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Editorial Introduction

The present volume, entitled “Interpolation, Schur functions and moment prob-
lems”, is the second in the new subseries LOLS (Linear Operators and Linear
Systems of the series Operator Theory: Advances and Applications). The main
part of this volume is a selection of essays on various aspects of what is by some
authors called Schur analysis.

To present the papers and set the volume into perspective, let us recall that a
function analytic and contractive in the open unit disk is called a Schur function. In
1917, Schur associated to such a function a sequence, finite or infinite, of numbers
in the open unit disk D, called Schur coefficients. One can associate such a sequence
also to a function analytic and with a positive real part in . Such functions are
called Carathéodory functions and the associated coefficients are sometimes called
Verblunsky coefficients. Carathéodory functions appear in the trigonometric mo-
ment problems via the Herglotz representation formula. Carathéodory and Schur
functions have no poles in the open unit disk. Allowing functions with poles in
D was first considered by Takagi in his 1924 paper [7]. Functions of the form

s(z) = an’éj)z*)* (where p(z) is a polynomial of degree n) play an important role
in that paper, and are a particular instance of what was later known as generalized

Schur fungtions. These are functions meromorphic in I and such that the kernel
S
s. Generalized Schur functions have been introduced independently (and in differ-
ent ways) by M.G. Krein and H. Langer [5] (these authors also defined in a similar
way generalized Carathéodory functions) and by C. Chamfy and Dufresnoy [3],
[2]. The theory of Schur and generalized Schur functions also make sense in the
matrix and operator-valued cases, and are a continuous source of new problems, as
is illustrated in the papers presented in this volume. We note that the translation
of the papers of Schur and research papers on the Schur algorithm form the con-
tents of volume 16 of the series OTAA, see [4] and that operator-valued generalized
Schur functions have been studied in the volume 96 of the series OTAA, see [1].
Now we can say that under the word Schur analysis one encounters the vari-
ety of problems related to Schur and Carathéodory functions such as interpolation
problems, moment problems, study of the relationships between the Schur coeffi-
cients and the properties of the function, study of underlying operators,... Such
questions are also considered in the setting of generalized Schur and generalized
Carathéodory functions, and in the “line case”, where functions analytic in a half-

has a finite number of negative squares in the domain of holomorphy of
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plane rather than in the open unit disk are considered and where Hankel operators
replace Toeplitz operators.

The volume contains seven papers, and we now review their contents:

Boundary interpolation of generalized Schur functions: In the paper “Basic bound-
ary interpolation for generalized Schur functions and factorization of rational J-
unitary matriz functions” by D. Alpay, A. Dijksma, H. Langer and G. Wanjala,
the authors develop the counterpart of the Schur algorithm for a generalized Schur
function at a boundary point. This approach allows to solve the so-called basic in-
terpolation problem introduced in earlier work for an inner point. In the paper
“Boundary Nevanlinna—Pick interpolation problems for generalized Schur func-
tions”, V. Bolotnikov and A. Kheifets solve three different multipoints boundary
interpolation problems. In both papers the problems take into account the partic-
ularities of the nonpositive case and have no direct analog in the positive case.

Discrete first-order systems: In a previous paper (which appeared in the first vol-
ume of the LOLS subseries), D. Alpay and I. Gohberg introduced the characteristic
spectral functions associated to a discrete first order systems. The paper “Discrete
analogs of canonical systems with pseudo-exponential potential. Inverse problems”
continues this study and focuses on inverse problems. An important role is played
by the solutions of an underlying Nehari interpolation problem which take unitary
values on the unit circle and which admit a generalized Wiener-Hopf factorization.

Schur parameters of pseudocontinuable Schur functions: In the paper “Shift op-
erators contained in contractions, Schur parameters and pseudocontinuable Schur
functions”, V.K. Dubovoy studies relationships between the maximal shift and
coshift operator of a completely non unitary contraction. A main result in the
paper is the characterisation of sequence of Schur coefficients for Schur functions
which are not inner but admit a pseudo-analytic continuation of bounded type in
the exterior of the open unit disk. The methods of the paper are an illustration of
the feedback between function theory and operator theory methods.

The matrix-valued case: The matrix-valued case has difficulties of its own, in
particular in the degenerate cases. In the paper “A Truncated Matricial Moment
Problem on a Finite Interval”, A. Choque Rivero, Y. Dyukarev, B. Fritzsche and
B. Kirstein use Potapov’s method of the Fundamental Matrix Inequality (FMI)
to solve a matrix truncated moment problem on an interval. The scalar case had
been considered by M.G. Krein and A. Nudelman (see [6]). A complete description
of the set of solutions is given in the strictly positive case. In the paper “The
Matricial Carathéodory Problem in Both Nondegenerate and Degenerate Cases”,
B. Fritzsche, B. Kirstein and A. Lasarow develop a new approach to the matricial
Carathéodory interpolation problem.

Inversion formula: In the paper “A Gohberg-Heinig type inversion formula involv-
ing Hankel operators”, G.J. Groenewald and M.A. Kaashoek prove a formula for
the inverse of an operator of the form I — KKy where K; and Ko are Hankel



Editorial Introduction xi

operators between matricial L; spaces. The proof is given first for kernel functions
of stable exponential type, and then uses an approximation argument. In the first
step the state space method is used.

We note that the fourth and seventh papers are related to the line case, while
the others deal with the disk case. This ends a short review of this volume.
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Basic Boundary Interpolation for
Generalized Schur Functions and Factorization
of Rational J-unitary Matrix Functions

Daniel Alpay, Aad Dijksma, Heinz Langer and Gerald Wanjala

Abstract. We define and solve a boundary interpolation problem for gene-
ralized Schur functions s(z) on the open unit disk D) which have preassigned
asymptotics when z from D tends nontangentially to a boundary point z; € T.
The solutions are characterized via a fractional linear parametrization for-
mula. We also prove that a rational J-unitary 2 X 2-matrix function whose
only pole is at z; has a unique minimal factorization into elementary factors
and we classify these factors. The parametrization formula is then used in an
algorithm for obtaining this factorization. In the proofs we use reproducing
kernel space methods.

Mathematics Subject Classification (2000). Primary: 47A57, 46C20, 47B32;
Secondary: 47A15.

Keywords. Generalized Schur function, Boundary interpolation, Rational J-
unitary matrix function, Minimal factorization, Elementary factor, Brune sec-
tion, Reproducing kernel space, Indefinite metric.

1. Introduction

Recall that s(z) is a generalized Schur function with s negative squares (for the
latter we write sq_(s) = k), if it is holomorphic in a nonempty open subset of the
open unit disk D and if the kernel

1—s(2)s(w)*

1— zw*

K(z,w) = . z,w € D(s), (1.1)

has k negative squares on D(s), the domain of holomorphy of s(z). We denote
the class of generalized Schur functions s(z) with sq_(s) = k by S, and set S =

The research for this paper was supported in part by the Center for Advanced Studies in Math-
ematics, Ben—-Gurion University of the Negev and by the Netherlands Organization of Scientific
Research NWO (grant B61-524).



2 D. Alpay, A. Dijksma, H. Langer and G. Wanjala

Uk>0Sk. The function s(z) € Sp has a holomorphic and contractive continuation
to all of D and is called a (classical) Schur function. In fact, the following three
statements are equivalent:

(a) s(z) € So.
(b) s(z) is holomorphic on D and bounded by 1 there.
(¢) s(z) has the form

loj| 2 /2” et 4 2
— ) du(t 1.2
WZHajlfazeXp o et—z ue) ) (1.2)

where n is a nonnegative integer, the «;’s are the zeros of s(z) in D\ {0}
repeated according to multiplicity, v is a number of modulus one, and pu(t)
is a nondecreasing bounded function on [0, 27]. The Blaschke product on the
right-hand side of the first equality in (1.2) is finite or infinite and converges
on D, because > (1 — |a;|) < co.

By a result of M.G. Krein and H. Langer [24], a function s(z) € S,; has a
meromorphic extension to D and can be written as

-1

s(z) = Hlf_ﬁﬂ;jz s0(2), (1.3)

where so(z) € So, and the zeros §; of the Blaschke product of order x belong
to D and satisfy so(8;) # 0, j = 1,..., k. Conversely, every function s(z) of the
form (1.3) belongs to S,. It follows from (1.3) that any function s(z) € S has
nontangential boundary values from D in almost every point of the unit circle T.
In particular, a rational function s(z) € S of modulus one on T is holomorphic on
T, and it is the quotient of two finite Blaschke products.

A nonconstant function s(z) € Sg has in z; € T a Carathéodory derivative ,
if the limits

7o = lim s(z) with |9] =1, 7 = lim 5(z) =70 (1.4)
2521 z>z1 2 — 2]
exist, and then

lim s'(z) = 7.
221

Here and in the sequel 2521 means that z tends from D non-tangentially to
z1. The relation (1.4) is equivalent to the fact that the limit

1—
L 1= 1s(2)
25z 1 — |Z‘

exists and is finite and positive; in this case it equals 7371 21; see [33, p. 48]. The
following basic boundary interpolation problem for Schur functions is a particular
case of a multi-point interpolation problem considered by D. Sarason in [34]: Given
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z1 € T and numbers 7, 71, |79| = 1, such that 7571 21 is positive. Find all functions
s(z) € Sg such that the Carathéodory derivative of s(z) in z; exists and
s(z) — T

lim s(z) = 7, lim =T
2521 zoz1 2 — 21

The study of the Schur transformation for generalized Schur functions in [14],
[1], and [3] motivates the generalization of this basic interpolation problem for
generalized Schur functions, which we consider in this note.

Problem 1.1. Let z; € T, an integer k > 1, and complex numbers 1o, Tr, Tr+1,
.., Tok—1 with |T0| =1, 7, # 0 be given. Find all functions s(z) € S such that

2k—1
s(z) =70+ Y mi(z—21) +0((z — 21)*), 25z (1.5)
i=k

We solve this problem under the assumption that the matrix

P:=73TB (1.6)
is Hermitian, where
Tk 0 0 0
Th+1 s . 0 0
e (L7)
Tok—2 T2k—3 Tk 0
Tok—1 T2k—2 Th+1 Tk
and
0 0 0 (71)k71 (kal)szﬂ
0 0 ( 1)k72<k52)2%k—3 (71)k71(kI1)Z%k—2
B = : (1.8)
0 —(p)ef i Ve £ S b Vi e
a —(;)4 D A ) G D (A 2
Evidently, for k¥ = 1 the expression in (1.6) reduces to 737121 from above. In

Theorem 3.2 we describe all solutions of this problem by a parametrization formula
of the form
a(z)s1(z) + b(z) a(z) b(z)
S(Z) @(Z)(Sl(z)) c(z)sl(z) +d(z)’ (Z) C(Z) d(Z) 5 ( )
where the parameter s;(z) runs through a subclass of S. The matrix function ©(z)
is rational with a single pole at z = z; and J-unitary on T for

(),
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Recall that a rational 2 x 2-matrix function O(z) is J-unitary on T if
©(2)JO(2)* =J, zeT\{polesof O(z)}.

We prove the description (1.9) of the solutions of the Problem 1.1 by making
use of the theory of reproducing kernel Pontryagin spaces, see [19], [4], [5], [6] for
the positive definite (Hilbert space) case and [2], [3] for the indefinite case. The
essential tool is a representation theorem for reproducing kernel Pontryagin spaces
which will be formulated at the end of this Introduction.

Boundary interpolation problems for classical Schur functions have been stud-
ied by 1.V. Kovalishina in [23], [22], by J.A. Ball, I. Gohberg, and L. Rodman in
[12, Section 21] and by D. Sarason [34], and for generalized Schur functions which
are holomorphic at the interpolation points by J.A. Ball in [11]. In these papers
different methods were used: the fundamental matrix inequality, realization theory
and extension theory of operators.

Problem 1.1 is similar to the basic interpolation problem for generalized Schur
functions at the point z = 0 considered in [3]. There, given an arbitrary complex
number oy, one looks for generalized Schur functions s(z) which are holomorphic

in z = 0 and satisfy s(0) = o0¢. In the case that |og| = 1 a certain number of
derivatives has to be preassigned in order to find all solutions. In Problem 1.1 this
additional information comes from the preassigned values 7;, j = k, k+1,...,2k—1,
and 7 =7 =---=71,_1 =0.

The Problem 1.1 is equivalent to a basic boundary interpolation problem
for generalized Nevanlinna functions at infinity, where one looks for the set of all
generalized Nevanlinna functions N(¢) with an asymptotics of the form

So S1 S9k—2 1 .
N(C):_C_CQ_“'_CQIC1+O<<2k>7 C:Z77777—>00~
In fact, these problems can be transformed into each other via Cayley transfor-
mation, and we mention that the cases 757121 > 0, = 0, or < 0 correspond to

the cases sg > 0, = 0, or < 0, respectively, and the hermiticity of the matrix P
in (1.6) corresponds to the reality of the moments s;. On the other hand, each
of these problems has special features and it seems reasonable to study them also
separately. Moreover, the boundary interpolation problem for generalized Nevan-
linna functions at infinity is equivalent to the indefinite power moment problem as
considered in (see [25], [26], [27], [28] [17], [18]). We shall come back to the basic
versions of these problems in another publication.

Basic interpolation problems are closely related to the problem of decompos-
ing a rational J-unitary 2 x 2-matrix function as a minimal product of elementary
factors. For the positive definite case these results go back to V.P. Potapov ([30],
[31] and the joint paper [20] with A.V. Efimov); see also L. de Branges [16, Prob-
lem 110, p 116]. In the indefinite case, for a J-unitary matrix function on the
circle T with poles in D) this was done in [2], and for the line case in [7]. Here we
prove a corresponding factorization result for a rational J-unitary 2 X 2-matrix
function ©(z) with a single pole on the boundary T of D. In fact, with the given
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matrix function ©(z) a basic boundary interpolation problem can be associated,
such that the matrix function which appears in the description of its solutions is
an elementary factor of O(z).

A short outline of the paper is as follows. In Section 2 we study the asymp-
totic behavior of the kernel K(z,w) near z; for a generalized Schur function s(z)
which has an asymptotic behavior (1.5) with not necessarily vanishing coefficients
Ti,...,Tk—1. 1t turns out, that an expansion of s(z) up to an order 2k implies
a corresponding expansion of the kernel up to an order 2k — 1 only if a certain
matrix P is Hermitian. This matrix P, in some interpolation problems called the
Pick or Nevanlinna matrix, is the essential ingredient for the solution of the basic
interpolation problem. It satisfies the so-called Stein equation (see (2.17)) which
is a basic tool for the definition of the underlying reproducing kernel spaces.

In Section 3 the main result of the paper (Theorem 3.2) is proved, which
contains the solution of Problem 1.1. In Section 4 we consider a basic boundary
interpolation problem with data given in several points z1, z2, ..., zny of the circle
T and describe all its solutions via a parametrization formula. In Section 5 the
existence of a minimal factorization of a J-unitary matrix function on T with a
single pole on T is proved. Finally, in Section 6 we show how by means of the Schur
algorithm, based on the parametrization formula of Theorem 3.2, such a minimal
factorization can be obtained.

For the convenience of the reader we formulate here a basic representation
theorem for reproducing kernel Pontryagin spaces, see [9], which will be essentially
used in this paper. Infinite-dimensional versions of this result were proved by
L. de Branges [15] and J. Rovnyak [29] for the line case, and by J.A. Ball [10] for
the circle case. For a rational J-unitary 2 x 2-matrix function ©(z) on D we denote
by P(O) the reproducing kernel Pontryagin space with reproducing kernel

_J- O(2)JO(w)*

1— zw*

Ko(z,w) ) z,w € D(O).

Theorem 1.2. . Let M be a finite-dimensional reproducing kernel Pontryagin space.
Then M = P(0O) for some rational J-unitary 2 x 2-matriz function ©(z) which is
holomorphic at z = 0 if and only if the following three conditions hold:

(1) The elements of M are 2-vector functions holomorphic at z = 0.
(2) M is invariant under the difference quotient operator

(B2 =10 O pem

(3) The following identity holds:

(frg)m — (Rof, Rog)m = g(0)* T f(0), f,g € M. (1.10)

In this case M is spanned by the elements of the form R{©(z)c, where n runs
through the integers > 1 and c through C2.
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In the sequel, for s(z) € S we denote by P(s) the reproducing kernel Pon-
tryagin space with reproducing kernel K(z,w) given by (1.1). The negative index
of this space equals the number of negative squares of s(z).

2. Auxiliary statements

For given numbers 79, 71, ..., 72r—1 we introduce the following k x k-matrices:
T = (tér)z;ioa bor = Toqrst, (2.1)
~ _ E—1—
Bl b =otte (M1 (22)
and
k—1 *
Q = (Csm)s,m:O ’ Csm = Ts+m7(k71)' (23)

Here B is a left upper, ) is a right lower triangular matrix.

Lemma 2.1. Suppose that the function s(z) € S has the asymptotic expansion
2k—1
s5(z) =10+ Z Te(zle)éﬂLO((Z*Zl)%), z=>21, (2.4)
=1

with |7o| = 1, and that the matriz P := TBQ is Hermitian. Then the kernel
K (z,w) has the asymptotic expansion
Ki(zmw)= > om(z—2)(w=-2)™
0<l4+m<2k—2

+0 ((max{|z — 21|, Jw — zl|})2k71) . Z,wSozy,  (2.5)
where the coefficients agpmy for 0 < £,om < k — 1 are the entries of the matrix
P: P = (Com)ymo
Proof. The asymptotic expansion (2.5) will follow if we show that the relation

1—s(z)s(w)” — Z m (2 — 21)(w — 21)"™(1 — zw™)
0<l+m<2k—2
= 0 ((max{]z — 21, Jw— = [H*)  (26)

holds, where the symbol O refers again to the non-tangential limit z, w=z;. To
see this we consider only the radial limits of z and w and observe that then for z
and w sufficiently close to z; the relation
|1 — zw*| > max{|z — z1]|, |w — 21|}
holds. Dividing (2.6) by 1 — zw* we obtain
O ((max{|z — z1|, |lw — z1|})?*
Kaw) = 3 am(e—a)(w—aym = Ol alble =2 D)

0<tsZons max{|z — z1], Jw — z1|}

and this is (2.5).
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To prove (2.6) we set u = z — z1, v = w* — z§. Then the expression on the
left-hand side of (2.6) becomes

1— (10 +mu+nu? + -+ Ow?)) (7§ + 7fv + 7302 + -+ - + O(v?*))
(2.7)

- Zoge+m§2k—2 apmufo™(—uzt — vz — uw).

Comparing coefficients we find that the following relations are equivalent for (2.6)
to hold:

* * *
u: ToT1 = o1, Vi ToTT = (Q0%1, (28)
2. * * . * _ * 2. *
Ut ToTy = 0uozy, UV: TyTI = Qpoo+Qo12] 1021, VT ToTy = o121, (2.9)
3. * * 2 .. * *
ui T3Ty = Qi20Z1, UV ToTy = Qo + 1127 + 2021,
2. * * 3. *
UVt T1Ty = Qo1 + 1121 + o2z, VI TpT3 = 221,
etc. The general relation is
* *
TeTo = Qg—1,m2] + Qe m—121 + Q—1,m—1, (2.10)
Ibm=0,1,...,2k—2, 1 </l+m <2k — 2,

where all o’s with one index = —1 are set equal to zero, and we have to find
solutions g, of this system (2.10). The relation (2.10) can be written as

Qo = _Zfal—l,m_ZTQO‘Z—l,m-ﬁ-l"’_Z}lleT:m-i-h 0</l+m<2k—2, (2.11)
and also as
Qpm = =210 m—1 — 21004 1m—1 + 21Te11T, 0<L4+m<2k—2.  (2.12)

The numbers agp, 0 < £+ m < 2k — 2 in (2.6) or (2.10) can be considered as the
entries of a left upper triangular matrix ﬁ, which has the matrix P as its left upper
k x k diagonal block. According to the assumption, P is a Hermitian matrix. The
elements of the last row of P determine according to (2.11) the left lower k x k
block of ﬁ, which is a left upper triangular matrix, and, similarly, the last column
of P determines by the relations (2.10) the right upper k x k block of P. These
relations and the hermiticity of P imply that also the matrix P is Hermitian.
From (2.12) we find successively

o = TERTe+1, 0=0,...,2k—2,
_ 2 3 _
ap = TraTer1 — 78 (2801 + 23 Tesa), £=0,...,2k -3,
2 3 3 4 5
ez = T32Ter1 — 71 (20 Ter1 + 20Ter2) + 76 (21 Te41 + 221 Teg2 + 20Te43),

0=0,...,2k—4,
_ * k(N2 3 k(3 2 4 5
Qu3z = T321T¢+1 — Ty (Z1 Tor1 + 27 TZ+2) 1 (Zl Te41 + 227Tp42 + 27 Tg+3)

—73(23 701 + 32100 + 329703 + 2870 44), £=0,...,2k — 5,
(2.13)
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and so for m =0,...,2k — 2, we have
. * - S S S+
Qpm = ZOTW—S Zo(*l) (r) Zl+ +17—Z+r+17 0=0,...,2k=2—-m.

With the convention that 7, = 0 for £ < 0, observing that <8> =0if r > s, and
r
substituting s by k — 1 — s we find for 0 </, m < k-1

k—1 k—1
1 . (k—1—s _ .
Apm = Z TZJrT’Jrl(il)k ! S< r >Zf S+T7_m+57(k71) = Z tlrbrscsm

r,s=0 7r,5=0

and hence (see (2.1)-(2.3))
(atm)mmo = TBQ.
These considerations also imply that if a solution of the equations (2.10) exists, it
is unique.
As to the existence of a solution, the first relation in (2.13) determines the

elements of the first column of ﬁ, and the following columns are successively deter-
mined by the other relations of (2.13) or by (2.12). Because of the symmetry of P,

the resulting elements «y are the complex conjugates of ayg, £ =1,2,...,2k — 2,
and «qq is real. Thus, these o’s satisfy all the relations of the system (2.10) and
hence are its unique solution. O

The relation (2.10) implies that
ag_l,mzf +agm-1z1 +tp_1m-1 = TgT:;L, 1<l m<k-1. (2.14)

If we introduce the k& x k-matrices

01 ... 00

Si=10 o 1 0] A=2zIy + S, (2.15)
00 0 1
0 0 0 0

and the 2 x k-matrix

o_<1 o ?)7 (2.16)

T Tha
then the relation (2.14) is equivalent to the relation (2.17) below, and hence we
have:

Corollary 2.2. Under the assumptions of Lemma 2.1 the matriz P satisfies the
Stein equation

P — A*PA = C*JC. (2.17)
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Remark 2.3. 1) Formula (2.8) implies a condition on 79 and 71: the number 77 2
has to be real. As was mentioned in the Introduction, for Schur functions this
number must be nonnegative if it is finite. In (2.9) the first and the last equation
determine a9 and «g1, the second equation is an additional condition. Similarly
in the relations following (2.9): the first and last equation determine agg and agg,
then there are 2 equations left for to determine 1. These additional conditions
are automatically satisfied since the matrix P is Hermitian.

2) If the equations (2.10) have a solution oy, 0 < £+ m < 2k — 2, then these
numbers must be symmetric in the sense that oy, = a,,, 0 < +m < 2k —2,
since they are the coefficients of the expansion of the Hermitian kernel K(z,w).

3) For a function s(z) € S with an expansion (2.4), such that the correspond-
ing matrix P is not Hermitian, the kernel K (z,w) does in general not have an
expansion (2.5). An example is the function

—1
NERS)
which has at z = 1 an expansion (2.4) with any & > 1 but for the corresponding
kernel we obtain, for example, for real z, w,

1 1(z-Dw —1) 1

Kyzw) =+, 0 0 T = v 0(max{l - 2, 1 - wl}),

and the order of the last term cannot be improved. For this example it holds

1/2 k=1,

LR YY) e

4) For a function s(z) which is analytic on an arc around z; and has values of
modulus one on this arc the matrices P are Hermitian for all £ and the kernel
K;(z,w) is analytic in z and w* near z = w = z;. To see this we observe that
the function s(z) satisfies in some neighborhood of this arc the relation s(1/z*) =
1/s(2)*. Now it follows that in this neighborhood, for each fixed w the function
K;(-,w) and for each fixed z the function K,(z, - )* is holomorphic. According to
a theorem of Hartogs [32, Theorem 16.3.1] the kernel K(z,w) is holomorphic in z
and w and the claim follows. We mention, that a function s(z) € S, has the above
properties if and only if in its representation (see (1.2) and (1.3))

-1
) laj| 2 — oy /27r et + 2
_ n _ T
5(2) H 1-7522 7z H o; 1—alz P o et —z uet)
j=1 J j j

the nondecreasing function p(t) is constant at t; where z; = exp(it1). In particular,
all rational functions in S, which are of modulus one on T, have these properties.
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Lemma 2.4. Under the assumptions of Lemma 2.1 the functions

_ 1—s(2)7g
foz) = 1— 22}
and
folz) = 2fer(z) - i(zm L =12, k-1,
1— 227
are elements of P(s) and (fe, fm)p(s) = Cme.
Proof. First we note that for z € Dand ¢ =0,1,...,k—1,
.10
fe@) = i gy gy a0
This implies that for all w’ € D
, 1 o .10
o <£! guree Kol W) Kol ’w/)>p<s> = gy et K0 0) = o),
(2.18)
and for {,m=0,1,...,k—1
1 o r om
I Ko(-,w), Ko(-,w 2.19
WS T Sz <€! Ow*t (w) m! dw'*m (-w )>P(s) (2.19)
1 l+m
= lim 0 Ks(w',w) = e, (2.20)

wz w5z £lm! 6w*€8w’m
The claim follows now from [21, Theorem 2.4] and [8, Theorem 1.1.2]. In fact,
(2.18) and (2.19) imply fer € P(s), ¢ =1,2,...,k — 1, and (2.19) also yields the
formula for the inner product between the f;’s. g

In Section 4 below we also need the following generalization of Lemma 2.1.
To formulate it, we suppose that at two points z1,22 € T, 21 # 2o, the function
s(z) € S has the asymptotic expansions

2k —1
s(z) = 11,0 + Z Ti0(2 — Zl)Z +0 ((Z - Zl)%l) 2oz, (2.21)
(=1

2ko—1
s(z) = 120 + Z Tom (2 — 22)™ + 0 ((2 — 22)*2), 252, (2.22)

m=1

and we introduce for ¢ = 1,2 the k; x k;-matrices

A = Z;Iki + Sk,

1 0 .- 0
Ti;o Tl Tik;—1

and the 2 x k;-matrices
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Lemma 2.5. Suppose that at two points z1, 29 € T, 21 # 29, the function s(z) € S
has the asymptotic expansions (2.21) and (2.22). Then the kernel Kq(z,w) has the
asymptotic expansion

Ky (z,w) = Z (2 — 21) (w — 22)*™
0<l<k —1,
0<m<ky—1
+0 ((max{|z — 21", Jw — 20|"})), 2521, w2,

where e
. 1 05 o™
b = Z%ZIIITS%ZZ 'm) azz Sw*m KS(Z7 IU)
Moreover, the ki X ka-matriz P1g = (o), 0 < £ < ky—1,0 < m < ko —1, satisfies
the relation

Plg — A}lk]:PlQAQ = C:TJOQ (223)

Proof. Similar to the proof of Lemma 2.1 we set now u = 2z — 21, v = w* — 23, and
equate the coefficients of their powers in the analog of the expression in (2.7):

1= (110 + Tiw + Ti0u® + - + O(u?)) (30 + 7300 + 7550 + - + O(v*2))

Z m * *
- Zogegkl—l,ogmgkg—l QU™ (—uzd — vz —uv + 1 — z123).
This gives
1= 71,0730 = a0,0(1 — 2123),
and for 0 </ <k —1,0<m<ky—1,and £+ m > 0,
TLTo g = QU—1,mZ5 + Qm—121 + Qe—1.m—1 + aem(1 — 2123),

which is easily seen to be equivalent to (2.23). O

3. The basic interpolation problem at one boundary point

With the data of the Problem 1.1 the k x k-matrix T" was defined in (1.7), and
we recall the definition of B in (1.8). Then the matrix P from Lemma 2.1 can be
written in the form

P=7TB. (3.1)
Observe that P is a right lower triangular matrix, which is invertible because of
To, Tk, 21 # 0. We define the vector function

1 z 2kt
R(z) = .
&) <122T (1— 222 <1zzf)k>’
fix some zg € T, 2zp # 21 and introduce the polynomial p(z) by
p(2) = (1 — 221)* R(z)P~ R(z0)". (3.2)

It has degree at most k — 1 and p(z1) # 0.
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Lemma 3.1. With p(z) from (3.2) we have that

(1= zzf)* - i 2k ~
70 (1= 22)p(2) =— ; Ti(z—21)'+ 0 ((z —21)%"), 252
Proof. Since 1 — zzf = —z}(z — z1), it suffices to show that if
(1)Lt

70 x = ohtorr1(z—21)+Fow-1(z—21)"+0 (2 — 2)*), (3.3

et (=) (=21 140 (= 1)), (33)
theno; = 75,5 =k, k+1,...,2k—1. An expansion of the form (3.3) exists because
the quotient on the left-hand side is rational and the denominator does not vanish
at z = z1. Write

L= 22y = —25l(2 = =) + (21— 20)],
Po
k—1 . o
p(2) =Y pilz—2y =1 z—z - (-2 . |,
Jj=0 :
Pr—1
and define
Ok 0 0
T Ok+1 Ok ... 0
O2k—1 02k—2 Ok
From
(Jk}+JI§+1(Z_21)+~..+J2k_1(z_zl)k—1)(1 B
:(1 z—27 - (Zle)k_l)TlJrO((zle)k),

the definition of the shift matrix Sy from (2.15), and (3.3) we obtain

To(—l)k_IZOZikk

Po
k—1 * / P
=1 (-21) - E-2)""N (-2 k+S)T| . |,
Prk—1
and it follows that
1
Po 1
D1 1)kl gk 20— %
(o IR e I (3.4

: 20 — 21 .
Pk—1 1
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On the other hand, from the definition of p(z) it follows that

p(z) =70 (1 —22)F 1 2(1—zzp)2 ... k1)
1
1
« B 171 20 20 — 21
20 — 21
1

A straightforward calculation shows that

(1 —zzp)F 1 21— 222 -0 2F1)
= (1 Z—z1 - (zle)k_l)B(fl)k_lsz
and hence

1

Po 1

P || o
: 20 — 21 :
Pk—1 1

(ZO _ Zl)k—l

This equality and (3.4) imply

o 0 - 0 Po Tk 0 - 0\ [/ p
Ok+1 Ok ... 0 P1 Th+1 T ... 0 D1
O02k—1 O2k—2 -+ Ok PE—1 T2k—1 T2k—2 *°° Tk PE—1

From this relation, because of pg = p(z1) # 0, it readily follows that o; = 7,
j=kk+1,...,2k—1. O

For a Hermitian matrix P, by ev_(P) we denote the number of negative
eigenvalues of P.

