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Abstract. Discrete time dynamical systems modeling the conflict interaction
between a priori non-annihilating opponents are introduced and investigated.
Starting from a vector version of the logistics equation, a new mathematical
models describing the conflict interactions is given. This model intends to give
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is proven in the case of a purely repulsive interaction, as well as in the one of
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1. Introduction

In this paper we develop the mathematical tools for the study of dynamical
systems describing the phenomenon of conflicts between a priori non-annihilating
opponents. Our approach is related to the mathematical theory of population dy-
namics (see e.g. [8]-[11]), which describes the quantitative changes of conflicting
species and is based on different variants of the well-known Lotka-Volterra equa-
tions. However, due to particular features of our model, we are able to describe the
attraction limit behavior.

We start with the vector version of the Lotka-Volterra equation, which involves at
least two opponents. To each opponent we associate a stochastic vector in Euclidean
space Rn, i.e., we start with a couple of vectors p, r ∈ Rn, n > 1, ‖p‖1 = ‖r‖1 = 1
(‖ · ‖1 denoting the l1 norm on Rn, i.e., ‖p‖1 =

∑n
i=1 |pi| . The evolution of

p, r in time under the conflict interaction is governed by the vector version of the
Lotka-Volterra equation {

ṗ = p> (1−Ar)
ṙ = r> (1−Ap),
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where 1 is the unit vector, A denotes the interaction matrix acting in Rn, and >
stands for a certain kind of vector composition defined below.

In fact we use here only the simplest difference analogue of these equations, i.e.,
we replace continuous time by a discrete time t ∈ N0 = {0, 1, 2, · · · }. In terms of
coordinates these equations have form

{
pi(t + 1) = 1

z(t)pi(t)(1− αri(t))
ri(t + 1) = 1

z(t)ri(t)(1− αpi(t)) ,
i = 1, ..., n, t ∈ N0,

where pi(0) = pi, ri(0) = ri are the coordinates of the starting vectors p, r, −1 ≤
α ≤ 1, α 6= 0 denotes the interaction coupling constant (now A = αI, I being the
unit n × n matrix), and the normalizing coefficient function z(t) is determined by
the non-annihilating condition ‖p(t)‖1 = ‖r(t)‖1 = 1. Depending on the sign of α,
we have two different cases of the interaction: repulsive with α > 0, and attractive
with α < 0. For α = 0 we have a trivial evolution.

The sequence of states

p(t) = {pi(t)}n
i=1, r(t) = {ri(t)}n

i=1, t = 0, 1, 2, ...

generates a trajectory of a dynamical system in Rn ×Rn. We study the behaviour
of such trajectories, prove the existence of the invariant limiting states p(∞), r(∞),
and describe the distribution of the limiting vectors p(∞), r(∞) in Rn. For appli-
cations and examples see [1]-[4],[7].

2. The conflict dynamical system

In this section we introduce the dynamical system describing the discrete time
conflict interaction between two non-annihilating opponents distributed on a finite
set of controversial positions.

Let Ω = {ω1, ω2, ..., ωn}, n > 1, denote a finite space of controversial positions
for a pair of opponents which are represented by discrete probability measures µ
and ν on Ω. The starting distributions of µ, ν along Ω are given by two sets of
numbers: {

pi := µ(ωi) ≥ 0,
∑n

i=1 pi = 1
ri := ν(ωi) ≥ 0,

∑n
i=1 ri = 1.

By this we associate with the opponents two stochastic vectors p = {pi}n
i=1 and

r = {ri}n
i=1 from Rn

+, with positive coordinates, pi, ri ≥ 0, and unit l1-norms,
‖ p ‖1=‖ r ‖1= 1.

The conflict interaction between opponents is represented in the form of a non-
linear and non-commutative conflict composition (denoted by >) between the
vectors p, r. > is defined as follows

p>r = p>,1, r>p = r>,1,

where the coordinates of the new vectors p>,1, r>,1 from Rn
+ are defined as follows:

(1) p>,1
i :=

1
z
pi(1− αri), r>,1

i :=
1
z
ri(1− αpi), i = 1, 2, ..., n,

where −1 ≤ α ≤ 1, α 6= 0, denotes a coupling constant, and a normalizing co-
efficient z is chosen such that the vectors p>,1, r>,1 are stochastic too (this de-
mand exactly reflects our intention to study the conflict interaction between non-
annihilating opponents). One can easily find that z = 1−α(p, r) where (·, ·) stands
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for the inner product in Rn. We observe that formulae (1) are well-defined only if
the starting vectors and the coupling constant satisfy the condition:

(2) α 6= 1
(p, r)

.

