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SPECTRAL PROPERTIES OF IMAGE PROBABILITY

MEASURES AFTER CONFLICT INTERACTIONS

V.KOSHMANENKO, N.KHARCHENKO

ABSTRACT. We introduce a composition of the conflict interaction between a pair of image
probability measures and study the associated dynamical system. We establish the existence
of invariant limiting measures and find conditions for these measures to be a pure point,
absolutely continuous, or singular continuous. Besides we investigate the fractal properties
of their supports, in particular we find condition when the limiting measure has the Cantor,
Salem, or Pratsiovytyi type of arbitrary Hausdorff dimension.

INTRODUCTION

We deal with a pair of so-called image probability measures p, v on the segment [0, 1],
which are uniquely associated with infinite products: p* = [[peq gk, v* = [lieq Vks
where py, v are discrete probability measures defined on some space of n < oo points
Qi = {wo,wr,...wnt = {1,2,...,n}. We consider 2 as a set of conflicting positions
for each pair pg, vg in the following interpretation. A position w; may be occupied
by pr or v, with probabilities pg(w;) > 0 or vg(w;) > 0 resp. The non-linear and
non-commutative conflict composition (see (7) below) between pug, vy is defined in such
a way that on the Nth step of the conflict, N = 1,2, ..., we get a pair of new probability
measures: iy (w;) = pgly) >0, vY(w;) = rgliv) >0, i =0,..,n on Q. The infinite
iteration of the conflict composition generates a certain dynamical system. We show the
existence of the limiting points for their trajectories, i.e., the existence of limiting values
il (wi) = pgzc) >0 and v°(w;) = TZ(,:O) > 0. Thus we get a pair of the limiting product
measures p*>° = [[72, u,v*°° = [[1—, vi°, and therefore a pair of image probability
measures >, v> on [0, 1].

We assert that measures u°°, v posses rather rich metric and topological structures.
We find conditions (see Theorems 4-6 below) for 4 to be a pure point, pure absolutely
continuous, or pure singular continuous as well as to have any topological type (Theorem
7). Moreover we show that its support may meet any Hausdor{f dimension (Theorem 8).

We note that in the case of n = 2 the similar results was obtained in [1].

A SUB-CLASS OF IMAGE MEASURES ON |0, 1]

We start with a sequence {qy}72, of stochastic vectors in R", n > 1,

ar = (qiks @2k» -y Gnk)s Qiks - nk >0, g+ + gne = 1.

Key words and phrases. Probability measure, image measure, conflict composition, stochastic matrix,
pure point, absolutely continuous, singular continuous measures, singular measure of C, S, P types,
Hausdorff dimension..
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By @ we denote the infinite matrix of the form

g1 qi12 - - - ik
g21 QG22 - - - Q2

Q={wltli=| . . . |=lelia O
gni1 qn2 : . © Ank

Given @) consider a family of intervals:

Ail, AiliQ,..., Ai1i2~~~ik7--- C [O, 1] (each index 11,19, .0, ... TUNS 1,27...77’),),
such that
n n n
[O, 1] = U Az‘u Az‘l = U Ai]iz? Ailig...z‘k,l = U Ailz‘g...ik,
i1=1 ig=1 ip=1
and
AMAii,) AMAsyiy.in)
i1 = MAL), Gig = otz g o S\
i ( 1) 122 )‘(All) Gk A(AiliQ-nik—l)

where A(A) stands for Lebesgue measure of a set A. Obviously for any k = 1,2, ...

AMAGig. ik ﬂAz‘m...jk) = 0,1 # Jk.

Assume
H max{q;} = 0. (2)
=1

Then it is easily seen that the o-algebra generated by the family {A; i, i, }22, coincides
with the Borel o-algebra B on [0, 1].

Fixed @, we associate a sub-class of probability measures on the segment [0, 1], nota-
tion M(Q), to a family of matrices

P11 P12 - - - Pik
P21 P22 - - - P12

P={plizi=| . . [ =EEEe 6
Pn1  DPn2 : : © DPnk

Namely, a matrix P is associated to a Borel measure up = pu € M(Q) if
w([0,1]) = 1, u(Aiy) = pir1; 1(Diyiy) = Pis1 - Pin2,
and so on, for any 41,19, ...,1%, k=1,2,...