Theorem 3.2. Given z; € T and 79, Tk, ...,Tor—1 as in Problem 1.1 such that the
matriz P in (1.6) is Hermitian, and let ©(z) be the J-unitary rational matric
function

o= (8 55) - w06 8). ve ()

with p(z) from (3.2) and fized zo € T, zg # z1. Then the fractional linear trans-
formation

5(2) = Toge(s1(2)) = 22 * (3:6)
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establishes a bijective correspondence between all solutions s(z) of Problem 1.1 and
all s1(z) € S with the property

liminf |sq(z) — 79| > 0. (3.7
Moreover, if s(z) and s1(z) are related by (3.6) then
sq_(s) =sq_(s1) + ev_(P). (3.8)
Proof. With the given numbers 7, 7k, . . . , Tox—1 We define the space M as the span
of the functions
¢
z
f, = (=0,1,...,k—1. 3.9
[(Z) (1 . ZZik)£+1 u, s Ly ) ( )
Then
(fo(z) fi(z) ... fec1(2)) =C(I — zA), (3.10)
where the matrix C from (2.16) specializes now to
1 0 -+ 0
C‘(Tg 0 0), (3.11)

and A = 2 + Sy as in (2.15) with S being the k& x k shift matrix. Endowing
the space M with the inner product

<fﬂ’L7 f€>/\/l = (]P))[ym = Qym (312)

we have that M is a reproducing kernel Pontryagin space with reproducing kernel
equal to

C(I, — zA) '"P~ (I}, —wA)~*C™. (3.13)
Evidently, the negative index of this space is equal to ev_(P).
On the other hand, according to (2.17) the matrix P satisfies the Stein equa-
tion
P— A*PA = C*JC,
where now the expressions on both sides are equal to zero. Therefore for M all the
conditions of Theorem 1.2 are satisfied, and hence there exists a J-unitary rational

2 x 2-matrix function
_ (al(z) b(z)
o= () 1)

such that M = P(©), the reproducing kernel Pontryagin space with reproducing

J—0(z)JO(w)*
1 — 2zw*

coincide with the kernel from (3.13):

kernel . By the uniqueness of the reproducing kernel it must

Cllp — 2A) 1P 1 (I — wA) 0+ = 7~ OO
1 — zw*
Thus if we normalize ©(z) by O(z9) = I we obtain

O(2) = I, — (1 — 228)C(Iy — zA)'P I — 29A)*C*J.
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By (3.9) and (3.10) this matrix function can be written as
O(2)=1I — (1 —zz)uR(2) P~ R(2)* u*J,
and this coincides with the formula for ©(z) in the theorem.
Now we consider a solution s(z) of Problem 1.1:
2k—1
s(z) =m0+ Z (2 — 21)  + O((z — 21)%K), 252,

=k
According to Lemma 2.1 the corresponding kernel K(z,w) admits the represen-
tation (2.5):

K(z,w) = Z om(z — 21) (w — 21)™
0<l4+m<2k—2
+0 ((max{|z — 21|, Jw — 21|})2k71) . Z, w2,
with
) 1 al-‘rm .
Qm = M0y gm0 ) = Qe (3:.14)

From

1
Ko(ew) = 1 —1s£zifu(:u)* _ (1 —s(z)) gs_(u;);g
we see that
. 1 o™
lim K(z,w) = (1 —5(2)) fn(z), m=0,...,k—1.

w>z, ml Qw*™
On the other hand, according to Lemma 2.4 the elements

fm(z) = lim Lo Ki(z,w)= (1 —s(2))fm(z), m=0,1,....k—1,

w21 m! Qw*™

belong to the reproducing kernel Pontryagin space P(s) with reproducing kernel
Ky(z,w) and
1 8m+£

(1 =s) £y, (1 —s) f€>'P(s) = Bnélzl Sl S m st Kg(z,w). (3.15)

By (3.15), (3.12), and (3.14) the map 7 of multiplication by (1 —s(2)) is an
isometry from M into P(s). Setting

s1(2) =

we have that s(z) is of the desired form:

()  Am(2) +0(2)

e(2)s1(2) + d(z) (3.16)
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From
TEORIOWT G e
+ (a(z) — c(2)s(2)) Ky, (2, w)(a(w) — c(w)s(w))”,

and since 7 is an isometry, it follows that s1(z) is a generalized Schur function
and

Ki(zw) = (1 —s(2))

P(s) =TM® (a—cs)P(s1)-
By the observations at the end of the Introduction and after formula (3.12) this
implies the equality (3.8).
From the definition (3.5) of O(z):

0(z) = (1 —0(z)  100(2) > . 0(2) = (1 —225)p(2) _ (1—ZZS)R(Z)P_1R(Z())*7

—750(2) 140(z) (1 — zz7)k
(3.18)
and (3.16) we obtain
(1 —zz})k
o= (1= )
_ 10(1 — z2})%* (3.19)
(1= 228)p(2) {(1 = 22])% — 75 (1 = 225)p(2)(s1(2) —70)}

By Lemma 3.1 the expression on the left is O((z — z1)?¥), 221, and this can only
be the case if (3.7) holds. Thus, every solution of the Problem 1.1 is of the form
given in the theorem.

As to the existence of solutions, the equality (3.19) readily implies that any
function s(z) of the form (3.6) has the desired asymptotics and since ©(z) is J-
unitary and rational, the formula (3.17) implies that if s;(z) belongs to the class
S then also s(z) belongs to this class. O

Remark 3.3. 1) The J-unitarity of ©(z) implies that
* — 1 ’

ple) = (e o (L) (3:20
2) Note that the matrix function ©(z) in Theorem 3.2 is normalized such that
©(z0) = I>. Replacing zg by another point zy € T, Zy # 21, amounts to multiplying
©(z) from the right by a J-unitary constant matrix. This follows from the fact
that the fractional linear transformations with the corresponding matrix function
©(z) and with ©(z) have the same range. It can also be shown directly using the
equality (3.22) below.
3) For 0(z) as in (3.18) we have

0(z) = (1—225)R(2)P'R(z0)*, R(z)=(1 0 --- 0)(I-zA4)"", (3.21)

where A = Si+27I. If the point zg is replaced by another point Zg € T, Zy # 20, 21,
then for the corresponding function 6(z) the difference 6(z) — 6(z) is independent
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of z. In fact, a direct calculation using (3.21) and (2.17) with C*JC = 0 shows
that

0(z) — 0(z) = —0(z0). (3.22)
4) For rational parameters s1(z) the condition (3.7) is equivalent to the fact that
the denominator in (3.6):
c(2)81(2) + d(2) = =75 (s1(2) = 70)0(2) + 1
has a pole of order k (see (3.18)).
5) The matrix P in (1.6) is right lower triangular and the entries on the second
main diagonal are given by

(P)igp_1_i = (D)2 2l i =0,1,... k- 1. (3.23)

If P is Hermitian, then by (3.23), 2757, is purely imaginary if k is even and real
if k£ is odd, and we have

k/2, k even,
ev_(P) = (k—=1)/2, k odd, (71)(]671)/22{67'5% -0,
(k+1)/2, kodd, (=1)F=D/2zfmm <0.

Recall that the Schur algorithm is originally defined for a Schur function s(z).
Theorem 3.2 allows us to define an analog for functions s(z) in the class S which
have an asymptotics (1.5) at z; with a Hermitian matrix Py and 75, # 0. The
Schur transform of s(z) is the function 5(2) := s1(2) = Tg(.)-1(s(2)) with O(z)
as in Theorem 3.2. By this Schur transformation the set of functions in S with
the above mentioned properties is mapped into S. The Schur algorithm consists
in iterating the Schur transformation. It will be considered in Sections 5 and 6.

4. Multipoint boundary interpolation

We generalize Problem 1.1 to an interpolation problem with N distinct points
Z1,...,2N on the unit circle.

Problem 4.1. Let N > 1 be an integer, let z1,...,zn be N distinct points on
T, let k1,...,kn be integers > 1, and let Ti.0, Tisky s Tiski+1, - - - 5 Tis2k;—1 De complex
numbers such that |7.0] = 1 and 1.5, # 0,1 =1,...,N. Find all generalized Schur
functions s(z) € S such that
2k;—1
s(2) =10 + Z Tio(z — 2) 4+ O((z — 2)%%), 25z, i=1,...,N.
o=k,

Let P;, C;, A;, and ©;(z) be related to z; as in Section 3 the matrices P, C,
A, and O(z) in formulas (3.1), (3.11), (2.15) and (3.5) are related to z;. Set

C:(Ol 02 CN), A:diag (Al,Ag,...,AN),
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and denote by P = (Pij)f\fj:l the N x N block matrix with P;; = P; and P;; €
CFi*ksi being the matrix given by (2.23) for 21 = z; and 22 = 25, 4, = 1,2,..., N.
Then, according to (2.17) and (2.23) the matrix P satisfies the Stein equation

P—- A"PA=C"JC. (4.1)
We note that the relation (2.23) in the situation of this section reads as
* * 1-— Ti;oTik. o 0 --- 0
PiinPijAj_Ci‘]Cj_< 0 70 00 --- 0)'
1-— Ti;OT;;()

If no derivatives are involved, IP;; is a complex number and equal to

*
1—2zfz;

Theorem 4.2. Assume that the matriz P is invertible and Hermitian and define
the J-unitary matriz function ©(z) by

— a(z) b(Z) — _ _ * _ —1p—1 _ — % Yk
O(z) = (c(z) i) = I, — (1= 225)C(I — 2zA) " P (I — 20A)~"C"J,
where zg is any point in T different from the interpolation points. Then the frac-
tional linear transformation

a(z)s1(2) +b(2)
c(2)s1(2) +d(2)

establishes a bijective correspondence between all solutions s(z) of Problem 4.1 and
all s1(z) € S with the properties

5(2) = To(z)(s1(2) = (4.2)

a b;
lim inf | 2)s1(2) + bilz —Tio| >0, i=1,...,N, (4.3)
2=z ¢i(2)s1(2) + di(2

where

In the correspondence (4.2),

sq_(s) =ev_(P) +sq_(s1)- (4.4)

Proof. As in the proof of Theorem 3.2, to each of the interpolation points z; is
associated the finite-dimensional resolvent invariant space M; of C2-valued ra-
tional functions spanned by the columns of the matrix function C;(I — zA4;)~ 1.
Then the space M = @Y ; M, is spanned by the columns of the matrix function
C(I — zA)~. We endow M with the inner product defined by P. It follows from
Theorem 1.2 that M = P(0) with O(z) as in the theorem.

Assume that s(z) is a solution of the interpolation problem. We claim that
the map 7 : f(z) — (1 —s(2)) f(2) is an isometry from P(©) into P(s). Indeed,
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because of the Stein equation (4.1) and the relations

TCz(I — ZAi)71 =

| . N A
11}141};1[(3(27 w) u}l—lgz ow* Ks (Z’ w) o wlg},lzl (kz - 1)‘ Ow*(ki=1) KS(Z7 w) ’
where i = 1,2, ..., N, the entries of the Gram matrix associated with the basis of

the space M, which is the union of the bases of the spaces M, coincides with the
Gram matrix of the images under 7. Hence
P(s) =TP(O) & (a—cs)P(s1)

and s(z) = Te(z)(s1(2)) for some generalized Schur function s;(z) satisfying (4.4).
Since M, is a non-degenerate Rp-invariant subspace of M, O(z) admits the factor-
ization ©(z) = ©,(2)0;(2), see [9]. Hence s(z) = To(z)(s1(2)) = To,(z)(51(2)) with

ai(2)s1(2) + bi(z)

Gi(2)s1(2) + di(z)

This shows that s(z) is a solution of the interpolation problem at z; with parameter
$1(2), therefore, according to (3.7), $1(z) satisfies (4.3).

Conversely, let s(z) = Tg(:)(s1(2)) be given with a function s;(z) as in the
theorem. If we write s(z) = Te,(z)(51(2)), then, since 0,(2) = 0; 1 (2)0(z) is J-
unitary, §1(2) is a generalized Schur function and by (3.7) it has all the properties
of the parameters in Theorem 3.2 and hence s(z) is a solution of Problem 4.1 O

s1(2) = T@i(z)(sl(z)) =

Remark 4.3. 1) There exist rational parameters s1(z) satisfying the conditions
(4.3) for i=1,...,N. Indeed for each i there is a unique constant s; =Tg.,)-1(7i;0)
such that in (4.3) there is equality rather than inequality. It suffices to take for
s1(z) any constant of modulus 1 which is different from these s;, i =1,2,..., N.

2) It k; = 1,4 = 1,2,..., N, a description of all rational Schur functions which
satisfy the given interpolation conditions was given by J.A. Ball, I. Gohberg, and
L. Rodman [12, Theorem 21.1.2]: in this case the conditions (4.3) reduce to the fact
that ¢(z)s1(z) + d(z) has poles of order 1 at z = z;, i = 1,2,..., N. Indeed, with

(o [ai(z)  bi(z)
0= (o) a3
and the relations in the proof of the theorem we have

o(2)s1(2) + d(2) = (ci(2)81(2) + di(2))(@(2)s1(2) + di(2)).
According to Remark 3.3, 4) the first factor on the right-hand side has a pole of
order 1 at z; and the second factor is rational and nonzero at z;.

3) We give an example where P is not invertible while its diagonal entries are
invertible. For such matrices the assumptions of Theorem 4.2 are not satisfied. Take
N = 2, two distinct points z; and zo on T , ky = ko =1, 71,0 = 1, 72,0 = —1, and
numbers 7.1, 72,1 such that 21711, 20721 € R and 212271.172.1 = 4/|1—2125|%. Then
Py and Py are invertible, P satisfies the Stein equation (4.1) but is not invertible.
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5. J-unitary factorization

In this section zg and z; are two distinct points in T. By U,, we denote the set of
all rational J-unitary 2 X 2-matrix functions ©(z) with a pole only at z = z1, and
by UZ° the set of all matrix functions ©(z) € U, which are normalized such that
©(zp) = I1. In particular, the matrix functions of U, are bounded at cc.

Lemma 5.1. If O(z) € U,, then det O(z) = ¢ for some c € T, and O(2)~* € U,,.

Proof. The J-unitarity of ©(z) on T and the analyticity outside z = z; imply the
identity

0(2)JO(1/z*)"  =J, ze€C\{0,21}.
For the rational function f(z) = det©(z) it follows that |f(z)| =1, z € T. There-
fore f cannot have a pole at z1, and since it is also bounded at oo it must be
constant. g

By the degree of a rational J-unitary matrix function ©(z) we mean the
McMillan degree (see [13]) and we write it as deg ©(z). If ©(z) € U,, and

= ZT’(Z — Zl)ii,
=0

where the T;’s are constant 2 x 2-matrices and T, # 0, then

T, 0 --- 0

Toy T, -~ 0

deg © = rank . .
n T, - T,

A product ©1(2)02(2) - O,(z) = ©(z) of rational J-unitary matrix func-
tions is called minimal if the degrees add up, that is,
deg©1(z) + deg©2(2) + -+ - + deg ©,(2) = deg O(2).
In this case the product on the left-hand side is also called a minimal factor-
ization of ©(z). An example of a nonminimal product is given by the equality
0(2)0(z)~! = I, for any nonconstant ©(z) € U,,, since, because of Lemma 5.1,
the inverse ©(z) ! also belongs to U, .

A matrix function O(z) € U,, is called elementary if in any minimal factor-
ization ©(z) = ©1(2)O2(z) at least one of the factors is a J-unitary constant.

Theorem 5.2. Assume zg,z1 € T and zg # z1. Then:
(i) The matriz function ©(z) € UZ° is elementary if and only if it is of the form

Oz) = I, — (( ZZO)p)kz)uu*J, J= (é _01>, u= (2) (5.1)

where k is an integer > 1, ¢ € T, p(2) s a polynomial of degree < k — 1
satisfying (3.20) and p(z1) # 0.
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(ii) Every ©(z) € UZ° admits a unique minimal factorization
O(2) = ©1(2) -+ On(2), (5:2)
in which each ©;(z) is an elementary normalized factor of the form (5.1).

The theorem implies that the matrix function ©(z) in (3.5) belongs to the
class UZ° and is elementary. The proof of Theorem 5.2 hinges on the fact that
the reproducing kernel space P(0O) consists of one Jordan chain for the difference
quotient operator Ry, which makes the elementary factors unique. In case of higher
dimensions this uniqueness does not hold.

Proof of Theorem 5.2. Let ©(z) € UZ°. We claim that P(©) is spanned by a single
chain for Ry at the eigenvalue A = z;. To see this, let A be an eigenvalue of Ry
with eigenelement f(2): Rofo(z) = Afp(z). Then

co
= = f
fO(Z> 1_ )\27 Co O(O) 7& 07
and since the elements of P(©) have a pole only at z = 21, we conclude that
A = z]. The identity (1.10) and |z;| = 1 imply that cg is J-neutral:
coJeo = (fo, fo)p(e) — (2110, 21f0) p(@) = 0.

If
do

= dy € CQ,
1—227

go(2)

is another eigenfunction, then also dg is J-neutral and (1.10) yields c¢§Jdo = 0.
Since J is invertible, this implies that dg is a multiple of ¢y and hence the geometric
multiplicity of the eigenvalue A = 2} is 1. This proves the claim. It follows that
there are vectors ¢; € C?, ¢ being J-neutral, such that P(0) is spanned by

f](z) _ ij_l(Z) +c;

1— 22}
Since c¢( is nonzero and J-neutral, its components have the same nonzero abso-
lute value and hence we may suppose without loss of generality that for some

unimodular number (g,
1
o= (<o> '

Let k be the smallest integer > 1 such that (fo, fr_1)p(e) # 0, hence, if k > 2,
(fo.fj)pe) =0, 7=0,....,k—2.

. j=0,....N—1, f_i(z)=0.

Then the subspace
M= span{fo, fl, ey fkfl}
is the smallest Ry-invariant subspace of P(©) which is non-degenerate and hence,
by Theorem 1.2, it is a P(O1)-space for some rational J-unitary 2 x 2-matrix
function ©1(z). We prove that ©1(z) is of the form described by (5.1).
To this end we first show that without loss of generality we may assume that

Ci =" =Cp_1 = 0. (53)
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By the identity (1.10) we have
CSJCJ' = <fjaf0>p((~)) - <Zikfj + fjflvsz0>p((~)) =0

and, since cjJcyp = 0 and J is invertible, c; is a multiple of cy. Successively for
j=1,...,k—1, we may replace c; in f;(z) by zero by subtracting from f;(z) a
suitable multiple of the eigenfunction f(z). Thus we obtain a chain which satisfies
(5.3) and still spans M. By (5.3), this new chain coincides with the columns of
the matrix C(Iy — 2A)~! with C' and A as in (3.11) and 7¢ = ¢. Denote by P the
corresponding Gram matrix:

P= (i) to. Pij=Ef)pey id =01, k—1.
For the reproducing kernel ©1(z) of the space M we obtain
OB _ o1y — 2 (1 - w0,
and hence
01(2) =Ir — (1 — 252)C(I, — zA) " 'P~H (I}, — 29A) " *C*J.

As in the proof of Theorem 3.2 one can show that ©1(z) is of the form (5.1). From
its construction it follows that ©1(z) is elementary: Assume on the contrary, that
©1(z) = ©'(2)0”(z) is a minimal factorization with nonconstant factors. Then
P(©1) = P(O©) @ ©P(O") and P(©’) is a proper non-degenerate Ry-invariant
subspace of P(0©1) and hence also a subspace of P(©). The construction above
and the minimality of k imply that P(©’) is spanned by the same chain as P(01),
that is, P(©’) = P(©1). The normalization implies ©'(z) = ©1(z) and 0" (z) = L.

Now we prove (i) and (ii).

(i) The arguments above imply that if ©(z) is elementary, then ©(z) = 04 (z).
We now prove that if ©(z) is given by (5.1), then it is elementary. The formula
(5.1) implies that ©(z) is J-unitary, rational with only one pole of order k at
z = z1 and normalized by ©(z9) = Iz. The space P(0) is spanned by the elements
Ry©(z)c, n=0,1,..., and these are 2-vector functions of the form z(z)u, where
x(z) is a rational function with at most one pole at z = z;. The chain argument
above shows that the space P(©) is spanned by the following chain of Ry at 21

1 k—1
(2) = wo g =, L ., gl =, u
BT (1™ (1—z27)2" ’ (1 zz2p)k

We claim that the Gram matrix G associated with this chain is right lower tri-
angular. Then, since the space P(©) is non-degenerate, the entries on the second
diagonal of G are nonzero. The triangular form of G implies that the span of any
sub-chain of the given chain is degenerate and hence ©(z) is elementary.

It remains to prove the claim. For this we use the matrix representation of
the operator Ry relative to the basis g;(z): it is the matrix A = 271 + Sk from
(2.15). From (1.10) and since u is J-neutral, we have that

G — (21Ix + Sk)*G(27 I, + Sk) = 0,
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and hence

SpG =G (=218k + 288y + - (1) sty
The triangular form of G can be deduced from this equality by comparing the
entries of the matrices on both sides.

(ii) If ©(z) and ©1(z) are as in the beginning of this proof, then by Lemma
5.1, ©2(z) = ©1(2) 'O(z) € UZ°. From the orthogonal decomposition

P(O) =P(01) © 6:P(02)

it follows that deg ©® = deg ©® — k. The minimal factorization mentioned in part
(ii) of the theorem now follows by repeating the foregoing arguments. O

Since rankuu*J = 1, the elementary factor ©(z) in Theorem 5.2 (i) has
McMillan degree k, which, evidently, is the order of the pole of O(z) at z = 2.
The function ©(z) in (5.1) is a generalization of a Brune section in the positive
definite case where it is of the form

1
I+ 2y,

Yz—a

with a normalizing constant J-unitary factor V, a € T , u € C? with u*Ju = 0,
and v > 0.

6. A factorization algorithm

In this section we show how the factorization of a matrix function
_ (a(z) b(z) 20
O(z) = (c(z) d(2) eu:

with 21, z9 € T, zg # 21, can be derived from the Schur algorithm described at
the end of Section 3. Similar arguments were presented in our previous papers [2]
and [7] for polynomial matrix functions which are J-unitary on the unit circle or
on the real line. We proceed in a number of steps.

Step 1: Choose a number T € T such that (i)

() = a(z)T + b(2)

is not a constant, (ii) ¢(0)7 + d(0) # 0, and (iii)
Ogr4b = max {Om Ob}a O¢r a4 = max {Om Od},

where, for example, O, stands for the order of the pole of the function a(z) at
z = z1. Then s(z) € S, it is a rational function holomorphic and of modulus one
on T and hence the quotient of two Blaschke factors.
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There are at most five distinct points 7 € T for which (i)—(iii) do not hold:

Assume that for three distinct points 71, 72, 73 € T the function s(z) is a constant.
Then, since O(zg) = I,

a(z)7j +b(z)

c(2)7j + d(2)
and we obtain that ¢(z) = 0, b(z) = 0, a(z) = d(z). Hence ©(z) = a(z)Iz. Since
det ©(z) is a constant, we have that a(z) is a constant, and so that O(z) is a
constant matrix, which is a contradiction. Hence (i) holds with the exception of at
most two different values of 7 € T. The condition in (ii) holds with the exception

of at most one 7 € T, since |det ©(0)| = 1. Finally, the conditions in (iii) hold,
each with the exception at most one point 7 € T.

Step 2: Let s1(z) = 5(z) be the Schur transform of s(z) (see the end of Section 3).
Then s1(z) = Te, (2)-1(5(2)) and ©1(2) is an elementary factor of ©(z).

:Tj? j:172,37Z€C,

From the proof of Theorem 3.2 we know that the map 7 : f(z) — (1 —s(2)) f(z)
is an isometry from P(©1) into P(s). We first show that 7 is a unitary mapping
from P(©) onto P(s). The fact that 7 in (6.1) is a constant of modulus one implies
the identity

1—s(z)s(w)* — (1 —s(2)) J = 0(2)JO(w)" ( 1 ) _ (6.2)

1— zw* 1— zw* (w)*

This in turn implies that 7 is a partial isometry from P(©) onto P(s), which is
unitary if its kernel ker 7 is trivial, see [8, Theorem 1.5.7]. Suppose

0¢f_(£>eker7,

that is, (1 —s) f =0, then

_ (3 _ T _ g
f—<1>g—@<1>x€73(@), =

Note that since det ® # 0, we have that © <7l—> # 0. Apply Ro to © (I) T to

obtain (Re0) G) 2(0) + © G) Rox € P(O).

The first summand belongs to P(©) and hence the second summand also belongs
to P(©). By repeatedly applying Ry, we find that

@G)R{;xep(@), j=0,1,2,....

Since z is a rational function there is an integer n > 0 such that the span of the
functions R}z, j = 0,1,...,n, is finite-dimensional and Ro-invariant. It follows
that Ry has an eigenvector v which has one of three possible forms: either v = 1
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or v(z) = 1/(z— 2z9) with 2o # 21 or v(z) = 1/(1 — zz7). All three possibilities lead
to a contradiction:

v = 1: This implies that © <7l—> € P(0©), and hence, since the elements in P(O)

T

all tend to 0 as z — oo, we see that ©(c0) (1

det ©(c0) # 0.

> = 0, but this cannot hold since

1
v(z) = 1/(z — 2z2): This implies that © <T> € P(0), and hence, since the

1) 22— 2z
elements in P(0) are all holomorphic at z = 22, we see that ©(z3) <71-) =0, and
again this cannot hold since det ©(z3) # 0.
v(z) = 1/(1 — zz7): This implies that

a(z)T + b(2)

T r 1—2zz}
© (1) =2z | ele)r+d(z) | €PO)
1— 227

but this cannot hold because of conditions (iii) in Step 1 and because, according
to the last statement in Theorem 1.2, if (g) € P(0O) then Oy < max{O,, O}
and Oy < max{O, Oq}.

These contradictions imply that 7 has a trivial kernel and hence 7 is unitary.

We now claim that P(0;) C P(O) and that the inclusion map is isometric.
Let Ny = dim P(©1) and go,...,gn,—1 be a basis of P(©1) such that Rog; =
218; + gj—1. One can choose g; =f; for j =1,...,N; — 1. Indeed, let

1 1
go(2) = 1— zz* <77> ’
1

_s(2)(Co—n)

*
1—227

then the function
(1 —s(2)) (fo(2) — &o(2)) =
belongs to P(s), and thus ¢, = 7 since the elements of P(s) are holomorphic in

z1. Hence fy(2) = go(z). Moreover,

(fo,fo)pe) = (THo, THo)p(s) = (fo,fo)p(e,)-
In the same way it follows that f,(z) = g¢(z), £ = 1,..., N1 — 1, and that for
1,7 =0,..., N1 — 1 the inner products satisfy

(i, f5)po) = (TH, THj)p(s) = (Fi, Tj)p(o1)-

We conclude that P(0) is isometrically included in P(0), and the claim is proved.
According to [9], ©1(z) is an elementary factor of O(z).
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Step 3: If s1(z) is a constant, then ©(z) = ©1(2). If s1(z) is not a constant,
let s2(z) = 51(2) be the Schur transform of s1(z) and denote the corresponding
coefficient matriz by ©2(2). Then O2(z) is an elementary factor of ©1(z) 1O(2).
We iterate n times until sp(z) = Sp—1(2) s a unitary constant and conclude that
O(z) = 01(2) -+ - O, (2).

Because of (6.2) and the relation

1—s(z)s(w)* — (1 —s(2) J—0(z)JO(w)* < 1 )

1—zw* 1—zw* —s(w)*
Han@) —a@se) Y 0 w) - e @)s(w)”

we have the following equalities:

P(s) = (1 s) P(©), (6.3)
P(s) = (1 —8) P(O1) ® (a1 — c18)P(s1).
In particular, the map
f— (a1 —c19)f (6.4)

is an isometry from P(s1) into P(s).

If s1(2) is a constant then P(s1) = {0} and (6.3) implies that P(©) = P(O1).
Since ©(z) and O1(z) are normalized they must be equal.

If 51(2) is not a constant, we define ©2(z) via s1(2) = Te,(:)(52(2)). Then
O2(2) € UZ° and we have the decomposition

P(s1) = (1 —s1) P(O2) & (az — c251)P(s2).
Since (6.4) is an isometry and
(@) a@s) (1 —s1(2)) = (1 —s(2)) ©1(2)
we obtain that
(a1 —c18)P(s1) = (1 —s) ©1P(02) @ (a1 — c15)(az — c251)P(s2).
Thus
P(s)=(1 —s)PO1)@® (1 —s)O1P(O2) ® (a1 — c15)(az — c251)P(s2)
=(1 —5)(P(©1) ®O1P(02)) ® (a1 — c15)(az — c251)P(s2)
(1 —s) P(©102) ® (a1 — c18)(az — c251)P(s2).

It follows as above that P(©102) is isometrically included in P(0), and, if s2(z)
is constant, that ©(z) = ©1(2)O2(z). If s2(z) is not constant, we observe that

(a1 — 615)(0,2 — 6251) (1 —82) = (a1 — 615) (1 —81) @2 = (1 —S) @1@2.
and define ©3(z) via s2(2) = Te,(z)(s3(2)). Then we have

(a1 — c18)(az — c281)P(s2)
= (1 — S) @1@27)(@3) D (a1 — 018)(a2 - 0281)(a3 — 0382)7)(83).

and the factorization (5.2) follows by repeating the arguments.
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Abstract. We study the inverse problems associated to the characteristic spec-
tral functions of first-order discrete systems. We focus on the case where the
coefficients defining the discrete system are strictly pseudo-exponential. The
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1. Introduction

In the present work we continue our study of first-order discrete systems. In [4,
Section 3.1] we defined one-sided first-order discrete systems to be expressions of

the form
1 —pn 0
XnH(z)_( P ) <Z )Xn(z), n=01,... (1.1)
—pr 1 )01

where the p,, are in the open unit disk. Two-sided first-order discrete systems are
given by the formula

_ 1 —pn\ (2 O _
Xn+1(2) = (_p:l 1 > (0 Z_1> Xn(z) n=0,1,... (1.2)
Such systems arise from the discretization of the telegrapher’s equation and in the
theory of orthogonal polynomials; see, e.g., [13].
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As in [4] we focus on the case where the coefficients p,, are of the form
pn = —ca™ (I, — Aa*"FDQg ) ~1p, (1.3)

In this equation (a,b,c) € CP*P x CPX! x C1*P is a minimal triple of matrices (see
Section 2.3 for the definition), the spectrum of a is in the open unit disk and A
and () are the solutions of the Stein equations

A —aAad® =bb* and Q—a*Qa=c"c (1.4)
Furthermore, one requires that:
Q> A (1.5)

Sequences of the form (1.3) with condition (1.5) are called strictly pseudo-exponen-
tial sequences and have been introduced in [7, Theorem 4.3]. There we studied the
connections between the Carathéodory—Fejér and the Nehari extension problems.
In the process, we proved recursions formulas for analogs of orthogonal polynomials
associated to the Hankel operator

Yo o V-1
V-1 V-2

I'= , fy — {5, where 'y_j:cajb, i=0,1,2,...

