AUTHOR’S PROOF!

Letters in Mathematical Physics 00: 1-10, 2003. 1
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

Rank-One Singular Perturbations with a Dual
Pair of Eigenvalues

SERGIO ALBEVERIOI, MYKOLA DUDKINZ, and VOLODYMYR
KOSHMANENKO?

1Institul,‘ﬁ'ir Angewandte Mathematik, Universitdt Bonn, Wegelerstr. 6, D-53115 Bonn,
Germany,; SFB 256, Bonn, BiBoS, Bielefeld, Bonn, Germany,; IZKS Bonn Germany and
CERFIM, Locarno and Acc. Arch. (USI), Switzerland. e-mail: albeverio(@uni-bonn.de
2National Technical Uni., Kyiv, Ukraine. e-mail: dudkin@imath.kiev.ua

3 Institute of Mathematics, Kyiv, Ukraine. e-mail: kosh@imath.kiev.ua

(Received: 19 December 2002)

Abstract. We discuss the eigen-values problem for rank one singular perturbations
A=AYo(, o)wofa self-adjoint unbounded operator 4 with a gap in its spectrum. We give
a the constructive description of operators A which possess at least two new eigenvalues, one
in the resolvent set and other in the spectrum of A.
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1. Introduction

Many recent publications (see, e.g., [1-21]) have been devoted to the spectral theory
of rank-one perturbations of self-adjoint operators,

A=A¥o(, 0o, aeRUco, we H_,,

where H;. denotes the usual A-scale of spaces. In fact, this spectral theory is rather
rich and instructive even though rank-one perturbations are, in a sense, the simplest
kind of perturbations. In this Letter, we expose a new phenomenon which can be
described in this theory: a rank-one singular perturbation with a special relation
between the coupling constant and the element w characterizing the perturbation
may produce the appearance of a dual pair of eigenvalues.

We investigate the inverse eigenvalues problem in the setting developed in [18] and
[9]. We give an explicit construction of the operator 4 = A F a(-, w)w which solves
the eigenvalue problem with a pair of dual eigenvalues,

Ap=np, APy =, pep), iead), (G—w =, (A-w .

Let 4 = A* be a self-adjoint unbounded operator defined on dom 4 = D(A4) in the
separable Hilbert space H with the inner product (-,-) and the norm || - ||. a(A),
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2 SERGIO ALBEVERIO ET AL.

o,(A), and p(A) denote the spectrum, the point spectrum, and, resp., the regular
points set of A.

Another self-adjoint operator Ain 'His called a (pure) singular perturbation of 4
(notation A € Py(4)) ([3, 17)) if the set

D= {f e D(4) N DA)|Af = Af)

is dense in M. It is clear that for each 4 € P,(A4), there exists a densely defined sym-
metric  operator A:=AID with nontrivial deficiency indices n*(4)=
dimker(4 F 2)* # 0. In this Letter we discuss only the case of rank-one singular per-
turbations, A € P; (A), i.e., we assume that n=(4) = 1.

Let {Hi(A)},cg: denote the associated A-scale of Hilbert spaces where Hy =
Hi(A) = D(A*?), k = 1,2, in the norm oy == 11(14] +I)k/2(p|| (I stands for the
identity) and H_; = H_;(A) is the dual space (H_ is the completion of H in the
norm || f||_x := ||(|4] + I)fk/zf||). Let (-,-) denote the dual inner product between
‘Hi and H_,. Obviously, 4 is bounded as a map from H; to H_;, and from H to
‘H_, and, therefore, the expression {(¢,), w = Ay has a sense for any ¢,y € Hj,
where A denotes the closure of 4: H; — H_,. Moreover, R, = (A — 2)~! is densely
defined in H_, if A¢ g,(A).

Each 4 € ’P_l (A4) admits the representation A= AT o, wyo, where 0 #0aeRUoo

(0o~ :=0), w € H_,, and + stands for the generalized sum (see [12, 20]). The resol-
vent of 4 may be written by Krein’s formula (see [5, 6, 10, 14]) as
Ro=(A=27" +b' (., Imz #0, (M

where the scalar function b, satisfies the equation

be=b.+(=O0nn),  b.=bs, Imz, Im&#0 5)
and where the vector function 7. belongs to H \ D(4) and one has

N, = (4 — R (©)
In the case where w € H_;, we have

b, = _Oc_l - <w7n§>a n, = (A - Z)ilw'

Vice-versa, the operator function (1) uniquely defines the resolvent of some operator
Ae ’P_l (A4) if (2), (3) are fulfilled (see Theorem 2 below).
We are able to formulate our main result.

