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Abstract

We construct and study a discrete time model describing the conflict in-
teraction between two complex systems with non-trivial internal structures.
The external conflict interaction is based on the model of alternative inter-
action between a pair of non-annihilating opponents. The internal conflict
dynamics is similar to the one of a predator-prey model. We show that
the typical trajectory of the complex system converges to an asymptotic
attractive cycle. We propose an interpretation of our model in terms of
migration processes.
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1 Introduction

Since the beginning of 20-th century the Lotka-Volterra model of prey-predator
interaction is one of the main models for the simulation of many processes in
population dynamics and economics. As a rule, continuous models where Lotka-
Volterra equations have ratio-dependent parameters are studied (see, for example
[3, 5, 6, 11, 12, 13, 16, 17, 18]). Logistic and Ricker’s type models are also studied
in some works, for example [5]. In the majority of works the prey-predator
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interaction is treated only inside of a single region, and no migration from one
region to other regions is considered.

In some works [6, 5] models with a random process of migration are studied.
There are also only few works (see [5] and references wherein), in which dis-

crete models are considered, though in reality such processes are more natural,
since they take better into account seasonal phenomena (reproduction, migration,
etc.).

The main aim of the majority of works is the discussion of questions like
the determination of stable points or bifurcation points, the study of the asymp-
totic behavior, and the analysis of model’s dependence on the coefficients of the
equations describing the dynamics.

In [3] the synchronization of population dynamics with natural phenomena
(like change of seasons and floods) is studied. In the work [18] the dependence of
the population dynamics on population density and migration is studied. In the
work [6] migration is not assumed to be random, but aims at the maximization of
some function of the population. At last, in [3] the influence of stochastic terms
in a Lotka-Volterra model is described, and interesting figures are presented.

In the present work we construct a model that joins two most rarely studied
variants of models of the Lotka-Volterra type, i.e., a discrete model with migra-
tion. Here individuals migrate not randomly, but according to strategies which
we interpret in section 5.

Our models contains a conflict interaction between a pair of complex systems
A and B. The whole system is described by a finite set of positive numbers:
P = (P1, . . . , PN) for A and R = (R1, . . . , RN) for B, where N ≥ 2 means
the quantity of parameters that characterize the system. We study dynamics
in the discrete time denoted by n ∈ N0 = {0, 1, 2, ...}. The evolution of every
subsystem is described by a sequence of vectors with non-negative coordinates
Pn = (P

(n)
1 , . . . , P

(n)
N ) for A, and Rn = (R

(n)
1 , . . . , R

(n)
N ) for B, n ∈ N0. The

vectors P and R correspond to the initial time n = 0. The model is such that
each subsystem A or B tries to reach optimal values of its coordinates. Due
to the conflict interaction, every coordinate changes however in a complicated
way. The evolution of the system is determined by a double dependence: by
the conflict interaction between subsystems (which we describe in section 3), and
by a prey-predator type interaction inside every subsystem. We suppose that
every subsystem is complex in the sense that its elements may be treated as one
of the types: dominant (predators) or dependent (preys). So, every coordinate

P
(n)
i , resp. R

(n)
i may be regarded as the quantity (population) of dominant, resp.

dependent species at the position i at time n.
The law of evolution inside of each (independent) system is described in section
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2. We suppose this law is identical in every system and is based on the discrete
Lotka-Volterra equation.

In section 3 we shortly recall the main results on conflict interaction between
non-annihilating opponents.

In section 4, that includes the main results of the work, we construct a dy-
namical system describing the conflict interactions both inside any subsystem A
or B and between the subsystems.

In our model two operations happen at any fixed moment of time: redistri-
bution of probabilities to occupy some controversial positions by the systems in
opposition, and quantitative changes (namely population) of all species inside
both systems.

A computer modeling of such a complex interaction shows the appearance of
some interesting phenomena. In this work we limit however ourselves to present
only the observation that under a certain appropriate choice of parameters and
initial data, the complex system oscillates. Indeed we find a rather wide range
of initial data for which the population trajectory in phase-space becomes cyclic.
Moreover, we observe the stability of the limit cycle, which is thus an attractor.