(1.6)
The analysis in [7, Section 4] allows to find explicit forms for the solutions of the
systems (1.1) in terms of a,b and ¢. See Theorem 2.1.

In [4] we associated to such systems a number of functions of z, which we
called the characteristic spectral functions of the system. The main problem in this
paper is to find the sequence p,, when one of the characteristic spectral functions
is given. Classically, when no hypothesis of rationality is made, there are three
approaches to solve such a problem (starting from the spectral function), namely

1. The Gelfand—Levitan approach.
2. Krein’s approach.
3. Marchenko’s approach.

The connections between these approaches are explained in [17] and discussed in
the rational case in our previous paper [5].

In the present paper, we present a different approach, based on realization
theory. A key tool in the arguments is the description of all unitary solutions of the
Nehari extension problem which admit a generalized Wiener-Hopf factorization.
First recall that the Wiener algebra WV of the unit circle consists of complex-valued
functions f(z) of the form

fz)=> fir" (1.7)
Z
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for which

£ 1w S fel < 0.
Z

The Nehari extension problem is defined as follows:

Definition 1.1. Given v_; = ca’b, j = 0,1,2,..., find all elements f € W for
which

f-i ==, J=0,12,...
and such that sup|,— |f(2)] < 1.

Recall (see for instance [20, p. 956-961]) that a necessary and sufficient con-
dition for the Nehari problem to be solvable is that the Hankel operator I" defined
by (1.6) has a norm strictly less than 1.

Condition (1.5) insures that the Hankel operator I' = (cal®™*)b), x—o.. is a
strict contraction from /o into itself. Indeed, let

C=|cq2 and B=(b ab a* --- ).

Then C and B are bounded operators from ¢ into C and C into {5 respectively.
We have that C*C =  and BB* = A. Furthermore, I' = CB and

IT <1 <= IT" < I
<~ CBB*C* <1
— C*CBB*C*C < C*C
< BB* < (C*C)7!,
which is (1.5).

We note that a different kind of discrete systems has been recently studied
in [25], also using the state space method.

The paper consists of nine sections including the introduction. Section two
is of a preliminary nature. We review the definitions of the characteristic spectral
functions and the description of all unitary solutions to the Nehari interpolation
problem. A new result in this section is Theorem 2.15, which states that the strictly
pseudo-exponential sequence p,, determines uniquely (up to a similarity matrix)
the minimal triple (a, b, ¢). The inverse scattering problem is considered in Section
3. Inverse problems associated to the other spectral functions are considered in
Section 4. One of the main results of this paper, Theorem 4.1, states that rational
functions strictly contractive in the closed unit disk are exactly the functions with
sequence of Schur coefficients of the form —p,. Section 5 deals with the inverse
problem associated to the asymptotic equivalence matrix function. In Section 6,
we consider the case of two-sided systems. In Section 7 we present a numerical
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example. In Section 8 we compute explicitly an example of a rational Schur func-
tion which is not the reflection coefficient function of a first-order system with
strictly pseudo-exponential sequence. In the last section we present an application
to Jacobi matrices.

We conclude this introduction with some notation: we denote by f¥ the func-

fiz) = f(1/z%)".
We denote by D the open unit disk and by D the closed unit disk. The symbol E
denotes the exterior of the closed unit disk, and we set
E={z€C : |z] >1}U{c0}.

We already defined the Wiener algebra V. The subalgebra of functions for which
in (1.7) fe =0 for £ < 0 (vesp. for ¢ > 0) will be denoted by Wy (resp. W_).

tion

2. Preliminaries

2.1. The characteristic spectral functions

In this section we review the definitions of the characteristic spectral functions
associated to a one-sided first-order discrete system given in our previous paper
[4]. We begin with a result, which is proved in [4] and uses [7, Theorem 4.5], and
which explains how solutions to the system (1.1) can be expressed explicitly in
terms of a,b and c.

Theorem 2.1. Let pg, p1, ... be a strictly pseudo-exponential sequence of the form
pn = —ca™(I, — Aa*"HD Q)71

Every solution of the first-order discrete system (1.1) is of the form

X2 = L~ o) (6 Om (5 ) (5 ) xe. e

=0
)= (33 56)

where

and, form=0,1,...

an(z) = 1+ca™z(zI, —a) ' (I, — AQ,) ' Aa*"c* (2.2)
Bu(2) = ca™z(zI, —a) (I, — AQ,) 1D (2.3)
Yul(2) = (I, —za*) (I, — Q,A) " ta " (2.4)
6n(2) = 14b*(I, — za®) (I, — Q. A)"1Q,b, (2.5)

with Q,, = a*"Qa™.
The function

X.(2) = H%(j((ll_|lgjl22)) (é 2) H,(2)! (ZO" 201>7
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is a solution to (1.1). It corresponds to

506 = ey (0 2) 107 o %),

and it has the asymptotic

The function

T 6
D\ 1)1

is also a solution to (1.1). It corresponds to Xo(z) = Is.
Finally, we have:

T 6

STL0 =) (}) S)Hn@l (Zon (f)HO(Z) <<1) O>

£=0
where we denote
)
l=n—1

H Ag=Ap_q-Ap.
=0

The proof of this result is based on the following recurrence formulas, proved
n [7, Theorem 4.5],

ant1(2) = an(z) + ppba(z) (2.6)

Brt1(z) = 2(ppan(z) + Bn(2)) (2.7)

Pni(5) = =)+ phon(2) (25)
ont1(2) = 6n(2) + puvn(2), (2.9)

and which force the recurrence relationship

o= (3 ) 7)(40)

between H,(z) and Hp4+1(z). Such recursions were developed in a general setting
n [18].

We also recall that it holds that
on(2) = ak(2) and 7,(2) = B (2). (2.10)



36 D. Alpay and I. Gohberg

The first characteristic spectral function which we introduce is the scattering
function. To define it, we first look for the C2-valued solution of the system (1.1),
with the boundary conditions

(1 71) Yo(z) =0,
(0 1)Yu(z) =1+o(n).
In view of (2.1) the first condition implies that the solution is of the form

Vol = ([ (1= o) (o Omo (5 Nme (5 0)(5)

£=0

(2.11)

where x(z) is to be determined via the second boundary condition. We compute

0 D% =10 (O =) ) (5 %) me (49).

£=0 z

Taking into account that lim,, ., H,(z) = Is we get that

0 )Y = [Ia- P 2 e (4)

=0
and hence 1 = ([T,2,(1 — |pe|?))(270(2) + do(2))z(2), that is
1
) = (1201 = o) (0(2) + (=)
Furthermore,
Jn (0 0y = [Ia- o) (5 9 (o 0 (5)

=0
oo Bo(z)
= (211(1 —lpel?)) (1 0) (jﬁg I 50zfz)> z(z)
ag(z) + )
270(2) + 0o (z)
Definition 2.2. Let pg, p1, ... be a strictly pseudo-exponential sequence of the form
pn = —ca" (I, — Aa*("+1)§2a"+1)_1b,
and let ao(2), Bo(2),v0(z) and do(z) be the functions given by (2.2)—(2.5) with
n = 0. The function
ao(z)+ % Tag(2)z + Bo(2)
270(2) +80(2) 2z y0(2)z + dp(2)’

is called the scattering function associated to the discrete system (1.1) with the
boundary conditions (2.11).

S(z) = (2.12)
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We note that
(270(2) + 80(2))} (2) = _ (@0(z)z + fo(2),

z

#
z
(a0 + ) ) = 00(2) + 22002,
and in particular S(2)S(z)* = 1.
From the preceding analysis we obtain the following result (see [4, Theorem 3.14]):

Theorem 2.3. The scattering function is of the form S(z) = iu’gz; where S_(z)

and its inverse are analytic in E. Equivalently, the scattering function can be repre-
sented as g;g; , where B1(z) and Ba(z) are two Blaschke products of same degree.

The factor S_(z) is defined up to a multiplicative constant, and we will
normalize it by the condition

" di =2 d S 0 2.13
/0 S (e=it)2 T an —(o0) > 0. (2.13)
Let
. \/ 1 /2“ dt
o1 Jo  |ao(e=it) + et Bo(e=it)[2”
The choice

S_(2)=d (ao(z) + ﬂW)) (2.14)

z
satisfies the normalization (2.13) since

lim (ao(z) + BOZ(Z)> =1+ ca(l, — AQ)"*Ac* > 0.

Zz2—00
We remark that we have two factorizations for the scattering function, which

. . _ S_(2) _ oco(z)-i-ﬁoz(z) . .
are of different kinds. The first one, S(z) = S (2) = #v0(2)+do(z) 1S B Wiener—

Hopf factorization (recall that the function w € W is said to have a Wiener—Hopf
factorization if it can be written as w = wyw_, where w, and its inverse are in W,

g;g;, is a quotient

while w_ and its inverse are in WW_). The second one, S(z) =
of two finite Blaschke products of same degree. In the first case, the spectral factor
S_(z) uniquely determines (up to a unitary constant factor) the function S(z)
since this latter is unitary on the unit circle. In the second case, starting from any
finite Blaschke B;(z), any other Blaschke factor Ba(z) of same degree and without
common zero with B (z) will lead (once more, up to a unitary constant factor) to
g;gzg See Theorem 3.2. The second factorization is a
special case of factorizations considered by Krein and Langer for generalized Schur
functions. See [26], [12], [1], and see [8] for a discussion of similar factorizations for

scattering functions associated to canonical differential systems.

a scattering function S(z) =



38 D. Alpay and I. Gohberg

We now turn to the definition of the reflection coefficient function. We set
I —p
co=(_e )

= (5 ) cton (5 1) (G 9). @)

In the statement we use the following notation for linear fractional transformations:

and

axr +b a b
To(x) = ot d’ where © = <c d> .
Theorem 2.4. Let p,,n=1,2,... be a strictly pseudo-exponential sequence of the

form
pn = —ca™(I, — Aa*"HDQa )1
and let M, (z) be defined by (2.15). The limit

R(Z) = lim TMn(z)(O) (2.16)
exists and is equal to
Bo
R(z)=""(1/2).

Qo
It is a function analytic and contractive in the open unit disk, called the reflection
coefficient function. It takes strictly contractive values on the unit circle.

It follows from Theorem 2.4 that the p,, are in D. Indeed, the proof that R(z)
is analytic and contractive in DD depends only on the fact that (1.5) holds and on
the properties of Hy(z). By (2.16), the sequence —pg, —p1, ... is the sequence of
Schur coefficients of R(z) and hence the p,, are in D.

The proof of Theorem 2.4 (see [4, Theorem 3.9]) is based on the equation

M, (2) = (Hu - W)) Ho(=")" (Znoﬂ ?) Hoga (27)°

£=0

which relates M,, and H, 41, and on the asymptotic property of H, 1.

We note that a finite Blaschke product is not the reflection coefficient function
of a first-order one-sided discrete system with strictly pseudo-exponential sequence.
We also note that a function such as

R(z)

oz
2z

is not appropriate either, since R(1) = 1. The Schur coefficients of this function
are computed in Section 8.

In [4, Theorem 3.10] we proved the following realization result for the reflec-
tion coefficient function.
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Theorem 2.5. Let (a,b,c) € CP*P x CP*! x CY*P is a minimal triple of matrices
such that (1.5) holds. Then the function

R(z) = c¢{(I — Aa*Qa) — z(I — AQ)a} ' b (2.17)
18 analytic and strictly contractive in the closed unit disk.

In Section 4.1 we show that every rational function strictly contractive in the
closed unit disk admits a realization of the type (2.17). See Theorem 4.1.

To introduce the Weyl coefficient function we consider the matrix function

o= ()T )6 L6 4

Definition 2.6. The Weyl coefficient function N(z) is defined for z € D by the
following property: The sequence n — Un(z)<iN(1z*)*) belongs to (3, that is:

S (SN 1) Un(2) Un(2) (“V (f*>*> coo, 2eD.

n=0
A similar definition appears in [27, Theorem 1, p. 231]. See also [25, equation
(0.6)].

For the next result, see also [31, equation (3.7) p. 416].

Theorem 2.7. The relation between the Weyl coefficient function and the reflection
coefficient function is given by:

N(z) = 1 —2zR(2)

=) 4R (2.18)

The following realization result for the Weyl coefficient function was proved in [4].

Theorem 2.8. Let p,,n =1,2,... be a strictly pseudo-exponential sequence of the
form

pn = —ca™ (I, — Aa*"FDQg ) ~1p,

The Weyl coefficient function associated to the corresponding one-sided first-order
discrete system 1is given by:

N(z)=1 (1 +2z¢{I — Aa*Qa + zbe — z(I — AQ)a} b) . (2.19)
The function
W(z) = “ co = ! 2l =1  (2.20)
lao(L/2) + 2B0(1/2)2" T TIEe(1 — lpel?)’ o '

is called the spectral function, and plays an important role, in particular in the
theory of orthogonal polynomials associated to the system (1.1).
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Theorem 2.9. The Weyl coefficient function N(z) is such that Im N(z) = W(z)
on the unit circle, and it holds that

1 dt - 9

o o)+ ctgoge = 110 = lee: 220
Proof. We have

lao(1/2)P — [Be(1/5)?  det Ho(1/2)
N = a0(1/2) + 2B6(1/2)R ~ lao(1/2) + 260(1/2)]2
and
1
det H, =
IO = e (1= [pel2)

See [7] for the latter. Comparing with (2.14) one obtains (2.21). O

Definition 2.10. The function
_( %) ﬁz@) _( ebe) =7

s called the asymptotic equivalence matrix function of the one-sided first-order
discrete system (1.1).

The second equality stems from (2.10). The terminology is explained in the
next theorem:

Theorem 2.11. Let ¢; and co be in (C2, and let XT(LD and X,(LQ) be the C%-valued
solutions of (1.1), corresponding to the case of zero potential and to a potential py,

respectively and with initial conditions Xél)(z) = and Xé2)(z) = cy. Then, for
every z on the unit circle,

lim [XP(z) - XP )| =0 = c=V(2)a.
See [4, Theorem 3.2].

2.2. Unitary solutions of the Nehari problem

We follow here [20, p. 956-961] specialized to the scalar case for the solution of
this problem when the 7; are of the form

Y—; =ca’b, j=0,—1,...

where (a, b, ¢) is a minimal triple. We already remarked that ||T']] < 1 is equivalent
to (1.5).

The Nehari extension problem associated with this sequence is then solved as
follows. In the statement, ag, 5o, 70 and &y are defined by (2.6)—(2.9) with n = 0.
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Theorem 2.12. All solutions of the Nehari extension problem which are strictly
contractive on the unit circle are given by the linear fractional transformation

ap(z)ze(z) + Bo(z)
vo(2)ze(2) + 60 (2)’

where €(z) varies in Wy and is strictly contractive on the unit circle.

|Z| =1,

We are interested in solutions of the Nehari interpolation problem which are
unitary rather than strictly contractive on T. We focus on the case where the
solution can be written as w, (2)zw_(z) where wy and its inverse are in W, and
w_ and its inverse are in W_, and £ € Z. Such factorizations are called generalized

Wiener—Hopf factorizations.

Theorem 2.13. All solutions of the Nehari extension problem which take unitary
values on the unit circle and which admit a generalized Wiener—Hopf factorization.
are given by the linear fractional transformation

ap(z)ze(z) + Bo(z) 2
Yo(2)ze(2) + do(z)

where €(z) varies among finite Blaschke products.

=1

)

See [9, Theorem 4.3 p. 33]. We refer also to [16] and [15] for more information
on unitary solutions of the Nehari problem.

We note that, in particular, the function zS(z), where S(z) is the scattering
function defined by (2.12), is a solution of the Nehari interpolation problem as-
sociated to y_; = ca’b, j = 0,1,... which is unitary and admits a generalized
Wiener—Hopf factorization.

2.3. Uniqueness theorem

A priori, a pseudo-exponential sequence may have different representations of the
form (1.3). The purpose of this section is to show that in fact the p,, determines
uniquely the minimal triple (a, b, ¢) (up to a similarity matrix). Recall that mini-
mality means the following:

Ny kerca® = {0} and UJ,Im a‘b=CP
for m large enough. The first condition means that the pair (c,a) is observable
while the second means that the pair (a,b) is controllable. When both conditions

are in force, the triple is called minimal. Two minimal triples are unique up to a
uniquely defined similarity matrix, that is, there exists an invertible matrix o such

that:

ay bl o 0 (O 0 as b2

() (69 -0 )@ @) 229
See [10] for more information.

We begin with a preliminary lemma. In the statement the letters N, R, W, S
and S_ denote the rational functions previously introduced, i.e., functions with
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the following properties:

1. Im N(z) >0 in D and N(0) = 4.

2. The function W (z) has no pole on the unit circle, at the origin and at infinity
and moreover W (0) and W (oo) are different from 0, W(e) > 0 for all
t € [0,27] and it holds that

1 2m

W(e™)dt = 1. (2.24)
27T 0

w

R is strictly contractive in D.
4. S_ is analytic and invertible in E, with S_(c0) > 0, and

1 /2” -
2r Jo IS (emM)]>

where S_ is as in the previous item.

5
5. 8= ot

Lemma 2.14. Any of the characteristic spectral functions N,W,R,S and S_ de-
termines uniquely the other four via the formulas

W(z)=Im N(z), |z|=1,

1
W(Z) - ‘S_(1/2)|2’ ‘Z‘ - 17
_ 1-2R(2) (2.25)
N(z) =i 1+ zR(z)

S_(z)
S(z) = S (1)2%)

Proof. We start with a rational function W without poles and strictly positive on
T, and satisfying (2.24). We can write W (z) = ¢(2)q(1/2z*)*, where ¢ is rational
and moreover, ¢ and its inverse have no poles in . The function ¢ is defined up
to a constant of modulus one. To define it in a unique way, we require ¢(0) > 0. It
suffices then to define S_(z) = q(ll/z)'

Since W (z) is analytic in a neighborhood of the closed unit disk, the Herglotz

formula
. 27 it
" wen TPa, zeD

et — z

N(z) = 21 J

defines a rational function with positive real part in D and such that W(z) =
Im N(z) for |z| = 1. The function R(z) is in turn uniquely determined by

C114iN(2)
R(z) = 21 —1iN(z2)

The arguments when one starts from one of the other functions are similar. O
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Before proving Theorem 2.15, we recall the following. The Schur algorithm
(see [29], [13]) associates to a function R analytic and contractive in the open unit
disk (that is, a Schur function) a sequence of numbers k,, and a sequence of Schur
functions R,, via the formulas Ro(z) = R(z), ko = R(0) and

R, (z) — R,(0)

Rot1(z) = ,

#(2) 2(1 = Ry (2)Rn(0)*) (2.26)
kn = Ry (0).

The recursion stops if at some stage |k,| = 1. Moreover, when the recursion is

infinite (that is, when |k,| < 1 for all n), (2.16) holds with M,, defined as in
(2.15). The numbers k,, are called Schur coefficients or reflection coefficients.

Theorem 2.15. A strictly pseudo-exponential sequence p,, determines uniquely (up
to a similarity matriz) the minimal triple (a,b, c) subject to (1.5).

Proof. For the purpose of the proof, let us use the notation p, = p,(a,b,c) to de-
note the dependence on (a, b, ¢). We assume that for two minimal triples (a1, b1, ¢1)
and (ag, be, c2) we have

pn(ai,bi,c1) = pnlaz, ba,c2), n=0,1,...

A priori, a; and as may be of different sizes (say, n; X n1 and ny X ng respectively).
The reflection coefficient function R(z) does not depend on the given representa-
tion py(a, b, c). Indeed, by (2.6)—(2.9),

Bn(2)

(@) _ e TPy
e

and thus the reflection coefficients of R(z) are the —p,. Thus the p,, determine
uniquely R(z). Furthermore, from Lemma 2.14 we note that the scattering function
is uniquely determined by R(z). Finally, there exists an invertible matrix o such
that (2.23) holds. Indeed, let (a,b,c¢) be a minimal triple subject to (1.5) and
let pn(a,b,c) the associated strictly pseudo-exponential sequence. The function
25(z) is a solution to the Nehari interpolation problem associated to the series of
negative Fourier coefficients v_; = ca’b (j = 0,1,2,...). Hence, if p,(a1,b1,c1) =
pn(az,ba, c2), we have

V=i = Cla{bl = Czagb% J=0,1,...,
and hence in a neighborhood of the origin we have that:
c1(In, — za1)" b1 = ca(In, — zaz) b

The above equality expresses two different minimal realizations of a common ra-
tional function. The result follows. O
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3. Inverse scattering problem

From the characterization of the scattering function (see Theorem 2.3) there are
two possible starting points for studying inverse problems: the first is a rational
function S_ such that both S_ and S=! are analytic in the exterior of the open unit
disk, including the point at infinity, and the second is a finite Blaschke product.

3.1. Inverse scattering problem associated to the spectral factor
Theorem 3.1. Let S_ be a rational function such that both S_ and S~' are analytic
in the exterior of the open unit disk, including the point at infinity, and S—_(oo) > 0.
Then the function
S_
S(z) = (2)
S_(1/z%)*
is the scattering matriz of a discrete first-order system with strictly pseudo-expo-
nential sequence.

Proof. The function S(z) is rational and has no pole on the unit circle and its
negative coefficients are of the form

S_; = cd b, j=1,2,..., (3.1)

where the spectrum of a is in the open unit disk. See [21, Corollary 3.2, p. 397], [20,
(11), p. 593] (in particular S(z) belongs to the Wiener algebra). By considering

the function
oo

Zs,jzj =c(I —za)™'b
=0
one obtains a minimal triple (which we still call (a, b, ¢)) such that (3.1) holds. Let
z28(z) = Z’yjzj, |z| = 1.
JEZ
Then, '
v—j=ca’h, j=0,1,2,... (3.2)
We claim that the corresponding Hankel operator (1.6) is a strict contraction, i.e.,
diStLoc(T)(ZS(Z), H, (T)) < 1.

It is enough to show that the Hankel operator with symbol S is a strict contraction
since
disty, _(1)(25(2), Hoo(T)) < disty, _(1)(25(2), 2Hoo(T))
= diStLoo('JI‘) (S(Z>7 Ho (T))

To that purpose we let p denote the orthogonal projection from the Lebesgue space
L2(T) onto the Hardy space Hy(T), and set 9 = I — p. Viewing I" as an operator
from Hy(T) onto Hy(T)+ we have I' = Hg = qSp and

T;Ts—‘rH;vHs =1. (33)
Since S admits a Wiener—Hopf factorization it follows from that Ts is boundedly
invertible and its inverse is given by pS~'pS* P (see [20, Theorem 4.1, p. 588] for
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more information in the matrix-valued case). It follows from (3.3) that Hg is a
strict contraction.

One can also get to the same conclusion as follows: the function ¢ S(l/(z)) is

unimodular, and S_(1/2z*)* is outer (it belongs as well as its inverse to Ho(T)). In
particular the function w(z) = |S_(1/2*)|?, being bounded from above and below,
satisfies in a trivial way the Muckenhoupt condition

zt
sup Jrwtet)d < o0

rinterval of T J; w™t(e)dt
(or the equivalent Helson—Szégo condition; [24, Theorem 2 p. 229]). By [23, The-
orem 5 p. 259],

diSth(T)(S(Z),HOO(T)) < 1.

We note that this last argument is valid only in the scalar case, while the first
argument is true in the matrix-valued case as well.

We now build the functions ag(z), 80(2),70(z) and dp(z) as in (2.2)—(2.5)
with n = 0 and a, b, ¢ as in the present proof. From (3.2) we see that the function
25(z) is a unitary solution to the Nehari interpolation problem (1.1). By Theorem

2.13 we have
ag(2)ze(z) + Po(z)
Y0(2)z€(z) + do(2)
for some finite Blaschke product €(z). It follows that €(z) = 1. Indeed, assume
that € is not a constant: there exist then a constant ¢ = ¢ € T and numbers

ai,...,ap, € D such that

z28(z) =

p 2 —a; pHP(l_al)
6(Z):l_ll—za T IRA = zay)

In particular, the positive factorization index of ze(z) is equal to p + 1. By [9,
Theorem 4. 3 p. 33] the positive factorization index of zS(z) will then be also
equal to p+ 1. Hence p = 0 and ¢ is a constant. We show that € = 1. Write e = .
with v € T. Then,

Y_
stz = 1),
Y (2)
The function Y_ is analytic and invertible in |z| > 1 and thus there exists a
complex number k such that

with Y_(2) = u~! (ao(z)e + 50(2)) .

z

S_(z) = kY_(2). (3.4)
Since
Yo g S kY.
A L o 7

we have that kk =1, and so k is real. Let z — oo in (3.4) we obtain

S_(00) = kutag(co)e.
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Since k is real, S_(o0) > 0 and ap(00) > 0 we obtain that u~'e € R, and so
u 'e = 1, and hence ¢ = 1. Thus,

_ap(2) + BOZ(Z)
S() = 270(2) + do(2)’

that is, S is the scattering function of the first-order discrete system (1.1) with
boundary conditions (2.11) and strictly pseudo-exponential sequence p,, n =
0,1,2,... This concludes the proof. O

In the proof, one could also use the representation of S as a quotient of
two Blaschke products of same degree, and in the case of simple poles, use [28,
Corollary 1 p. 205].

Note that the triple (a, b, c) in (3.2) is unique up to a similarity matrix. See [10].

3.2. Inverse scattering problem associated to a Blaschke product

In this section the starting point is a Blaschke product B;. We ask the following
question. When is there a Blaschke product Bs such that S = g; is the scattering
function of a one-sided discrete first-order system?

Theorem 3.2. Let Bi(z) = [[} 12_7;;7@ be a finite Blaschke product, with by, ..., b,
not necessarily distinct points in D. Assume that all the b; # 0. Then, for every
points ay, . ..,an different from 0 and from the b;, the function S = B1B271 with
By(z) = 711 s the scattering function of a one-sided discrete first-order

i

system. The corresponding spectral factor S_ is given by

n

s =]]" " bi (3.5)

)
Z — a;
1 i

up to the normalization (2.13) and

z—0b; 1—=zaf
S(z) = ' ‘.
(2) lzllfzb;‘ z— a;
Indeed, with Ba(z) as in the theorem we have:

n

_ z2—b; tq4l—zal S_(2)
Bi(2)By(2) " = b=
@B =11 1 2 = )
where S_(z) as in (3.5). The function w(z) = |S_(1/2*)|? satisfies the Mucken-
houpt condition, and this ends the proof.

We can compute the corresponding sequence of Schur coefficients as follows:

write
n n

i ~  d; :
S<Z>:szai+zl:l—zbj+n(lj*'

1 1t
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The coefficients ¢; are equal to

2 [Ti—: (1 — asa;)
o . ) 3.6
(E 1 az‘bzf) et o (0 — ) (3.6)
B 0
and the d; need not be computed. We have

n *

zs(z):zljzz_cai +21: 1jzb;‘ +2HZ

n *

n [eS) o n d7, :
:zljci ;z ai +21:1jzb;‘+ZHZ’f'

1 7
Thus
’y,j:Zciagzcajb 7=0,1,2,...
i=1
where
1
1
a = diag (a1,a2,...,a,), b=1]. and c:(cl cy - cn).
1

Finally, the matrices A and 2 solutions of the Stein equations (1.4) are equal to

1 * o
A= By and Q= ( € ci > .
1-— a;a; ietom 1—-aja; ij=1,.m

Plugging these various expressions in (1.3) one obtains a formula for the Schur
coefficients in terms of the a; and b;.

We note that when deg By # deg Ba, the above theorem of [23] cannot be
used (or more precisely, the theorem insures that the norm of the Hankel operator

will be 1). For instance if By(z) = 1 and Ba(z) = ;9. with a € D,

=1 _1— =] — =
P = ot 135" = Bloe = juf |11 = Bohlloc = 1

since for every h € H,

I1 = Bahl|oo = sug |1 — Ba(2)h(2)|| > |1 — Ba(a)h(a)| = 1.
z€E

4. Other inverse problems

The three inverse problems which we now present are solved via the same principle:
from either of the chosen characteristic spectral functions, compute the spectral
factor S_. Then apply Theorem 3.1. The case of the asymptotic equivalence matrix
function is treated in a separate section.
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4.1. Inverse problem associated to the reflection coefficient function

The Schur algorithm solves the inverse problem associated to the reflection coefli-
cient function of a first-order one-sided discrete system, but the question which we
ask here is a bit different. Is any rational function with no poles in D and strictly
contractive on the unit circle of the form (2.17)?

Theorem 4.1. Let R(z) be a rational function strictly contractive in the closed
unit disk. Then, R(z) is the reflection coefficient function of a first-order discrete
system of the form (1.1) with strictly pseudo-exponential potential. In particular
it admits a minimal realization of the form (2.17).

Proof. We set N(z) = z}liggg and W(z) = Im N(z), and factorize W (z) as
1

V&= s e

2| =1
with S_ and its inverse analytic in E and S_(co) > 0. This last condition insures
that the function S_ is uniquely determined by R. Forming S = :Zg we associate

a unique minimal pair (a,b,c) such that (3.2) holds. At this stage we have the
formulas (2.2)-(2.5) (with n = 0) for the entries of Hy(z) and we know from

Bo(2)
Section 2.1 (see formula (2.12)) that S(z) = 300(22)21522(2).