THEOREM 1. Let A be a self-adjoint unbounded operator with a nonempty connected
spectral gap (i.e., the set p(A)NR #@ is connected). Then for any vector
Y € H\D(A), |IY|| =1 and any n € p(A), there exists a rank-one singular perturba-
tion A € P(A) uniquely defined by (1) with

n.:=A—-DRA,  b::=(—-2)W,n2), 4)

which solves the eigenvalue problems with a dual pair of values:
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Ay =7y,  Ap=npp, e p(d), iea(d), (5
where

1
R

A= o =(A-)RuY.
If y € Hi\ D(A), then A admits the representation, A=AFa(, oo, with
1 1

GRD T e ©

w=A-wy—
For the proof, see Section 4.

2. Preliminaries

Let y € D(A) and 2 € p(A4) be fixed. Consider a rank-one (regular) perturbation
A=A+ a(-,w)o with © = (4 — ) and o = —(1/(, ). Then obviously 4 solves
the eigenvalue problem Ay = .

One can repeat this construction for A4 = AFa(-,w)w in the case where
¥ € Hi \ D(4). Then A € P!(4) and Ay = Ay is fulfilled if o« = —(1/(}, w)) with
w = (A — A)Y. The resolvent of A has the form

~ 1
RZ = RZ - 17('7’75)1727

where 11, := (4 — )Ry = R. 0.
Moreover, we assert that one can take any y € H \ D(A) and any 4 € R.

THEOREM 2. Let A be a self-adjoint unbounded operator. Given . € R and a vector
Y € H\D(A), ||y|| =1, there exists a rank-one singular perturbation Ae P;(A)
uniquely defined by (1) with n. and b. given by (4). A solves the eigenvalue problem
Ay = . If ¥ € Hy \ D(A), the operator A admits the representation in a form,
A=A, oo, withw=(A4—-)W, o' =—, ).

For the proof see Appendix and ([9]).

3. Rank-One Singular Perturbations with Two New Eigenvalues
Let 4 be as in Theorem 1. Let the vector y € H; \ D(A), ||¢|| = 1, and the number
u € p(A) be fixed. Consider the operator Ay = A + oo (-, wo)wy € ”Pi (A4) with
1
<‘p7 U)O) '

From the above considerations, this operator solves the eigenvalue problem

/Iolﬁ = .

w)o=A—-pwyYyeH_; and o=
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Now we will construct another operator Ae 77; (A) which solves the eigenvalue
problems with a pair of values: the same p € p(A4) and an additional one, 4 € 6(4).
We define 4 by Krein’s formula (1) with b. = (4 — z)(¥, 7z):

R, = R.

1
z —m(w’k)”lm

where
n, = (A — )»)Rzlp and 1:= n + (wa Rlllp)il .

A solves the eigenvalue problem /111 5 = An,; with n, =, since obviously b, =0
(see Theorem 2 above and Proposition 3 in [3]). The operator A also solves the
eigenvalue problem 14117” = wq, with n, =(4— )R, since b, =0. Indeed,
by = (2 —w(,n,) = 0 because

W,n) =W, (A= HR) =14 (u = HW, Rp) =0,

due to the above connection between 4 and u. We note that 4 € g(A4) since a rank-
one perturbation may produce only one new eigenvalue in each spectral gap of
the starting operator. Thus, we described the construction of a rank-one singular
perturbation 4 € P!(A4) which solves the eigenvalues problems with two new values,
one lying in the gap of the spectrum o(A4) of the original operator A. Since
wo = (A — )Y € H_,, one can present A4 in the form 4 = At a(-, w)w with

a=—(,0)"" and o =(A—-DY=wo+ W, RY) V.

