adjoint extensions of the operator  Ȧ .  We fix a self-adjoint extension

  A A∈A ( ˙) .  It is clear that every operator  Ã A≠   from the set    A ( ˙)A   also belongs to the set    Ps A1( ) .  In this

case, the domain  �  in (1) coincides with    �( ˙)A .  It is known [11, 14] that  �z I �( A )  =  {0}. 

Theorem 2 [11, 12].  The resolvent of every self-adjoint operator   
˜ ( ˙)A A∈A ,  Ã A≠ ,  is determined by

the Krein formula 

( ˜ ) ( ) ( , )A z A z bz z z− = − + ⋅− − −1 1 1 η η , (5)

where the vector function  ηz  with values in  �z  satisfies the equation 

η ξ ηξz A A z= − − −( )( ) 1 ,      Im z, Im ξ  ≠  0, (6)

and the values of the scalar function  bz  satisfy the relations 

b b zz z= + −ξ ξξ η η( )( , ),      Im z, Im ξ  ≠  0, (7)

b bz z= . (8)

Using Theorem 2, we obtain a description of all operators  ˜ ( )A As∈P 1   (cf. [2, 5]). 

Theorem 3.  An operator  Ã A≠   self-adjoint in  H   belongs to the set  Ps A1( )   if and only if, for any
z0 ∈ C,  Im z0  ≠  0  (and, hence, for all  z  of this type), there exist a subspace 

    
� z0

⊂ H ,      
  
dim� z0

1= ,    
  
� �z A

0
0I ( ) = { }, (9)

and a number 

bz0
∈C ,      Im Imb zz0 0= − , (10)

such that 

( ˜ ) ( ) ( , )A z A z bz z z− = − + ⋅− − −
0

1
0

1 1
0 0 0

η η , (11)

where  
  
ηz z0 0

∈� ,  ηz0
1= ,  and 

η ηz zA z A z
0 00 0

1= − − −( )( ) .
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For an arbitrary point  z ∈ C,  Im z  ≠   0,  the resolvent of the operator  Ã   is determined by formula (5),

where the functions

η ηz zA z A z= − − −( )( )0
1

0
, (12)

b b z zz z z z= + −
0 00( )( , )η η (13)

satisfy relations (6) – (8). 

Proof.  Necessity.  If    
˜ ( )A As∈P 1 ,  then   

˜ ( ˙)A A∈A ,  where  ˙ :A A= Û �  and  �  is defined according to
(1).  Conditions (9) – (11) and relations (12) and (13) are satisfied by virtue of (5) – (8).  In particular, relation
(10) follows from (7) and (8).  Indeed, according to (7), we obtain 

b b z zz z z z0 0 0 00 0= + −( )( , )η η .

Hence, by virtue of (8), we get 

b b i b i zz z z0 0 0
2 2 0− = − =Im Im ,

i.e.,  Im Imb zz0 0= − ;  here, the vector  ηz0
  is normalized to 1 without loss of generality. 

Sufficiency.  Let us prove that the right-hand side of (11) defines a self-adjoint operator    
˜ ( )A As∈P 1 .  For

this purpose, we consider the operator function 

˜( ) ( ) ( , )R z A z bz z z= − + ⋅− −1 1 η η , (14)

where  ηz  and  bz   are defined by (12) and (13), and prove that this function is the resolvent of a self-adjoint

operator    
˜ ( )A As∈P 1 ,  i.e.,  ( ˜ ) ˜ ( )A z R z− =−1 . 

