mn header will be provided by the publisher

On the point spectrum of H_,—singular perturbations
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We prove that for any self-adjoint operatdrin a separable Hilbert spad¢ and a given countable sat =
{\:}ien of real numbers, there exit_,—singular perturbationg of A such that\ C o,,(A). In particular,
if A={)\,..., \.}isfinite, then the operatot solving the eigenvalues probledz, = Aptbw, k =1, ..., n,
is uniquely defined by a given set of orthonormal vectprs };:—; satisfying the conditiospan{vy};-, N
dom(|A|'/?) = {0}.
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1 Introduction

Let A = A* be a self-adjoint unbounded operator defineddnl) = Dom(A) in a separable Hilbert spagé
with the inner product-, -) and the nornj| - ||. A self-adjoint operatord # A in H is called [6, 17] a (pure)
singular perturbation ofl if the set

D= {f e D(A)ND(A)|Af = Af} (1)

is dense irt{. We shall denote b, (A) the family of all singular perturbations of. For eachd € P,(A) there
exists a densely defined symmetric operator= A|D = A|D, D(A) = D with non-trivial deficiency indices
n*(A) = dimKer(A + i)* # 0. Thus, bothA and A are different self-adjoint extensions df We use the
notationA € P (A), wheren = n*(A) < oc.

Since each operatot ¢ Pr(A) is a self-adjoint extension of some symmetric operator, it is uniquely fixed
by Krein's formula for resolvents (see [19, 4, 14, 20]),

(A—2)"t = (A -2+ B(2), Imz # 0,
whereB : C\ R — B(H) is a certain analytic operator-valued function of rank oo such that
(RanB(z))" N D(A) = {0}, cl = closure. 2

HereB(H) is the space of bounded linear operatorgfinMoreover the seb defined by (1) is dense iH if and
only if condition (2) holds (the proof follows from Theorem A.1 in [5] or Lemma 13.1in [17]).
Let
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denote a part of thel-scale of Hilbert spaces, wheté, = D(|A|*/?), k = 1,2, in the norm||p||x := [|(|A] +
1)¥/2¢||, andH_, is the dual space tdf,. ObviouslyD(A) = H,. For more technical details in scales of
Hilbert spaces see [10].

We say thatd € P?(A) is an’H_,—singular perturbatiorof A of rankn if the setD defined in (1) is dense
in H;. In turn (see again [5, 17]), the sBtis dense irf+; if and only if

(RanB(2))" NH;, = {0}, Imz # 0. (3)

In this paper we study the problem of existence and construction of operatatsich areH_,—singular
perturbations ofd and solve the eigenvalue problem

Ay, = My, k=1,2, ... (4)

for a given sequencé = {\;}¢2, of real numbers.

The first detailed investigation of the point spectrum of self-adjoint extensions of symmetric operators in
the general case was carried out by M.Krein [19]. The detailed study of the spectral properties of self-adjoint
extensions of a symmetric operator with a gap was given in [14, 2, 1, 11, 12]. In particular in [12] (see, also [2]),
the existence of a self-adjoint extension with a given point spectrum inside the corresponding gap is proved. In
[1, 11, 14] spectral properties of appropriate self-adjoint extensions are characterized in terms of boundary value
spaces and corresponding Weyl functions. We refer also to the survey [21] where a general theory of rank-one
perturbations of self-adjoint operators is presented.

Here we consider the eigenvalue problem (4) for self-adjoint extensions of symmetric operators in the frame-
work of the singular perturbation theory (see, [6, 7, 8, 9, 13, 17, 3, 20, 22] and and references therein). We
note that for finite sequencds.; }_,, {4« }}_, the corresponding problem was studied in [18, 15]. In [18] it
was additionally assumed thatis positive operator andl;, < 0. We also remark that the case’f , —singular
perturbations was not specified in [18, 15]. The main result of the present work is given by the following theorem.

Theorem 1.1 Let A be a self-adjoint unbounded operator in a separable Hilbert sgdc&iven a sequence
of real numbers\ = {)\; : k € N} (each); may be repeated with an arbitrary multiplicity) there exists an
‘H_o—singular perturbation4 of A such that

A Co,(A).

If A = {\x}}_, is finite,n < oo, then theH_,—singular perturbationA of A of rankn solving the eigenvalue
problem

Awk = )\kw/w k= 17 ceey 1,
is uniquely defined by the given orthonormal system of veg¢tpsatisfying the condition
span{y }r_; NHy = {0}.