:U’(Alllzlk) = DPi11 " Pix2 " " Pigk- (4)
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Obviously pup1 # pupz if matrices P!, P? are different. Thus we have a one-to-one corre-
spondence between measures 1 € M(Q) and matrices P of the form (3).

We note that Lebesgue measure A on [0, 1] belongs to M(Q) and corresponds to the
matrix P = Q.

We will show now that each p € M(Q) in really is the image probability measure in
the sense [6,7].

Fixed @ and given P let us consider a sequence of discrete probability spaces
(e, Ag, 1x), k = 1,2, ..., where the finite space Qi = {wir} = {1,2,...,n} is the same for
all k, and puy (wir) = pir- Let (Q, A, p*) = [Toe; (Qu, Ay, i) denote the infinite product
of the above probability spaces. We observe that p* is also uniquely associated with a
matrix P. Indeed, on the cylindrical sets €;,...;, C €2,

k
) =TIpu- ©)
=1

Its extension on any set from A is defined by the standard way. From (4) and (5) it
follows that measures p* and p = pp are equivalent since p*($2,..5,) = (4, .., ). For
more details one can consider a measurable mapping 7 from Q into [0, 1] defined as
follows,

m: Q3w ={wi,wi, wi, -} —x€[0,1], (6)

where a point z := ()2, A, ;, ;. is uniquely defined due to (2). So for cylindrical sets
we have, (€;,...;,) = A, ..;, and therefore " (;,...5,) = pu(m(Q,...5,)). Conversely, for
any Borel set E from [0,1], u(E) = p*(7~1(E)), where 77 1(E) := {w : 7(w) € E}. This
means that 7 and 7—! are measure-preserving mappings and therefore measures p = up
and p* are equivalent. By this reason we refer on a measure p € M(Q) as the image
probability measure with respect to the mapping (6).

The following result (see Theorem 1 below) on image measures is well known (see
e.g. [2-7]). For the formulation of it we need in the following notations. We write,
€ Mpp, My, My if a measure 1 is a pure point, pure absolutely continuous, or pure
singular continuous, resp. Further, for above matrices @) and P we define

(oo}
Pmaz (M) = H m,ax{pik}
=1
and

1/2 2 2 1/2
H vV PEs V4 Where v Pk (plé 5. ap7l12> vV dk (qié PR 7qn{c)

Theorem 1. Each image probability measure p € M(Q) has a pure spectral type:
(a) p € Mpp iff Praz(12) > 0,
(0) 1 € Mac iff p(u, A) > 0,
(¢) p € Msc iff Prmax(p) =0 and p(p, A) = 0.
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CONFLICT INTERACTION BETWEEN IMAGE MEASURES

At first we define the non-commutative non-linear conflict composition, notation ,
between a pair of stochastic vectors p,r € R”, associated to abstract discrete measures,
as follows (for more details see [8,9]):

1 1

P =PXr, r =rxp,

where coordinates of new vectors p*, r! are given by formulae:

p§1) _ pi(1 _Ti)’ 7”1(1) — ri(1 —pz‘), i=1,.
1—(p,r) 1-(pr)
where (p,r) stands for the inner product in R™. Obviously we have to exclude the
blow-up case (p,r) = 1.
The iteration of the composition % generates a dynamical system in the space R® xR"
with mapping,

f* pN_l N pN N>1 (O 0 — (8)
. I.N—l I'N ) 4L P =P, =P,

N

wwny o (7)

where coordinates of the vectors pV,r" are defined by induction,

(N-1) (N-1) (N-1) (N-1)
N b; (I—r ) N Ty (1—p; ) .
pg ) = ZN—l y 7’1( ) = ZN_l y 1= 1) ooy Ty (9)

with 2V =1 =1 — (pN~1 rVN=1) > 0.