Given a starting pair of vectors p,q the iteration of the mapping

f> :
{

p
r

}
→

{
p>,1

r>,1

}

generates a discrete trajectory of the conflict dynamical system in the direct product
of spaces Rn

+ × Rn
+:

(f>)N :
{

p
r

}
→

{
p>,N

r>,N

}
, N = 1, 2, ...

The couple of vectors p>,N , r>,N is called the state of the conflict dynamical system
at the N -step of interaction. The problem is to study the behavior of these states
as N → ∞. Our main result which, we might call the Theorem of conflicts, reads
as follows.

Theorem 1. For each pair of stochastic vectors p, r ∈ Rn
+, with (p, r) > 0,

and any fixed coupling constant α 6= 0, −1 ≤ α ≤ 1 with condition (2), the limiting
vectors

p>,∞ = lim
N→∞

p>,N , r>,∞ = lim
N→∞

r>,N ,

exist in Rn
+, and are invariant with respect to the action of conflict composition:

(3) p>,∞ = p>,∞>r>,∞, r>,∞ = r>,∞>p>,∞.

Moreover

(4)
{

p>,∞ ⊥ r>,∞, if p 6= r and 0 < α ≤ 1
p>,∞ = r>,∞, otherwise.

Here we will prove this theorem only in the two special cases α = ±1, i.e., when
the conflict interaction is purely repulsive, α = 1, resp., purely attractive, α = −1.
For the cases −1 < α < 1 see [3].

2.1. The purely repulsive case. Let p 6= r and α = 1. Here we reproduce only
a sketch of the proof (for more details see [5, 6]). Assume 0 ≤ ri < pi ≤ 1 for some
i. Then

(5) lim
N→∞

r>,N
i = r>,∞

i = 0

and

(6) lim
N→∞

p>,N
i = p>,∞

i > 0.

(5), (6) are obviously true if 0 = ri or pi = 1. So we have to prove (5), (6) only
under the condition 0 < ri < pi < 1. To this aim we consider the sequence of ratios

R
(N)
i :=

p>,N
i

r>,N
i

, N ≥ 1.
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Using (1) one can easily show (for details see [5, 6]) that the sequence R
(N)
i is

monotone increasing as N →∞, and moreover

(7) R
(N)
i =

p>,N
i

r>,N
i

→∞, N →∞.

This implies r>,N
i → 0, since p>,N

i < 1, that proves (5). To prove (6) we consider
the sequence of differences

0 < di := pi − ri, d
(N)
i := p>,N

i − r>,N
i , N ∈ N = {1, 2, ...}

From (1) it follows that

(8) 0 < d
(1)
i = p>,1

i − r>,1
i =

pi(1− qi)− ri(1− pi)
1− (p, r)

=
di

1− (p, r)
.

Hence 0 < di < d
(1)
i < 1. By induction, we prove 0 < d

(N)
i < d

(N+1)
i < 1 for all

N ∈ N. Therefore, the sequence d
(N)
i is monotone increasing too, as N →∞, and

moreover there exists a finite limit

(9) 0 < d∞i = lim
N→∞

d
(N)
i ≤ 1, i = 1, 2, ...

Besides, we see that due to r>,N
i → 0,

(10) lim
N→∞

p>,N
i = p>,∞

i = d∞i > 0.

Similarly, in the case 0 < pk < rk < 1 for some k we get,

(11) lim
N→∞

p>,N
k = p>,∞

k = 0,

and

(12) lim
N→∞

r>,N
k = r>,∞

k = −d∞k > 0.

Further, if p 6= r but 0 6= pj = rj for some j, then it is not hard to understand
(for details see Lemma 2 in [6] ) that in this case both coordinates converge to zero,

(13) lim
N→∞

p>,N
j = lim

N→∞
r>,N
j = 0.

In turn, (5), (11), and (13) imply that (p>,N , r>,N ) → 0 and therefore the lim-
iting vectors, which exist due to (10), (12), and (13) are orthogonal. By (1) any
orthogonal vectors are invariant with respect to the action of the conflict composi-
tion.