From the uniqueness of the normalized spectral factor, we see that the func-
tion S_(z) is given by (2.14). Define now the functions Ny and Ry by:

B Z,ozo(l/z) —200(1/2)
No(z) = ag(1/2) + 200(1/2)
_ bo(1/2)

RBol2) = ao(1/2)
We show that No(z) = N(z) and Ry(z) = R(z). We have the relationships (with
lz| = 1):
1—zRy(2)

I
e 2R (2)

=Im Ny(z)

 Jao(1/2) + 260(1/2) 2
1
1S-(1/2)P2
=1Im N(z)
1—2zR(z)
Tt zR(z)’

(see (2.20))

=1

and so N(z) = Ny(z) (because of the common normalization at z = 0) and this
forces Ro(z) = R(2). O



Inverse Problems for Discrete Analogs of Canonical Systems 49

As a corollary we have the following partial realization result:

Theorem 4.2. Letp € N and let po, ..., pp be (p+1) numbers in the open unit disk.
Then, there exists a minimal triple (a,b,c) € CPTUX P+ » ClpH1)x1 5 Cclx(p+1)
such that

pn = —ca” (I, — Aa* Qe Y n=0,...,p.

Indeed, let R(z) = Tz, (2)(0), where My(2) is built from the sequence po, ..., pp,

as in (2.15). Let Jy = (; fl) The function M, (z) is Jp-inner:
My (2)* JoMy(z) 0 :
= Jo, ‘Z‘ =1.

bp(2)* = ldp(2)]* = 1, |z] =1

and it follows (see also [14]) that Ty, (-)(0) = Zp(é)) takes strictly contractive values
on the unit circle. Therefore one can apply to it Theorem 4.1. The result follows

since the first p + 1 Schur coefficients of Ti, (. are exactly —po, ..., —pp.
As an example, let us take
po=--=pp—1=0 and p,cD.

This sequence is of the form (1.3) withc=—(p, 0 0 - )€ C™>®+D and
010 - 1
001 0 - 0

a= c @(P+1)><(p+1)’ b=10]| e CcletD),

00 - 01 .
00 - 00 0

Indeed, the matrices A and €2 are equal to

A =bb* +abb*a*+---=1; and Q=c*c+a*ccat - =|p,|°Ls.

Condition (1.5) is thus in force and to check that (1.3) holds with this choice of a, b
and c is a straightforward computation. Let us find back this result by the method

described above. We have R(z) = —p,2P. Computations are easier since R(z) has

. 1+ppzl’+1

constant norm on the unit circle. We have N(z) = ¢ , and for |z] =1
1—psz+ I

1*|Pp‘2 1*|Pp|2

(1= ppert)(1— 27) — S_(1/2)S_(1/2)"

with S_(z) = \Zf|p+| and

Im N(z2) =



50 D. Alpay and I. Gohberg

where p(z) € 2W,. We thus have to look for a minimal triple (a, b, ¢) such that

) 0 j=0,...,p—1
calb = y ) ‘ ’ » D )
—Pp; J=D-

We are thus back to the direct computation just done above.

4.2. Inverse problem associated to the Weyl coefficient function

The proofs of the next Theorem as well as of Theorem 4.5 are similar to the proof
of Theorem 4.1 and will be outlined for completeness.

Theorem 4.3. Necessary and sufficient conditions for a rational function to be
the Weyl coefficient function of a discrete first-order system (1.1) with pseudo-
exponential sequence p, are:

(a) N(0) =1,
(b) Im N(z) > 0 for z € D.

When these conditions are in force, the inverse problem associated to N is solved
as follows:

(1) Compute S_(z) invertible and analytic in E such that S_(oco0) > 0 and
Im N(z) = |S,(11/z)|2'

(2) Set S = 2;. The function S is in the Wiener algebra and its negative co-

efficients are of the form v_; = ca’b (j = 0,1,2,...) for a unique (up to
similarity) minimal triple of matrices (a,b,c).

The coefficients p, are then computed from (a,b,c) as in (1.3).

This problem is solved by reduction to the solution of the associated inverse
scattering problem. Indeed, conditions (a) and (b) are necessary from the analysis
in [4]. See (2.18). To prove that these conditions are also necessary we remark
(Lemma 2.14) that N determines uniquely the normalized spectral factor S_(z).
Steps (1) and (2) solve the inverse scattering problem associated to S_(z) and
gives the series of reflection coefficients p,, in terms of a unique (up to similarity)
minimal triple of matrices (a, b, ¢). By uniqueness of the Weyl coefficient function,
N is the Weyl coefficient function of the corresponding system.

As a corollary we have:

Corollary 4.4. Let N(z) be a rational function. The following are equivalent:

(1) The function N(z) has no pole, has a strictly positive imaginary part in the
closed unit disk, and N(0) = i.
(2) N(z2) can be written as (2.19).
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4.3. Inverse spectral problem

Theorem 4.5. Necessary and sufficient conditions for a rational function W to be
the spectral function of a discrete first-order system (1.1) with pseudo-exponential
sequence py, are:

(a) W(z) has no pole on the unit circle, at the origin and at infinity and moreover
W(0) and W (0o) are different from 0, W(e®) > 0 for all t € [0, 27].
(b) We have .. fo% W (et)dt = 1.

When these conditions are in force, the inverse spectral problem associated to W
1s solved as follows:

(1) Compute S_(z) invertible and analytic in E to be such that S_(c0) > 0 and

W(z) = |S,(11/z)|2 for zeT.

(2) Set S = :Zg. The function S is in the Wiener algebra and its negative coef-

ficients are of the form v; = ca™b (j = 0,—1,-2,...) for a unique (up to
similarity) minimal triple of matrices (a,b,c).

The coefficients p, are then computed from (a,b,c) as in (1.3).

As in the previous section, this problem is also solved by reduction to the
solution of the associated inverse scattering problem. Conditions (a) and (b) are
necessary from the analysis in [4]. See (2.20). To prove that these conditions are
also necessary we remark (Lemma 2.14) that W determines uniquely the normal-
ized spectral factor S_(z). Steps (1) and (2) solve the inverse scattering problem
associated to S_(z) and gives the series of reflection coefficients p,, in terms of a
unique (up to similarity) minimal triple of matrices (a, b, ¢). By uniqueness of the
spectral function, W is the spectral function of the corresponding system.

We mention that another approach to these two inverse problems (when the
coefficients p,, do not necessarily form a strictly pseudo-exponential sequence) uses
the theory of reproducing kernel spaces of the kind introduced by de Branges and
Rovnyak. See [2], [3]. Yet another approach uses a realization

W(z)=D+2C(I - 2A)"'B,

for the weight function and formulas for the inverse of the Toeplitz matrix

Wo wf “e w;kl
*
w1 wo cee Wy
T, = , (4.7)
Wn  Wp—1 o Wo

when the entries are of the form
C’Akfl(I—P)B ifk=1,2,...
wy = D —-CPB ifk=0
—CAF-1pB ifk=-1,-2,...
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where P is the Riesz projection defined by
1
P=- /(AI —A)~td
T

27

Theorem 4.6. Let W be a rational function strictly positive on the unit circle and
without pole at the origin, and let

W(z)=D+20(I—-2A)"'B
be a minimal realization of W (z). Then the associated Schur coefficients are
given by
B D=lCA*V, L PA-(mtD AxBD!
D14 D 1CAXV, L PA-(nt)(AxX)nBD-1
In this expression, A = A—BD~'C and V,, = (I— P+ PA)™"(I — P+ P(A*)").

kn

To prove this theorem we first recall the following result (see [17, pp. 235-236]).
Theorem 4.7. Let R(z) be a Schur function and let

1— R(2) >
P(z) = 1+R(z) = wo+2;weze,

and assume that the matriz T,, (given by (4.7)) is invertible. Set

%E)BL; %é?; W(EZ;
-1 — Y00 M1 0 Tin
SRR
Then the nth Schur coefficient of R is equal to
(n)
k, = ?Z). (4.8)
Yoo

Note that in [17] the function igg; is considered, and this introduces a

minus sign in the Schur coefficients.

In [22, p. 36] formulas are given for the entries of the inverse of T,. More
precisely, it is proved that for every n the matrix V,, = (I — P+ PA)™"(I — P +
P(A*)™) is invertible, and,

(a) for 0 <j <i<n.
7 = (D7LO(AX) VL PAT (D (A¥) I B — DTIC(A)iTI I BD Y.
(b) for0<i<j<n

Y =6, D7 + DTIC(A) VL PAT(AX) I BD
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In particular,
(

()
k="

Yoo
B DlC(A*)V, L PA-("tD)(A*)BD™!
© D4 DIC(AX)V, ) PA-(n+ D) (A )nBD1
Crpyr (AX)""=1Bp~1
T 1+ D 1Cnp AX1BY

where m, 11 =V, PAT"1(AX)" 1. See [6] for more details.

n
n

5. Inverse problem associated to the asymptotic equivalence
matrix function

The asymptotic equivalence matrix can be expressed in the following way (see [4]):

V(=L ( (1+iN(2%)*)S4 ()~ —(1+iN(1/z))S_(1/z)>
2 \~(L—iN(2")")S4 ()71 (1 =iN(1/2))S-(1/2) )

To tackle inverse problems associated to V' it is easier to consider the expres-
sion (2.22) for V (z), that is,

V(z) = ahx) =) (5.1)
—2B(2)  ao(2)

Theorem 5.1. A C?**2-yalued rational matriz function V = (vg ;) is the asymptotic
equivalence matriz function of a one-sided discrete first-order system with strictly
pseudo-exponential potential if and only if the following conditions hold:

1. V is of the form (5.1) with ag and By without poles in |z| > 1, and moreover
o does not vanish in |z| > 1.

2. It holds that

1 27 dt (2 o ()21 .
271'/0 |vg2 (e~t) — vio(e~it)|2 = (|va(2)| lvi1(2)|9)~, |z =1 (5.2)

When these conditions are in force, the solution to the inverse problem associated
to V is obtained by solving the inverse scattering problem associated to

(v22 — v12)(2)

S) = (v22 — v12)¥(2)

Indeed, (5.2) follows from (2.21), and the conditions in the theorem insure

that 5’2222__;}1122)),1((‘2 )) is a scattering function. Solving the corresponding inverse scatter-
ing problem gives us the first-order discrete system with asymptotic equivalence
matrix function v since this function is uniquely determined from either of the

other characteristic spectral functions.



54 D. Alpay and I. Gohberg

6. The case of two-sided first-order systems

The relationships between the systems (1.1) and (1.2) has been studied in [4,
Section 4]. There we proved that the solutions of the system (1.2) are of the form

Vo) = T1G — o (o6 2)me (3 L) me(y §) e

=0 22

n—1
_ 1 0 ()0 1 0
- 2 2\—1 2
! (N (6 2)me ()" D me(; ).
In view of formula (2.1), and since the scalar factor 2~ does not affect the various
linear transformations, this suggests that the set of characteristic spectral functions

of both systems (for a given sequence p,,) are related by the map z + 22. This is
indeed the case, as explained in [4, Section 4].

The following result is proved in [4, Section 4].

Theorem 6.1. Let p,, n =0,1,... be a strictly pseudo-exponential sequence. The
system (1.2) has a solution uniquely defined by the conditions

(1 —1)Yo(z) =0,
(0 1)Y,(2) =2""+o(n).
Then the limit
lim (1 0)Y(z)z""

exists and is called the scattering function of the system (1.2). It is related to the

scattering function of the system (1.1) by the map z — 2°.

The counterpart of Theorem 2.3 is now:

Theorem 6.2. A rational function S is the scattering function of a two-sided first-
S_(2%)
S_(1/z%2)*
where S_ is analytic and invertible in E. When this is the case, the inverse scat-

tering problem is solved by solving the inverse scattering problem for the system

(1.1) associated to the function S,S(I/(zl)*'

order discrete system (1.2) if and only if it can be written as S(z) =

To define the reflection coefficient function we now set

Qu(2) = Clp0) (3 ﬂ) Clon) (8 201>"'C<Pn) (3 zol) (6.1)
= 27" M, (22).

Theorem 6.3. Let p,,n=1,2,... be a strictly pseudo-exponential sequence and let
Qn(z) be defined by (6.1). The limit

R(2) = lim T, (+(0) (6.2)
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exists and is equal to
Bo
R(z) = a (1/2%).
0

It is a function analytic and contractive in the open unit disk, called the reflection

coefficient function. It takes strictly contractive values on the unit circle, and is

related to the reflection coefficient function of the system (1.1) by the map z — 22

Indeed, in view of (6.1), we note that
TQn(z)(O) = TMn(z2)(0>

The arguments follow then those of the one-sided case.

As in Theorem 6.2 the inverse problem associated to R is solved by consid-
ering the corresponding problem for g ?(1/z).

One can also introduce the Weyl coefficient function

1+ 22R(z)

N(z) =i 1—22R(z)

and the spectral function
W(z) =Im N(z).
Theorem 6.4. The characteristic spectral functions of a two-sided first-order dis-

crete system are even functions of z. They can be all expressed in term of a rational
even function o_(z), which is analytic and invertible in E and normalized by

2m
dt
/ =2m, and o_(c0) >0
0 lo-(

efit)|2

na:
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7. A numerical example

In this section we consider a numerical example. We take S_(z) = {75° (that is,

the normalization (2.13) is not taken into account at this stage). Then
S_(2) z—21-3z
z =z
st (2) 1-22 2-3

(31 813
B 10(1-22)  5(2—3) 2
31 8 P 3

To01- L) Ts(-3)a-z 2

Hence, the negative Fourier coefficients of S are

3

= 0ol = callb, j=0,-1,-2,...

Vi

with
1 3
a=,, €=, an
We compute the solutions of the Stein equations in (1.4):

4 3
A= 0= .
3’ 100
Condition (1.5) is in force and we get

31 1 15.2™
- (7.1)

Pr= o0 (1— L ,1,) T (52ntl —1)(5.20F1 1)

The corresponding Schur function is given by formula (2.17) and we obtain
_ )
© 33—162

which is strictly contractive in the closed unit disk.

R(z)

We now check directly that the Schur coefficients of this function are indeed
given by (7.1). We proceed by induction. We first prove that for every positive
integer n, the nth iteration R,, of the Schur algorithm is of the form

1
R, (2) = ,
n( ) Pn — 24n
with p, # 0 (and thus, p,, = 7p1 ), and that we have the recursion relation
D1 = ‘pn‘Q -1
nr n (7.2)
qn+1 = p:r

We first remark that |p,| # 1. Indeed, if |p,,| = 1 we would have |R,(0)| =1,
and by the maximum modulus principle, R, (z) is a unitary constant. It would
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follow that R is a finite Blaschke product, which it is not. A direct computation
shows that R(0) = —pg. Applying twice the Schur algorithm leads to

10 660

= d =
Bi(2) = 13366, A 22 = (g5 199 133662

and to Schur coefficients equal respectively to 11303 and 1?3911, which are in turn
respectively equal to —p; and —po.

Assume now that the hypothesis is true at rank n. Then,

1 1
Rua(z) = 7707
Pn—2qn D7,
_ In
[pnl? =1 = 2p}ian
1

= 2_ .

|pnq|n r_, an
The division by g, = p},_; is legitimate since the induction hypothesis holds at
rank n — 1, and hence Pn—1 # 0. Furthermore, we already remarked that |p,| # 1,

Ipn

and so pp41 = ;é 0, and hence the induction hypothesis is proved at rank

n+ 1.

We now check that 1 = —pn, where the sequence p,, is given by (7.1). We
also prove this claim by 1nduct10n The result is true for n = 0 and n = 1, as
mentioned above. From (7.2) we see that we have to show that for every n:

1
Pn+1 = ] 5
Pn—1 (P% - 1)

1
1= (pﬁ - 1) Pr—1Pn+1-

This amounts to check that

1— (100 - 227 — 1)? B 295 . 92n
-\ 225.2%0 (25227 — 1)(400 - 227 — 1)’

that is,

that is,
(252%™ — 1)(400 - 22" — 1) = (100 - 22" — 1)? — 225 - 22",

This in turn is readily verified.

The Weyl coefficient function is equal to

N(Z):Z,l—zR(z)_ 3 11772’
14+ zR(z) 11 83—z
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and the spectral function is given by:
W(z) =Im N(z)

24 (5—4Re 2
I\ 32
24 1
= |z| = 1.

1S (1/2)

Thus the normalized spectral factor is equal to \/ é}l }:32 A direct computation

using Cauchy’s theorem shows that
ooodt 1 1 dz
/o S_(e=t)2  2mi /.. S_(2)S-(1/2) =

_ 1 / (1-22)(2-2) dz:n

2mi Jiz=1 (1 —=32)(3 — 2)2 24

8. An example of a non-strictly pseudo-exponential sequence

As already mentioned, the Schur function R(z) = ,* takes value 1 for z = 1 and

in particular is not strictly contractive in the closed unit disk. By Theorem 4.1 we
know that its sequence of Schur coefficients is not strictly pseudo-exponential. We
check this directly here. To that purpose we use a formula for the Schur coefficients

in terms of the Taylor series of the function ¢(z) = i;ggzi recalled in Theorem

4.7. For R(z) = ,*_ we have that ¢(z) =1 — z and hence

1
co=1 and ¢ =—_.
0 1 9
Since the coeflicients are real ’yéz) = T(L%), and we have to compute the entries of

the first column of T 1. To ease the notation we denote the entries of this column
by ag, ..., a,. One has to solve

11 7; (1) 0 0 apn 1
-5 13 (1) ... 0 a 0
0 —5 1 5 0 .. = ,
0o 0 - -1 an 0
that is, the system of equations
a
ag — 21 =1

Qg + ag = 2(11

2+ ap = 2a,_1

Ap—1 = 2ay,.



Inverse Problems for Discrete Analogs of Canonical Systems 59

This system of equations has a unique solution, which is found as follows: we set
a; =G +1a—24, j=0,...,n.

These a; satisfy the above equations, at the exception of the last one,
nag — (2n — 2) = 2((n + 1)ag — 2n)

which gives the value of ag:

2n+ 2
ag = .
n+2
Hence we obtain the value of the coefficient k,,:
n 2 1
k, = an _ n+1-— "
ao ag n+1

for n > 1. This sequence does not decrease exponentially fast to 0 and hence is
not a strictly pseudo-exponential sequence.

Finally, we note that the Schur coefficients can also be computed by proving

by induction that the nth iteration R, in (2.26) is equal to R,(z) = (n+11)7m for
n > 1. Indeed, the claim is true for n = 1. Assume it holds at rank n. Then,
1 _ 1
n+l)—nz n+1
Rua(z)= "0
n+1 (n+1)—nz
B n
C (n+1)2—-1—n(n+1)z
1

S m+2)—(n+ 1)z

The Schur coefficients of the function
tion 14].

z

o, were already computed in [30, Sec-

9. Jacobi matrices

We now give an application to Jacobi matrices. We begin with a brief review of
these matrices and of the associated inverse problem. We use extensively the papers
[17], [19] and our previous paper [5]. For the general theory of Jacobi matrices we
refer to [11, Chapter VII].

Jacobi matrices are infinite matrices of the form

bo ao 0 0
Qo bl a1 0 L
J = 0 ay b2 an O . . . ’

where the numbers a,, are strictly positive and the b,, are real numbers.
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One associates to such an infinite matrix a sequence of polynomials Py, P, . ..
via Py(A) = ko > 0 and the recursion formulas

bopo(A) =+ aopl(A) = )\Po(A)
an-1Pa1(N) + buPu(N) + anPasi(N) = AP, (M),

Favard proved in 1935 that there exist positive measures on R such that
/ Po(A)dor(\) P () = S 9.1)
R

The inverse problem associated to do()\) consists in recovering the a,, and b,

from do. Of course, these can be obtained directly from do(\) via the formula
ap = fin ,  kn being the coefficient of A" in P, (}),
Rn+1

= 2 g .
by = /R AP, (M)2do ()

This is the analog of computing the coefficients p,, in the discrete system (1.1)
directly via (4.8) (see the discussion at the end of page 236 of [17]), and does not
take into account possible special properties of do(X).

When the sequences a,, and b,, are bounded, J defines a bounded self-adjoint
operator (see [11, Theorem 1.2 p. 504]), and the measure is unique. Under the
assumption that both limits

lim a, =a and lim b, =05

n—oo n—oo

exist, the first limit being strictly positive, and that, moreover

So{r-k

n=1

+

b”b’} < o0, (9.2)

a

one can say more on the measure; see [19, Theorem 3, p. 474]; do(\) has then a
simple form and one can relate the inverse problem to the inverse problem for a
related discrete first-order one-sided system. Following [17] we will assume

lim a, =1 and lim b, =0.

n—oo n—oo

One then has:

Theorem 9.1. Assume that (9.2) holds with a = 1 and b = 0. There exists a
measure do with support in [—2,2], with a finite number of jumps outside [—2, 2]
such that (9.1) holds. Furthermore, do(X) is absolutely continuous with respect to
Lebesgue measure on [—2,2] and
do(\)  sinf
dx S ()P

where the function zfy(z) belongs to Wi.

A = 2cosé, (9.3)
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See [19, Theorem 1, p. 473] for the above result. We also note that the function
f+ has real Fourier coefficients. Formulas are also available for the jumps of do()\).
We will not recall them here.

We assume that do () is of the form
2 (sin® 6 0)do, A <2
do(\) = {7 (sin° 0) W(e*)dd, - [A] < (9.4)
0, |Al>2

where W(z) = >, w, 2" is in W, has real Fourier coefficients and is strictly positive
on the unit circle. In [17] H. Dym and A. Tacob wrote explicitly the relationships
between the Schur coefficients ¢,, of the function

r(z) = (wo +25 07 wezk) — 1

9.5
(wo + 2307 wezk) + 1 (9-5)
and the sequences a,, and b,,.

Theorem 9.2. Assume that do()\) is of the form (9.4), and let €y, €1,... be the
Schur coefficients of the function (9.5). Then,

an = {(1+ ean2)(1 - leant3|%)(1 — €2n+4)}1/2

9.6)
bp = €ant1(1 — €2n42) — €2n43(1 + €2n42), n=0,1,...

In the next theorem we specialize (9.3) to the case where W (z) is moreover
rational. In [5, pp. 165-166] we computed the coefficients a,, and b,, in terms of
a minimal realization of W(z). In the present section we chose a different route.
We remark that W(z) is the spectral function of a first-order one-sided discrete
system with strictly pseudo-exponential potential (see Theorem 4.3), and we can
use the results proved earlier in the paper to compute the sequences a,, and b,.

Theorem 9.3. Let do()\) be of the form
2 (102 0 <
do(x) = 7 (sin® ) W(e)df, |A| <2
0, |A>2

where W (z) is a real rational function without poles and positive on the unit circle
and such that fo% W (e)df = 1. Write W (2) = |g_(1,)» where S_ and its inverse

are invertible in E. Let
S MEEEE

and let (a,b,c) be a minimal triple such that
Y—j = ca’b, j=0,1,2,...

holds. Finally, let py, be built from (a,b,c) via (1.3) and set eg = 0 and €, = pp—_1
form > 1. Then, the coefficients a,, and b, are given by (9.2) with this choice of €.
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Indeed, the function r(z) given by (9.5) vanishes at the origin because of the
normalization f027r W(e?)df = 1. Write r(z) = —2R(z) and set

N(z)=1 <w0+22wnz"> .
Then, Im N(z) = W(z), |z/=1and
1 -2zR(2)
N(z) =i 14+ zR(z)’

that is, R is the reflection coefficient function associated to the discrete first-order
system with spectral function W(z). Furthermore the sequence of Schur coefficients
of r(z) is

07 P£0, P1y - - -
since the —p; are the Schur coefficients of R(z).

We conclude with an example:

Example 9.4. Let e € (—1,1) and

1—¢?

Wiz) = (1+e)(1+€)

Then, ! [*"

v o Jo W(e")dt =1 and

V1—e?
S_(z)= L4

Then, the negative Fourier coefficients of
S_(z) 9 e € &
— 1— — e
ZS_(l/Z) (24 P R
are equal to v_; = ca’b (j = 0,1,...) with
c=¢, a=— and b=¢€>—1.
The Stein equations (1.4) have solutions

62

A - - d Q — 2
I € an
In par(icular, lnequalily (1.5) hOldS.

The Schur coefficients of the associated first-order system are thus equal to

RS LCR)
n 1— 62n—i—2 ?
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and we have:
€2n+2(€2 —1) 62n+3(62 —1) 2
n = {<1+ 1 ¢dn+6 > 1< 1 — dn+8 >
62n+4(62 o 1) 1/2
A= o
_ {62n+1(62 _ 1) <1 B 62n+2(€2 _ 1))

1— 64n—i—4 1— 6471-‘,—6
2n+3( .2 2n+2( 2
€ e —1 € e —1
(T (e DY
1— 6471-‘,—8 1— 64n—i—6
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Boundary Nevanlinna—Pick Interpolation
Problems for Generalized Schur Functions

Vladimir Bolotnikov and Alexander Kheifets

Abstract. Three boundary multipoint Nevanlinna-Pick interpolation prob-
lems are formulated for generalized Schur functions. For each problem, the
set of all solutions is parametrized in terms of a linear fractional transforma-
tion with a Schur class parameter.
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Keywords. Generalized Schur function, boundary interpolation, interpolation
with inequalities, missed interpolation values, lost negative squares.

1. Introduction

The Schur class S of complex-valued analytic functions mapping the unit disk D
into the closed unit disk D can be characterized in terms of positive kernels as
follows: a function w belongs to S if and only if the kernel

1 —w(Qw(z)
L s (1.1)

is positive definite on D (in formulas: K,, > 0), i.e., if and only if the Hermitian
matrix

Kw(z7 C) =

n
1 —w(z)w(z;)
) NP o 1 J
[Kw(zjvzz)h’jzl - [ 1 Eizj N (12)
3,j=1
is positive semidefinite for every choice of an integer n and of n points z1, ..., 2z, €

D. The significance of this characterization for interpolation theory is that it gives
the necessity part in the Nevanlinna-Pick interpolation theorem: given points
Z1y..-y2n € D and wn,...,w, € C, there exists w € S with w(z;) = w, for

1—w;wj
1—2z;2;

j=1,...,n if and only if the associated Pick matrix P = { } 1s positive

semidefinite.
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There are at least two obstacles to get an immediate boundary analogue of

the latter result just upon sending the points z1,...,z, in (1.2) to the unit circle
T. Firstly, the boundary nontangential (equivalently, radial) limits
w(t) = lin}5 w(z) (1.3)
zZ—

exist at almost every (but not every) point ¢ on T. Secondly, although the nontan-
gential limits

L= w(z)?

= > .
dy(t) ll_)rr% e 2 0 (teT) (1.4)
exist at every t € T, they can be infinite. However, if d,, (t) < oo, then it is readily
seen that the limit (1.3) exists and is unimodular. Then we can pass to limits in

(1.2) to get the necessity part of the following interpolation result:

Given points t1,...,t, € T and numbers w1, ..., w, and vy1,...,7, such that
|lwil=1 and ~ >0 for i=1,...,n, (1.5)
there exists w € S with

w(t;)) =w; and dy(t;) <7y for i=1,...,n (1.6)

if and only if the associated Pick matriz

1 —w;w;
P =[Pyl ;—1 with the entries Pj; = 1- t:tj] Jor i7] (1.7)
i Jor i=j

18 positive semidefinite.

This result in turn, suggests the following well-known boundary Nevanlinna—
Pick interpolation problem.

Problem 1.1. Given points t1,...,t, € T and numbers wi,...,Wn, Y1,---,Yn GS
in (1.5) and such that the Pick matriz P defined in (1.7) is positive semidefinite,
find all functions w € S satisfying interpolation conditions (1.6).

Note that assumptions (1.5) and P > 0 are not restrictive since they are
necessary for the problem to have a solution.

The boundary Nevanlinna—Pick interpolation problem was worked out using
quite different approaches: the method of fundamental matrix inequalities [12],
the recursive Schur algorithm [7], the Grassmannian approach [3], via realization
theory [2], and via unitary extensions of partially defined isometries [1, 11]. If
P is singular, then Problem 1.1 has a unique solution which is a finite Blaschke
product of degree r = rank P. If P is positive definite, Problem 1.1 has infinitely
many solutions that can be described in terms of a linear fractional transformation
with a free Schur class parameter.

Note that a similar problem with equality sign in the second series of condi-
tions in (1.6) was considered in [19, 9, 6]:
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Problem 1.2. Given the data as in Problem 1.1, find all functions w € S such that
w(t;)) =w; and dy(t;)) =~ for i=1,...,n (1.8)

The solvability criteria for this modified problem is also given in terms of the
Pick matrix (1.7) but it is more subtle: condition P > 0 is necessary (not sufficient,
in general) for the Problem 1.2 to have a solution while the condition P > 0 is
sufficient.

The objective of this paper is to study the above problems in the setting of
generalized Schur functions. A function w is called a generalized Schur function if
it is of the form

w(z) = (1.9)

for some Schur function S € S and a finite Blaschke product B. Without loss of
generality we can (and will) assume that S and B in representation (1.9) have no
common zeroes. For a fixed integer x > 0, we denote by S, the class of generalized
Schur functions with & poles inside D, i.e., the class of functions of the form (1.9)
with a Blaschke product B of degree k. Thus, S, is a class of functions w such that

1. w is meromorphic in D and has x poles inside D counted with multiplicities.
2. w is bounded on an annulus {z : p < |z| < 1} for some p € (0, 1).
3. Boundary nontangential limits w(t) := lini w(z) exist and satisfy |w(t)| <1
z—
for almost all t € T.

It is clear that the class Sy coincides with the classical Schur class.

The class S, can be characterized alternatively (and sometimes this charac-
terization is taken as the definition of the class) as the set of functions w mero-
morphic on D and such that the kernel K, (z,() defined in (1.1) has k negative
squares on DN p(w) (p(w) stands for the domain of analyticity of w); in formulas:
sq_(Ky) = k. The last equality means that for every choice of an integer n and of

n points z1, ..., 2z, € DNp(w), the Hermitian matrix (1.9) has at most x negative
eigenvalues:
n
1— . .
sq_ [ w(zl)w(zj)] <r, (1.10)
1-— ZiZj o
3,j=1

and for at least one such choice it has exactly x negative eigenvalues counted with
multiplicities. In what follows, we will say “w has k negative squares” rather than
“the kernel K,, has k negative squares”.

Due to representation (1.9) and in view of the quite simple structure of fi-
nite Blaschke products, most of the results concerning the boundary behavior of
generalized Schur functions can be derived from the corresponding classical results
for the Schur class functions. For example, the nontangential boundary limit d,, (¢)
(defined in (1.4)) exists for every t € T and satisfies d,, () > —oo (not necessarily
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nonnegative, in contrast to the definite case). Indeed, if w is of the form (1.9), then
1-|wz)? 1 1-|S(2)* _ 1-1B(2)

1—[z2 B\ 1-[2? 1—|z> )~
Passing to the limits as z tends to ¢t € T in the latter equality and taking into
account that |B(t)| = 1, we get

dy(t) = ds(t) — dp(t) > —o0,

since dy,(tg) > 0 and dp(t) < oo. Furthermore, as in the definite case, if d,, (t) < oo,
then the nontangential limit (1.3) exists and is unimodular.