The validity of this theorem follows from Theorems 2.1-5.1 presented below.

2 Preliminaries

Denote byR(z) := (A — z)~! the resolvent of an operatet. The following theorem gives a version of the
Krein’s formula for the resolvents. In particular the functiobelow is the Weyl function in the sense of [14, 11].

Theorem 2.1 The operator function
R(z) := R(2) 4+ B(z), Imz # 0 (5)

defines the resolvent of a self-adjoint operatbe P!(A) if and only if the operator functio(z) admits the
representation

B(z) = b~ (2)(-,n(2)n(2), (6)
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where the vector valued functiofiz) € H \ D(A) satisfies the equation

R(§)n(z) = R(z)n(§), Imz,Im¢ # 0, @)
and the scalar functioh(z) satisfies the equation
L= L )€ = 0. and B:) =) ®)

The operatord is a rank oneH_,—singular perturbation ofA if
n(z) € H\ Hy 9)
at least for one point (and therefore for all points) on the complex plane Wit =~ 0.

Proof. Itis well known (see [16], Chapter VIII) that an operator functiBtx) is the resolvent of a closed
operator if and only ifR(z) is a pseudo-resolvent, i.e., it satisfies the Hilbert identity

R(2) = R(€) = ( = ) R(2)R(€), Imz,ImE # 0, (10)
and
KerR(z) = {0}, Imz # 0. (11)

Let us show that both these conditions are fulfilledjfinitz) defined by (5). By the Hilbert identity faR(z) and
(6) we find that (10) is equivalent to

b= (2) (- n(2)n(2)=b"" (&) (-, n(£))n ()
=(z = b~ (), n€)R(2)n(&) + (z = b~ (2) (-, R(E)n(2))n(2) (12)
+(z = b M 2)b (), () (n(£),n(2))n(z), Imz, ImE # 0.

b= (2)(,n(2)n(2) =0~ () (- n(§))n(8)
= b1, n(E)n(z) = n(€)] + b7 () (-, n(2) = n(€)])n(=) (13)
+ (2 = b (21O (- n(€) (n(€), n(2))n(=),

where we have used the relation
n(z) = (&) + (z = O R(2)n(s)
which follows from (7). One can easily reduce (13) to the equality
b1 (2)(n(©))n(2) = b~HE) (- m(€))n(z) = (= = )b~ ()b~ (E)(n(€). n(2)) (-, n(€))n(2)

which is implied by the first part of (8). This proves thfatz) is a pseudo-resolvent. Let us check (11). By (5),
for f € H\ {0}, we have

R(z)f = R(z)f + b (2)(f.n(2))n(z) # 0,

since0 # R(z)f € D(A) andn(z) € D(A) by (9). 'I:hus (10) and (~11) are true and therefore the operator
functignR(z) in~(5) is the resolvent of a closed operatbrTo show thatd is self-adjoint we only need to check
that(R(z))* = R(z). Clearly this relation is equivalent to the second equality in (8):

(R(2))" = R(2) + 071 (2) (-, n(2))n(2) = R(2).
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Let us to show thatd € P!(A). Denote by\. the one dimensional subspaceZhspanned by;(z). Put
M, =H o N, and define

D := R(2x)M, = R(2)M..

By (5) the operatord coincides withA onD. We assert thaD is dense in{. Assume for a moment that its
closureD satisfiesD # H. Then there exists a vectpre H, such that

0=(D,p) = (R(2)M.,p) = (M., R(2)p),

i.e., we get thatk(z)p € N, andR(z)p € D(A). This contradicts the definition of/, and (9). Finally we
remark that due to conditions (6), (7), and @snB(z) NH; = {0} for all z with Imz # 0. Thus,A is a rank
oneH_y—singular perturbation oAl.

Vice versa, ifA is a rank one perturbation of, then the resolvent ofl has the form (5), (6), where the
function b satisfies the second equality in (8). Repeating arguments based on Hilbert identity for the resolvents
R(z) andR(z) it is easy to check the validity of (7) and the first part of (8). As above, condition (9) means that
Ais H_y—singular perturbation ofl. O

3 Rank one singular perturbations with an additional eigenvalue

Theorem 3.1 For any self-adjoint unbounded operatdrin 7+, a given vector), € H \ ‘Hy, |41 = 1, and
any real number\; € R, there exists a uniquely defined rank die ;—singular perturbationA = A; of A,
solving the eigenvalue problem