2 Traditional models of population dynamics

Let us recall here shortly some traditional models of population dynamics, see
e.g. [16] for more details.

Malthus proposed in 1798 an idealized evolution equation for a population:

dP

dt
= (b− d)P, (2.1)

where P is the cumulative number of individuals (species), and b, d are the natural
birth and death rates. The solution is

P (t) = P (0)e(b−d)t.

In practice, however, one expects exponential rise, if b− d > 0, resp. decrease, if
b− d < 0 at most in a local period of time.

Verhulst introduced in 1838 a more realistic equation with saturation terms:

dP

dt
= (b− d)P − cP 2, (2.2)

where the coefficient c > 0 represents the competition activity of individuals for
living resources. The presence of the square power takes care of an alternative
law of access to the living resource.
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Figure 1: A typical shape of the logistical curve dP
dt

= (b− d)P − cP 2.

The solution of (2.2) describes the S-shaped logistical curve (see Figure 1)
and corresponds better to the actual behavior of many population processes.

The curve starts with a small value P (0), increases exponentially , and then
saturate at the capacity P (s) = b−d

c
, b− d > 0.

In the economic context, equation (2.2) can be written as follows

dM

dt
= (g − l)M − fM2, (2.3)

where M is the capital (money), g and l are the average gain and loss percentages
on the capital, and f stands for the coefficient of confrontation between individ-
uals. If g − l < 0, the capital decays to 0 exponentially; if g − l > 0, at the
beginning the capital increases exponentially quick, but then the growth slows
down, so that it never reaches the asymptotic value of saturation M(s) = g−l

f
.
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Lotka (1907) and Volterra (1901) extended the Verhulst logistical equation
to the well-known Lotka-Volterra equations intended for the description of the
amount of changes in populations of two species in interaction. These equations
are also known under the name of predator-prey model. We will refer to the
Lotka-Volterra equations in the following form:

dP
dt

= aP − bPR− cP 2

dR
dt

= −dR + ePR− fR2,
(2.4)

where all coefficients a, b, ..., f are nonnegative.
The population of prey is described by the first equation. Without presence

of any predators it grows exponentially at the beginning and then converges to
the fixed capacity P (s) = a/c. The predators, without any prey to feed on, die
out. When both species are present, the growth of the prey is limited by the
predators, due to the term −bPR, and the predators grow if the amount ePR of
prey available, is large enough. See for example [16] and references wherein for
more information or the corresponding analysis of Lotka-Volterra equations.

The models with discrete time are also studied. In this case, equations (2.4)
have the following form:

P
(n)
1 = P

(n−1)
1 + P

(n−1)
1 (a− bP

(n−1)
2 − cP

(n−1)
1 ),

P
(n)
2 = P

(n−1)
2 + P

(n−1)
2 (−d + eP

(n−1)
1 − fP

(n−1)
2 ).

(2.5)

The typical behaviour of discrete Lotka-Volterra model is shown in Figure 2.

3 Conflict interaction between non-annihilating

opponents

In this section we shortly recall an alternative approach to describe the redistri-
bution of conflicting positions between two opponents, say A and B, concerning
an area of common interests.

We consider the simplest case where the existence space of common interests is
a finite set of positions Ω = {ω1, . . . , ωN}, N ≥ 2. Each of the opponents A and B
tries to occupy a position ωi, i = 1, . . . , N with a probability PA(ωi) = pi ≥ 0 resp.
PB(ωi) = ri ≥ 0. The starting distributions of A and B along Ω are arbitrary and
normalized:

∑N
i=1 pi = 1 =

∑N
i=1 ri. A and B can not be present simultaneously in

the same position ωi. The interaction between A and B is considered in discrete
time t ∈ N0. We introduce the noncommutative conflict composition between
stochastic vectors p0 = (p1, . . . , pN), r0 = (r1, . . . , rN) ∈ RN

+ :

p1 := p0 ∗ r0, r1 = r0 ∗ p0,p0 ≡ p, r0 ≡ r,
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Figure 2: Lotka-Volterra model with discrete time
P

(n)
1 = P

(n−1)
1 (a− bP

(n−1)
1 − cP

(n−1)
1 )

P
(n)
2 = P

(n−1)
2 (−d + eP

(n−1)
2 − fP

(n−1)
2 )

a = 0.2, b = 0.006, c = 0.002, d = 0.008, e = 0.002, f = 0,

P
(0)
1 = 3, P

(0)
2 = 5.