(1.11)

Now we formulate indefinite analogues of Problems 1.1 and 1.2. The data set

for these problems will consist of n points t¢1,...,t, on T, n unimodular numbers
w1, ..., wy, and n real numbers v, ..., yp:
t, €T, |w|=1 v €eR (i=1,...,n). (1.12)

As in the definite case, we associate to the interpolation data (1.12) the Pick matrix
P via the formula (1.7) which is still Hermitian (since ; € R), but not positive
semidefinite, in general. Let x be the number of its negative eigenvalues:

K= sq_P, (1.13)
where )
— W;Wy . .
fi
P=[P;]};=; and Pj; = 1 —t;t; or 17, (1.14)
Vi for ©=3j.

The next problem is an indefinite analogue of Problem 1.2 and it coincides with
Problem 1.2 if k = 0.

Problem 1.3. Given the data set (1.12), find all functions w € S, (with  defined
in (1.13)) such that

1—|w(z)]* _ _
dw(ti) _zhjrtll 17|Z|2 =Y (Z— 1,...,71) (1.15)
and
w(t;) = lim w(z) = w; (i=1,...,n). (1.16)

The analogue of Problem 1.1 is:

Problem 1.4. Given the data set (1.12), find all functions w € S, (with k defined
in (1.13)) such that

dw(t;) <v and w(t;) =w; (i=1,...,n). (1.17)

Interpolation conditions for the two above problems are clear: existence of the
nontangential limits d.,(¢;)’s implies existence of the nontangential limits w(¢;)’s;
upon prescribing the values of these limits (or upon prescribing upper bounds for
dy (t;)’s) we come up with interpolation conditions (1.15)—(1.17). The choice (1.13)
for the index of S; should be explained in some more detail.
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Remark 1.5. If a generalized Schur function w satisfies interpolation conditions
(1.17), then it has at least k = sq_ P negative squares.

Indeed, if w is a generalized Schur function of the class Sz and t¢1,...,t, are
distinct points on T such that
dy(t;)) <oco for i=1,...,n,
then the nontangential boundary limits w(¢;)’s exist (and are unimodular) and

one can pass to the limit in (1.10) (as t; — z; for i = 1,...,n) to conclude that
the Hermitian matrix

L —witw(t;)

w w] ™ w f ] ]
P (tla"'atn) = [P)ij]i,j:1’ P)z] = 1—tlt] or ¢ #] (118)
dw(tz) for = ]
satisfies
sq_PY(t1,...,tn) <R (1.19)

If w meets conditions (1.16), then the nondiagonal entries in the matrices
Pw(tl,...,tn) and P

coincide which clearly follows from the definitions (1.14) and (1.18). It follows from
the same definitions that

7 — dw (t1> 0
P—PY(ty,...,ty) =
0 Tn — duw (tn)

and thus, conditions (1.15) and the first series of conditions in (1.17) can be written
equivalently in the matrix form as

Pw(th...,tn):P and Pw(tl,...,tn)gP, (120)
respectively. Each one of the two last relations implies, in view of (1.19) that
sq_P <&k.

Thus, the latter condition is necessary for existence of a function w of the class Sz
satisfying interpolation conditions (1.17) (or (1.15) and (1.16)). The choice (1.13)
means that we are concerned about generalized Schur functions with the minimally
possible negative index.

Problems 1.3 and 1.4 are indefinite analogues of Problems 1.2 and 1.1, re-
spectively. Now we introduce another boundary interpolation problem that does
not appear in the context of classical Schur functions.

Problem 1.6. Given the data set (1.12), find all functions w € Sy for some k' <
k = sq_P such that conditions (1.17) are satisfied at all but k—k' pointsty, ..., ty.

In other words, a solution w to the last problem is allowed to have less then s
negative squares and to omit some of interpolation conditions (but not too many
of them). The significance of Problem 1.6 will be explained in the next section.
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2. Main results

The purpose of the paper is to obtain parametrizations of solution sets Si3, Si4
and Sy for Problems 1.3, 1.4 and 1.6, respectively. First we note that

S13 € S14 CS16 and S14 = S16 N Sk. (21)

Inclusions in (2.1) are self-evident. If w is a solution of Problems 1.6 with ' = k,
then k¥ — k' = 0 which means that conditions (1.17) are satisfied at all points
t1,...,tn and thus, w € S14. Thus, S14 C S16NSsk. The reverse inclusion is evident,
since S14 C Sk. Note also that if kK = 0, then Problems 1.4 and 1.6 are equivalent:
S14 = Ss6.

It turns out that in the indefinite setting (i.e., when x > 0), Problem 1.6
plays the same role as Problem 1.4 does in the classical setting: it always has
a solution and, in the indeterminate case, the solution set Si¢ admits a linear
fractional parametrization with the free Schur class parameter. The case when P
is singular, is relatively simple:

Theorem 2.1. Let P be singular. Then Problem 1.6 has a unique solution w which
1s the ratio of two finite Blaschke products

Bi(z)

w(z) =

with no common zeroes and such that
deg B; + deg By = rank P.
Furthermore, if deg Bo = k, then w is also a solution of Problem 1.4.

The proof will be given in Section 7. Now we turn to a more interesting case
when P is not singular. In this case, we pick an arbitrary point u € T\ {¢1,...,tn}
and introduce the 2 x 2 matrix-valued function

[ On) On)
() = [@21@ @li(z)]

I+ (z — p) { g } (2l —=T)"P~ ' (I, —pT*)" " [ C* —E* |

(2.2)

where
ty
T = . E=[1 .01, C=[wur ... wy]. (2.3)
tn
Note that the Pick matrix P defined in (1.14) satisfies the following identity

P—T*PT = E*E — C*C. (2.4)

Indeed, equality of nondiagonal entries in (2.4) follows from the definition (1.18)
of P, whereas diagonal entries in both sides of (2.4) are zeroes. Identity (2.4) and
all its ingredients will play an important role in the subsequent analysis.
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The function © defined in (2.2) is rational and has simple poles at ¢1,.. ., ;.
Note some extra properties of ©. Let J be a signature matrix defined as

1 0
=[r 0] .
It turns out that © is J-unitary on the unit circle, i.e., that
O()JO(t)* =J for every t € TN p(O) (2.6)

and the kernel
J - 6(2)J6(()"

K ,Q) = - 2.7

om0 =" (27)
has k = sq_ P negative squares on D:

sq_Ke j=k. (2.8)

We shall use the symbol W, for the class of 2 x 2 meromorphic functions satisfying
conditions (2.6) and (2.8). It is well known that for every function ® € W, the
linear fractional transformation

To: &€ — 2.9

© 021& + O2 29)

is well defined for every Schur class function £ and maps Sy into |J,,, ., Sk. This
map is not onto and the question about its range is of certain interest. If © is of

the form (2.2), the range of the transformation (2.9) is Sye:
Theorem 2.2. Let P, T, E and C be defined as in (1.14) and (2.3) and let w be

a function meromorphic on D. If P is invertible, then w is a solution of Problem
1.6 if and only if it is of the form

. @11(2)8(2) =+ @12(2)

w(z) = Tel€](2) := 021(2)E(2) + O (2)’

(2.10)

for some Schur function £ € Sy.

It is not difficult to show that every rational function © from the class Wy
with simple poles at ¢1,...,t, € T and normalized to I at p € T, is necessarily
of the form (2.2) for some row vector C' € C'*" with unimodular entries, with F
as in (2.3) and with a Hermitian invertible matrix P having k negative squares
and being subject to the Stein identity (2.4). Thus, Theorem 2.2 clarifies the
interpolation meaning of the range of a linear fractional transformation based on
a rational function © of the class W, with simple poles on the boundary of the
unit disk.

The necessity part in Theorem 2.2 will be obtained in Section 3 using an
appropriate adaptation of the V.P. Potapov’s method of the Fundamental Matrix
Inequality (FMI) to the context of generalized Schur functions. The proof of the
sufficiency part rests on Theorems 2.3 and 2.5 which are of certain independent
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interest. To formulate these theorems, let us introduce the numbers ¢1, ..., ¢, and
517 ey gn by
¢l i=—lim (2 —1;)021(z) and €} := lim(z—1;)@2(z) (i=1,...,n) (2.11)

z—t; z—t;

(for notational convenience we will write sometimes a* rather than a for a € C).
It turns out |¢;| = |€;| # 0 (see Lemma 3.1 below for the proof) and therefore the
following numbers

¢ e . Ox(z) .
= _ = ' =-—1 =1,..., 2.12
4 €; C;k Zgrtll @21(2’) (Z n> ( )
are unimodular:
ml=1 (i=1,...,n). (2.13)

Furthermore let p;; stand for the ith diagonal entry of the matrix P~!, the inverse
of the Pick matrix. It is self-evident that for a fixed 7, any function £ € Sy satisfies
exactly one of the following six conditions:

C;: The function £ fails to have a nontangential boundary limit »; at ¢;.
1—|&(2))?
Cy: &)= hn}. E(z)=mn; and dg(t;) = ) _l |(2:73| = 0. (2.14)
Cs: E{i)=mn and -— él‘g < dg(t;) < o0. (2.15)
Cy: Ei)=mn and 0<dg(t;) <— |€Z‘12 (2.16)
€;
Cs: &) =mn and de(t;) = —é"g > 0. (2.17)
CG : g(ti) =1 and dg(ti) = ﬁii =0. (218)

Note that condition C; means that either the nontangential boundary limit
E(t;) == lthl E(z)
z—t;

fails to exist or it exists and is not equal to 7;. Let us denote by C4_¢ the disjunction
of conditions Cy4, Cs and Cg:
Dis
C4,6 : E(tl) =1 and dg(ti) S - ‘,ejr2 .
(3
The next theorem gives a classification of interpolation conditions that are or are
not satisfied by a function w of the form (2.10) in terms of the corresponding
parameter £.

(2.19)

Theorem 2.3. Let the Pick matriz P be invertible, let £ be a Schur class function,
let © be given by (2.2), let w = T[] and let t; be an interpolation node.

1. The nontangential boundary limits d,,(t;) and w(t;) exist and are subject to
dw(ti) =7y and w(t;) = w;

if and only if the parameter £ meets either condition Cy or Cs.
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2. The nontangential boundary limits d,(t;) and w(t;) exist and are subject to
dy(t;) <y and w(t;) = w;

if and only if the parameter £ meets condition Cs.
3. The nontangential boundary limits d,,(t;) and w(t;) exist and are subject to

i < dw(t;) <oo and w(t;) = w;.

if and only if the parameter € meets condition Cy.
4. If € meets Cs, then w is subject to one of the following:
(a) The limit w(t;) fails to exist.
(b) The limit w(t;) exists and w(t;) # w;.
(¢) w(t;) =w; and dy(t;) = oo.
5. If € meets Cg, then w is the ratio of two finite Blaschke products,

dy(ti) <oo and w(t;) # w;.

We note an immediate consequence of the last theorem.

Corollary 2.4. A function w = Tg[E] meets the ith interpolation conditions for
Problem 1.4:

dy(ti) <7y and w(t;) = w;
if and only if the corresponding parameter £ € Sy meets the condition Ci_3 :=
CivCy;VC;satt;.

Note that Problem 1.3 was considered in [2] for rational generalized Schur
functions. It was shown ([2, Theorem 21.1.2]) that all rational solutions of Problem
1.3 are parametrized by the formula (2.10) when & varies over the set of all rational
Schur functions such that (in the current terminology)

E(ty))#£m for i=1,...,n.

Note that if £ is a rational Schur function admitting a unimodular value &(to)
at a boundary point tg € T, then the limit d,(tg) always exists and equals
to€' (to)E(to)*. The latter follows from the converse Carathéodory-Julia theorem
(see, e.g., [18, 20]):

_ 2 _ *
dute) = Tim * T IECIT ) 1= E()E()
z—to 1 — |Z‘2 z—to 1 — 2ty
L El0) ~E() E(to)
z—to to — 2 to

= togl(to)g(to)* < 00.

Thus, a Schur function £ cannot satisfy condition Cs at a boundary point t;
therefore, Statement (1) in Theorem 2.3 recovers Theorem 21.1.2 in [2]. The same
conclusion can be done when £ is not rational but still analytic at ¢;. In the case
when £ is not rational and admits the nontangential boundary limit £(¢;) = n;,
the situation is more subtle: Statement (1) shows that even in this case (if the



76 V. Bolotnikov and A. Kheifets

convergence of £(z) to £(t;) is not too fast), the function w = T[] may satisfy
interpolation conditions (1.15), (1.16).

The next theorem concerns the number of negative squares of the function
w = T@ [5]

Theorem 2.5. If the Pick matriz P is invertible and has k negative eigenvalues,
then a Schur function £ € Sy may satisfy conditions Cy_g at at most k interpola-
tion nodes. Furthermore, if € meets conditions Cy—g at exactly ¢ (< k) interpola-
tion nodes, then the function w = Tgl[€] belongs to the class Sx—y.

Corollary 2.4 and Theorem 2.5 imply the sufficiency part in Theorem 2.2.
Indeed, any Schur function £ satisfies either conditions C4_g or C;_3 at every

interpolation node t; (i = 1,...,n). Let £ meet conditions Cy4_g at t;,,...,t;, and
C1_3 at other n — ¢ interpolation nodes ¢;,,...,t;, _,. Then, by Corollary 2.4, the
function w = Te[€] satisfies interpolation conditions (1.17) for ¢ € {j1,...,Jn—s}

and fails to satisfy at least one of these conditions at the remaining ¢ interpolation
nodes. On the other hand, w has exactly x — ¢ negative squares, by Theorem 2.5.
Thus, for every £ € Sy, the function w = Tg[€] solves Problem 1.6.

Note also that Theorems 2.2 and 2.5 lead to parametrizations of solution sets
for Problems 1.3 and 1.4. Indeed, by inclusions (2.1), every solution w to Problem
1.3 (or to Problem 1.4) is also of the form (2.10) for some £ € Sy. Thus, there
is a chance to describe the solution sets S13 and S14 by appropriate selections of
the parameter £ in (2.10). Theorem 2.5 indicates how these selections have to be
made.

Theorem 2.6. A function w of the form (2.10) is a solution to Problem 1.3 if and
only if the corresponding parameter £ € Sy satisfies either condition Cq or Cq for
every i € {1,...,n}.

Theorem 2.7. A function w of the form (2.10) is a solution to Problem 1.4 if and
only if the corresponding parameter £ € Sy either fails to have a nontangential
boundary limit n; at t; or

Pii
Et;))=mn; and dg(t;) > — E%%
(3
for every i = 1,...,n (in other words, £ meets one of conditions C1, Ca, C3 at

each interpolation node t;).

As a consequence of Theorems 2.2 and 2.7 we get curious necessary and
sufficient conditions (in terms of the interpolation data (1.12)) for Problems 1.4
and 1.6 to be equivalent (that is, to have the same solution sets).

Corollary 2.8. Problems 1.4 and 1.6 are equivalent if and only if all the diagonal
entries of the inverse P~' of the Pick matriz are positive.
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Indeed, in this case, all the conditions in Theorem 2.7 are fulfilled for every
£ e Spandeveryi € {1,...,n} and formula (2.6) gives a free Schur class parameter
description of all solutions w of Problem 1.4.

In the course of the proof of Theorem 2.5 we will discuss the following related
question: given indices 41,...,4 € {1,...,n}, does there exist a parameter £ €
So satistying conditions Cy_¢ at t;,,...,t;,? Due to Theorems 2.2 and 2.3, this
question can be posed equivalently: does there exist a solution w to Problem 1.6
that misses interpolation conditions at ¢, , ..., ;, (Theorem 2.5 claims that if such
a function exists, it belongs to the class Sy_¢). The question admits a simple
answer in terms of a certain submatrix of P~! = [ﬁij]zjzl, the inverse of the Pick
matrix.

Theorem 2.9. There exists a parameter £ satisfying conditions Cy_g at t;,, ..., t;,
if and only if the £ X £ matriz
~ 14
7) = [piaaiﬁ]a,ﬁ:1
is negative semidefinite. Moreover, if P is negative definite, then there are infinitely
many such parameters. If P is negative semidefinite (singular), then there is only
one such parameter, which is a Blaschke product of degree r = rank P.

Note that all the results announced above have their counterparts in the
context of the regular Nevanlinna-Pick problem with all the interpolation nodes
inside the unit disk [5]

The paper is organized as follows: Section 3 contains some needed auxiliary
results which can be found (probably in a different form) in many sources and are
included for the sake of completeness. In Section 4 we prove the necessity part in
Theorem 2.2 (see Remark 4.4). In Section 5 we prove Theorem 2.3. In Section 6
we present the proofs of Theorems 2.9 and 2.5 and complete the proof of Theorem
2.2 (see Remark 6.2). The proof of Theorem 2.1 is contained in Section 7; some
illustrative numerical examples are presented in Section 8.

3. Some preliminaries

In this section we present some auxiliary results needed in the sequel. We have
already mentioned the Stein identity

P—T'PT = E*E — C*C (3.1)
satisfied by the Pick matrix P constructed in (1.14) from the interpolation data.

Most of the facts recalled in this section rely on this identity rather than on the
special form (2.3) of matrices T', E and C.

Lemma 3.1. Let T, E and C be defined as in (2.3), let P defined in (1.14) be
invertible and let p be a point on T\ {t1,...,tn}. Then
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1. The row vectors

E=[& ... &) ad C=[a ... &) (3.2)
defined by
Cl=] & wr-nrea (33)

satisfy the Stein identity
Pl —TP'T* = E*E — C*C. (3.4)
2. The numbers ¢; and ¢; are subject to
lei| =1ci| #0 fori=1,...,n. (3.5)

3. The nondiagonal entries p;; of P~1 are given by
. ere; —cicy o
Pij = llj—t-fl- ! (i # J). (3.6)

ity

Proof. Under the assumption that P is invertible, identity (3.4) turns out to be
equivalent to (3.1). Indeed, by (3.3) and (3.1),

E*E - C*C

= (I —pT)P Y@l —T*) "' [E*E — C*C] (ul — T) ' P~ (I — uT*)

= (I —pT)P~ Y@l —T*) '[P —T*PT) (uI —T)"'P~Y(I — uT™)

= —pT)P~ " [(I = pT*)"P+ PT(uI —T)"'| P~H(I — puT™)

= —pT)P '+ pTP (I — pT™)

=pl_TpiT*
Let P~! = [pj;]},_,- Due to (3.2) and (2.3), equality of the ijth entries in (3.4)
can be displayed as

Pij — tiljPij = €€ — ¢ ¢; (3.7)

and implies (3.6) if ¢ # j. Letting ¢ = j in (3.7) and taking into account that
[t;| =1, we get |&;| = |&;] for i = 1,...,n. It remains to show that &; and ¢; do not
vanish. To this end let us assume that

¢i=0=0. (3.8)

Let e; be the ith column of the identity matrix I,,. Multiplying (3.4) by e; on the
right we get

P_lei — TP_IT*BZ‘ = E*gZ — 5*51 =0
or equivalently, since T*e; = t;e;,

(I -t T)P 'e; = 0.
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Since the points ¢4, ...,t, are distinct, all the diagonal entries but the ¢th in the
diagonal matrix I — ¢;T" are not zeroes; therefore, it follows from the last equality
that all the entries in the vector P~ 'e; but the ith entry are zeroes. Thus,

Pilei = e; (39)

for some o € C and, since P is not singular, it follows that a % 0. Now we compare
the ¢th columns in the equality (3.3) (i.e., we multiply both parts in (3.3) by e;
on the right). For the left-hand side we have, due to assumption (3.8),

o | [0
le | 0]
For the right-hand side, we have, due to (3.9) and (2.3),

C 11 o, _ Ll—pti | C o | owi
[E](,uIT) P (IfuT)eZ—on_ti [E]el—oztl[ 1 }

¢

E

By (3.3), the right-hand side expressions in the two last equalities must be the
same, which is not the case. The obtained contradiction completes the proof of
(3.5). O

Remark 3.2. The numbers €; and ¢; introduced in (3.2), (3.3) coincide with those
in (2.11).

For the proof we first note that the formula (2.2) for © can be written, on
account of (3.3), as

O(z) = Ir + (2 — p) [ g ] (21, — T) Yl — T)"* [ C* —E* } (3.10)

and then, since

lim (z —t;)(2I = T)"' =ejef and ef(ul —T) ' =(p—t;) ‘e;

i
z—t;

(recall that e; is the ith column of the identity matrix I,,), we have

lim (=~ £)0(2) = Zliilgi(zu){g}eief(ulT)l{é* =
_ [g}eief{é* B |

= —[“{i][a; —er ]. (3.11)
Comparing the bottom entries in the latter equality we get (2.11). O

In the rest of the section we recall some needed results concerning the function
© introduced in (2.2). These results are well known in a more general situation
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when 7', C' and E are matrices such that the pair ({C] , T) is observable:

E

[ Ker E} T7 = {0}, (3.12)

Jj=0
and P is an invertible Hermitian matrix satisfying the Stein identity (3.1) (see,
e.g., [2]). Note that the matrices defined in (2.3) satisfy a stronger condition:

(] Ker CT? = (] Ker ETV = {0}. (3.13)
j=0 j=0

Remark 3.3. Under the above assumptions, the function © defined via formula
(2.2) belongs to the class W, with k =sq_P.
Proof. The desired membership follows from the formula
C — — -~ *\ — * *
Ko j(2,¢) = { e } (2l =T)'"PY(CI-T*)"'[ C* E* ] (3.14)

for the kernel Kg, ; defined in (2.7). The calculation is straightforward and relies
on the Stein identity (3.1) only (see, e.g., [2]). It follows from (3.14) that © is
J-unitary on T (that is, satisfies condition (2.6)) and that

sq_Ke,g <sq_P = k.
Condition (3.12) guarantees that in fact sq_Ke, s = £ (see [2]). O

Remark 3.4. Since © is J-unitary on T it holds, by the symmetry principle, that
O(z)~! = JO(1/2)*J, which together with formula (2.2) leads us to

O() " = Ih— (2 —p) { < } (Wl —T)"'PN(I—-T%) ' [C* —E*]. (3.15)

Besides (3.14) we will need realization formulas for two related kernels. Veri-
fication of these formulas (3.16) and (3.17) is also straightforward and is based on
the Stein identities (3.1) and (3.4), respectively.

Remark 3.5. Let © be defined as in (2.2). The following identities hold for every
choice of z, € {t1,...,tn}:

O IO() " =T _ [g]([—gT)_lP_l(I—zT*)_l [c* —E"],

1—zgT
(3.16)
J—0()Je(z) C | - 1 N
7 = | G |@-r)Per-T) & B ]

(3.17)
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Let us consider conformal partitioning

p_ [Pn -7312}7 pl— En 1312

Po1 Py Pyi Py 0 Ty

, T:[Tl 0}, (3.18)

E=[B B], C=[01 @), E=[E B C=[G G (19

where Pss, 1522, Ty € C*¢ and Es, Co, Eg, 52 € C'*¢. Note that these decompo-
sitions contain one restrictive assumption: it is assumed that the matrix T is block
diagonal.

Lemma 3.6. Let us assume that Piy is invertible and let sq_ Py = k1 < k. Then

1522 is invertible, sq7ﬁ22 = Kk — k1 and the functions

OW(2) =L+ (2 —p) { E,

Cr } (1 TP —uTy) [ O B ] (3.20)

and

0P (2) = I + (= — ) l % ] (1= pT3) PRl =) | & —E3 | (321)

belong to Wy, and Wy_,,, respectively. Furthermore, the function © defined in
(2.2) admits a factorization

0(z) = 0W(2)0?3) (2). (3.22)

Proof. The first statement follows by standard Schur complement arguments: since
P and Py are invertible, the matrix Pao— Poy PﬂlPlg (the Schur complement of Pjq
in P) is invertible and has k — k1 negative eigenvalues. Since the block ]322 in P!
equals (P — P21P1_11P12)_1, it also has kK — k1 negative eigenvalues. Realization
formulas

Kow s(2,0) = R(z)PL'R()" and Kge ;(2,¢) = R(2)PuR(()",  (3.23)
where we have set for short

R(z) = [ gi ] (zI-Ty)"", R(z)= éz

B |- Py e - m)

are established exactly as in Remark 3.3 and rely on the Stein identities

P11 — T1*P11T1 = EfEl — C’fC’l and ﬁ2_21 - TQﬁQQT; = E;EQ — 5;52 (324)
which hold true, being parts of identities (3.1) and (3.4). Formulas (3.23) guarantee
that the rational functions ©) and ©®) are J-unitary on T and moreover, that

sq_Keomw,y <sq_Pi1 =K1 and squ(:)@)yJ <sq_Py =Kk — K. (3.25)
Assuming that the factorization formula (3.22) is already proved, we have

Ke,1(2,¢) = Ko (2,0) + W (2) Kz ;(2,0)0M ()"
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and thus,
k=sq Ke . <sq Keuw j+sq_ Kge ;
which together with inequalities (3.25) imply
sq_Keow) j = k1 and squ(:)@)’J =K — K.

It remains to prove (3.22). Making use of the well-known equality

-1 _ p-1 _
Pl = { Plol 8 } + { Pli Pz ]PQQ[ —Py Pt 1] (3.26)

we conclude from (3.3) that

g;
Ey

| e - )

_ [ g ] (ul,, — )" [ *Pffpu ]ﬁgz(fg—ucr;). (3.27)

This last relation allows us to rewrite (3.21) as

—Pp' Pry
1

0D (2) = I+ (2— p) [ g ] (uIT)l[ (2 —Ty)"! [ Gy —E3 ]

(3.28)

Now we substitute (3.26) into the formula (2.2) defining © and take into account
(3.20) and (3.27) to get

o) = W+ G- | | en-nt | T | By
1

](In*uT*)_l [ c* _E* ]

= 0W(2) + (2 —p) [ < ] (21, —T)"" [ *Pffpw ]

x(ul =)™ | G ~F; |.
Thus, (3.22) is equivalent to

69¢) = ht oot | G| en-mt | T
x(ul ~To) [ G5 —F3 |

Comparing the last relation with (3.28) we conclude that to complete the proof it
suffices to show that

oM (z)~! [ g ] (21, —T)! [ _Pl_ilpm ] (ul — T) !

L el [ R
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The explicit formula for ©()(2)~! can be obtained similarly to (3.15):
_ C — — *\ — * *
oW =L —(z2—p) [ Ei } (uI —T)7'PRMI - 217) 71 [CF —Ef]. (3.30)

Next, comparing the top block entries in the Stein identity (3.1) we get, due to
decompositions (3.18) and (3.19),

[P Po| =Ty [Pn Pi|T=EE-CC

which, being multiplied by (I — 275)~! on the left and by (21 —T)~! on the right,
leads us to

(I —2T7)" Y (EfE - CfC) (21 —T)*
= —2T7)'Tf [Pin Pio] + [Pun Pro) (I -T)" " (3.31)

Upon making use of (3.29) and (3.31) we have
L[ C [ =P5'P
@(1)(2) 1|:E:|(ZInT) 1|: 11 12:|
_p-1
=[G ]er-n [ P ]
¢y - _ [ PP
‘*‘(Z—N){E ](MI—TI)I[I P111P12](ZI_T)1[ 1i 12}
1p-1 C -1
[ ] zI —T1)" P Pia + [ E :| (21 —Tv)
2
Cs

[ ] ul —Ty) PP Pro(ul — To) + { B, } (21 —Ty)~ !

= { g } (I =T)" [ _P1_111P12 ] (21 —T3)7}

(
[ ] (I = T1) " (P Pia(2] = To) ™' = (21 = Ty) ' Py Pra)
(

which proves (3.29) and therefore, completes the proof of the lemma. O

Remark 3.7. The case when £ = 1 in Lemma 3.6 will be of special interest. In this
case,

Py =7n, Po=ppp, To=t,, Cr=w, FEy=1 06y=¢, Ey=¢,.

Then the formula (3.21) for ©® simplifies to

0@ (2) =1, oK E" Sl o1 |
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4. Fundamental Matrix Inequality

In this section we characterize the solution set Sig of Problem 1.6 in terms of
certain Hermitian kernel. We start with some simple observations.

Proposition 4.1. Let K(z,() be a Hermitian kernel defined on Q C C and with
sq_K = k. Then

1. For every choice of an integer p, of a Hermitian p X p matrix A and of a
p X 1 vector-valued function B,

A B(z) ]
_ N < kK+p.
. {B(C) K(z¢] =77
2. If M, ..., Ap are points in € and if

K(z,M\)
A= [K(Ajv)‘i)]f,jﬂ and B(z) = : , (4.1)

K(z,Ap)

then A 5
z

sq_ {B(C)* K(;)C)] = k. (4.2)
Proof. For the proof of the first statement we have to show that for every integer

m and every choice of points z1, ..., z;, € , the block matrix

=gl K%j;)ﬂz_l (13)

has at most k + p negative eigenvalues. It is easily seen that M contains m block
identical rows of the form
[A B(z1) A B(z2) ... A B(z)].

Deleting all these rows but one and deleting also the corresponding columns, we
come up with the (m + p) x (m + p) matrix

A B(z) B(zm)
N B(z1)* K(z1,21) ... K(z1,2m)
M= : : :
B(zm)* K(zm,z1) ... K(zm,2zm)

having the same number of positive and negative eigenvalues as M. The bottom
m x m principal submatrix of M has at most & negative eigenvalues since sq_ K =
k. Since M is Hermitian, we have by the Cauchy’s interlacing theorem (see, e.g.,
[4, p. 59]), that sq_ M < k+p. Thus, sq_M < k + p which completes the proof of
Statement 1.

If A and B are of the form (4.1), then the matrix M in (4.3) is of the form
[K(Cp(i)]zlj;plm where all the points ¢; live in €. Since sq_K = &, it follows
that sq_ M < k for every choice of z1,..., 2y in  which means that the kernel
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A B(z) ] . .
N has at most k negative squares on 2. But it has at least
{B(C) K(z0) e
negative squares since it contains the kernel K (z,() as a principal block. Thus,
(4.2) follows. O

Theorem 4.2. Let P, T, E and C be defined as in (1.14) and (2.3), let w be a
function meromorphic on D and let the kernel K., be defined as in (1.1). Then w
18 a solution of Problem 1.6 if and only if the kernel

P (I —2T*)"YE* — C*w(2))

Kale:9)= (e — ) Ku(2,) 4
has k negative squares on DN p(w):
sq_Ku(2,¢) = k. (4.5)

Proof of the necessity part. Let w be a solution of Problem 1.6, i.e., let w belong
to the class S,/ for some ' < k and satisfy conditions (1.17) at all but k — '
interpolation nodes.