A = M. (24)
Proof. Giveny, € H\ Ha, ||[¢1]] = 1, andA; € R, define
m(z) = (A= X)R(2)¢1, Imz #0, (15)
and
bi(2) :== (M — 2)(¢1, m(2)), (16)
whereR(z) = (A — z)~!. Rewriting (15) in the form
m(z) =1+ (2 = M)R(2)¢n 17)

we see thaty (z) € H \ Hi, sincey; € H \ Hy andR(z)y; € D(A). Let us show that; (z) andb; (z) satisfy
equations (7) and (8) resp. Indeed, by (17) we get

m(z) =m(§) + (A —A)R(2)1 — (A — M) Ro(§) v
=m(&) + (2 = R(z)m (&) = (A = ER(2)m(€)

which is equivalent to (7). Further we will prove (8). Using (16) and (17) we have
bi(2) = b1(€) = (€ = 2) + (€ = M)*(R(E)¥1, 1) — (2 = )2 (R(2)¢1,901), (18)

where we took into account thit), || = 1. Similarly we get

(€ = 2)(m(2),m (&) =(§ = 2) (1, ¥1) + (2 = M)(R(2)1,91) + (€ = A)(R(E)¢1, ¢1)
+ (2 = M)(€ = M)(R(2)R(§)¥r, )]

From the latter relation, using the Hilbert identity for the resolventipive obtain

(€ = 2)(m(2),m() = (€ — 2) = (2 = A)*(R(2)¥1,91) + (€ = M) *(R(E)¥r, ¥). (19)
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Comparing (18) and (19) we get the first equality in (8). Therefore, by Theorem 2.1 the operator function

1
(A = 2) (1, m(2))

is the resolvent of some operatd; € Pl(A). MoreoverA; is a rank oneH{_,—singular perturbation ofi,
sincen;(z) € H \ H; due toy, € H\ H;.
Now we will check thatd; solves the eigenvalue problem (14). Indeed, due to (17), (20) we have

Ri(2) = R(z) + Bi(2) = R(2) + (m(2)m(2) (20)

1 _ 1
On = 2)(0nm(2) (P1,m(2) (1 + (2 = M) R(2)¢1) = s

Finally we have to prove the uniqueness of the operdtorAssume that there exists another operatore
PL(A) such thatd¢; = A\1¢/1. By Theorem 2.1 its resolvent admits the representation

Ri(2)y1 = R(2)yY1 +

Y1

Ri(z) = R(2) + B(z), Imz # 0,
whereB(z) is a rank one operator function of the fotm! (2)(-, n(2))n(z). Since

1

Ra(2)r = Ra(2)n = — v,
we see that

B()gr = (0 = 2)" e = R(=)vn = (u = 2)7 (A= A)R()en. (21)
In particular,B(z)i; # 0 (recalling that; ¢ D(A)). On the other hand

B(2)gr = b7 (2) (Y1, n(2))n(2). (22)

Therefore for some(z) # 0

1(z) = ¢(2)(A = M) R(2)¢1 = c(2)m(2), Imz # 0,
It easily follows from (7) that: := ¢(z) does not depend onand by (21), (22)(z) = |¢|*b1(z). This proves
thatB(z) = Bi(z). O
4 Finite rank perturbations solving the eigenvalue problem

Theorem 4.1 For any self-adjoint unbounded operatdrin 7, a given finite sequence = {\;}?_, of real
numbers, and a family of orthonormal vectdrg; } 7, such that

span{; }i_; NHy = {0}, (23)
there exists a uniqui(_,—singular perturbationd = A,, € P"(A) solving the eigenvalue problem

Proof. The theorem is already proved in the case 1 (see Theorem 3.1). We will prove the general case
by induction. Letn = 2 and let the operataod; be defined by (20). We will show that; is uniquely defined by
the similar formula

Ry(z) = (Ay — 2) 7" = (A1 — 2) 7" 4+ b3 (2) (-, m2(2))m2(2), Imz # 0,
where

n2(2) == (A1 — X2)R1(2)1)2 = 12 + (2 — A2) R1(2)1)2, (25)
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and

ba(2) = (A2 — 2) (Y2, m2(2)). (26)

To this aim we use Theorem 3.1, whetes replaced by4,. But at first we have to prove that, € H \ H;,
whereH; = H; (A1) is now defined by the operatet;. From (20) it follows that for each fixed, Imz # 0,
the domain of the operatof; has the representation

D(Ay) ={heH|h=f+b"(2)((A=2)f,m(2)m(z), f € D(A)}.