Let p = r and α = 1. Then obviously p>,N
i = r>,N

i for all i and all N , and we get
in the limit (see Proposition 6 in [6]) the invariant equilibrium state, p>,∞ = r>,∞,
with coordinates

(14)
{

p>,∞
i = r>,∞

i = 1/m, if pi = ri 6= 0
p>,∞

i = r>,∞
i = 0, otherwise,

where m ≤ n denotes the amount of non-zero coordinates in the starting vectors.
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2.2. The purely attractive case. Let α = −1 and (p, r) > 0. The coordinates
of the new stochastic vectors p>,1, r>,1 ∈ Rn

+ are defined as follows:

(15) p>,1
i :=

pi(1 + ri)
1 + (p, r)

, r>,1
i :=

ri(1 + pi)
1 + (p, r)

, i = 1, ..., n

We will study the behaviour for N → ∞ of the coordinates p>,N
i , r>,N

i , N ∈ N,
defined by induction,

(16) p>,N
i :=

p>,N−1
i (1 + r>,N−1

i )
1 + (p>,N−1, r>,N−1)

, r>,N
i :=

r>,N−1
i (1 + p>,N−1

i )
1 + (p>,N−1, r>,N−1)

, i = 1, ..., n

Our arguments are based on the following Propositions.

For fixed i let us consider the sequence of differences

di := pi − ri, d
(N)
i := p>,N

i − r>,N
i , N ∈ N

Proposition 1. In the case α = −1 the sequence d
(N)
i is monotone decreasing

as N →∞ and moreover

(17) lim
N→∞

d
(N)
i = d∞i = 0, i = 1, ..., n.

Proof. If di = 0, then by (15) p>,1
i −r>,1

i = d
(1)
i = 0 too. Therefore by induction,

d
(N)
i = 0 for all N . Consider the case di 6= 0. Then we assert that the sequence
|d(N)

i | is monotone decreasing. Indeed, due to (p, r) > 0 on the first step we have

(18) | d(1)
i |=| p>,1

i − r>,1
i |= | di |

1 + (p,q)
< |di|.

By induction we get

(19) |d(N+1)
i | <| d(N)

i |, N = 1, 2, ...

since obviously (pN , rN ) > 0 for all N . Therefore, there exists the limit

(20) lim
N→∞

d
(N)
i = d∞i < 1.

Moreover it is easily seen that this limit is zero since

d
(N)
i = di

N∏

l=1

(1 + (p>,l,q>,l)−1

and

(21)
N∏

l=1

(1 + (p>,l,q>,l)−1 → 0, N →∞.

In fact (21) follows from the existence of a constant c, independent of l, such
that (p>,l,q>,l) > c > 0. The latter inequality is true since the starting vectors p, r
are non-orthogonal and the difference between the stochastic vectors p>,N , r>,N is
monotone decreasing thanks to (19). Thus, we proved that d

(N)
i → 0, N →∞. ¤

Proposition 2. Let pi 6= 0 6= ri. Then

(22) R
(N)
i :=

p>,N
i

r>,N
i

→ 1, N →∞.
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Proof. Clearly, if pi/ri = 1, i.e., pi = ri, then obviously p>,N
i = r>,N

i and
therefore by induction R

(N)
i = 1 for all N . Let now 0 6= pi 6= ri 6= 0. For example,

let pi > ri. Then from (15) it follows that 1 < R
(1)
i < pi/ri since

R
(1)
i =

p>,1
i

r>,1
i

=
pi + piri

ri + piri
=

pi

ri
· 1 + ri

1 + pi
.

Therefore pi > ri implies p>,1
i > r>,1

i and using (16) by induction we have

(23) 1 < R
(N)
i < R

(N−1)
i , N = 1, 2, ...

This ensures (22), since we have already proved that p>,N
i − r>,N

i → 0 (see (17)).
¤

Proposition 3. Assume

pi > pk ≥ 0 and ri > rk ≥ 0 for some i, k.

Then

(24) p>,N
i > p>,N

k and r>,N
i > r>,N

k for all N ,

and moreover p>,∞
k = r>,∞

k = 0.
Proof. Indeed, by the assumption and due to (15) we easily get,

p>,1
i

p>,1
k

=
pi

pk
· 1 + ri

1 + rk
>

pi

pk
> 1.

Similarly,
r>,1
i

r>,1
k

>
ri

rk
> 1.