Theorem 2. ( [8,9]) For each pair of stochastic vectors p° =p,r’ =r € R", (p,r) # 1,
there exist the invariant with respect to x limits,

© _ i N 0 _ i N
p Ngnoop » T Ngnoor ’
such that p™® L r*°, if p# r, and p™® = r>* = (1/n,...,1/n), if p = and all starting
coordinates p;,r; are strongly positive.

Remark 1. We note that if p; > r;, then p?°® > 0,7 = 0, in particular if p; > r; only for
one fixed i, then p> = 1;, where 1; = (0,...0,1,0,...0).
——

i—1

Remark 2. If p # r, but p; = r; for some ¢, then pgm) = rgoo) =0.

We will now extend the above conflict composition for any pair of image measures
1, v € M(Q) and then to study the spectral properties of the limiting measures u®, .

Let 1+ and v be a couple of image measures associated to a pair of matrices P = {px}32,
and R = {ri}72,. We introduce the composition of conflict interaction between p and
v, notation pu' := pxv, v' := vxpu, using the above defined conflict compositions for
stochastic vectors in R™. Namely, a new couple of measures p!, vt € M(Q) is associated
to matrices P! = {p}}?2, and R' = {r}}?2,, where coordinates of vectors p},r} are
defined according to formulae (7), i.e.,

@ pi(l =) RO ik (1 — pix)

pV = ;D= Ci=1,.om, k=1,2,... (10
g 1— (Pk,Tk) k 1 — (Pk,Tk) (10)
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Of course we have to assume

(pk,rk) 7&1, k= 1,2,... (1].)
By induction we introduce matrices PV = {pN¥}22 | and RY = {r}}?2, for any N =

; : N _  N-1 , N-1 N _ _N-1_, N-—1
1,2,... with stochastic vectors p;’ = p; ~~ %r, *, ry =r, = %p, = defined as IV-
times iteration of the vector composition 3, i.e., coordinates of pff , r{c\' are calculated by

formulae of view (9) with p;x = pl(.g), Tie = rgg) and ry =19, 1 =10,

Further, with each pair PV, R we associate the couple of image measures u = pupn
and vV = vpy from M(Q). Therefore the mapping f* (see (8)) extended on measures
generates the dynamical system in the space M(Q) x M(Q). The following theorem
entirely based on Theorem 2 establishes the existence and characterizes the structure of
the limiting points of this dynamical system.

Theorem 3. For each couple of image measures p,v € M(Q) satisfying condition (11),
there exist the invariant with respect to % limiting measures,

© — i N oo _ li N.
7 Jim gty i v

The measures >, v>° are mutually singular, if p # v, and p>,v>° are identical, if

w=v.
METRIC PROPERTIES OF THE LIMITING MEASURES

Starting from a couple of image measures p,v € M(Q) associated to the above ma-
trices P = {px}2; and R = {r;}?2, let us introduce the following notations:
No:={k:pp=r1i}, Nyp:=N\N=={k:py#1s};
Vie(p) := {i s pix > rin}, Vi(v) :={i:pix <ric}, Ep:={i:ps =ri};
Sunl1t) i= {k : [Vi() = m}, Sn(v) i= {k: V)l =m}, m=1,.0m 1,
where |A| stands for cardinality of a set A. Obviously Vi () U Vi(v) U Er = {1,2,...,n},

n—1 n—1
[Vie ()| + Vi (V)| +|Ex| = n for each k, and Nz = |J Sp(1) = U Sm(v). Let us denote
m=1 m=1

else ng :=n — |EY|, where EY := {i : pjx, = ri = 0}.

Theorem 4. Assume that one of the following conditions is fulfilled:
n—1

(@) Bkl =n—2, k€ Ny (b) Y [Sm(p)] < oo.
m=2

Then ™ (as well as v>°) belongs to My, iff [IN=| < co.