6



where the coordinates of p1, r1 are defined as follows

p
(1)
i =

p
(0)
i (1− αr

(0)
i )

1− α
∑N

i=1 p
(0)
i r

(0)
i

, r
(1)
i =

r
(0)
i (1− αp

(0)
i )

1− α
∑N

i=1 p
(0)
i r

(0)
i

, (3.1)

and where the coefficient −1 ≤ α ≤ 1, α 6= 0 standing for the activity interaction.
At the nth step of the conflict dynamics we get two vectors

pn = pn−1 ∗ rn−1 ≡ p0 ∗n r0, rn = rn−1 ∗ pn−1 ≡ r0 ∗n p0

with coordinates

p
(n)
i =

p
(n−1)
i (1− αr

(n−1)
i )

zn

, r
(n)
i =

r
(n−1)
i (1− αp

(n−1)
i )

zn

,

with zn a normalization coefficient given by

zn = 1− α(pn−1, rn−1),

(·, ·) being the inner product in RN .
The behavior of the state {pn, rn} at time t = n, for n → ∞, has been

investigated in [1, 4, 7, 8, 9, 10]. We shortly describe the results (for proofs see,
e.g. [8, 1]).

Theorem.1. For any pair of non-orthogonal stochastic vectors p, r ∈ RN
+ ,

(p, r) > 0, and fixed interaction intensity parameter α 6= 0, −1 ≤ α ≤ 1, with con-
dition α 6= 1

(p,r)
, the sequence of states {pn, rn} tends to the limit state {p∞, r∞}

p∞ = lim
n→∞

pn, r∞ = lim
n→∞

rn.

This limit state is invariant with respect to the conflict interaction:

p∞ = p∞>r∞, r∞ = r∞>p∞.

Moreover, {
p∞ ⊥ r∞, if p 6= r and 0 < α ≤ 1
p∞ = r∞, in all other cases.

We emphasize that in the case of a purely repulsive interaction, 0 < α ≤ 1, if
the starting distributions are different, then the limiting vectors are orthogonal.
Therefore each of the vectors p∞, r∞ contains by necessity some amount of zero
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coordinates. For example the typical limit picture for pn, rn ∈ R3
+ is presented in

Figure 3.
If we start with a pair of identical vectors, p = r, then p∞ = r∞ too. That

is, all non-zero coordinates of the limit vectors are equal.
In the general case, p, r ∈ RN

+ , the coordinates p
(n)
i , r

(n)
i have at most sev-

eral oscillations and then reach monotonically their positive or zero limits. The
limiting values p∞i , r∞i may be described in terms of starting states.

Given a couple of stochastic vectors p, r ∈ Rn
+, p 6= r, (p, r) > 0, define

D+ :=
∑

i∈N+

di, D− :=
∑

i∈N−
di,

where
di = pi − ri, N+ := {i : di > 0}, N− := {i : di < 0}.

Obviously
0 < D+ = −D− < 1,

since p 6= r, and
∑

i pi −
∑

i ri = 0 = D+ + D−.

Theorem 2. Let p 6= r, (p, r) > 0. In the purely repulsive case, α = 1, the
coordinates of the limit vectors p∞, r∞ have the following explicit distributions:

p∞i =

{
di/D, i ∈ N+

0, otherwise
, r∞i =

{ −di/D, i ∈ N−
0, otherwise,

(3.2)

where D := D+ = −D−.

Remark. From (3.2) it follows that any transformation p, r → p′, r′, which
does not change the values di and D, preserves the same limit distribution as
for the vectors p∞, r∞. A class of such transformations may be presented by a
shift transformation of coordinates, pi → p′i = pi + ai, ri → r′i = ri + ai with
appropriated a′is.