First we consider the case when w € S.. Then w satisfies all the conditions
(1.17) (i.e., w is also a solution to Problem 1.4). Furthermore, sq_K,, =  and by
the second statement in Proposition 4.1, the kernel

Ky(z1,21) ... Ku(zn,21) Ku(z,21)
KW (z,¢) = : : 5 (4.6)
Ky(z1,2n) . Kuw(zn,2n) Ku(z,2n)
Kw(ZhC) Kw(Zn,C) Kw(ZaC)
has x negative squares on DN p(w) for every choice of points z1,. .., 2z, € DNp(w).
Since the limits d,, (¢;) and w(¢;) = w; exist for i = 1,...,n, it follows that
n o 1- w(zz)*w(z]) " w
L P Pt 6D

(by definition (1.18) of the matrix P*(ty,...,t,)) and also
_ 1—w(()w(z) 1 —w({) w;

Kw (2] - = = ) = 17 ceey .
O VAN (S NN
Note that by the structure (2.3) of the matrices T', F and C,
. S 1—w(()"w 1 —w(({)*wy,
(B —wey ey -¢ryt= |t el
1 — Ctl 1 - Ctn

which, being combined with the previous relation, gives

[Ku(21,0) o Ku(2a, Q)] — (B —w(()*O)I - (T)™H (4.8)
Now we take the limit in (4.6) as z; — t; for i = 1,...,n; on account of (4.7) and

(4.8), the limit kernel has the form
PY(ty,...,ty) (I—z2T*)"YE*— C’*w(z))]

KO0 = | (g _w(oy o) - o) Ku(z0)
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Since K®) is the limit of a family of kernels each of which has s negative squares,
sq_K® < k. It remains to note that the kernel K,, defined in (4.4) is expressed
in terms of K®) as

P—P¥(t1,...,ty) O

K (2,0) = K@ (z,.0) + 0 0

and since the second term on the right-hand side is positive semidefinite (due to
the first series of conditions in (1.17); see also (1.20)),

sq Ky, < squ(Q) < k.

On the other hand, since K,, contains the kernel K,, as a principal submatrix,
sq_Ky > sq_ Ky, = k which eventually leads us to (4.5). Note that in this part of
the proof we have not used the fact that sq_ P = k.

Now we turn to the general case: let w € S,/ for some k' < k and let
conditions (1.17) be fulfilled at all but £ := k — £’ interpolation nodes t;’s. We
may assume without loss of generality that conditions (1.17) are satisfied at ¢; for
i=1,...,n—¢:

dy(t;) <7 and w(t;) = w; (i=1,...,n—10). (4.9)

Let us consider conformal partitioning (3.18), (3.19) for matrices P, T, C and F
and let us set for short

Fi(z) = (I = 2T7) 71 (Bf = Ciw(z))  (i=1,2) (4.10)
so that
FI(Z> _ — *\—1 * *(z
[Fg(z)] = ) (F C*w(z)) . (4.11)

The matrix P;; is the Pick matrix of the truncated interpolation problem with the
data t;, w;, 7, (i = 1,...,n — £) and with interpolation conditions (4.9). By the
first part of the proof, the kernel

e | P Fi(2)
Kul0) = {Fl(C)* Ku(20)

has ' negative squares on D N p(w). Now we apply the first statement in Propo-
sition 4.1 to

K(2,0) =Ku(2,(), B(2)=[Pu Fa(z)] and A= Py (4.13)

(4.12)

to conclude that
s { Py B(z)
B(O)" Ku(z,()
By (4.13) and (4.12), the latter kernel equals

{ng _B() ]: %z zlji %8
BO" Kl Ol | mo)r AQ Kulz0)

] <sq Ky+l=r +(k—K)=-r (4.14)
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Now it follows from (4.4) and (4.12) that

0 I,_, O

Py B(z) . "
K,(z,()=U . o U*, where U= |1, 0O 0
( C) B(C) Kw(%C) 0Z 0 1

which, on account of (4.14), implies that sq_K,, < . Finally, since K,, contains
P as a principal submatrix, sq_K,, > sq_P = k which now implies (4.5) and com-
pletes the proof of the necessity part of the theorem. The proof of the sufficiency
part will be given in Sections 6 and 7 (see Remarks 6.3 and 7.3 there). 0

In the case when P is invertible, all the functions satisfying (4.5) can be
described in terms of a linear fractional transformation.

Theorem 4.3. Let the Pick matriz P be invertible and let © = [0;5] be the 2 x 2
matriz-valued function defined in (2.2). A function w meromorphic on D is subject
to FMI (4.5) if and only if it is of the form

_ O11(2)€(2) + O12(2)

w(z) = Tel€] := O01(2)E(2) + O (2)

(4.15)

for some Schur function £ € Sy.

Proof. The proof is about the same as in the definite case. Let S be the Schur
complement of P in the kernel K,, defined in (4.4):

S(2,0) = Ku(z,0) = (E = w(¢)"C)(I = {T)7'P~H(I — 2T7") 7 (B — C*w(2)).

Obvious equalities

Ku(2,0) = '~ ll”(f?:”(z) — w17 [w@]

where J is the matrix introduced in (2.5), and
x X C
E—-w()*C=—[w)* 1]J B

allows us to represent S in the form

8(¢) = —[w© 1] {1 jzé i [ —g ] (I—¢my—tp

x (I—zT*"'[C* —E* ]} [

g
—_

N
~
[—

or, on account of identity (3.16), as

S(2,0) = — [w(¢)* 1] O(¢)*JO(2)~ {w(z)}

1—2C 1
By the standard Schur complement argument,

sq_K, =sq_P +sq_S
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which implies, since sq_P = k, that (4.5) holds if and only if the kernel S is
positive definite on p(w) N D:

—[w(©)* 1] G(OI*JSE(Z) {w(lz)] = 0. (4.16)

It remains to show that (4.16) holds if and only if w is of the form (4.15). To show
the “only if” part, let us consider meromorphic functions v and v defined by

w@)|  _ gyt (W)
[v(z)} = 0(z) [ e (4.17)
Then inequality (4.16) can be written in terms of these functions as

() a0 Julz)] _ vl e(z) = u(@)ulz)
(@ v ], 2 L(ZJ = | — &2 = 0. (4.18)
As it follows from definition (4.17), u and v are analytic on p(w) N D. Moreover,

v(z) #0 for every z € p(w) ND. (4.19)

Indeed, assuming that v(£) = 0 at some point £ € D, we conclude from (4.18) that
u(€) = 0 and then (4.17) implies that det ©(£)~! = 0 which is a contradiction.
Due to (4.19), we can introduce the meromorphic function

£(x) = "G (4.20)

which is analytic on p(w) ND. Writing (4.18) in terms of £ as

&) E)

ooy TR w20 (e ptu) D),

we then take advantage of (4.19) to conclude that

1-£(¢()"E(z)

¢ =0 (z,¢€pw)nD).

The latter means that £ is (after an analytic continuation to the all of D) a Schur
function. Finally, it follows from (4.17) that

w _ @ u _ @11U + @121}
1 o v o @glu + @221}
which in turn implies

w O11u + O19v _ 011€ + 012 — T[e]
O21u + OV  ©21€ + O o

Now let € be a Schur function. Then the function

V(Z) = @21(2)8(2) + @22(2)
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does not vanish identically. Indeed, since © is rational and O(u) = I, it follows
that ©22(2) ~ 1 and O9;(2) & 0 if z is close enough to u. Since |E(z)| < 1 every-
where in D, the function V' does not vanish on Us = {z € D: |z — p| < 0} if § is
small enough. Thus, formula (4.15) makes sense and can be written equivalently as

o0l

Then it is readily seen that

1-EQ'EE) e 1 T [EG)
1—Cz B £©) 1]1—@2[1}
L e8! w<z>]
S TR R
for z,¢ € p(w) ND. Since £ is a Schur function, the latter kernel is positive on
p(w) ND and since V £ 0, (4.16) follows. O

Remark 4.4. Combining Theorems 4.2 and 4.3 we get the necessity part in Theorem
2.2.

Indeed, by the necessity part in Theorem 4.2, any solution w of Problem 1.6
satisfies (4.5); then by Theorem 4.3, w = Tg[£] for some € € Sp.

In the case when k = 0, Theorem 4.2 was established in [12].

Theorem 4.5. Let the Pick matrix P be positive semidefinite. Then a function w
defined on D is a solution to Problem 1.1 (i.e., belongs to the Schur class Sy and
meets conditions (1.6)) if and only if

Ky(2,¢) =0 (z,weD) (4.21)
where K, (2, C) is the kernel defined in (4.4).

Under the a priori assumption that w is a Schur function, condition (4.21)
can be replaced by a seemingly weaker matrix inequality

Ky(z,2) >0 forevery z€D

which is known in interpolation theory as a Fundamental Matrix Inequality (FMI)
of V.P. Potapov. We will follow this terminology and will consider relation (4.5)
as an indefinite analogue of V.P. Potapov’s FMI. It is appropriate to note that a
variation of the Potapov’s method was first applied to the Nevanlinna-Pick problem
(with finitely many interpolation nodes inside the unit disk) for generalized Schur
functions in [10]. We conclude this section with another theorem concerning the
classical case which will be useful for the subsequent analysis.

Theorem 4.6.
(1) If the Pick matrixz P is positive definite then all the solutions w to Problem 1.1
are parametrized by the formula (2.10) with the coefficient matriz © defined
as in (2.2) with € being a free Schur class parameter.



90 V. Bolotnikov and A. Kheifets

(2) If P is positive semidefinite and singular, then Problem 1.1 has a unique
solution w which is a Blaschke product of degree r = rank P. Furthermore,
this unique solution can be represented as

* I* T* 71E*

4.22
z*(I — 2T3)~1C* ( )

where T, C and E are defined as in (2.3) and where x is any nonzero vector
such that Px = 0.

These results are well known and have been established using different meth-
ods in [1, 12, 3, 2, 11]. In regard to methods used in the present paper, note that
the first statement follows immediately from Theorems 4.5 and 4.3. This demon-
strates how the Potapov’s method works in the definite case (and this is exactly
how the result was established in [12]). The second statement also can be derived
from Theorem 4.5: if w solves Problem 1.1, then the kernel K, (z,¢) defined in

(4.4) is positive definite. Multiplying it by the vector on the right and by its

x
1
adjoint on the left we come to the positive definite kernel

" Px 2t (I — 217) ) (B — C*“’(z))] 0.

(B —w(()*C)I = (T) ' Ku(z,¢)
Thus, for every x # 0 such that Px = 0, we also have
o (I — 2T*)"H(E* — C*w(z)) = 0.

Solving the latter identity for w we arrive at formula (4.22). The numerator and
the denominator in (4.22) do not vanish identically due to conditions (3.13). Since
x can be chosen so that n — rank P — 1 its coordinates are zeros, the rational
function w is of McMillan degree r = rank P. Due to the Stein identity (3.1), w is
inner and therefore, it is a finite Blachke product of degree r.

5. Parameters and interpolation conditions

In this section we prove Theorem 2.3. It will be done in several steps formulated
as separate theorems. In what follows, Ug and Vg will stand for the functions

Ug(Z) = @11(2’)5(2’) + @12(2’), Vg(Z) = @21(2’)5(2’) + @22(2’) (51)

for a fixed Schur function &, so that
Ue(z)| _ &(z)
|:Vg(2’):| = 0(z) { 1 (5.2)

and (2.10) takes the form
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Substituting (3.10) into (5.2) and setting

U(z) = (oI — T) (E - 6*5(z)) (5.4)
for short, we get
Ue(z) = &(2) = (2= p)C(ul = T)71(2), (5.5)
Ve(2) = 1—(z—p)E(pl —T)""¥(2). (5.6)
Furthermore, for w of the form (5.3), we have
1—w(()*w(z) _ 1 Ve(Q)Ve(z) — Ue(Q)"Ue(2) (5.7)
1—¢z Ve()*Ve(z) 1—¢z ' '
Note that
Ve(Q) Vele) - Ue(07Uste) = —[ Vel V(o 17| U2 |
&

Le@r 1]e@ree | €7
LSO E() + (- C) () PU(),

where the second equality follows from (5.2), and the third equality is a conse-
quence of (3.17) and definition (5.4) of . Now (5.7) takes the form

1— w(C)jw(z) _ 1 (1 - 5(()7*5(3) I
1—¢z Ve(¢)*Ve(z) 1—¢z

Remark 5.1. Equality (5.8) implies that for every £ € Sy and © € W, the function
w = Te[€] belongs to the generalized Schur class Sy for some k' < k.

Indeed, it follows from (5.8) that sq_K,, <sq_Kg+sq_P =0+ k.

\Il(()*P\IJ(z)> . (5.8)

Upon evaluating (5.8) at { = z we get

@R 1 (1R
T ‘|vg<z>2( 1 |pp TP ‘I"Z>> (5.9)

and realize that boundary values of w(t;) and d,,(¢;) can be calculated from as-
ymptotic formulas for ¥, Ug, Ve and £ as z tends to one of the interpolation nodes
t;. These asymptotic relations are presented in the next lemma.

Lemma 5.2. Let £ be a Schur function, let ¥, Ug and Vg be defined as in (5.4),
(5.5) and (5.6), respectively , and let t; be an interpolation node. Then the following
asymptotic relations hold as z tends to t; nontangentially:

(z—t)¥(z) = ei(e; —GE(2) +O0(z—ti), (5.10)
(z—t:)Ue(2) = wi(ef —GE(2)) +O(z —ta]), (5.11)

(c—t)Velz) = (@ —&E(=)+0(z - t). (5.12)
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Proof. Recall that e; be the ith column in the identity matrix I,,. Since
(z—t)(zl = T) ' =eef +O(lz —t;]) as z —t;,
and since £(z) is uniformly bounded on D, we have by (5.4),

(= t)0(z) = (2—t:)(zI—T)" (E*—é’*é‘(z))
— e (E - 6*5(z)) +O(z — 1))

which proves (5.10), since e:C* = ¢ and e} E* = &* by (3.2).
Now we plug in the asymptotic relation (5.10) into the formulas (5.5) and
(5.10) for Ug and Vg and make use of evident equalities
w; 1
CuI —T)7" ' d E(ul—T)'e;= 5.13
(1 ) PRI (1 ) e ot (5.13)
to get (5.11) and (5.12):

(z—t)Ue(z) = (2-t)E(z) - (Z—t)( —@)C(pul = T)~10(2)
= (n—2)C(ul = T) e (€ —EE(2) + O]z — ti])

p—z s
= u—tzwl(’ ¢;€(2)) + O(|z — til)
= wi (€ —E(2)) + O(|z — til),
(z—ti)Ve(z) = ( ti) — (Z*t-)( — W E(pl = T) ¥ (z)
= (n=2)E(ul =T) e (6] — G E(2)) +O(|z — L)

= (e —Ge(z ))+O(|Z*t )-
Lemma 5.3. Let w € S, let tg € T, and let us assume that the limit

1- ito)]?
d:= lim |w(”20>| < 0 (5.14)
J—00 — T‘j
exists and is finite for some sequence of numbersr; € (0, 1) such that lim; o 7; =
1. Then the nontangential limits d.,(to) and w(ty) (defined as in (1.3) and (1.4))
exist and moreover

dy(to) =d and |w(ty)| = 1. (5.15)

Proof. Since w is a generalized Schur function, it admits the Krein-Langer repre-
sentation (1.9) and identity (1.11) holds at every point z € D. In particular,

1-— |w(rjt0)|2 _ 1 (1 - |S(Tjt0)|2 _ 1—- |B(Tjt0)|2> ) (516)

1—7? ~|B(rjto)|? 1—7? 1—r?

Since B is a finite Blaschke product, it is analytic at tg and the limit dg(tg) :=

1—|B(2)]?
lthl 1 | |(T2) | exists and is finite. Assumption (5.14) implies therefore that the
z—1o — |z
limit )
1—|S(r;t
li | (T]20)| :d+dB(t0)

Jj—o0 1 —Tj
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exists and is finite. Since S € Sp, we then conclude by the Carathéodory-Julia
theorem (see, e.g., [17, 18, 20]) that the nontangential limits dg(¢p) and S(to)
exist and moreover,

ds(to) =d+dp(te) and |S(to)| = 1. (5.17)
Now we pass to limits in (1.9) and (1.11) as z tends to ¢, nontangentially to get
w(ty) :== Jim w(z) = g((iz)) and  dy(to) == Jim ! Ilw|(22|2)|2 = ds(to) — dp(to)
and relations (5.17) imply now (5.15) and complete the proof. O
Theorem 5.4. If £ € Sy meets conditign C; att; (i.e., the nontangential boundary
limit Zlgrtl E(z) is not equal to n; = EZ or fails to exist), then the function w =

%

Tol€] is subject to

1—fw(z) _

lim w(z) =w; and lim = (5.18)

2t 2=t 1—|z]?
Proof. By the assumption of the theorem, there exists ¢ > 0 and a sequence of
points {rqt;}°2; tending to t; radially (0 < ro < 1 and r, — 1) such that

le; —¢;E(rats)| > € for every . (5.19)
Since e} Pe; = ~y; by the definition (1.14) of P, it follows from (5.10) that
|2 = iU (2)" PU(2) = [&] — GE(2) [ + O]z — ti).

Furthermore, relation

= 12 V() = & — FE)? + O(1z — i)
is a consequence of (5.12) and, since £ is uniformly bounded on D, it is clear that

. 1 —[E(2)?
2.
Zhntli |z — ] ME =0.

Now we substitute the three last relations into (5.9) and let z = rt; — ¢;; due to
(5.19) we have

o 1-1E()P 2 ()
A . B P
z=roti—ti 1 — |Z|2 z=rati—t; |Z — ti|2 . |Vg(2’)|2
_ 0+
1 = Yi-

Since w is a generalized Schur function (by Remark 5.1), we can apply Lemma 5.3
to conclude that the nontangential limit d,,(t;) exists and equals +;. This proves
the second relation in (5.18). Furthermore, by (5.11) and (5.12) and in view of
(5.19),

lim w(z) = lim (2 JUe (2)

— w;. 5.20
Z2=rot;—t; z—t; (Z — tl)Vg(Z v ( )

~
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Again by Lemma 5.3, the nontangential limit w(¢;) exists; therefore, it is equal to
the subsequential limit (5.20), that is, to w;. This proves the first relation in (5.18)
and completes the proof of the theorem. O

The next step will be to handle condition Cy (see (2.14)). We need an aux-
iliary result.

Lemma 5.5. Let to € T and let £ be a Schur function such that
1-[E(2)]* _

Zh_)n]’:log(z) =& (|&]=1) and le)rrtlo 1o |2 (5.21)
Then
1= |E())? z—to . z—to
1 . = =0. .
Ml ey —g| T0 @ ey g =Y (522)
Proof. Since |&y| = 1, we have
2Re (1 —E(2)€0) = (1 —E(2)€0) + (1 —E&(2))
= [1-E()E +1~ & €(2)
> 1-[E(2))?
and thus,
1
[€(2) = &o| = [1 = E(2)€| = Re (1 = £(2)€0) 2, (1= [E(2)) (5.23)

Furthermore, for every z in the Stoltz domain
To(to) ={ze€D: |z—to] <a(l—|z])}, a>1,

it holds that
1— |22 < 1—|z| o 1
|z —to| ~ |z—to| = a’
which together with (5.23) leads us to
‘S(z) - & S 1= 1E(2)? _ 1 1= |E(2)|? 1 El S 1 1- IE(2)|?
z—ty | 2 |z—to] 21—z |z—=to]  2a 1—|z?

which is equivalent to

1—E(2))? |zt
1—1z]2 |€(z) =&

Note that the denominator £(z) — & in the latter inequality does not vanish:
assuming that £(z9) = & at some point 2o € D, we would have by the maximum
modulus principle (since |Ey] = 1) that £(z) = & which would contradict the
second assumption in (5.21). Finally, by this latter assumption, dg(t9) = oo and
relations (5.22) follow immediately from (5.24). O

< 2a. (5.24)
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Theorem 5.6. Let £ € Sg meet condition Co at t;:

. e 1= E(2)
Zlgxtlé'(z) =n = & and Zlgxtl a2 T (5.25)
Then the function w = Tgl€] is subject to relations (5.18).
Proof. Let for short
o _ €
ti —Z
and note that
Ai(z) #0 (zeD). (5.26)

To see this we argue as in the proof of the previous lemma: assuming that £(zp) =
7; at some point zgp € D, we would have by the maximum modulus principle (since
[n:| = 1) that £(z) = n; which would contradict the second assumption in (5.25).
Furthermore, since |;| = 1 and due to assumptions (5.25), we can apply Lemma
5.5 (with & = n; and to = ¢;) to conclude that

1 E(2)? 1
1 . = .
A T[22 A2 0 (5.27)

and
lim A;(2)"' = 0. (5.28)

Now we divide both parts in asymptotic relations (5.10)—(5.12) by (ef — ¢f€(z))
and write the obtained equalities in terms of A; as
Ai(2)7M(2) = e+ Ai(2)7t-0(1),
Ai(2) 7 Ue(2) w; + Ai(2)71-0(1),
Ai(2)TWVe(z) = 14 2i(2)7"-0(1).

By (5.28), the following nontangential limits exist
lin} Ai(2)710(2) = e, lin} Ai(2) " WUe(2) = wy, lin} Ai(2) We(2) =1

and we use these limits along with (5.27) to pass to limits in (5.9):

2
1 —|w(z)[? NG 1 |5’|(22|3 +1Ai(z)| 20 (2) PE(2)
lim = lim
ot 1— 2|2 z—t; |8 (2)] 2 Ve (2)?
0+ e; Pe; -
= 1 —_ g
Finally,
. o Ai(2) M Ue(2) _ wy
Jlim w(z) = Jim Ai(2)Wel(z) 1

which completes the proof. O
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Theorem 5.7. Let py; be the ith diagonal entry of P~ = [pij]?jzp let £ € S be
subject to

1— 2
21133 E(z)=m and Zlgxg ) —|5|(zz|g = dg(t;) < oo. (5.29)
Let us assume that N
de (t:) # |§?|"2. (5.30)
Then the function w := Tg[E] satisfies
lintlv w(z) = w; (5.31)
1— 2
and the nontangential limit d,,(t;) := ling 1 |w|(z|2)| is finite. Moreover,
2=t — |z
. Pii
dw(t;) <y if de(t;) > — |g|2 (5.32)
and B
. Pii
dw(ti) >y if dg(ti) < — |g|2 (533)

In other words, d,(t;) < v; if & meets condition Cs and dy,(t;) > ~v; if € meets
condition Cy4 at t;.

Proof. By the Carathéodory-Julia theorem (for Schur functions), conditions (5.29)
imply that the following nontangential limits exist

: () =mi
! _ — .M. .
Zlgrtlz E'(z) = Zlgrtll R tinide (t;)
and the following asymptotic equality holds
E(z)=mi+ (z —ti)timide(t;) + o(|z — ti]) as z — t;. (5.34)

We shall show that the functions ¥, Ug and Vg defined in (5.4), (5.5), (5.6) admit
the nontangential boundary limits at every interpolation node ¢;:

ti (e IO
\If(tl) = g (P 1e2— — ez(p” + |ez|2d£(tz))) 3 (535)
fiwi — ~ 12 fz — ~ 12

To prove (5.35) we first multiply both parts in the Stein identity (3.4), by e; on
the right and obtain

P_lei — TP_IT*BZ‘ = E*gZ — 5*51
which can be written equivalently, since T*e; = t;e; and ¢; = €;1;, as

~ o~ t;
E* —C*n; = . (t;I —T)P te;. (5.37)
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Substituting (5.34) into (5.4) and making use of (5.37) we get

U(z) = (21 —T)" (E - é*m) (2 — t) (2] — T) " C*mide (t;)F; + o(1)
= 2 (zI =T) Yt I —T)P 'e;
—(z — t;) (2 = T)"*C*nide (t:)E; + o(1). (5.38)

Since the following limits exist

lim (21 — Ty Y tl —T)=1—ee}, lim(z—t)(zI-T)"' =ese

17
z—t;

we can pass to the limit in (5.38) as z — ¢; nontangentially to get

ti ~ _
\I/(tl) = - (I - eie;‘)P_lei - eiefC*nidg(ti)ti. (539)
€
Since efP_lei = p;; and e}‘é*m— = ¢;n; = e;, the right-hand side expression in
(5.39) coincides with that in (5.35).
Making use of (5.34) and (5.35) we pass to the limits in (5.5) and (5.6) as

z — t; nontangentially:

Ue(t) = E(t:) = (ti = w)C(ul = T)" 0 (t:)
I :Mtic(/d —T)7 (P ei — eilpi + [e:*de(t:))) , (5.40)
Ve(t:) = 1—(ti—p)E(ul —T) " W(t;)

1 — ut; _ _ _ _
- 1- E“ E(ul —T)™" (P e; — (P + [€i]?de (1)) . (5.41)

i

Note that by (3.2),

1 — pt; 1 — pt; ~ i
s Cul —T)'Ple; = e C(I—uT*) te; = G- 7, (5.42)
€; €; €;

1 — ut; L —pt; €i
MR —T) Pty = 0 MEI - ur) e =9 =1, (5.43)
€; €; €;

Making use of these two equalities we simplify (5.40) and (5.41) to

1— uf
Ue(t) =

?

C(ul —T) tei(pi + [€:]?de (t:))
and _
1-— Mti

(2

Ve (t:) = E(ul —T) " ei(pii + @i de (1)),

respectively, and it is readily seen from (5.13) that the two latter equalities coincide
with those in (5.36).
Now we conclude from (5.3) and (5.36) that the nontangential boundary
limits w(¢;) exist for i = 1,...,n and
Ue(z) _ Ue(ti)

w(t;) = ZlgItliw(Z) = :}5131. Ve(z) ~ Vet))
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which proves (5.31). Furthermore, since the nontangential boundary limits dg (¢;)

and

(Pii + €2 de(t:))?
&

exist (by the second assumption in (5.29) and the second relation in (5.36)), we

can pass to the limit in (5.9) as z tends to ¢; nontangentially:

o de(ts) + V(L) PV (t;)
- Ve (t:)[?
By (5.44) and (5.35) we write d,,(¢;) as follows
€ide (t;) + (e P71 — (Dis + |€i2de(t:))e}) P (P~ te; — e;(pii + |e:2de (t:)))
(Pii + lesPde (t:))?
and elementary algebraic transformations based on equalities e; P~le; = D,
efPe; = v; and eje; = 1 lead us to

Ve (t:)]> = (5.44)

dyw (t;)

1
dw(ti) =% — - |~ . 5.45
() =7 pii + [€i[*de (i) (5.45)
Statements (5.32) and (5.33) follow immediately from (5.45). O

As we have already mentioned in Introduction, Theorem 2.1 is known for the
case £ = 0 (see [19]) At this point we already can recover this result.

Theorem 5.8. Let the Pick matriz P be positive definite and let T, E, C, ©(z)
and n; be defined as in (2.3), (2.2) and (2.12). Then all solutions w of Problem
1.2 are parametrized by the formula (2.10) when the parameter € belongs to the
Schur class Sg and satisfies condition C1 V Cq at each interpolation node: either
& fails to admit the nontangential boundary limit n; at t; or

Eti)=mn and dg(t;) = oo.

Proof. Any solution w of Problem 1.2 is a solution of Problem 1.1 and then by
Statement 1 in Theorem 4.6, it is of the form w = Tgl[€] for some Schur class
function £. Since P > 0, the diagonal entries p;; of P~! are positive. Therefore, the
cases specified in (2.16)—(2.18) (conditions C4 — Cg cannot occur in this situation,
whereas condition C3 simplifies to

Cs: E(ti)=mn and de(t;) < oo.

In other words, any function £ € Sy satisfies exactly one of the conditions C;, Co
or Cj3 at each one of interpolation nodes. Therefore, once £ does not meet condition
C; or condition Cs at at least one interpolation node ¢;, it meets condition C3 at
t;. Therefore, it holds for the function w = Tg[€] that dy,(¢;) < v; (by Theorem
5.7) and therefore w is not a solution of Problem 1.2. On the other hand, if £
meets condition C; V Cy at every interpolation node, then w = Tg[€] satisfies
interpolation conditions (5.18) (by Theorems 5.4 and 5.6) that means that w is a
solution of Problem 1.2. O
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Remark 5.9. Tt is useful to note that for the one-point interpolation problem (i.e.,
when n = 1), definition (3.3) takes the form

{ g } - { ks } (b —t1) M = ply) = 1 [ o ]71_1

and therefore the number 7, := 2 in this case is equal to w;.

Now we turn back to the indefinite case. Theorems 5.10 and 5.11 below treat
the case when condition (5.30) is dropped. For notational convenience we let i = n
and

t
T1: 5 Elz[l 1]7 Clz[wl ’LUnfl]
tnfl

so that decompositions

A
T:[O tn]’ E=[E 1], C=[C1 wy] (5.46)
are conformal with partitioning
I o O e F (5.47)
Py o Py pnn
Theorem 5.10. Let Py, < 0 and let £ be a Schur function such that
lirgl E(z)=mnn and dg(tn) =— ‘]f’”'g (5.48)
z—tp €n
Then the function
w = Tg[€] (5.49)

s subject to one of the following:
1. The nontangential boundary limit w(t,) does not exist.

2. The latter limit exists and w(t,) # wy,.
3. The latter limit exists, is equal to wy, and dy(t,) = oo.

Proof. Since £ is a Schur function, conditions (5.48) form a well-posed one-point
interpolation problem (similar to Problem 1.2). By Theorem 5.8, £ admits a rep-
resentation R

& =Tgl€] (5.50)
with the coefficient matrix © defined via formula (2.2), but with P, T, F and C
replaced by — I?EZTZ’ tn, 1 and n,, respectively:

8(z) = I — (z_tj)a“_ i) [ n } S 1 (5.51)

and a parameter e So satisfying one of the following three conditions:
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(a) The limit £(t,) does not exist.
(b) The limit £(¢,,) exists and is not equal to ,.
(c) Tt holds that

E(tn) =nn and  dg(t,) = co. (5.52)
We shall show that conditions (a), (b) and (c) for the parameter & are equivalent

to statements (1), (2) and (3), respectively, in the formulation of the theorem. This
will complete the proof.