First, we verify that  ˜ ( )R z   is a pseudoresolvent [20, p. 533], i.e., that it satisfies the Hilbert identity 

˜( ) ˜( ) ( ) ˜( ) ˜( )R z R z R z R− = −ξ ξ ξ ,      Im z, Im ξ  ≠  0. (15)

Taking (14) into account, we rewrite (15) in the form 

R z b R bz z z( ) ( , ) ( ) ( , )+ ⋅ − − ⋅− −1 1η η ξ η ηξ ξ ξ   =  ( ) ( ) ( , ) ( ) ( , )z R z b R bz z z− + ⋅[ ] ⋅ + ⋅[ ]− −ξ η η ξ η ηξ ξ ξ
1 1 , (16)

where  R z A z( ) ( )= − −1.  Using the Hilbert identity for the self-adjoint operator  A,  we get

b bz z z
− −⋅ − ⋅1 1( , ) ( , )η η η ηξ ξ ξ   

=  ( ) ( , ) ( )z b R z− ⋅−ξ η ηξ ξ ξ
1   +  ( ) , ( )z b Rz z z− ⋅( )−ξ ξ η η1   +  ( ) ( , )( , )z b bz z z− ⋅− −ξ η η η ηξ ξ ξ

1 1 . (17)
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By virtue of (12), we obtain 

η η ξ ηξ ξz z A z− = − − −( )( ) 1 ,      Im z, Im ξ  ≠  0.

Therefore, relation (17) reduces to the form 

0 1 1= ⋅ − ⋅− −b bz z zξ ξ ξη η η η( , ) ( , )   +  ( ) ( , )( , )z b bz z z− ⋅− −ξ η η η ηξ ξ ξ
1 1 . (18).

On the other hand, the right-hand side of (18) is equal to zero by virtue of (13).  Thus, identity (15) is true. 

The pseudoresolvent  ˜ ( )R z   is the resolvent of a certain densely defined closed operator (see [20, p. 533]

and Theorem 7.7.1 in [21]) if and only if  Ker ˜( )R z0 0= { }  for at least one point  z0 ∈  C,  Im z0  ≠   0.  For all

0
0

≠ ⊥f zη ,  by virtue of (11) we get 

˜ ( ) ( )R z f A z f0 0
1 0= − ≠− .

For the vector  ηz0
,  we have 

˜( ) ( )R z A z bz z z z z0 0
1 1 2

0 0 0 0 0
0η η η η= − + ≠− −

because  ( )A z z− −
0

1
0

η  ∈ �( A ),  and  ηz0
 ∉ �( A )  by virtue of (9).  Hence,  ˜ ( )R z   =  ( ˜ )A z− −1  is the resolvent

of the closed operator  Ã   in  H.  In fact,  Ã   is a self-adjoint operator.  To verify this, it is necessary to prove
(see Theorem 7.7.3 in [21] and [20, p. 533]) that 

˜ ( ) ˜( )*R z R z( ) = . (19)

Equality (19) is valid because relation (10) yields (8), which, in turn, yields 

˜( ) ( ) ( , ) ˜ ( )*R z A z b R zz z z( ) = − + ⋅ =− −1 1 η η .

Thus,  ˜ ( )R z   is the resolvent of the self-adjoint operator  Ã   satisfying relation (11).  It remains to prove that the

domain  �  defined by (1) is dense in  H.  Denote 

  
� � �z A z A z

0 0 0: ( ˜ ) ( )= − = − . (20)

It follows from (11) that  � �z z0 0

⊥ = .  Let  ϕ ⊥ �.  Then, by virtue of (20), for all  f ∈ � ,  f  =  ( A – z0 )–1 h,

h ∈ � z0
,  we get 

0  =  ( ϕ, f )  =  ϕ, ( )A z h−( )−
0

1   =  ( ) ,A z h−( )−
0

1ϕ .



ON THE POINT SPECTRUM OF SELF-ADJOINT OPERATORS THAT APPEARS UNDER SINGULAR PERTURBATIONS 1537

This means that  
  
( )A z z− ∈−

0
1

0
ϕ � .  However, according to (9), this is possible only for  ϕ  =  0.  Thus, we have

proved that   
˜ ( )A As∈P 1 . 

Theorem 3 is proved. 

In the case  n  =  1,  Theorem 1 can be reformulated as follows (cf. Theorem 2 in [19]): 

Theorem 4.  For an arbitrary self-adjoint unbounded operator  A  in the Hilbert space  H ,  there exists

a uniquely defined purely singularly perturbed operator   
˜ ( )A As∈P 1   that solves the problem 

Ãψ λψ= (21)

for any preassigned vector  ψ ∈ H  \ �( A )  and arbitrary number  λ ∈ R1. 