In the case −1 ≤ α < 0 of the pure attractive interaction we have another
limit distribution.

Define the set S0 := {k|p∞k = r∞k = 0} and set

S∞ := {1, . . . , N}\S0.

Theorem 3. In the purely attractive case, α = −1, the limit vectors p∞, r∞

are equal and their coordinates have the following distributions:

p∞i = r∞i =

{
1/m, i ∈ S∞
0, otherwise,

(3.3)
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where m = |S∞| denotes the cardinality of the set S∞.
In general, it is an open question to give a complete characterization of S0.

Below we present several sufficient conditions for k to belong to the set S0. Si-
multaneously these conditions give some characterization for the points to be in
S∞.

We will use the following notations:

σi := pi + ri, ρi := piri, σ1
i := p1

i + r1
i ρ1

i := p1
i r

1
i . (3.4)

Proposition 1. If

σi ≥ σk, ρi > ρk, or σi > σk, ρi ≥ ρk, (3.5)

then
p∞k = r∞k = 0,

and therefore k ∈ S0.
Proof. By (3.4) we have

σ1
k = p1

k + r1
k − 1/z(pk + rk + 2pkrk) = 1/z(σk + 2ρk)

where we recall that z = 1+(p, r). Therefore each of the conditions (3.5) implies
that σ1

i > σ1
k. Further, since

ρ1
k = 1/z2(ρk + (ρk)

2 + ρkσk), (3.6)

again from (3.5) it also follows that ρ1
i > ρ1

k. Thus, by induction, σN
i > σN

k and
ρN

i > ρN
k for all N ≥ 1.

Or, in other words,

1 <
pi

pk

<
p1

i

p1
k

< . . . <
pN

i

pN
k

. . . ,

1 <
pi

pk

<
r1
i

r1
k

< . . . <
rN
i

rN
k

. . . , N = 1, 2, . . . (3.7)

Thus, the sequences of the ratios

pN
i

pN
k

,
rN
i

rN
k
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are monotone increasing as N → ∞. Assume for a moment that there exists a
finite limit,

1 < lim
N→∞

pN
i

pN
k

=
p∞i
p∞k

≡ p∞i
p∞k

· 1 + r∞i
1 + r∞k

= M < ∞.

This is only possible if r∞i = r∞k , which contradicts (3.7). Thus, M = ∞ and
therefore p∞k = 0, as well as r∞k = 0. 2

Let us consider now the critical situation where for a fixed pair of indices, say
i and k, the values σk−σi, ρk− ρi have opposite signs, for example, σk−σi > 0,
ρk − ρi < 0. In such a case it is not clear what behavior the coordinates pN

i , rN
i

and pN
k , rN

k will have when N → ∞. We will show that the limits depend on
which of the two values, 2ρi + σi or 2ρk + σk, is larger. Moreover we will show
that even if pk is the largest coordinate, it may happen that p∞k = 0. Let for
example, pk = maxj{pj, rj} and σk = pk + rk > pi + ri = σi, however the value
of rk is such that ρk = pkrk < piri = ρi. Then under some additional condition
it is possible to have p∞k = 0. In fact we have:

Proposition 2. Let for the coordinates pi, ri, pk, rk, i 6= k, the following
conditions be fulfilled:

σk > σi (3.8)

but
ρk < ρi. (3.9)

Assume
2ρk + σk ≤ 2ρi + σi. (3.10)

Then
p∞k = r∞k = 0, (3.11)

i.e., k ∈ S0

Proof. We will show that (3.8), (3.9), and (3.10) imply

p1
k + r1

k = σ1
k ≤ σ1

i = p1
i + r1

i (3.12)

and
p1

kr
1
k = ρ1

k < ρ1
i = p1

i r
1
i . (3.13)

Then (3.11) follows from Proposition 1. In reality (3.12) follows from (3.10)
directly, without condition (3.9). So, we have only to prove (3.13).