Note that 1, appearing in (a) and (b) is the same as in (5.48), due to Remark

5.9. Since n,, = Sn, we can write (5.51) as
en

~ zZ— 1 Cn 1 -~ -,
O(z) =1 — ~ ]~ c, —er
=12~ (o) | & | ]
The inverse of © equals
A - o I
O L=+ ok [E"]~ & - 5.53
(2) 2t )= it | En | B [ ] (5.53)

and coincides with the function ©® in (3.32). Therefore, by Lemma 3.6 and by
Remark 3.7,

0(z) = 0W(2)8(2) 7" (5.54)
where ©) is given in (3.20). Substituting (5.51) into (5.49) (that is, representing
w as a result of composition of two linear fractional transformations) and taking
into account (5.54) we get

-~ -~ ~

w :=Te[€] = Te[T5[€]] = Typ €] = Tow [£].
Thus, upon setting
Ug(=) = 01 (2)€(2) + O3 (). Vel(e) = 05 (2)€(2) +05) (), (5.55)
we have R
5 OWEren Ug
w=Tewlfl= w0 =y
051°€ + 65 2
Note that ©™) is a rational function analytic and invertible at ¢,. It follows im-
mediately from (5.56) that if the boundary limit £(¢,) does not exist, then the

boundary w(t,) does not exist either. Thus, (a) = (1). The rest is broken into two
steps.

(5.56)

~

Step 1: Let the nontangential boundary limit E(ty,) exists. Then so do the limits
Ug(tn), Vz(tn) and w(ty,), and moreover,

Vea(tn) :== Zlirgln Va(z) #0 (5.57)

and
w(t,) =w, if and only if E(t,) = np. (5.58)
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Proof of Step 1. Existence of the limits Ug(t,) and Vz(t,) is clear since oW is
analytic at t,,. Assume that Vz(t,) = 0. Then Ug(t,) = 0, since otherwise, the
function w of the form (5.56) would not be bounded in a neighborhood of ¢, € T
which cannot occur since w is a generalized Schur function. If Vz(t,) = Ug(t,) = 0,
then it follows from (5.55) that

omuafi]- ] -

and thus, the matrix ©(")(t,,) is singular which is a contradiction. Now it follows
from (5.56) and (5.57) that the limit w(t,) exists. This completes the proof of
(a) & (1). The proof of (5.58) rests on the equality

1 1MW, :f”
s ) (&) Prn

Indeed, it follows from (5.56) and (5.59) that
Ug(tn) — wnVa(tn)

(& - ] (5.59)

w(ty) —w, =

V?(tn)
_ Wn * 1 g(tn)
= Vi) [wy,  —1] o )(tn){ 1 ]
b o g [E()
B 5nan(tn) [n n] [ 1 ]
thWny =

which clearly implies (5.58). It remains to prove (5.59). To this end, note that by
(3.11),

Wn, ] oK
ReSZ:tHG(Z’) == [ 1 ] [ Cn —En ]
and it is readily seen from (5.53) that

Res.—; O(2) "' =t, [ §" ] ! [ —er ],

~ n n
€n Pnn

Taking into account that ©() is analytic at ¢, and that © and ©~! have simple
poles at t,,, we compare the residues of both parts in (5.54) at t,, to arrive at

w ~ ~ t [ ~ ~

[ e m = e | 2 1a .
e —a- e[ 2 (e )
which implies (since &, # 0)

7= 2]

€n
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Equality of adjoints in the latter equality gives

tn 1~ -,
[wr —1] = [w; 1]J= 5 (e —ex] JoW(t,) T
which is equivalent to (5.59), since ©()(t,,) is J-unitary and thus, JOM (t,)*J =
©W(t,)~'. This completes the proof of (5.58) which implies in particular, that
() & (2).

Step 2: (c¢) < (3).

Proof of Step 2. Equality w(t,) = w, is equivalent to the first condition in (5.52)
by (5.58). To complete the proof, it suffices to show that if £(¢,,) = n,, then

dw(tn) = 0o if and only if dg(t,) = oo. (5.60)
To this end, we write a virtue of relation (5.9) in terms of the parameter &:
1—Jw(z)[? 1 L-ERP | & G
= U(z)"P¥ 5.61
LR T e | e TR >0
where
T(2) = (21 — 7))~ (ul — T1)PH(I — pTy) ™! (Ef - cfé(z)) . (5.62)

Note that to get (5.62) we represent the right-hand side expression in (5.4) in
terms of C' and E (rather than C' and E; this can be achieved with help of (3.3))
and then replace P, T, E, C' and £ in the obtained formula by Py, 11, E1, C;
and €. , respectively. Since the nontangential boundary limit

U(tn) = (tnl — T0) " (ud = Ta) P (I — nT7) 1 (BY — Cfnp)
exists and is finite, equivalence (5.60) follows from (5.61). O

Theorem 5.11. Let Py, = 0 and let £ be a Schur function such that
E(tn) =mn and de(tn) = 0. (5.63)

Then the function w := Tg[€] admits finite nontangential boundary limits dy,(ty,)
and w(ty) # wy,.

Proof. Conditions (5.63) state a one-point boundary interpolation problem for
Schur functions € with the Pick matrix equals dg(¢,) = 0. Then by Statement 2
in Theorem 4.6, the only function £ satisfying conditions (5.63) is the constant
function £(z) = n, (the Blaschke product of degree zero). Since |n,| = 1, the
function w = Tgl€] is rational and unimodular on T. Therefore, it is equal to
the ratio of two finite Blaschke products and therefore, the limits w(t) and d.,(t)
exist at every point ¢ € T. We shall use decompositions (5.46) and (5.47) with
understanding that p,, = 0, so that

]321P12 =1 and P_len = |:1362:| . (564)
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We shall also make use the formula
P21(I — {nTI)_l = (E1 — w;Cl) (565)

that follows from the Stein identity (3.1) upon substituting partitioning (5.46),
(5.47) and comparison the (1,2) block entries.

In the current context, the formula (5.4) for ¥ simplifies, on account of (5.37), to

U(z) = (21-T)7" (E* — 5*77”)
= ,Zjl (21 =T) Yt I —T)P e,

Now we substitute the latter equality into (5.5) and (5.6) and use formulas (5.42)
and (5.43) (for i = n) to get
1—zt, 1—zt,
Us(z) = "ClzI —T)'Ple,, Velz)=  _ "B(zI-T)"'Ple,.
€n €n
Taking into account the second equality in (5.64), rewrite the latter two formulas
in terms of partitioning (5.46) and (5.47) as

1—zt, = 1—zt, =
Us(z) = _“"Ci(zI =Ty) 'Pra, Ve(z)= " "Ei(2I —T1) ' Pia. (5.66)

€n €n
Thus,
U, Ci(2I —T) P
w(z) = e(z) _ Cile 1) 12
VE(Z) E1(ZI—T1)_1P12
We shall show that the denominator on the right-hand side in the latter formula
does not vanish at z = t,,, so that

Ol(ZI_Tl)_1ﬁ12 o Cl(tnI—Tl)_lﬁlg

w(t,) = lim = . (5.67)
2—tn [ (ZI — Tl)_lplz El(tnI — Tl)_1P12
Then we will have, on account of (5.65) and the first equality in (5.64),
Cy(tnI —T1) 1P,
wn —w(ty) = w, — 1( 1) =
El(tnI — Tl)_lplg
_ (wnEl - Cl)(tnl - Tl)_lfslg
El(tnl — T1)71P12
. wntn(El — w:C’l)(I — {nT1)71ﬁ12
El(tnl — T1)71ﬁ12
ntn Py P ntn
= Ueeini v £0  (5.68)

El(tnI — Tl)_lﬁlg B El(tnI — Tl)_lﬁlg

and thus w(t,) # wy,. Thus, it remains to show that the denominator in (5.67)
is not zero. Assume that Fj(t,I — T1)" 1Pz = 0. Since the limit in (5.67) exists
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(recall that w is the ratio of two finite Blaschke products), the latter assumption
forces Cy(t,I —T1) "' P12 = 0 and therefore, equality

(wn By — C)(tnd —T1) " Py = 0.
But it was already shown in calculation (5.68) that
(wnEy — Cy)(tnd — T1) ' Py = wyty # 0
and the obtained contradiction completes the proof. O

Recall that the interpolation node ¢, in Theorems 5.10 and 5.11 was chosen
just for notational convenience and can be replaced by any interpolation node t;.
It means that Theorems 5.10 and 5.11 prove Statements (4) and (5) in Theorem
2.3. Furthermore, Theorem 5.7 proves the “if” parts in Statements (4) and (5) in
Theorem 2.3, whereas Theorems 5.4 and 5.6 prove the “if” part in Statement (1)
in Theorem 2.3. Finally since conditions C;-Cg are disjoint, the “only if” parts in
Statements (1), (2) and (3) are obvious. This completes the proof of Theorem 2.3.

6. Negative squares of the function w = Tg[£]

In this section we prove Theorems 2.9 and 2.5. We assume without loss of generality
that (maybe after an appropriate rearrangement of the interpolation nodes) a fixed
parameter £ € Sy satisfies condition C;_3 at interpolation nodes t1,...,t,—, and
conditions C4_g at the remaining ¢ points. Thus, we assume that

1—E(2))? Dii

lim £(z) =n;, and lim (t=n—0+1,...,n). (6.1)

foeey =t 1—122 = |&)?
Let
pi=| D D2 g B, et (6.2)
Py Paa

Note that under the above assumption, the matrix P in the formulation of Theorem
2.9 coincides with Py, in the decomposition (6.2). Thus, to prove Theorem 2.9, it
suffices to show that there exists a Schur function £ satisfying conditions (6.1) if
and only if the matrix 1322 is negative semidefinite.

Proof of Theorem 2.9. Since |n;| = 1, conditions (6.1) form a well-posed boundary
Nevanlinna-Pick problem (similar to Problem 1.1) in the Schur class Sp. This
problem has a solution & if and only if the corresponding Pick matrix

1 —mnin;

1 — 7t for i # j,
P = [Pij]Zj:nferl with the entries Pij = _ﬁl J (63)
— ~”2 for =},
€]

is positive semidefinite. Furthermore, there exist infinitely many functions £ sat-
isfying (6.1) if IP is positive definite and there is a unique such function (which is
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a Blaschke product of degree equals rank P) if P is singular. Thus, to complete the
proof, it suffices to show that

P>0< Py < 0, P>0«— Py, <0 and rankP = rank Pss. (6.4)
To this end, note that

where p;; is the ijth entry in P~1. Indeed, if i # j, then (6.5) follows from (6.3),
(3.6) and definition (2.12) of #;. If ¢ = j, then (6.5) follows directly from (6.3). By

(6.2), [@j]?j:zﬂ = P53, which allows us to rewrite equalities (6.5) in the matrix

form as

C"PC = 7?22 where C = dlag (t[+1g£+1, t[+2gz+27 ey tngn) . (66)
Since the matrix C is invertible, all the statements in (6.4) follow from (6.6). This
completes the proof of Theorem 2.9. g

To prove Theorem 2.5 we shall use the following result (see [5, Lemma 2.4]
for the proof).

Lemma 6.1. Let P € C"*™ be an invertible Hermitian matriz and let

p— [ Py Pro Py Prp

6.7
P21 P22 P21 P22 ( )

] and P~!=

be two conjormal decompositions of P and of P~ with Pas, ]322 € C*t. Further-
more, let Pys be negative semidefinite. Then

sq_P11 = Sq_P — 4.

Proof of Theorem 2.5. We start with several remarks. We again assume (without
loss of generality) that a picked parameter £ € Sy satisfies condition Cy_3 at
t1,...,tn—¢ and conditions (6.1) at the remaining ¢ interpolation nodes. Under
these non-restrictive assumptions we will show that the function w = Tg[€] be-
longs to the class S,;,—¢. Throughout the proof, we shall be using partitioning (3.18),
(3.19). Note that by Theorem 2.9, the block Py is necessarily negative semidefi-
nite. Then by Lemma 6.1, sq_ P;; = x — £. Furthermore, since £ meets condition
Ci_3 at t1,...,th—p, the function w = Tg[&] satisfies interpolation conditions
(1.17) at each of these points. Then by Remark 1.5, w has at least sq_ Py =k —¢
negative squares.

It remains to show that it has at most x — £ negative squares. This will be
done separately for the cases when P9 is negative definite and when Pss is negative
semidefinite and singular.

Conditions (6.1) mean that £ is a solution of a boundary Nevanlinna—Pick
interpolation problem with the data set consisting of ¢ interpolation nodes ;,
b
|€:]?
1,...,n. The Pick matrix PP of the problem is defined in (6.3).

unimodular numbers 7; and nonnegative numbers P;; = fori =n—40+
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Case 1: Py, < 0: In this case P > 0 (by (6.6)) and by the first statement in Theorem
4.6, £ admits a representation

-~

& ="Tglé] (6.8)

for some £ € Sy where, according to (2.2), the coefficient matrix O in (6.8) is of
the form

~

O(kz)=IL+(z—p) [ g } (2l =To)"P (I —pT3)"' [ M* —E3 ] (6.9)

where the matrices
Ty = diag (tn—rg1, .-, tn), E2=[1 ... 1] (6.10)
are exactly the same as in (3.18), (3.19)) and
M = [p—t41 Tn-tt2 - M) (6.11)

Self-evident equalities

L | D g
[1] - ti€; = [gi] L. (i=n—L+1,...,n)

can be written in the matrix form as

M —1e Cs ) —1
{Ez} (21 —T5)"'C=— B (I —2T3) (6.12)
where C is defined in (6.6), whereas
EQ = [gn_g_;,_l PN gn] and 52 = [En_g_;,_l PN En]

are the matrices from the two last partitionings in (3.19). On account of (6.12)
and (6.6), we rewrite the formula (6.9) as

Co
E»

~

6(x) = b~ (=~ ) (1= 2T5) PRl - 1) [ G5 B3 |.

Then its inverse can be represented as

(1= uT3) PRI - To) ' [ G5 —E; |

6(z) " = b+ (z— ) [ Fy

and coincides with the function ©® from (3.21). Therefore, by Lemma 3.6,

0(z) = 0 (2)6(2)~* (6.13)
where ©() is given in (3.20). Note that
oW e W,, where k; =sq_ P =k — /. (6.14)

Substituting (6.8) into (2.10) (that is, representing w as a result of composition of
two linear fractional transformations) and taking into account (6.13) we get

-~ -~

w = Tel€] = Te[Tg[E]] = Topl] = Tom [€]-
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Since £ € Sy and due to (6.13), the last equality guarantees (by Remark 5.1) that
w has at most k1 = k — ¢ negative squares which completes the proof of Case 1.

Case 2: ﬁgg < 0 is singular: In this case P is positive semidefinite and singular
(again, by (6.6)) and by the second statement in Theorem 4.6, £ admits a repre-
sentation

(I — 2T5) 1B
(I — 2T5)~ 1 M*
where x is any nonzero vector such that Pz = 0. Letting y := C~'z we have (due
to (6.6))

E(z) = (6.15)

ﬁgzy =0 (616)
and, on account of (6.12), we can rewrite (6.15) as
*C*(] — 2T —lE* (o] — T —IE*
E(Z) — y* . ( z i>71 2* — Yy (Z 2) ~2 . (617)
yrCr (I = 2T5)"'M*  yx(2] — Ty)~1C5

Since £ is a finite Blaschke product (again by the second statement in Theorem
4.6) it satisfies the symmetry relation £(z) = (£(1/2z))~! which together with
(6.17) gives another representation for &:

B 5’2([ —2T5) ™ty

£(z) = Bl o)y (6.18)

We will use the latter formula and (5.8) to get an explicit expression for the kernel
Ky(z,w). Setting

w(z) = Co(I — 2T3) 'y and v(z) = Ey(I — 2T3) 'y
for short and making use of the second Stein identity in (3.4) we have
o) 0(z) —u(Q)'ulz) = y (= CTa) 7t [ByBe - G5 (1 = 2T5) 7y
= Yy (I [1322 - T21322T2*} (I—z2T5)" "y
which reduces, due to (6.16), to
v(Q)*o(2) — u(Q)*u(z) = =(1 = 2Q)y™ (I = (To) " ToPo T3 (I — 2T5) "y,
Upon dividing both parts in the latter equality by (1 — z2{)v(2)v(¢)* we arrive at

1= &(0)&(2) v P17y B e o1 Y
= =- I —(T: ToPorT5 (I — 2T . 6.19
e U(C)*( (To) ™ TaPprTy (I — 213) o(2) (6.19)
Next, we substitute the explicit formula (6.18) for £ into (5.4) to get
W) = (I-T)7 (B - CE()
= (2l —T) Y E*Ey— C*Co)(I — 2T3) - U(yz). (6.20)
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Substituting partitionings (3.18), (3.19) into the Stein identity (3.4) and comparing
the right block entries we get

E 12
Py

E12

Pss

—-T Ty = EE; — CC;

which implies
(2 —T)"" {EE2 - 55;} (I—215)""

512
22

Pra
22

= (2] -T)"" + Ty (I — 2T3) 1

Now we substitute the last equality into (5.4) and take into account (6.16) to get

1 [P Y 1312 - Y
U(z)= (2] =T 1[12]~ + =2 T —2T5) 7"
OO e o B AR P LR e
On account of partitionings (3.18), the latter equality leads us to
V() PU(z) = UE/O* (PiaCT = T7) 7 Pra (=1 = T1) ™ Pro
(I = CTo) o Pon T3 (I — ZT;)*) v(yz> . (6.21)
Upon substituting (6.19) and (6.21) into (5.8) we get
1 —w(¢) w(2) Y D% (7 -1 -15 Y
_ = P (CT—T7) " Pii(2l —T1) " Pig -
-G e TR I MBI T
Thus, the kernel K, (z, () admits a representation
* yPy Ty (I — 2T7) !
(Z C) (C) 11 (Z) where (Z) ’U(Z)Vg(Z)
and thus,
sq_ Ky <sq_P1=k-—/
which completes the proof of the theorem. O

Remark 6.2. At this point Theorem 2.2 is completely proved: the necessity part
follows from Theorem 4.3 and from the necessity part in Theorem 4.2; the suf-
ficiency part follows (as was explained in Introduction) from Corollary 2.4 and
Theorem 2.5 which have been already proved.

Remark 6.3. We also proved the sufficiency part in Theorem 4.2 when the Pick
matrix P is invertible.

Indeed, in this case, every solution w to the FMI (4.5) is of the form (4.15), by
Theorem 4.3. But every function of this form solves Problem 1.6, by Theorem 2.2.
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7. The degenerate case

In this section we study Problem 1.6 in the case when the Pick matrix P of the
problem (defined in (1.14)) is singular. In the course of the study we will prove
Theorem 2.1 and will complete the proof of Theorem 4.2.

Theorem 7.1. Let the Pick matriz P defined in (1.14) be singular with rank P =
¢ < n. Then there is a unique generalized Schur function w such that

sq_Ku(z,0) =k (7.1)
where K., (2, C) is the kernel defined in (4.4). Furthermore,

1. This unique function w is the ratio of two finite Blaschke products
_ Bi(?)

w(z) = 7.2
&)= ) (72)

with no common zeroes and such that
deg By + deg By = rank P. (7.3)

2. This unique function w belongs to the generalized Schur class S,» where k' =
deg Bs < k and satisfies conditions

dw(t;) <y and w(t;) =w; (t=1,...,n) (7.4)

at all but k — k' interpolation nodes (that is, w is a solution to Problem 1.6).
3. The function w satisfies conditions

dw(t;) =7 and w(t;) =w;
at at least n — rank P interpolation nodes.
Proof. Without loss of generality we can assume that the top £ x ¢ principal subma-

trix Py; of P is invertible and has k negative eigenvalues. We consider conformal
partitionings

T, 0
T_[O TQ], E=[E B, C=[0 ) (7.5)
and
p— |t Pl?, det P11 #0, sq_Pi1 =k =sqP. (7.6)
Py1 Py

Since rank Pj; = rank P, it follows that Py — P21P1_11P12 the Schur complement
of Pi1 in P, is the zero matrix, i.e.,

Pyy = Py P Pra. (7.7)
Furthermore, it is readily seen that the ith row of the block Py in (7.6) can be

written in the form

1—1,[]2< -W1 :l—@[]z< Wp B .
e P = R T = (B - wiy,C1) (It T
i 1 —tpyith 1 —toyite ( 1 £+i 1)( L+ 1)
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and similarly, the jth column in Pj5 is equal to
Pise; = (I —tey 1) (B} — Cuwey;) (7.8)

(recall that e; stands for the jth column of the identity matrix of an appropriate
. . g . : 1 —wpyweyj
size). Taking into account that the ijth entry in Psy is equal to _
I —toqiley
(if i # j) or to yeqs (if ¢ = j) we write the equality (7.7) entrywise and get the
equalities

= B i) (T P - T T (E ) (79)
fori#£je{f+1,...,n} and the equalities
i = (Br—wiCy) (I = 6T) " P (I = 6T7) 7 (Bf —wiCY) (7.10)
fori =0+ 1,...,n. The rest of the proof is broken into a number of steps.

Step 1: If w is a meromorphic function such that (7.1) holds, then it is necessarily
of the form

_epeter)
ol + 6l
for some Schur function £ € Sy, where ©1) is given in (3.20).

w=Tgml[€]: (7.11)

Proof of Step 1. Write the kernel K, (z, () in the block form as

Py Py Fi(z)
Kuy(z,0)=| Pn Py Fy(z) (7.12)
Q) Q)" Ku(z0)

where Fy and F; are given in (4.10). The kernel

1 L P11 Fl(z)
Ku(2:0) = {Fuo* Ko(2.0)
_ { Pn (I - 2T3) (B} - Cw(2))
(Br — w()*C)(I — (Ty) ! Kou(20)

is contained in K, (2,¢) as a principal submatrix and therefore, sq_K! < x. On
the other hand, K} contains P; as a principal submatrix and therefore sq_ K} >
sq_ P11 = k. Thus,

sq_ KL = k. (7.13)

Recall that P;; is an invertible Hermitian matrix with s negative eigenvalues and
satisfies the first Stein identity in (3.4). Then we can apply Theorem 4.3 (which is
already proved for the case when the Pick matrix is invertible) to the FMI (7.13).
Upon this application we conclude that w is of the form (7.11) with some & € Sy
and ©™) of the form (3.20).
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Step 2: Every function of the form (7.11) solves the following truncated Problem
1.6: it belongs to the generalized Schur class S, for some k' < k and satisfies
conditions

dy(t;) <7y and w(t;) = w; (i=1,...,0)
at all but k — k' interpolation nodes.

Proof of Step 2. The Pick matrix for the indicated truncated interpolation problem
is Pj1 which is invertible and has k negative eigenvalues. Thus, we can apply
Theorem 2.2 (which is already proved for the nondegenerate case) to get the desired
statement.

The rational function ©() is analytic and J-unitary at t; for every i = £ +
1,...,n. Then we can consider the numbers a; and b; defined by

{‘b‘] =0W)! [“1’] for i=0+1,...,n. (7.14)

It is clear from (7.14) that |a;| + |b;| > 0. Furthermore,

Step 3: It holds that
la;] = 1b;]| #0 and :a]: for i,5=0+1,...,n. (7.15)

Proof of Step 3. Let i € {£ +1,...,n}. Since the matrix O (t;)~! is J-unitary
and since |w;| = 1, we conclude from (7.14) that

|ai|2 _ |bi|2 — [a;‘ bf] J {Zj = [w;‘ 1] @(1)(@)7*]@(1)(@)*1 {U{Z}

= [wr 1]J [“1’] =|wi|>~1=0. (7.16)
Thus, |a;| = |b;] and, since |a;| + |b;| > 0, the first statement in (7.15) follows.
Similarly to (7.16), we have

1] eW)*JeWt;)~! [wf} (7.17)

afaj—bfbj = [w’f 1

K3

for every choice of 4,j € {£+1,...,n}. By a virtue of formula (3.16),

o) *JeM ()1 — g c o o *
(©) 1_26(2) — { —Ei ](IﬁTl) 1p111(172T1) 1 [Cl _E1]-

(7.18)
Substituting the latter formula (evaluated at ¢ = ¢; and z = ¢;) into the right-hand
Wy

1] = wjw; — 1,

side expression in (7.17) and taking into account that [wf 1] J [
we get
afaj 71);1)‘7 = w;‘wj - 1+(1 7{1153) (E1 711):01) (I*fiTl)_l Pl_ll

x (I —t;T7) " (B —w;Cy).
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The latter expression is equal to zero, by (7.9). Therefore, aja; = b;b; and conse-
quently,

a; b;k a;

bj_a*f_bi

K2

where the second equality holds since |a;| = |b;].
Step 4: Let a; and b; be defined as in (7.14). Then the row vectors
A=lagr1 .. an],  B=lby1 ... by (7.19)

can be represented as follows:
Al [C 1 [P Pro
{B} = {E} (I —=T) [ I (ul — T3). (7.20)

Proof of Step 4. First we substitute the formula (3.30) for the inverse of ©()) into
(7.14) to get

m = {ﬂ +(ti —p) [ 21 } (ul = Ty) ' PRI = 6T7) " (Bf — Ciw)

fori =¢+1,...,n and then we make use of (7.8) and of the vector e; to write
the latter equalities in the form

A Wpi C _ _
{B} e = [ Zf} - { Ei } (ul = T1) " Py Proei(p — teri)

fori=1,...,n—£{. Now we transform the right-hand side expression in the latter
equality as follows

A [C C o
H o= Ej o {Ej (nI =T) " Py Pra (ul = To) e

C. _ C L
= (|:Ez:| (MI - T2) t- |:E1:| (,U/I— Tl) 1P111P12> (,uI — T2) e;

— g} (ul —T)™" [Pljlpm} (nl —Ts)e;

and since the latter equality holds for every i € {1,...,n — ¢}, (7.20) follows.
Remark 7.2. Comparing (7.20) and (3.29) we conclude that

[g} — oWz [g] (21 =T)7" [ —Pfilpm } (I-T).

By the symmetry principle, @) (2)~! = JOM (1/2)*.J and thus, the latter identity
can be written equivalently as

[ ,g ] (zI - Tp) ' =0W(/2)* { 7163* ] (2] — 7)1 { —P;{P12 } .
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Taking adjoints and replacing z by 1/Z in the resulting identity we obtain eventu-
ally

(I-2T5) 1 [A* =B =[ —PuP;' 1] 217" [C* —E*]0W(2).
(7.21)

Step 5: A function w of the form (7.11) satisfies the FMI (7.1) only if the corre-
sponding parameter £ is the unimodular constant
() =& =1 = 20 (7.22)
b[+1 bn

Proof of Step 5. Let us consider the Schur complement S of the block Pyq in (7.12):
Pao Fy(2) ] [ Py } -1
S = - Pi' [P F
GO=1R© Ku=o) ™ R P2 AE)
Since
sq K, =sq_Pi1 +s5q_S =k +sq_S,

it follows that the FMI (7.1) is equivalent to positivity of S on p(w) N D:
S(z,¢) = 0. (7.23)

Since the “11” block in S(z, () equals Pyy — P21P1_11P12 which is the zero matrix
(by (7.7)), the positivity condition (7.23) guarantees the the nondiagonal entries
in S vanish everywhere in :

Fy(2) — Py P Fi(2) = 0. (7.24)
By (4.11), the latter identity can be written as
[—Pu Pt I)(I—2T%)" Y (E* — C*w(z)) = 0. (7.25)

We already know from Step 1, that w is of the form (7.11) for some £ € Sy. Now we
will show that (7.25) holds for w of the form (7.11) if and only if the corresponding
parameter £ is subject to
A*E(z) = B* (7.26)

where A and B are given in (7.19). Indeed, it is easily seen that for w of the form
(7.11), it holds that

&

1

and therefore, identity (7.25) can be written equivalently in terms of the parameter
£ as

1 1
Ggl) 652)

-1
Bcrw= (Oierel) o B g off

[~Pu Pt I (I—-2T%)7t[Cr —E*]eW(z) F(Z)] =0
which is, due to (7.21), the same as

(I-2T3)"'[A* B*]J F(Z)] =0.
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The latter identity is clearly equivalent to (7.26). Writing (7.26) entrywise we get
the system of equalities

a;&(z) =b; (i=0+1,...,n).
This system is counsistent, by (7.15), and it clearly admits a unique solution &

defined as in (7.22). Combining Step 1 and Step 5, we can already conclude that
the FMI (7.1) has at most one solution: the only candidate is the function

w=Tem (&) (7.27)

where & is the unimodular constant defined in (7.22). The next step will show
that this function indeed is a solution to the FMI (7.1).

Step 6: The function (7.27) satisfies the FMI (7.1) and interpolation conditions
dy(ti) =v and w(t;) =w; for i=0+1,...,n. (7.28)
Proof of Step 6. First we note that since ©(!) is a rational J-inner function of
McMillan degree ¢ and since &y is a unimodular constant, the function w of the
form (7.27) is a rational function of degree ¢ which is unimodular on T. Therefore,
w is the ratio of two finite Blachke products satisfying (7.3). Since w belongs to

S, (by Step 2), it has £’ poles inside D and thus, the denominator By in (7.2) is
a finite Blachke product of order «’.

It was shown in the proof of Step 5 that equation (7.26) is equivalent to
(7.24)) and thus, for the function w of the form (7.27), it holds that

Fy(2) = Py P Fi(2) (7.29)
which is the same, due to definitions (4.10), as
(I —2T5) YB3 — Csw(2)) = P P (I — 2T5) (B} — Cfw(z)).  (7.30)
Next we show that for w of the form (7.27) it holds that
Ku(z,¢) = F1(Q)* P Fi(2) (7.31)
or, which is the same,
1— () wlz)
1—-(z
Indeed, on account of (7.18),
(Br —w(¢)*C)I = CTa) ' P (I = 217) 7 (Ef — CTw(z))
oW ()JeM(z)~t —J
1—2(¢ 1
1 OV IOW () fw(z
1—2C 1

= (BEr—w(¢)" C)I=CT) ™ Py (I =2T7) " (B = Ciw(2)). (7.32)

_ 1=w(zx)w(()” .
= + [w(¢)

Representation (7.27) is equivalent to

q.m%)

[wﬂ —0(z) m u<1z)’ where v(2) = O (2)& + 0% (=),
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and therefore,

. 1) (A —* 7 (1) [ —1 w(Z)] _ &P -1
0O 10006t [P = 8
since |&y| = 1. On account of this latter equality, (7.33) implies (7.31). By (7.7),
(7.29) and (7.31), the kernel K,,(z, {) defined in (4.4) and partitioned as in (7.12),
can be represented also in the form

Py
Kw(Z7<): P21 Pfll [ P11 P12 Fl(Z) ]
Fi(Q)”
and the latter representation implies that sq_K, = sq_P;1 = k, i.e., that w
of the form (7.27) satisfies the FMI (7.1). It remains to check that w satisfies
interpolation conditions (7.28). Since w is a ratio of two finite Blaschke products,
it is analytic on T. Let ¢; (¢ < @ < n) be an interpolation node. Comparing the
residues at z = t; of both parts in the identity (7.30) we get

—tieief (.E;< — C;w(tl)) =0

0,

which is equivalent to
1—wiw(t;) =0

or, since |w;| = 1, to the second condition in (7.28). On the other hand, letting
z, ¢ — t; in (7.32) and taking into account that w(t;) = w;, we get
do(ti) = (Br—w(t:) C)(I - &Ty) Pl (1 — 6T7) 7 H(E — Clw(t:)

= (Br—w;C)(I = &T1) " Py (1 = t17) (B} — CTuwy)
which together with (7.10) implies the first condition in (7.28).