Proof.  We fix  z0 ∈ C,  Im z0  ≠  0,  and set 

η λ ψz A A z
0 0

1: ( )( )= − − − , (22)

b zz z0 00: ( )( , )= −λ ψ η . (23)

For arbitrary  z ∈ C,  Im z  ≠  0,  we define functions  ηz   and  bz    according to formulas (12) and (13).  Using a

functional calculus for the operator  A,  we get 

η λ ψz A A z= − − −( )( ) 1   =  ψ λ ψ+ − − −( )( )z A z 1 , (24)

b zz z: ( )( , )= −λ ψ η . (25)

Consider an operator function  ˜ ( )R z   of the form (14).  Using Theorem 3, we verify that this function is the
resolvent of a self-adjoint operator.  For this purpose, it suffices to prove that the functions  ηz   and  bz  satisfy
relations (6) – (8).  Equation (6) can easily be verified by using (22) and (24).  Equality (7) can also be immedi-
ately established using the Hilbert identity for the resolvent of the operator  A.  If follows from (24) and (25) that

b zz z= −( )( , )λ η ψ   =  ( ) ( )( ) ,λ λ ψ ψ− − −( ) =−z A A z bz
1 ,

i.e., relation (8) is also true.  Hence,  ˜ ( ) ( ˜ )R z A z= − −1,  where  Ã   is a self-adjoint operator in  H .  The fact that

Ã   belongs to   Ps
1  can be established as follows: We set  

  
� z z c

c
0 0

:= η{ } ∈C
.  The condition  

    
� �z A

0
I ( ) =

0{ }  follows from representation (24), and 

η ψ λ ψz z A z A= + − − ∉−( )( ) ( )1 D

because  ψ ∉ D ( A ).  Equality (10) is a consequence of relation (13) and the self-adjointness of  Ã   if the vector

ψ  is normalized so that  ηz0
1= .  By virtue of Theorem 3, we have    

˜ ( )A As∈P 1 .  The resolvent of this oper-

ator has the form 
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( ˜ ) ( )
( )( , )

( , )A z A z
z z

z z− = − +
−

⋅− −1 1 1
λ ψ η

η η , (26)

where  ηz  is defined by the vector  ψ  according to (24).
By virtue of (24), relation (26) yields 

( ˜ ) ( )A z A z
z z− = − +

−
− −1 1 1ψ ψ

λ
η   =  ( ) ( )( )A z

z
z A z− +

−
+ − −( )− −1 11ψ

λ
ψ λ ψ   =  

1
λ

ψ
− z

.

Hence, the operator  Ã   solves problem (21). 

The operator   Ã s∈P 1  that solves problem (21) is unique because representation (11), together with the
condition 

( ˜ )A z
z

− =
−

−
0

1

0

1ψ
λ

ψ ,

uniquely fixes the number  bz0
  and the vector  ηz0

  (to within the phase factor  e–θ,  0  ≤  θ  <  2π). 

3.  Proof of Theorem 1

We prove Theorem 1 by induction with the use of Theorem 4.  By analogy with (14), we introduce an oper-
ator function  R1( z ),  changing the notation 

R z A z b z z z1
1

1
1

1 1( ) ( ) ( ) , ( ) ( )= − + ⋅( )− − η η ,      Im z  ≠  0, (27)

where  R z R z1( ) ˜( )≡   [see (26)] is the resolvent of the operator  A1  =  Ã   and [see (24) and (25)] 

η η λ ψ1 1
1

1( ) ( )( )z A A zz≡ = − − − , (28)

b z b z zz1 1 1 1( ) ( ) , ( )≡ = − ( )λ ψ η (29)

with  ψ  =  ψ1  and  λ  =  λ1 .  According to the proof of Theorem 4, the operator function