With this aim we find the representation of ρ1
i in terms σi and σ1

i . Since
σ1

i = 1/z(σi + 2ρi) we have

ρi = 1/2(zσ1
i − σi). (3.14)
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By (3.6) and (3.14) we get

ρ1
i = 1/z2(ρi + ρ2

i + ρiσi) =
1

2z2
(zσ1

i − σi)[1 + 1/2(zσ1
i − σi) + σi]

=
1

4z2
(zσ1

i − σi)(2 + zσ1
i + σi) =

1

4z2
[2zσ1

i + z2(σ1
i )

2 + zσ1
i σi − 2σi − zσ1

i σi − σ1
i ]

=
1

4z2
[2zσ1

i + z2(σ1
i )

2 − σ2
i − 2σi].

Therefore

ρ1
k − ρ1

i = 1/z2[ρk(1 + ρk + σk)− ρi(1 + ρi + σi)].

Thus, we have

ρ1
k− ρ1

i = 1/4z2[2z(σ1
k − σ1

i ) + z2((σ1
k)

2− (σ1
i )

2) + ((σi)
2− (σk)

2) + 2(σi− σk)] < 0

due to starting condition (3.9), and (3.12). Thus ρ1
k < ρ1

i , i.e., (3.13) holds. 2

We stress that (3.11) is true in spite of σk > σi. Of course, if σk < σi and
ρk < ρi, then (3.11) holds without any additional condition of the form (3.10).

4 Model of conflict interaction between complex

systems

In this section we construct a dynamical model of conflict interaction between
a pair of complex systems. Each of the systems is subject to the inner conflict
between their elements. For simplicity, we assume both systems to be similar and
described by discrete prey-predator models of the form (2.5). We introduce the
conflict interaction between these systems using an approach developed in [1, 2,
4, 7, 8, 9, 10]. With such a rather complex interaction we obtain a wide spectrum
of evolution. In this work we study qualitative characteristics of the behavior of
corresponding dynamical systems for some choice of parameters a, b, c, d, e, f, α
(see (2.5), (3.1)) and values of the initial populations of species Pi, Ri.

The coefficient α, giving the intensity of the interaction between subsystems,
has an important effect. Increase α from zero to unit causes the appearance of
a series of bifurcation. For α = 0 we have two copies of independent Lotka-
Volterra subsystems. For small values of α both subsystems behave like pure
Lotka-Volterra systems, converging then to a stable state (see Figure 4).
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Under fixed parameters and the starting coordinates (see Figure 5) we have the

first bifurcation point at α ≈ 0.0056781739. The coordinates P
(n)
i (R

(n)
i ) oscillate

and a cycle of a small period appears.
The following increase of α shows the appearance of new bifurcation points

that are characterized by an increasing value of the cyclic period. For the value
α = 0.4815545975 a cycle of infinite period appears. This means that all coor-
dinates rapidly reach the stable state. In this case some species may disappear,
even if they had some stable positive values in a pure (α = 0) Lotka-Volterra
model.

The role of the coefficients a, b, c, d, e, f and the initial quantity of the species
Pi, Ri in a pure Lotka-Volterra model is well-known and described (e.g. in
[16, 12]). The coefficients a, d govern the increase of the prey population when
predators are absent and the predator population decreases when the preys are
absent. In turn, the coefficients b, e are responsible respectively for the prey quan-
tity decreasing with an increasing number of predators, as well as for the increase
of the predator population with an increase of the number of preys. The last
coefficients in each of the equations give the limitation on the increase of both
populations. In other words, each population ”makes pressure” on itself, it does
not permit an infinite reproducibility.

Questions about stable points, orbits, asymptotic behavior of orbits are well
described for the classical Lotka-Volterra model. We shall recall that usually
there are at least three equilibrium points. They are mentioned in the literature
as follows (see, e.g., [16]):

(1) trivial (0,0);
(2) axial (a/b,0);
(3) inner positive (

a

b
− b

c

ae− cd

be + cf
,
ae− cd

be + cf

)
. (4.1)

An equilibrium point is called a stable point if after a sudden change of pop-
ulation it comes back to an equilibrium point some time later. This may happen
monotonically, or with some oscillations.