Therefore
p>,1

i > p>,1
k , r>,1

i > r>,1
k ,

and by induction using (16),

1 <
pi

pk
<

p>,1
i

p>,1
k

· · · < p>,N
i

p>,N
k

· · · ,

(25) 1 <
ri

rk
<

r>,1
i

r>,1
k

· · · < r>,N
i

r>,N
k

· · · , N = 1, 2, ...

Thus, sequences of the ratios
p>,N

i

p>,N
k

,
r>,N
i

r>,N
k

are monotone increasing as N →∞, which proves (24). Assume for a moment that
there exists a finite limit,

1 < lim
N→∞

p>,N
i

p>,N
k

=
p>,∞

i

p>,∞
k

≡ p>,∞
i

p>,∞
k

· 1 + r>,∞
i

1 + r>,∞
k

= M < ∞.

This is only possible if r>,∞
i = r>,∞

k , which contradicts (25). Thus M = ∞ and
therefore p>,∞

k = 0, as well as r>,∞
k = 0. ¤

Proposition 4. Assume pi = ri for all i, then
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(26)
{

p>,∞
i = r>,∞

i = 1/m, if i ∈ S∞=
p>,∞

i = r>,∞
i = 0, otherwise,

where S∞= := {i : pi = maxj{pj}} and m = |S∞= | denotes the cardinality of the set
S∞= .

Proof. If pi > pk for some i, k then p>,∞
k = r>,∞

k = 0 due to Proposition 3. If
pi = pk = ri = rk, then obviously p>,N

k = r>,N
k = p>,N

i = r>,N
i for all N . That

is, the non-zero limits limN→∞ p>,N
k = limN→∞ r>,N

k = p>,∞
k = r>,∞

k 6= 0 appear
only iff both i and k belong to S∞= . From ‖p>,∞‖1 = ‖r>,∞‖1 = 1 and the fact
pi = ri, ∀i, it follows that p>,∞

k = r>,∞
k = 1/m. ¤

Proposition 5. For a pair i, k at least one of the following two possibilities
holds:

(a) both coordinates p>,N
i and r>,N

i , or p>,N
k and r>,N

k , converge to zero:

lim
N→∞

p>,N
i = lim

N→∞
r>,N
i = 0, or lim

N→∞
p>,N

k = lim
N→∞

r>,N
k = 0,

(b) both differences d
(N)
ik := p>,N

i − r>,N
k and d

(N)
ki := p>,N

k − r>,N
i converge to

zero:
lim

N→∞
d
(N)
ik = lim

N→∞
d
(N)
ki = 0.

Proof. Since the differences d
(N)
i converge to zero (see (17)), there are only two

possibilities:
(a) The inequalities (24) (or the opposite ones) hold for some N0. And then by

Proposition 3 the corresponding relations are fulfilled for all N > N0 and moreover
p>,∞

k = r>,∞
k = 0 (or resp., p>,∞

i = r>,∞
i = 0).

(b) In this case there does not exist an N0 as in the proof of case (a) and
therefore for each N ∈ N the segments [p>,N

i , r>,N
i ] and [p>,N

k , r>,N
k ] have non

void intersection. Then the differences d
(N)
ik , d

(N)
ki converge with necessity to zero

together with d
(N)
i , d

(N)
k as proven by Proposition 1. ¤

Let us introduce the notation:

(27) S0 := {k : p>,∞
k = r>,∞

k = 0}, S∞ := {1, 2, ..., n} \ S0

Proposition 6. For all i, k ∈ S∞ the limiting coordinates exist, are non-zero,
and equal:

(28) lim
N→∞

p>,N
i = p>,∞

i = r>,∞
i = lim

N→∞
r>,N
k = r>,∞

k = p>,∞
k 6= 0.

Proof. Since all vectors p>,N , r>,N , N = 1, 2, ... are stochastic from Proposition
5 it follows, there exist only one non-zero point 0 < a ≤ 1 such that

a ∈ lim
N→∞

⋂

i∈S∞
[p>,N

i , r>,N
i ].

Therefore due to d
(N)
ik , d

(N)
ki , d

(N)
i , d

(N)
k → 0 as N →∞ (28) is true. ¤

This completes the proof of Theorem 1.
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3. Description of the limiting distributions

3.1. The purely repulsive case, α = 1. Given a couple of stochastic vectors
p, r ∈ Rn

+, (p, r) > 0, define

D+ :=
∑

i∈N+

di, D− :=
∑

i∈N−
di,

where
di = pi − ri, N+ := {i : di > 0}, N− := {i : di < 0}.