Proof. Excepting a finite many k € S,,(u) each of conditions (a), (b) implies that
coordinates pfy are equal to 0 or 1 if k¥ € N. Therefore by Theorem 1, Ppq5(1>) > 0
if and only if |[N—| < co. O

It is easy to see that under conditions of Theorem 4 suppu® consists of exactly

-1
2‘N:| . nH mlSM(/")I pointS.
m=2
We remark that in general the condition |[N_| < oo is only the necessary one for
> € Mpy,. In particular we have P, (1) > 0 and hence p> € M, if the sequence
p;°, k € N converges to a some vector 1; as k — oo.
Now let |[N=| = oo and therefore u*>°, v* belong to M,.|J Ms.. By Theorem 1

u>® € Mg, iff p(u™,A) > 0.
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Theorem 5. (i) Let [N.| < co. Then p> belong to My if
1
gk = —, ke N=.
n

(ii) Let |N4| = co. Assume |E)| =n—2, k € N_o. Then p™ € Mg iff IN=| = oo
and the following inequalities are fulfilled
> (1 — 4qingjx) < oo, Y gr<oo (12)
kEN=, i€Vi (1), j€EVE(v) k€N, je€Vi (1)
(i13) Let IN=| = |N4| =00 and [N, \ Si(p)| < 0o. Then pu>® € M, if

Z Z gik | <00, (13)

keSi(pn) \i€Er U Vi(v)
and for all k € N= the condition q;;, = % is fulfilled.
Proof. (i) Put

()

i=1

p(n N =cx [] (Zﬁ)gpo

keN- \:i=1

since pfy = 1/ny and (1/p°, /dx) = 1 for all k € N_.
(73) Proof easy follows from Theorem 3(b) in [1].

(91) Since |N=| = 00, pu™>® € Mge|J Mse. By Theorem 1 p™ € M. iff p(p™, A) > 0.
Taking into account that pg;o) = 1/ny for all i = 1,2,..n and k € N_, and the fact
that pﬁ,:o) =0,if k € Ny i € By UVi(v), pf;:o) =1,if k € S1(p), i € Vi(p), and

pgzo)—a, 0<a<l, if keN\Si(n),i€ Vi(u), we have

p(u= 0 = 1] (\/lﬁkzx/(ﬂ> 11 D Vaw | %

rEN_ keS1(u) \i€Vi(p)

X H Z \/ sz qm

keN\S1(p) \i€Vr(p

Then

Obviously the first term

I (G 3w -

kEN_ i=1
if gir = 1/ny, k € N, and the latter term is positive due to [N\ S1(p)| < oo. Therefore
p(1*,\) > 0 if (13) is fulfilled. Indeed

IT | > va)|>0e ] \/1— Y ] >0e

keS1(p) \i€Vk(p) keS1(u) i€ERy U Vi (v)

s II (1= > ] >0e > > gk | <00

keS1(p) i€EL U Vi(v) k€S1(p) \i€ELU Vi(v)
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Theorem 6. (i) Assume |Ey| =n—2, k € N and |E)] = n—2, k € N_. Then
u> € My, iff INZ| = 0o and at least one of the conditions (12) is fulfilled.

(i1) Let |N=| = 0o and [Nx| = co. Then u>™ € M, if at least for onem =1,2,..n—1
such that |S,, ()] = oo, we have

Z Z ik | = OC.

k€Sm (1) \(€E,U Vi(v)

Proof. (i) If one of conditions (12) is fulfilled and |N_| = oo, then u*® € M. |J M.
and under the theorem assumptions we have y> L A due to Theorem 5 (i7). Therefore
e € Mse.

Conversely, if we assume |Ey| =n—2,k € N, |[EY| =n—2, k € N_ and u>® € M,
then |N_| = oo, and p(u®, A) = 0 since 4> L A. Therefore one of the conditions (12) is
fulfilled. [OJ

(i) We recall that by Theorem 1 pu>® € M. iff Ppor(u®) =0 and p(p™,A) = 0 Let
INZ| = oo, then Ppa. (1) = 0, and therefore p™ € M, |J Mse. We can write

= T (i) T 3 Vo

keEN =1 keS1(pn) \i€Vi(p)

X H Z \/pm qzk

k€Sn_1(p) \i€Vi(p)

Let us consider some mg € {1,2,...n — 1} such that |S,,,| = oo and

Z Z gir | =o00. (14)

kGSmO(,u) iGEkUVk(U)

Condition (14) is equivalent to

I (- > a|=00 ] > an=0.

k€Smq (1) i€By U Vi(v) kESmg (1) \ i€Vi (k)
So we get
1/2
H Z PEZO)Qik =0
kE€Sm (r) \i€eVi(p)
since

Qik = pEijO)qik.