We should note that under the existence of stable points the behavior of the
system is well defined by the coefficients a, b, c, d, e, f . But under the absence of
stable points, the behavior of the system is defined by the initial data Pi, Ri. De-
pending on how close the initial data are situated with respect to the equilibrium
point, the system may evolve in a different way.

The role of all these coefficients is preserved in the case of our model. But
now their influence is much more complex. We present here only first steps in
this direction. We shall discuss not only stability zones, as it was pointed out
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above, but also the values of the coefficients for which the system oscillates along
some closed cycles.

The state of our dynamical system is fixed by a pair of vectors Pn = (P
(n)
1 , . . . , P

(n)
N ),

Rn = (R
(n)
1 , . . . , R

(n)
N ) with non-negative coefficients, where n ∈ N0 denotes the

discrete time, N ≥ 2 stands for the number of conflict positions. Here we study
the most simple situation, when every system consists of only two agents: prey
and predator, i.e., N = 2. The complex conflict transformation is denoted by the
mapping (

Pn

Rn

)
F−→

(
Pn+1

Rn+1

)
,

where F is the composition of four operations, N−1, ∗, N , and U.
Let us describe these operations in an explicit form for the first step of the

complex conflict transformation.
The first operation U describes the interaction between elements inside ev-

ery system separately according to the prey-predator model. The corresponding

mathematical transformation of vectors (the interaction composition) {P0,R0} U−→
{P̃0, R̃0} is described by the system of equations of the form (2.5):

P̃
(0)
1 = P

(0)
1 + P

(0)
1 (a− bP

(0)
2 − cP

(0)
1 ),

P̃
(0)
2 = P

(0)
2 + P

(0)
2 (−d + eP

(0)
1 − fP

(0)
2 ),

and
R̃

(0)
1 = R

(0)
1 + R

(0)
1 (a− bR

(0)
2 − cR

(0)
1 ),

R̃
(0)
2 = R

(0)
2 + R

(0)
2 (−d + eR

(0)
1 − fR

(0)
2 ),

where the passage to new values of the coordinates is marked by a tilde, but not
by a change of upper index, like in (2.5).

The following operation involves the interaction ∗ (see (3.1)) between the
previous subsystems according to the theory of the alternative conflict for non-
annihilating opponents (see, e.g. [1, 2, 4, 7, 8, 9, 10]). To describe this operation

we at first have to normalize the vectors P̃0 = (P̃
(0)
1 , P̃

(0)
2 ), R̃0 = (R̃

(0)
1 , R̃

(0)
2 ), i.e.,

to work with stochastic vectors.
We use the following notation for normalization: N{P̃0, R̃0} = {p0, r0},

where the coordinates of the stochastic vectors p0, r0 are determined by the for-
mulae

p
(0)
1 =

P̃
(0)
1

z̃
(0)
P

, p
(0)
2 =

P̃
(0)
2

z̃
(0)
P

, r
(0)
1 =

R̃
(0)
1

z̃
(0)
R

, r
(0)
2 =

R̃
(0)
2

z̃
(0)
R

,

where z̃
(0)
P = P̃

(0)
1 + P̃

(0)
2 , z̃

(0)
R = R̃

(0)
1 + R̃

(0)
2 .
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The next step exactly corresponds to the conflict interaction between the
subsystems. We introduce new stochastic vectors {p1, r1} with coordinates:

p
(1)
j =

p
(0)
j (1− αr

(0)
j )

1− α
∑2

i=1 p
(0)
i r

(0)
i

, r
(1)
j =

r
(0)
j (1− αp

(0)
j )

1− α
∑2

i=1 p
(0)
i r

(0)
i

, j = 1, 2.

Finally, we have to come back to the non-normalized vectors, which character-
ize quantitatively populations in both regions after inner and outer conflicts oper-
ations. So, at time n = 1 we have the following vectors N−1{p1, r1} = {P1,R1},
where

P1 = (P
(1)
1 , P

(1)
2 ),R1 = (R

(1)
1 , R

(1)
2 ),

and where
P

(1)
j = p

(1)
j z̃

(0)
P , R

(1)
j = r

(1)
j z̃

(0)
R , j = 1, 2.