Obviously
0 < D+ = −D− ≤ 1,

since p 6= r, and
∑

i pi −
∑

i ri = 0 = D+ + D−.

Theorem 2. In the purely repulsive case, α = 1, the coordinates of the limiting
vectors p>,∞,q>,∞ have the following explicit representations

(29) p>,∞
i =

{
di/D, i ∈ N+

0, otherwise , r>,∞
i =

{ −di/D, i ∈ N−
0, otherwise,

where D := D+ = −D−.
Proof. By (8), (10), (12) the coordinates of the limiting vectors p>,∞, r>,∞

admit the representation:

(30) p>,∞
i =

{
d∞i , i ∈ N+

0, otherwise , r>,∞
i =

{ −d∞i , i ∈ N−
0, otherwise.

Further, due to (8) we get

d
(1)
i

d
(1)
j

=
di

dj
, i, j ∈ N+ ∪ N−.

By induction,
d
(N)
i

d
(N)
j

=
di

dj
, N = 1, 2, ...,

and therefore
d∞i
d∞j

=
di

dj
.

Thus, thanks to (30), the coordinates of the vectors p>,∞, r>,∞ satisfy the system
of equations:

(31)
p>,∞

i

p>,∞
j

=
di

dj
,

∑

i∈N+

p>,∞
i = 1 i, j ∈ N+,

(32)
r>i
r>j

=
di

dj
,

∑

i∈N−
r>,∞
i = 1 i, j ∈ N−.

It is easy to see that the latter system has the unique solution of the form (29).
Indeed, (31) implies that p>,∞

i = kpdi, i ∈ N+ with some coefficient kp independent
of i. By the condition

∑
i p>,∞

i = 1 we easily find that kp = 1/D. Similarly, thanks
to (32), r>,∞

i = krdi, i ∈ N− with kr = −1/D, since di < 0 for i ∈ N−. ¤
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Remark. From (29) it follows that any transformation p, r → p′, r′, which
does not change the values di and D, preserves the same limiting distribution as
for the vectors p>, r>. A class of such transformations may be presented by a
shift transformation of coordinates, pi → p′i = pi + ai, ri → r′i = pi + ai with
appropriated a′is.

3.2. Attractive case, α = −1.
Theorem 3. In the purely attractive case, α = −1, the limiting vectors p>,∞,q>,∞

are equal and their coordinates have the following representations:

(33) p>,∞
i = r>,∞

i =
{

1/m, i ∈ S∞
0, otherwise ,

where S∞ is defined by (27) and m = |S∞| denotes the cardinality of the set S∞.
Proof. The proof directly follows from Propositions 5 and 6. We only re-

mark that m is determined by the amount of coordinates selected by the condition
limN→∞ p>,N

k = limN→∞ r>,N
k = 0, i.e., it is the cardinality of the set S∞ defined

in (27). ¤
Below we represent several sufficient conditions for k to belong to S0. Simulta-

neously these conditions give some characterization for the points in S∞.
We will use the following notations:

(34) σi := pi + ri, ρi := piri, σ1
i := p>,1

i + r>,1
i ρ1

i := p>,1
i r>,1

i

Proposition 7. If

(35) σi ≥ σk, ρi > ρk, or σi > σk, ρi ≥ ρk,

then

(36) p>,∞
k = r>,∞

k = 0

Proof. By (34) we have

σ1
k = p>,1

k + r>,1
k = 1/z(pk + rk + 2pkrk) = 1/z(σk + 2ρk)

where we recall that z = 1 + (p, r). Therefore each of the conditions (35) implies
that σ1

i > σ1
k. Further, since

(37) ρ1
k = 1/z2(ρk + (ρk)2 + ρkσk),

again from (35) it also follows that ρ1
i > ρ1

k. Thus, by induction σN
i > σN

k and ρN
i >

ρN
k for all N ≥ 1. Therefore, by similar arguments as in the proof of Proposition 3

we get (36). ¤

Let us consider now the critical situation, when for a fixed pair of indices, say i
and k, the values σk − σi, ρk − ρi have opposite signs, for example, σk − σi > 0,
ρk−ρi < 0. In such a case it is not clear what the behavior of coordinates p>,N

i , r>,N
i

and p>,N
k , r>,N

k will be when N →∞. We will show that the limits depend on which
the two values, 2ρi + σi or 2ρk + σk, is larger. Moreover we will show that even
if pk is the largest coordinate, it may happen that p>,∞

k = 0. Let for example,
pk = maxj{pj , rj} and σk = pk + rk > pi + ri = σi, however the value of rk is such
that ρk = pkrk < piri = ρi. Then under some additional condition it is possible
that p>,∞

k = 0. In fact we have:
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Lemma 1. Let for the coordinates pi, ri, pk, rk, i 6= k, the following conditions
be fulfilled:

(38) σk > σi

but

(39) ρk < ρi.