We remark that the same operator appears in another (dual) way. Namely, using
A=u+ Y, R,,lp)_l and putting ¢ := (4 — A)R,y, we can define the resolvent of 4

in the form
~ 1
Rz = Rz - 7('7 ’12)7’77
(n—2) (@, n2) :

where
n.=A—-pwR.0p=(A—-)RYy =R.o

with w = (A — )Y = (A — p)¢, and where b. = (1 — z)(¢,n:) coincides with b, =
(4 — z)(Y, n:). The latter is true due to (11) (see below) and since, by the Hilbert iden-
tity, one has

(i - Z)(l//7 ’12) = (R).w7 CU) - <sz> (U), (:u - Z)((p7 7]3) = <R,u(’03 (U) - <R2w7 (U)

Thus, one can to calculate the coupling constant « in the representation 4 =
A ¥ a(-, w)o by two formulas.

a=—W,0)" and a=—(p,w)"

Obviously, « is negative for positive A, since (@, ) = (¢, (A — w)e) > 0 for all
u<0.
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EXAMPLE. Let

d2
H=LR,dx) and A=-A=———.
dx
First consider the perturbed operator _Aocmy = —A+ (-, 8,)5,, where the cou-

pling constant is real and ¢, is the Dirac distribution concentrated at the point
y € R. For each oy < 0, the operator —A%,y has a single eigenvalue u = —03/4 <0
with the corresponding eigenfunction y(x) = e /2 (for more details, see ([1])).

Now we will construct the new rank-one singular perturbation of the Laplace
operator which has a pair of dual eigenvalues.

Fix = —1 and ¢ = e " and define

E=((A+D ) = Il < 1

and

i=pu+El=—14&">0.
Put

o=y —C(=A+ )Y
and

= (—A- Y =(-A+1Dp=2-¢""y,

where we used (—A + 1)y = 29, (with é = Jy). Introduce the operator
“A=-AF o, w)w

where
w=—1/{,0)=-1/(g.0) =2 -7

If we put o« = —1/(¢p, w), then by direct calculation, we find that

(=A + D)o = (=A+ ) + a(p, ) = (—A + D) — &Y + 1o, w)o
=2 - W—w=25—E"Yy—204+E Y =0,

ie., —A(p = —@. Moreover, if we put « = —1/(, w), then
—AY =AY ol 0) 0 =20~ —0 =25~ =26+ &Y = (=1 +& W=
Of course, we can verify that

W) =Wy —ENEAFD Y =1 = EN(A+ D)) =1-E¢=0.

Simple calculations show that the above terms and expressions have the following
explicit values: & =3/4, A =1/3, a = —3/2,

p(x) =e M~ ;(1 + |x))e™™, o(x) = 20(x) — ge_l"l.
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Thus, —A possesses the two eigenvalues, y = —1 <0 and A = % > 0.

4. Dual Eigenvalues Pairs

For a fixed vector € H \ D(A), ||y]| =1, a point 4 € a(A) will be said to be dual
with respect to a given u € p(A) if (A —p)~' = (), Rp).

Let us consider a positive operator, 4 = 0. If g(4) =[0,00), then for any
Y € H\ D(A) and any point u < 0, there exists a dual point A which is uniquely
defined by

1
TR

We note that A > 0, since for 4 >0

A ()

1
0<(¢7RM¢)<_;7 :u<0
Our main result in this case reads as follows:

THEOREM 3. Let A = A* = 0 and 6(A) = [0, 00). Then for any vectoryy € H \ D(A),
Y| =1, and any u < 0, there exists a uniquely defined rank-one singular perturbation
A€ ’Pi (A) which solves the eigenvalue problems with a dual pair of values

Ay =2, Ap = uo, (8)

Mi’here @ =(A— AR and 7. > 0 is given by (7). If y € H| \ D(A), then the operator
A, which solves (8), admits the representation

- - 1
A=A+o(-,0)w, a=——— o=(A—-A.
(Y, )
Proof. Given y € H\ D(A) and u < 0, let us consider A to be connected with u
by (7). Define the operator 4 by Krein’s resolvent formula

. 1
R.=R.4+b'(,n)m. = Ro + —————(, 021,
ECQURLE (}N_ZW’%)( n:)n

where 1. := (4 — A)R.y. By Theorem 2, the operator A solves the problem /Lp = Ay.
Let us directly show that A4 also solves the second problem in (8). To this aim, we will
show that