We can repeat this procedure starting from {P1,R1}. So we get {P2,R2}.
And so on for the nth step.

To find the equilibrium points in the case of the complex conflict interac-
tion described above, we have to solve the following system of equations for
P1, P2, R1, R2:





(a + 1− bR1 − cP1)(Z2 − αR2(−d + 1 + eP2 − fR2))Z1 = Z,
(−d + 1 + eP1 − fR1)(Z2 − αP2(a + 1− bR2 − cP2))Z1 = Z,
(a + 1− bR2 − cP2)(Z1 − αR1(−d + 1 + eP1 − fR1))Z2 = Z,
(−d + 1 + eP2 − fR2)(Z1 − αP1(a + 1− bR1 − cP1))Z2 = Z,

where
Z1 = P1(a + 1− bR1 − cP1) + R1(−d + 1 + eP1 − fR1),

Z2 = P2(a + 1− bR2 − cP2) + R2(−d + 1 + eP2 − fR2),

Z = Z1Z2 − α[P1P2(a + 1− bR2 − cP2)(a + 1− bR1 − cP1)+

+R1R2(−d + 1 + eP1 − fR1)(−d + 1 + eP2 − fR2)].

We note that in the case α = 0 we have two copies of pure Lotka-Volterra
models and the corresponding system of equations has at least three equilibrium
points (trivial, axial, inner positive).

For the case α 6= 0 it is difficult to obtain exact solutions. Let us obtain some
insights by numerical approximation.

In particular, we found that there exist equilibrium points and the limit cycles
for a wide set of parameter values and initial data (see Figure 6-9).

Moreover, we established the shift effect for the equilibrium point. Namely,
we observed that the inner positive equilibrium point (it exist in any system and
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Figure 8: The existence of the stable oscillations of the conflict interaction
between Lotka-Volterra systems after 70000 steps of iteration.
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may be found by formula (4.1)) is shifted after the application of the conflict
interaction between the systems. We see by (4.1) that stabilization of discrete
Lotka-Volterra model with parameters like in Figure 5 occurs when P1 = 4, P2 =
32. This may be easily verified by putting these initial data into the corresponding
equations. In this case we have a trivial dynamics.

Let us consider the case of a discrete Lotka-Volterra model with the conflict
interaction between the subsystems. We take the same values of the coefficients
a, b, c, d, e, f, α as in the situation described in Figure 4. Now the equilibrium
point has the coordinates P1 = 4.043507, P2 = 32.100629. The dynamics is con-
stant with these initial data.

In case of a larger α, when oscillations appear, the equilibrium point may also
be easily found if we put the initial data in both systems to be equal. In this case
the behavior is like in the case of a pure Lotka-Volterra model, and stabilization
occurs. However, the stable point is shifted, for example, when α = 0.01 (see
Figure 6-9) the equilibrium point is P1 = R1 = 4.087615, P2 = R2 = 32.200863.

Thus, if we have some prey-predator system and want to change the popula-
tion inside this system, we may create an analogous ”artificial” system, introduce
the conflict interaction and obtain the desired shift of the equilibrium point. Ap-
parently a stronger shift of the stable equilibrium point occurs appears in the case
of an ”ensemble” of a larger amount of Lotka-Volterra systems. So, we observed
the following interesting phenomenon that the equilibrium point of an isolated
system is shifted in the case where identical systems are united as an ”ensemble”.

However, this equilibrium point is unstable, any perturbation of the initial
data causes the receding of the system from the equilibrium point.

One of the more interesting observations concerns the limit cycles. It is known
that no such kind of orbits in the discrete Lotka-Volterra model is possible. But
under the effect of the outer conflict, as we see in the pictures, the dynamical
system reaches a limit cycle starting both from an inside or outside point with
respect to the orbit. Partially, in Figures 10,11 we present the model, that starts
at P

(0)
1 = 4, P

(0)
2 = 32. As it was pointed above, in the case of a pure Lotka-

Volterra model, with these initial data there is no non-trivial dynamical evolution.
However, in the case of the model with an outer conflict the process tends to a
limit cycle.