Assume

(40) 2ρk + σk ≤ 2ρi + σi.

Then

(41) p>,∞
k = r>,∞

k = 0.

Proof. We will show that (38), (39), and (40) imply,

(42) p>,1
k + r>,1

k = σ1
k ≤ σ1

i = p>,1
i + r>,1

i

and

(43) p>,1
k r>,1

k = ρ1
k < ρ1

i = p>,1
i r>,1

i .

Then (41) follows from Proposition 7. In reality (42) follows from (40) directly,
without condition (39), see Proposition 8 below. So we have only to prove (43).

With this aim we find the representation for ρ1
i in terms σi and σ1

i . Since
σ1

i = 1/z(σi + 2ρi) we have

(44) ρi = 1/2(zσ1
i − σi)

By (37) and (44) we get

ρ1
i = 1/z2(ρi + ρ2

i + ρiσi) =
1

2z2
(zσ1

i − σi)[1 + 1/2(zσ1
i − σi) + σi]

=
1

4z2
(zσ1

i − σi)(2 + zσ1
i + σi) =

1
4z2

[2zσ1
i + z2(σ1

i )2 + zσ1
i σi − 2σi − zσ1

i σi − σ2
i ]

=
1

4z2
[2zσ1

i + z2(σ1
i )2 − σ2

i − 2σi]

Therefore

(45) ρ1
k − ρ1

i = 1/z2[ρk(1 + ρk + σk)− ρi(1 + ρi + σi)]

Thus we have

(46) ρ1
k−ρ1

i = 1/4z2[2z(σ1
k−σ1

i )+z2((σ1
k)2−(σ1

i )2)+((σi)2−(σk)2)+2(σi−σk)] < 0

due to starting condition (39), and (42). Thus ρ1
k < ρ1

i , i.e., (43) is true. ¤

We stress that (41) is true in spite of σk > σi. Of course, if σk < σi and ρk < ρi,
then (41) holds without any additional condition of the form (40).

Proposition 8. The conditions (40) and (42) are equivalent.
Proof. By (34)

σ1
i = p>,1

i + r>,1
i = 1/z(pi + ri + 2piri) = 1/z(σi + 2ρi)

Therefore
σ1

k − σ1
i = 1/z[σk + 2ρk − (σi + 2ρi)] ≤ 0
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if and only if (40) is fulfilled. ¤

What about the case

(47) σk > σi, ρk < ρi, 2ρk + σk := κk > κi =: 2ρi + σi?

Proposition 9. Let κN
k := 2ρN

k + σN
k . Under the initial conditions (47) the

sign(κN
k − κN

i ) may at most change one time as N →∞.
Proof. On the first step by Proposition 8 we get σ1

k > σ1
i , since κk > κi.

(a) If we assume that ρ1
k ≥ ρ1

i , then obviously κ1
k > κ1

i , and κN
k > κN

i for all N .
Therefore the sign(κN

k − κN
i ) is the same for all N .

(b) If we assume that ρ1
k < ρ1

i , then we have to consider two subcases.
(b’) κ1

k > κ1
i . Since now we have σ1

k > σ1
i and ρ1

k < ρ1
i , this means that after the

first step we get again the starting situation and the sign(κN
k −κN

i ) is not changed.
(b”) Finally if κ1

k ≤ κ1
i , i.e., the sign(κ1

k − κ1
i ) is opposite to sign(κk − κi),

then we have: σ1
k > σ1

i , ρ1
k < ρ1

i , κ1
k ≤ κ1

i , and by Lemma 1, κN
k < κN

i , for all
N = 1, 2, .... ¤

We remark that, as a consequence of the Proposition 9 and its proof, there is
only one chance to observe the changing of the sign(κN

k − κN
i ) in the case where

(47) holds (i.e., it is the sub-case (b”)).
The hypotheses is: this sub-case in general does not meet. However we do not

have a proof of this at the moment.
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