˜( ) : ( ) ( ) ( ) , ( ) ( )R z R z R z b z z z= = + ⋅( )−
2 1 2

1
2 2η η ,

where  η2( z )  and  b2( z )  are defined by formulas (28) and (29) with  λ2 ,  ψ2,  and  A1  instead of  λ1 ,  ψ1,  and

A,  respectively, is the resolvent of the unique operator   A As2
1

1∈P ( )  that solves the problem  A2ψ2  =   λ2ψ2 

only if  ψ2 ∉ �( A1 ) .  The last fact follows from condition (4).  Indeed, using relation (27), we obtain a descrip-
tion of the domain of definition of the operator  A1 ,  namely 

�( A1 )  =  {h ∈ H :  h =  f + c( z ) η1( z ) ,  f ∈ �( A )},
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where 

c( z )  =  b1
1− ( z )(( A – λ1 ) f, ψ1) .

If we now assume that 

ψ2  =  f  +  c( z ) η1( z ),

then, by virtue of the equality 

η1( z )  =  ψ1  +  ( z – λ1 )( A – z )–1 ψ1,

this means that 

ψ2  –  c( z )ψ1  =  f + ( z – λ1 )c( z )( A – z )–1 ψ1 ∈ �( A ),

which contradicts condition (4).  Hence,  ψ2 ∉ �( )A1   and   A As2
1

1∈P ( ).  Let us verify that  A2  solves the prob-
lem  A2ψ1  =  λ1ψ1 .  Indeed, by virtue of the equality  A1ψ1  =  λ1ψ1 ,  it follows from (27) that 

( )A z
z2

1
1

1
1

1− =
−

− ψ
λ

ψ

because, by virtue of the fact that  ψ1 ⊥ ψ2,  we have 

ψ η λ ψ ψ1 2 1 2 1 1
1

2 0, ( ) ( ) , ( )z A A z( ) = − −( ) =− .

It is easy to verify that analogous reasoning is valid at an arbitrary  k th step,  1  <  k  ≤  n.  By induction, the
operator function 

˜( ) ( ) ( ) ( ) , ( ) ( )R z R z A z b z z zn n n n n≡ = − + ⋅( )−
− −

1
1 1 η η ,

where  ηn ( z )  and  bn ( z )   are defined according to formulas (28) and (29) with  ψn ,  λn ,  and the operator  An – 1 ,

is the resolvent of a self-adjoint operator   A An s n∈ −P 1
1( )   that solves problem (3). 

It remains to prove that  An   belongs to    Ps
n A( )   and is unique. 

By construction, we have 

( An – z )–1  =  ( A – z )–1  +  Bn ( z ) , (30)

where  rank Bn ( z )  =  n.  Indeed,

B z b z z zn k
k

n

k k( ) ( ) , ( ) ( )= ⋅( )−

=
∑ 1

1

η η , (31)
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where  bk ( z )   and  ηk ( z )  are defined by formulas (28) and (29) [or (24) and (25)] with  ψk ,  λk ,  and the operator

Ak – 1 .  One can easily verify that, by virtue of (4), all vectors  ηk ( z )  are linearly independent and do not belong

to  �( A ) .  Therefore, by virtue of Theorem A1 in [1], the domain 

�  =  ( A – z )–1 Ker Bn ( z )  =  ( An – z )–1 Ker Bn ( z )

is dense in  H  ,  and the symmetric operator 

    
Ȧ A An= =Û Û� �

has the deficiency indices 

n n+ −= =( ˙) ( ˙)A A n .

Thus,  A An s
n∈P ( ).  The uniqueness of  An  is a consequence of (30) and (31) because, on the set of  n  linearly

independent vectors  ψi  (note that  span {ψi} I Ker Bn ( z )  =  {0}),  the operator  Bn ( z )  has fixed values,
namely 

B z
z

A zn i
i

i i( ) ( )ψ
λ

ψ ψ=
−

− − −1 1 ,      i  =  1, … , n,

and the resolvent  Rn ( z )  coincides with  R( z )  on the subspace  Ker Bn ( z ) . 
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