5 Interpretation

In many works on mathematical biology and economics [3, 5, 6, 11, 12, 13, 16,
17, 18] the modelling of population dynamics or economical processes is based on
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Lotka-Volterra equations. As a rule, continuous, not discrete, models are studied.
In some works the migration process is considered. It takes place between different
regions, inside which an interaction of the Lotka-Volterra type is present. For
example, in [5] the migration rate between regions has some fixed probability.

We study discrete Lotka-Volterra models with an additional interaction be-
tween them. That may be interpreted as some kind of correlation between the
inhabitants of different regions. We suppose that discrete models are more natu-
ral since, for example, birth and death of individuals happen at discrete moments
of time.

It is well known that in the classical discrete prey-predator model a stable
point exist. The amount of preys and predators tends to this point in the phase-
space. In this case we observe that after several periods of oscillations the popula-
tions stabilize (see Figure 2). Thus, we have an attracting point in an phase-space.
Such a dynamics exists inside every region when ”migration” is absent.

When we introduce an additional interaction between the inhabitants of dif-
ferent regions a redistribution process appears which we interpret as a migration.
In some of our complex models there is no stable point, the amount of preys and
predators in both regions oscillates along fixed orbits. Apparently these orbits in
phase-space are attractors.

We note that explicit formulas of conflict interaction between non-annihilating
opponents which describe the redistribution of populations are given by (3.1).
The individuals of a certain kind migrate to the region in which they are more
numerous.

Is the ”migration strategy” which is described in our model a natural one?
We suppose that in many cases individuals may be right behaving in such a way.
If we consider a prey-predator model, it is clear that every separated individual is
unable to estimate all factors that have an influence on the population dynamics
like vital resources inside a given region, real amount of own and alternative pop-
ulation, current population dynamics. In other words, the individual ”does not
know” the parameters of the Lotka-Volterra equations and their current influence
on the population dynamics.

However a given individual by virtue of the group reflex will migrate to the re-
gion where, as she/he supposes, the vital conditions are best (her/his population
should be concentrated there because of better resources, possibility for repro-
duction, better conditions organize large groups). Formula (3.1) just describes
this tendency.

Similar motivations may be proposed in the case of the work migration. Here
the unemployed may be regarded as playing the role of ”preys”, employees as
playing the role of ”predators”. People who seek for work and migrate to another
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country, do not know, as a rule, the real situation in this other region. They
prefer to migrate to the country where the majority of their friends migrated
before (group reflex).

An opposite picture happens with employees who convert their capital into
regions with a higher profit.

So, migration accelerates the increase of one of species population in one of
the regions. But at the same time there is an effect of the inner prey-predator
”fight” inside every subsystem. Partially, the population influences itself at the
cost of the last term in Lotka-Volterra equation. As a result, some time later a
backward migration starts.

In Figure 8 we may see the effect of delay, when the amount of preys inside
the region decreases, but the predators continue migration to this region, until
their amount starts decreasing by following the Lotka-Volterra model.

We emphasize, that in our model, in comparison with the discrete Lotka-
Volterra model, a cyclic oscillation of populations is observed. Moreover, a cyclic
attractor exists in the phase-space, and the prey-predator trajectory tends to
this orbit both from an inside or outside point with respect to this cycle (Figure
10,11).

We remark that in our model the normalization was fulfilled by the amount
of inhabitants of the region, so the component of the corresponding vector may
be large both at the cost of a large population of fixed individuals and at the cost
of a small total population in the region. In this case, a migration to a region
with a lot of ”free space” is also possible.

We also studied another model with an attracting interaction (α < 0). In this
case we obtained formally a similar dynamics, but with the individuals migrating
to the region where they are less numerous. Such a migration strategy might
also be natural for some species, e.g., for individuals who hunt separately, control
large territory and have confrontations with relatives.
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