1
u—z

Ro= o,

i.e., that

R+ b (o). = ®.

u—z
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So in the notation ¢ = (4 — 2)R,¥ =1, we have to prove that

1
— ©)

R +;( . =
B TS RN

which is equivalent to A¢p = up. We observe that
n, = (A - ﬂ)R:”]’u = ”Iﬂ + (Z - :u)RZn,u
Therefore, (9) will be true only if

(’1#7 ’/IE) _ 1
(=2Wn:) p—z
Let us prove (10). By the resolvent identity, we have with w = (A — Ay =
A—we, ¢=n,

(10)

1
(’7;{7 7]5) = (R,Uwa wa) = m[(Rﬂwa (U) - <R2w7 CO)]

Besides

(A =2, n2) = (4 — )(Ro0, Rz00) = (R;00, 0) — (R0, w).
So we have only to prove that

(R0, 0) = (R0, ). (11)
It follows from  =n, L 1, = ¢, which is true since

W,n,) =W, (A= DRY) =14 (u— D)W, Rp) =0,

by virtue of (7). Now we have
1
0 = (’72’ 17#) = (Riwa Rllw) = m[(R/Lw7 (D> - (R#CO, CO)]

That proves (11) and therefore (10) too. The uniqueness of A was proved in
Theorem 2. O

Proof of Theorem 1. In the general case where the nonempty set p(A4) is con-
nected, the proof is the same as for a positive operator. We only have to be sure that
A € a(A). This follows from the fact that any singular rank-one perturbation (as a
self-adjoint extension of the symmetric operator 4) may produce only a single new
eigenvalue in each spectral gap. Since u € p(A4), this implies that A, which is an
eigenvalue by construction, belongs to a(A4) by necessity. O

Appendix
Proof of Theorem 2. Consider the operator function defined by (1)

Rz = Rz + b;I('a ]75)’127
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where the vector function #. and the scalar function b. have the form
n, = (A - }“)sza b, = ()" - Z)(l;ba 175)7 VS R7 W eH \ D(A)

First, we will prove that R. is the resolvent of a some self-adjoint operator
Ae ”Pi (A4). With this aim, we check by direct calculations, using the Hilbert identity
for the resolvent R. = (A4 —z)~', that . and b. satisfiy (2). Then again by direct
calculations, we check that the operator function R. is a pseudo-resolvent (see
[13]), i.e., that R. satisfies the Hilbert identity. To be sure that R. is the resolvent
of a some closed operator, we have to show that KerR, = {0}.

This is a consequence of the condition y € H \ D(A4). Indeed

R.h = R.h+ b (hyn2)n, =0
implies that # = 0 because
R.heDA) and n. =y +(z— DRy ¢D(A)

due to ¢ D(A). In fact, R. is the resolvent a self-adjoint operator. Denote it by A,
since

~ * -—1 ~
(RZ) = Rf + bz ('7 7]:)’72 = RE?
where we used, [;2—1 = b!. Further, ,¢ D(4), Imz > 0 implies that the set
D={feH:f=Rh=Rh={feDA): (f,o)=0, o=(A—y}

does not depend on z and is dense in H. Thus, Aisa self-adjoint extension of the
symmetric operator A = A| D. The deficiency indices of 4 are (1,1) because the defi-
ciency subspaces 9. := Ker(4 — z)* are one-dimensional (they are spanned by n.).
Therefore, 4 € P!(A)).

The operator A solves the problem /Lp = Ay, since due to y. = + (z — )R, we
have

Ry =Ry + W,n=m. =

i—zl//'

1
(4= 2)W,n2)

Finally, let us prove the uniqueness. Suppose that there exists another operator
Ae 7331, (A4), which also solves the problem 4y = Ayy. From the above considerations,
its resolvent admits the representation

N Al
R; = Rz+bz ('aﬁf)ﬁz? Imz;é(),
and, moreover, for the above A and  we have
~ ~ 1 A=l _
Ry = Ry ==V = Ry b, (it = R+ b (..

a1
Now it is clear that b, =5_!, and /. =7, up to a constant of modulus one.
Therefore 4 = A. [
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