Therefore p(u>,A) =0 and p> € M,.. O
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TOPOLOGICAL PROPERTIES OF SUPPu™

We recall here some definition for details see [2]. A Borel measure 1 on R has the S
type if its support, suppu = S,,, is a regularly closed set, i.e., S, = (intS,,)°!, where int A
denotes the interior part of a set A and cl stands for the closure. A measure p has the
C type if S, is a set of zero Lebesgue measure. A measure p has the P type if S, is a
nowhere dense set with property: Vo € S, Ve > 0: X(B(z,e)()Su) >

We write € M5, M€, or MY if u has S, C, or P type, resp.

Let us introduce a set N= g := {k € N= : 3¢, p;, = r;, = 0} and put

W) := Z Z gix | + Z Z Qik

k€ENy \i€Er | Vi(v) k€N=o \#:pir=0

Theorem 7. The infinite conflict interaction between image measures p,v € M(Q)
produce the limiting invariant measures u®>,v> (see Theorem 2) of a pure topological
type. Namely:

(a) u° € M5, iff IN.UN_,| < oo,

(b) 1 € M, iff [N UN_o| = 0 and W(g) = o,

(c) u>* e MY, iff NLUN_ | = 00 and W (u) < cc.

Proof. (a) By Theorem 8 in [3] the measure p> has S-type iff the matrix P°° contains
only a finite number of zero elements. It occurs iff [N [ JN= | < oo.
(b) The measure u>° has C type (see Theorem 8 in [3]) iff the matrix P> contains

&)
infinitely many columns which contain zero elements, and besides, > ( > qi) =
k=1 i:pik:()
This is just equivalent to [N (JN= o] =00 and W(u) = oco.
(¢) Finally the measure pu™ has P type (see again Theorem 8 in [3]) iff the ma-

trix P°° contains infinitely many columns with some zero elements p;;, and besides,
o0

Yo > qin) < oo, e, iff INL[JN=g| =00 and W(u) < co. O
k=1 i:p;r=0

Remark 1. The assertions of Theorem 7 are also true for the measure v>° if one changes
W(p) by W(v).
Remark 2. Measures u®,v*° could not have the P type simultaneously. So if one of
them has the P type, then other has necessarily the C type.

The measures p* and v*° in general have rather complicated local structures and
their supports might posses arbitrary Hausdorff dimensions.

Let us denote dimy (F) the Hausdorff dimension of a set E C R.

Assume for simplicity that matrix @ contains only elements of a form ¢;; = 1/n.

Theorem 8. Given a measure i € M(Q), and a number ¢y € [0,1] there exists the
measure v € M(Q) such that

dimy (supp pu™) = cop.

Proof. According to results of [10]

k n
.1 oo
dimp (supp p>) = n nk_)OOEZ <Zp£ )lnp” ),
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where we put 0-In0 = 0.

Let us consider a set M’ C M(Q) of probability measures such that for v € M’
N = Si(u) and for any k € N= the kth vector of the corresponding matrix has no
zero elements. Then for v € M’ we get that the limiting measure u* corresponds to the
matrix P with vectors

- 1;, if k € N,
P = 1 1 1 .
(E, per D H), lf k S N:.

Further for vectors pp° = 1;,

n n—1
S mp? =3 0-m0+1-In1 =0,
i=1 =1
and for vectors pg° = (%, P ReP %);
NCOINCONIL o B SR S
Zpij lnpij —Zﬁdnﬁ —lnﬁ.
i=1 i=1

Thus, with notation N— ;, := {s € N= : s < k}, we get
; .1
dim g (supp p™) = khm %|N:’k|.

So, for any number ¢q € [0, 1] and any probability image measure p one can always find
a probability image measure v € M’ such that

dimg (supp p™) =¢p. O
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