By (17) we see that eadh € D(A4;) has the formh = ci)1 + ¢ with somec € C, p € D(A). Therefore (see,
(23)) we have thaty, ¢ D(A;). Infacty, & D(| Ay |/?) = H,(A;) by similar arguments. Thus, by Theorem
3.1 the operator, is a rank oneH_,—singular perturbation ofi; solving the problemdsys = Asypo. By a
direct calculation we can check thdsy; = A\14;. Indeed using (25), (26) we have

Ry (2)¢1 = Ru(2)r + by ' (2) (1, m2(2))m2(2) = (M — 2) ™y,

as(i1,m2(2)) = 0, due tona(2) = 1o + (2 — A2) R1(2)t2, Y1 L 92, @ndRy(2)¢1 = (M —2)~"¢1. Inthe class

of rank two singular perturbatior82(A) the constructed operatet, is uniquely defined. This easily follows

from Krein’s formula for(A; —z) ~1, the equalitiesi»1); = A\;1);,i = 1,2, and the conditionsy; & Hy, 11 Ls.
Thus, we proved the theorem in the case- 2. One can easily repeat the above construction for the next

step with a pait\s, >3 and continue the procedure up to any finiteWe omit the detailed description and limit

ourselves to presenting the main formulae. The resolvedt,ag defined by induction and has the form

Ri(2) = R(2) + Bu(2) = Rn-1(2) + b (2) (-, 1 (2))1a (2), Imz # 0, (27)

where we recall thak(z) := (A — 2)~ 1,

n

Bu(2) = D b (2) (e (2)mn(2),

k=1
M (2) = (Ak—1 — ) Re—1(2)Yr = ¥x + (2 — M) Re—1(2) ¥k,
and
b (2) = (A = 2) (Y, M (2))-
The uniqueness afl,, in the class of finite rank singular perturbatioR$ (A) easily follows from Krein's
formula (27) for(A,, — z) ™', (23), (24), and the conditionsy, & H1, V5L, k # j. O
5 Infinite rank perturbations with an arbitrary point spectrum

Theorem 5.1 Let A = {)\;,k € N} be a sequence of real numbers (eaghmay be repeated with an
arbitrary multiplicity). Then for any self-adjoint unbounded operatbiin a Hilbert spaceH there exists an
‘H_o—singular perturbation4 such that

A Co,(4).

_ Proof. First we construct an appropriate sequence of veatgrsk € N, which satisfies the equations
A, = M. Letg € H \ H; and therefore

+oo
/ M d(Exg, 9) = oo.
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Here E, denotes the spectral measuredfThen we decompose the real line into an infinite family of bounded
Borel mutually disjoint sets;;, such that

/\Ald(EAM) =aix > 1, i,k=1,2,...
Sik

Obviously Z a;, =00 forallk =1,2,.... SetA, = U6 x and putyy := E(Ay)g. By this construction all

¢y belong toH\H1 andyy, L ¢y, k # [. Moreover, the subspade (span{y }22 ;) has a zero intersection
with H1.
Let us introduce the orthogonal decompositions,

HZH(l)@H(z)EB-"@H(k)EB"'

and
AZA(l)@A(g)EB"'EBA(k)EB

whereH ) := E(Ap)H and A, := A[H ;). By the construction
Vi € Hay \ Hi, k)

whereH; () = Hi(Aw)) is theH;-space in thed ;) —scale of spaces constructed using the operatgy. So,
by Theorem 3 for each pak; and; there exists arH o—singular perturbatlorA(k) € P! (A(r)) such that
i € ap(A(k)) Now we define the operatot as the orthogonal sum of thfe(k),

A= A(l) &) 121(2) b...0D A(k) D ...

The resolvent ofd has the representation,

R(z —i—z by, (2))1k(2)

with
nk(z) = (A - )\k)R(Z)d)k =Y + (Z - )\k)R(Z)l,ZJk € H(k) \Hl,(k)
andby(z) := (\r — 2)(¥r, 7k(2)). The domain ofd has the following description,
DA)={heH|h=F+ b (A=) mz)m(=), | € DA}
k=1
Both, A and A are different self-adjoint extensions of the symmetric operdtos A|D = A|D, where (see (1))
DA =D:={feDA) | (A-2)fm2) =0, k=1,2,...}.

By the above construction the range of the oper&tpr) = R(z) — Ry(z) satisfies the condition (3). Therefore
the setD is dense irf{; and the operatad is the{_,—singular perturbation ofl solving the eigenvalue problem
A, = Methe, k=12, ... O
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