The first statement of the Theorem is proved. Statement 2 follows by Step 2
and (7.28): the function w meets interpolation conditions (7.4) at all but x — &’

interpolation nodes (and all the exceptional nodes are in {¢,...,ts}). Statement
3 follows from (7.28). O

Remark 7.3. Statement 2 in Theorem 7.1 completes the proof of sufficiency part
in Theorem 4.2: if P is singular, then a (unique) solution of the FMI (4.5) solves
Problem 1.6.

8. An example

In this section we present a numerical example illustrating the preceding analysis.
The data set of the problem is as follows:

tlzl7 t2:—1, ’LU1:17 ’Ll}2:—17 ’yl:l, ’72:0 (81)
Then the matrices (2.3) take the form

r=[o 4] wa [-[1 7
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1 —wijws

_ =1 we have also
1 —t1ts

1 o 1
p=[}f] wa =]

It is readily seen that P is invertible and has one negative eigenvalue. Thus, Prob-
lems 1.3, 1.4 and 1.6 take the following form.
Problem 1.4: Find all functions w € S such that

w(l) =1, dy(1)<1, w(=1)=-1, dyu(-1)<0. (8.2)
Problem 1.3: Find all functions w € Sy that satisfy conditions (8.2)
in the second and in the fourth conditions.
Problem 1.6: Find all functions w such that either

1. w € 81 and satisfies all the conditions in (8.2) or
2. w € Sy and satisfies the two first conditions in (8.2) or
3. w € Sy and satisfies the two last conditions in (8.2).

Letting p = i, we get by (2.2) the following formula for O(z)

et 3l 3118 2 A1

7 1 (i—1)22+2(1+2i)z2—1—1i (Bi—1)224+2z4+i—1
2(22-1) (i+1)22 -2z +1+3i (1-9)224+22i —Dz+1+1
and thus, by Theorem 2.2, all the solutions w to Problem 1.6 are parametrized by

the linear fractional formula

(2) = [(i—1)22+2(14+2)z—1—4] E(2) + (3i — 1)z + 22 +i— 1
O T 14122 = 22 414 30 E(2) + (1 — )22 +2(2 — D)z + 141
when the parameter £ runs through the Schur class Sy. Furthermore, formula (3.3)
in the present setting gives

) 1 -1 o07[o 17[t—=i o
e & 11 jfo L1 -1 0 1+

and since

with equalities

(8.3)

1 1—14
N [ -1 —-1—4 } (8.4)
and since the diagonal entries of P~! are p;; = 0 and p1; = —1, we also have
- a 1 e Co _ P11 0 pa2 1
1-—~ — 1 22— ~ — by ~ = U, ~ = — .
€1 € lex]? 2> 2

By Theorem 2.7, every function w of the form (8.3) also solves Problem 1.4, unless
the parameter £ is subject to

E(1)=-1 and dg(1)=0 (8.5)
or to

E(-1)=i and dg(-1)< -

. (8.6)
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On the other hand, Theorem 2.6 tells us that every function w of the form (8.3)
solves Problem 1.3, unless the parameter £ is subject to

E(1)=—-1 and dg(l) <0

or to
E(-1)=1i¢ and dg(—1) < oc.

Thus, every parameter £ € Sy satisfying conditions (8.5) or (8.6) leads to a solution
w of Problem 1.6 which is not a solution to Problem 1.4. For these special solutions,
it looks curious to track which conditions in (8.2) are satisfied and which are not.
This will also illustrate propositions 4 and 5 in Theorem 2.3.

First we note that there is only one Schur function £ = —1 satisfying con-
ditions (8.5) (this is the case indicated in the fifth part in Theorem 2.3). The
corresponding function w obtained via (8.3), equals

w(z) = 21’%{2 . 42.? * Qi. =-L
—2i22 + 4iz — 2i
It satisfies all the conditions in (8.2) but the first one.

All other “special” solutions of Problem 1.6 are exactly all Schur functions
satisfying the two first conditions in (8.2). Every such function does not satisfy at
least one of the two last conditions in (8.2). We present several examples omitting
straightforward computations:

Example 1: The function

2iz + 2

5 =
B =1 _ie 13

belongs to Sy and satisfies £(—1) = i and dg(—1) = } (i.e., it meets condition

(2.17) at t2). Substituting this parameter into (8.3) we get the function

z—1
w(z) = . .
1z+1—2
which belongs to Sy and satisfies (compare with (8.2))
141

w1) =1, do(1)=1, w(-1) du(—1) = co.

T3
Example 2: The function
Ve — (144
ey B-z- (140
—(14+dz+3i—1
belongs to Sy and satisfies (as in Example 1) £(—1) =i and dg(—1) = . Substi-

tuting this parameter into (8.3) we get the function w(z) = 1 which belongs to Sy
and satisfies (compare with (8.2))

w(l) =1, dp(1)=0, w(=1)=1, dy(-1)=0.
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Example 3: The function
B [(3+i)z+1—i}ezﬂ —2iz—2
—2(1+iz)es+i 4+ (i— 1)z +3i+ 1

belongs to Sy and satisfies £(—1) = i and dg(—1) = }. Substituting this parameter
into (8.3) we get the function

[(2—d)z—1]e+ — 2+

w(z) = N
(z—d)e+1 —iz+2i—1

which belongs to Sg and fails to have a boundary nontangential limit at ¢to = —1.
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A Truncated Matricial Moment Problem
on a Finite Interval
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Abstract. The main goal of this paper is to study the truncated matricial
moment problem on a finite closed interval by using the FMI method of V.P.
Potapov. The solvability of the problem is characterized by the fact that two
block Hankel matrices built from the data of the problem are nonnegative
Hermitian. An essential step to solve the problem under consideration is to
derive an effective coupling identity between both block Hankel matrices (see
Proposition 2.2). In the case that these block Hankel matrices are both pos-
itive Hermitian we parametrize the set of solutions via a linear fractional
transformation the generating matrix-valued function of which is a matrix
polynomial whereas the set of parameters consists of distinguished pairs of

meromorphic matrix-valued functions.
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0. Introduction and preliminaries

In the 1970’s V.P. Potapov developed a particular approach to handle matrix
versions of classical interpolation and moment problems. His method is based
on transforming the original problems into equivalent matrix inequalities. Using
this strategy several matricial interpolation problems could be successfully treated
by V.P. Potapov’s associates (see, e.g., Dubovoj [Du]; Dyukarev/Katsnelson [DK];
Dyukarev [Dy1]; Golinskii [G1], [G2]; Katsnelson [Kal] - [Ka3]; Kovalishina [Kol] -
[Ko2]). V.P. Potapov’s approach was enriched by L.A. Sakhnovich who introduced
a method of operator identities which serves to unify the particular instances
of V.P. Potapov’s procedure under one framework (see [IS], [S2], [BS]). These

operator identities have the form

AS — SA* =4I1JIT*
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and are also called Sylvester identities or Ljapunov identities. In this connection
it should be mentioned that the problem of reducing a nonselfadjoint operator
to a diagonal form has already lead L.A. Sakhnovich to a relation of the above-
described Sylvester-Ljapunov type (see formula (3) in [S1]).

In this paper, we apply V.P. Potapov’s approach in combination with L.A.
Sakhnovich’s method of operator identities to the truncated matrix moment prob-
lem on a finite closed interval. Hereby, we assume that an even number of moment
matrices is prescribed. (The odd case will be treated somewhere else.) The scalar
version of this problem was studied by M.G. Krein [Kr2] (see also [KN, Ch. 4]) us-
ing different methods. An important feature of scalar moment problems connected
with certain subintervals of the real axis is that their solvability is characterized
by the fact that several matrices built from the set of prescribed moments have to
be simultaneously nonnegative Hermitian (see, e.g., Chapters 4,5, and 8 in [KN]).

What concerns the matrix case there can be observed an intensive treatment
of the matricial version of the classical Stieltjes moment problem and somehow
related interpolation problems in various classes of holomorphic matrix functions
(see, e.g., [DK], [Dyl]-[Dy6], [BS], [B]). A closer look at this work shows that the
solvability of the problem under consideration is guaranteed if and only if two
distinguished block matrices built from the data are simultaneously nonnegative
Hermitian. In the case that both block matrices are even positive Hermitian the set
of solutions can be described via an appropriate linear fractional transformation
which is constructed via a clever coupling of the two above mentioned positive
Hermitian block matrices.

According to the matrix moment problem studied in this paper we will again
meet the situation that there are solutions if and only if two block Hankel matrix
built from the data are nonnegative Hermitian. Each of these block Hankel matrices
satisfies a certain Ljapunov type identity (see Proposition 2.1). An essential point
in the paper is to find an effective algebraic coupling between both block Hankel
matrices. The desired coupling will be realized in Proposition 2.2.

A first main result (see Theorem 1.2) indicates that (after Stieltjes transform)
the original matrix moment problem is equivalent to a system of two fundamental
matrix inequalities (FMI) of Potapov type. Our proof of this uses the theory of
the matricial Nevanlinna class of holomorphic functions in the upper half-plane
which have a nonnegative Hermitian imaginary part. (Essential statements on this
class of matrix-valued functions are summarized in an appendix.) In particular,
the generalized inversion formula of Stieltjes-Perron type stated in Theorem 8.6
occupies a key position in our strategy.

Assuming positive Hermitian block Pick matrices we will parametrize the set
of all solutions of the system of FMI’s of Potapov type. (It should be mentioned
that these block Pick matrices are called information blocks by V.P. Potapov and
his associates.) In the first step, we will treat the two inequalities of the system
by the factorization method of V.P. Potapov. The main difficulty is hidden in
the second step. One has to find a suitable coupling between the solutions of
the two single inequalities (see Proposition 6.10). Hereby, we will essentially use
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the algebraic coupling identity obtained in Proposition 2.2. In Section 7, we will
characterize the case that the considered truncated matrix moment problem on a
finite closed interval has a solution (see Theorem 1.3).

1. The moment problem

Throughout this paper, let p,q, and r be positive integers. We will use C, R, Ny,
and N to denote the set of all complex numbers, the set of all real numbers, the
set of all nonnegative integers, and the set of all positive integers, respectively. For
every nonnegative integers m and n, let N, ,, designate the set of all integers k
which satisfy m < k < n. The notation CP*? stands for the set of all complex
p x g matrices. If A € C7%?, then let Re A and Im A be the real part of A and the
imaginary part of A, respectively: Re A := ;(A + A*) and Im A := ;Z (A — A%).
For all A € CPX9, we will use AT to denote the Moore-Penrose inverse of A.
Further, for each A € CP*9, let ||A||g (respectively, ||A||) be the Euclidean norm
(respectively, operator norm) of A. The notation C%‘? stands for the set of all
Hermitian complex ¢ X ¢ matrices. If A and B are complex ¢ X ¢ matrices and if
we write A > B or B < A, then we mean that A and B are Hermitian complex
matrices for which the matrix A — B is nonnegative Hermitian. Further, let I1; :=
{weC:Imw € (0,400)},let II_ :={w € C: Imw € (—o0,0)}, and we will write
B for the Borel g-algebra on R (respectively, B for the Borel o-algebra on C). The
Borel o-algebra on CP*? will be denoted by %qu- If X and Y are nonemtpy sets,
if Z is a nonempty subset of X', and if f : X — ) is a mapping, then Rstr.z f
stands for the restriction of f onto Z. Further, if Z is a nonempty subset of C and
if f is a matrix-valued function defined on Z, then for each z € Z the notation
f*(2) is short for (f(z2))*.

The matricial generalization of M.G. Krein’s classical moment problem con-
sidered in this paper is formulated using the notion of nonnegative Hermitian ¢ x q
measure. Let A be a nonempty set and let 2 be a o-algebra on A. A matrix-valued
function p whose domain is the o-algebra 20 and whose values belong to the set
CL*? of all nonnegative Hermitian complex matrices is called nonnegative Hermit-
ian ¢ x ¢ measure on (A, ) if it is countably additive, i.e., if u satisfies

pl U4 | =" w4y
j=1 j=1

for each infinite sequence (Aj)]?’oz1 of pairwise disjoint sets that belong to 2A. We
will use M% (A, 2l) to denote the set of all nonnegative Hermitian ¢ X ¢ measures
on (A, ). Let = (1)] p=1 belong to M% (A, 21). Then every entry function u;x
of p is a complex-valued measure on (A,2). For each complex-valued function f
defined on A which is, for all j € Ny 4, and all £ € Ny 4, integrable with respect to
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the variation | x| of pjk, the integral

| fau= ( / fdujkx’k_l (1)

is defined. We will also write [, f(A)u(dA) for this integral.
Now let us formulate the matricial version of M.G. Krein’s moment problem.
Let @ and b be real numbers with a < b, let | be a nonnegative inte-
ger, and let (Sj)é‘zo be a sequence of complex g X ¢ matrices. Describe the set
/\/lqZ [[a, b], B N [a, b]; (Sj)é':o] of all nonnegative Hermitian ¢ X ¢ measures o which
are defined on the Borel o-algebra B N Ja, b] on the interval [a, b] and which satisfy

/ tlo(dt) = s,
[a,0]

for each integer 7 with 0 < 5 < [.

In this paper, we turn our attention to the case of an even number of given
moments, i.e., to the situation that [ = 2n+1 holds with some nonnegative integer
n. (The case of an odd number of given moments will be discussed somewhere else.)
According to the idea which was used by M.G. Krein and A.A. Nudelman in the
scalar case ¢ = 1 (see [KN, IV, §7]), by Stieltjes transformation we will translate the
moment problem into the language of the class Rg[a, b] of matrix-valued functions
S : C\ [a,b] — C7*? which satisfy the following four conditions:

i) S is holomorphic in C \ [a, b].
(ii) For each w € I, the matrix Im S(w) is nonnegative Hermitian.
(iii) For each ¢ € (—o0,a), the matrix S(¢) is nonnegative Hermitian.
(iv) For each t € (b, +00), the matrix —S(¢) is nonnegative Hermitian.

Let us observe that, according to the investigations of M.G. Krein and A.A.
Nudelman, one can show that the class R,[a,b] of all matrix-valued functions
S URN [a,b]) — C9*? which satisfy (ii), (iii), (iv), and

(i) : S is holomorphic in I1; and continuous in H := 114 U (R \ [a, b]).
admits the representation R,[a,b] = {Rstr.;rS : S € R,[a, b]}.
The following theorem describes the interrelation between the set

M ([a,0], B N [a,b])
of all nonnegative Hermitian ¢ X ¢ measures defined on B N [a,b] and the set
Rqla, b].
Theorem 1.1.
(a) For each o € MY ([a,0],B N [a,b]), the matriz-valued function Slel . ¢\
[a,b] — C9%9 defined by
1
slel(z) ::/ o(dt) (1.2)
[a,b] t—=z
belongs to Rqla, b].
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(b) For each S € Rgyla,b], there exists a unique nonnegative Hermitian measure

o € ML ([a,0],B N [a,b]) such that

1
S(z) = /[a,b] o (dt) (1.3)

t—z
is satisfied for all z € C\ [a,b].

Theorem 1.1 can be proved by modifying the proof in the case ¢ = 1. This
scalar case is considered in [KN, Appendix, Ch. 3]. According to Theorem 1.1, the
mapping f : M2 ([a,b],B N [a,b]) — Ryla,b] given by f(o) := S is bijective.
For every nonnegative Hermitian measure o € M ([a,b], B N [a, b]), the matrix-
valued function Sl : C\ [a,b] — C9%9 defined by (1.2) is called the Stieltjes
transform of o. Conversely, if a matrix-valued function S € Ry[a, b] is given, then
the unique o € M2 ([a, b], B N [a,b]) which satisfies (1.3) for all z € C\ [a,b] is
said to be the Stieltjes measure of S.

With these notations the matricial version of M.G. Krein’s moment problem
can be reformulated:

Let a and b be real numbers with a < b, let [ be a nonnegative integer,
and let (Sj)é‘zo be a sequence of complex g x g matrices. Describe then the set
Rg [la,b]; (s5)k—o] of the Stieltjes transforms of all nonnegative Hermitian mea-
sures which belong to M [[a,b],B N [a, b]; (s;)}=0] -

The consideration of this reformulated version of the moment problem has
the advantage that one can apply function-theoretic methods. Because of

Ry [[a,b]; (s;)j=0] € Ryla, ]
it is an interpolation problem in the class R,[a, b]. Note that
MY [[a,b], B N [a,b]; (Sj)é':()] #0

if and only if Ry [[a, b]; (sj)é-zo] # (. As already mentioned in this paper we will
consider the case that an even number of moments is given. We will show that, for
every nonnegative integer n, the set R, [[a, bl; (sj)?zgl] can be characterized as the
set of solutions of an appropriately constructed system of two fundamental matrix
inequalities of Potapov-type. To state this result we give some further notation. We
will use I, to designate the identity matrix which belongs to C?*4. The notation
Opxq stands for the null matrix which belongs to C?*4. If the size of an identity
matrix or a null matrix is obvious, we will omit the indexes. For all j € Ny and all
k € No, let 6;, be the Kronecker symbol, i.e., let d;; := 1 if j = k and 05, := 0 if
j # k. For each n € Ny, let

Ty := (8j,k+119)} ko (1.4)
and let Ry, : C — C(»*tDex(n+1)a he defined by
Ry, (2) := (I — 2T,) " . (1.5)
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Observe that, for each n € Ny, the matrix-valued function Rz, can be represented
via

1, 0 0 ... 0 0
21y 1, 0 ... 0 0

RTn (Z) — 22[q ZI Iq e 0 0 (16)
2", Z”’llq 2"721[1 o2l I

for each z € C. Let vy := I; and, for each n € N, let

vy = (On{i) . (1.7)

For each n € Ny and each sequence (sj)fiérl of complex g x ¢ matrices, we will call

S0 S1 So - Sn

S1 52 S3 e Spl

Hl,n = 52 S3 S4 e Sn+2

Sn  Spa+1l  Sp42 ... Sop
S1 52 S3 [N Sn+1
52 S3 S4 e Sn+2
respectively, Ho,:= | 93 84 S5 ... Sp43
Sn+1  Sn+2 Sn+3 ... S2n+1

the first (respectively, second) block Hankel matriz associated with (sj)?iérl. More-
over, for all real numbers a and b which satisfy a < b, for each nonnegative integer

n, and for each sequence (sj)fiérl of complex g X ¢ matrices, we will call

Hy = —aﬁlm + ﬁgm (respectively, Ha,, := blfll,n — flgn) (1.8)

the first (respectively, second) block Hankel matriz associated with the interval [a, b]

and the sequence (sj)?zgl. For each n € Ny and each sequence (sj)fiérl of complex

q X q matrices, one can easily see that the matrices

S0
S1
Up:=— | . |, win:=1ady—alyty,, and wugy = —Uy, + 01,4, (1.9)
Sn
satisfy the identities 4, = —fIl,nvn, u1 . = [Rr, (@) Yan, uz, = —[Rr, (b)] " Y,

and Rr, (a)uy , = —Rp, (b)ug p.

Now we formulate the first main result of this paper.
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Theorem 1.2. Let a and b be real numbers which satisfy a < b, let n be a non-
negative integer, and let (sj)?zgl be a sequence of complexr q X q matrices. Let
S : C\[a,b] — CT* be a qx q matriz-valued function, and let Sy : C\ [a, b] — C1*4

and Sy : C\ [a,b] — CI%9 be defined by

S1(2) = (2 —a)S(z) and Sao(z) := (b—2)S(z). (1.10)
Then S belongs to R, Ua, bl; (sj)iz"gl] if and only if the following conditions are
satisfied:

(i) S is holomorphic in C\ [a,b].
(ii) For each z € C\ R, the matrices

Hin Ry, (2) (00 51(2) — u1.0)
[S]
Ki,(2) = § R (1.11)
(RTn(Z)(UnS1(Z) — Ul,n)) Sl(zl:fl (=)
and
Hs Ry, (2)(vnSa(2) — ug.p)
(5]
. - 1.12
2,1’7,('2) - * 5,2(Z)_§;(z) ( )
(R ()002(2) ~ v2.)

are both nonnegative Hermitian.

We will use Theorem 1.2 in order to describe the case that MY [[a, b]; (s;)728"] # 0.
More precisely, in Section 7, we will prove the following result which in the scalar
case ¢ = 1 is due to M.G. Krein (see [Kr2, Theorem Ag, 1, p. 30], [KN, Theorem

2.1, p. 91]).

Theorem 1.3. Let a and b be real numbers with a < b, let n be a nonnega-
tive integer, and let (sj)fz‘gl be a sequence of complexr q X q matrices. Then
MY [[a,b],% N [a, b]; (sj)?l'gl] is nonempty if and only if the block Hankel ma-
trices Hy,, and Hs,, are both nonnegative Hermitian.

Let the assumptions of Theorem 1.2 be satisfied. Then we will say that the
matrix-valued function S : C\ [a,b] — C?*7 is a solution of the system of the

fundamental matriz inequalities of Potapov-type associated with [a,b] and (sj)iiérl

if S is holomorphic in C \ [a,b] and if the matrix inequalities K s} (2) > 0 and

1,n

K gST]l(z) > 0 are satisfied for every choice of z in C\ R. Further, if a complex ¢ x ¢
matrix-valued function S defined on C \ [a,b] is given, we will then continue to
use the notations 51 and 52 to denote the matrix-valued functions which are also
defined on C \ [a,b] and which are given by (1.10). We call S; (respectively, Sy)
the first (respectively, second) matriz-valued function associated canonically with
S. Note that M.G. Krein and A.A. Nudelman [KN, Appendix, Ch. 3] stated that,
in the case ¢ = 1, the functions 5’1 and 5’2 can be used to characterize the class
Rila,b]. This result will be proved below for the class R,[a,b] (see Lemma 3.6).
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At the end of this section, let us note that in an appendix (Section 8) we will
summarize some results on the class R, of all matrix-valued functions F': II, —
C7*4 which are holomorphic in IT; and which satisfy Im F(w) > 0 for all w € II,..
Every function F' which belongs to R, admits a unique integral representation
which in the scalar case is due to R. Nevanlinna (see Theorem 8.1). In view of this
integral representation, the subclasses R; and R 4 of R, are of particular interest
(see Section 8).

2. Main algebraic identities

In this section we will single out essential identities connecting the block matrices
introduced in Section 1 (see formulas (1.4)—(1.9)).

Observe that if n € Ny and if (sj)fzgl is a sequence of complex ¢ X ¢ matrices
such that H; , > 0 and Hs, > 0, then the equation

- 1
Hin=, ~ a(Hl,n + Hs ) (2.1)

b
shows that ﬁlm is nonnegative Hermitian as well. Moreover, from an = Hip,
Hj, = Hzp, and ﬁfn = Hy, it follows ﬁ;n = H,, and s; = s; for each
J € Noanii.

Proposition 2.1. (Ljapunov type identities) Let n € Ny and let (sj)iiérl be a
sequence of Hermitian complex q X q matrices. For each k € {1,2}, then

Hy Ty — TnHy . = Uk 0y, — VnUp, - (2.2)
Proof. Since H; , and Hs , are Hermitian block Hankel matrices which satisfy
TnHl,nvn = —Ui,n — UnSo and TnH2,nUn = —U2n + vnSo

equation (2.2) follows by a straightforward calculation. O

Now we state an essential coupling formula between the block Hankel matrices
Hl,n and Hg’n.

2n+1

Proposition 2.2. (Coupling Identity) Let (s;);%

plex q X q matrices. Then

Hs, + [Rr, O] 'Ry, (a)Hy, = (@ — b)Rr, (a)vnuj ,[Rr, (a)]". (2.3)

be a sequence of Hermitian com-

Proof. For every choice of w and ¢ in C, the identities [Rz, (w)]~* = I — wT;, and
(I = ¢Ty) Ry, (w) = R, (w) - (I = (Ty) (2.4)
hold obviously. Therefore we can conclude

Hy ., + [Rr, (b)) 'Rr, (a)Hy, = Ry, (a) [(I — aTy)Hop + (I — bT,)Hy ). (2.5)
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From (1.8) we obtain

(I —aTy)Hyp + (I = bT)Hy = (b—a)(Hym — TnHo.p)
= (b - a)(ﬁl,n - Tnﬁln)(l - aT’;)[RTn (a)]*
—(b—a) [ﬁl,n — aHy T — TpHan + aTyHon T2 | Ry, (@), (2.6)

Since s; = s} holds for each integer j with 0 < j < 2n + 1, a straightforward
calculation yields

ﬁl,n — afIl,nT; — Tnﬁz,n + (J,Tnﬁngg = —’Unuin. (27)

From (2.5), (2.6), and (2.7) we get finally (2.3). O

In the paper [DC] the first two authors studied the problem of Nevanlinna-
Pick interpolation in the class Rq4[a, b] by using V.P. Potapov’s method. A closer
look at the paper [DC] shows that there are direct analogues of Propositions 2.1
and 2.2, respectively. More precisely, Proposition 2.1 corresponds to an unnum-
bered formula at the top of p. 1271 in [DC]. Moreover, formula (11) at p. 1271 in
[DC] is the direct analogue of Proposition 2.2. It should be observed that in the
context of interpolation problems in the Stieltjes class a similar situation already
occurred. What concerns analogues of Proposition 2.1 we refer to formulas (4) and
(5) in [Dy2] and formula (2.8) in [Dy3], whereas coupling identities of fundamental
importance are stated in equation formula (1) of [Dy2] and formula (2.1) of [Dy3].

3. From the moment problem to the system of fundamental matrix
inequalities of Potapov-type

In this section, we will show that every matrix-valued function which belongs to
Rq [[a, bl; (sj)izgl] is a solution of the system of the fundamental matrix inequali-
ties associated with [a, b] and (sj)iiérl. First we recall some results of the integra-
tion theory of nonnegative Hermitian measures (for details, see [Kt] and [R]).

Let (A, 2l) be a measurable space. For each subset A of A, we will write 14 for
the indicator function of the set A (defined on A). If v is a nonnegative real-valued
measure on (A, 2), then let p x ¢ — L1(A, 2, v; C) denote the class of all A — B, -
measurable complex p x ¢ matrix-valued functions ® = (p;) e defined on A

,,,,,

for which every entry function ¢, is integrable with respect to v.

Now let 1 € ML(A,2A). Then every entry function pujx of u = (ujn)} =y
is a complex-valued measure on (A,2(). In particular, p11, fto2, . . ., fiqq are finite
nonnegative real-valued measures on (A, 2l). Moreover, 1 is absolutely continuous
with respect to the so-called trace measure 7 := 23:1 wj; of u, ie., for each
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A € A which satisfies 7(A) = 0 it follows p(A) = 0gx4. The corresponding Radon-

dpjr
dr

dugr \?
ph o= ( ”J’“) we have then
k=1

dr
. q
p(A) = (/ du]de) :/uLdT
A dT G k=1 A

for each A € 2. An ordered pair [®,¥] consisting of an 2 — 9B, -measurable
complex p x ¢ matrix-valued function ® = (gji)s=1...., defined on A and an

Nikodym derivatives are thus well defined up to sets of zero T-measure. Setting

j=1,...,
k=1

A — ‘Bpxq—measurable complex r X ¢ matrix-valued function ¥ = (¢)

1=1,...,
k=1,...,
defined on A is said to be left-integrable with respect to p if ®ul U* belongs tqo
px q—LYA, A, u;C). In this case, for each A € 2, the ordered pair [14®,14¥] is

also left-integrable with respect to 1 and the integral of [®, U] over A is defined by

/@du\If* ::/(1A<I>)ufr(1A\If)*dT.
A A

We will also write [, ®(A)u(d\)®*(X) for this integral. Let us consider an arbitrary
o-finite nonnegative real-valued measure v on (A,%2l) such that p is absolutely

N4
continuous with respect to v and let !, := (d§;k> be a version of the matrix-
k=1

valued function of the corresponding Radon-Nikodym derivatives. For each ordered

pair [®, U] of an A — B« ,-measurable matrix-valued function ® : A — CP*? and

an A — B,y ,-measurable matrix-valued function ¥ : A — C"*? which is left-
integrable with respect to y and each A € 2, then

/fbdu\I/* :/(1A<1>)M;(1A\11)*dy
A A

holds. We will use p x ¢ — £L2(A, 2L, i1) to denote the set of all 2 — %pxq—measurable
mappings ® : A — CP*? for which the pair [®, ®] is left-integrable with respect to
. Note that if ® € p x ¢ — L2(A,2, 1) and if ¥ € r x ¢ — L2(A, 2, 1), then the
pair [®, U] is left-integrable with respect to p. If & : A — CP*? is an A — %qu-
measurable mapping for which a set N € 2 with x(N) = 0 and a nonnegative real
number C' exist such that [|®(\)|| < C holds for each A € A\ N, then ® belongs
to px q— L2(A, 2, u). For all complex-valued functions f and g which are defined
on A and for which the function h := fg is integrable with respect to |u;x| for
every choice of j and k in Ny 4, the pair [fI;, gI,] is left-integrable with respect to
p and, in view of (1.1),

/ (FI)du(gly)" = / (fg)dp
A A

holds for all A € .
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Remark 3.1. Let € ML (A,21) and let ® € px q— L2(A, A, p1). Then pg) : A —
CP*P given by

1o} (A) iz/A‘I’dl@*

belongs to ME (A, R0). If ¥ : A — C™*P is A — B, ,-measurable and if © : A —
Ci¥P 4s A — %txp—measumble, then [V, O] is left-integrable with respect to pe) if
and only if [P®, O] is left-integrable with respect to p. Moreover, in this case,

A A

Remark 3.2. Let p € ML (A, A) and let € := {A € A: {\} € A}. Then one can
easily see that €, := {X € €: u({A}) # 0} is a countable subset of A.

Throughout this paper, we assume now that a and b are real numbers which
satisfy a < b. Let us turn our attention to nonnegative Hermitian ¢ X ¢ measures
on the Borel o-algebra B N [a,b] on the closed finite interval [a,b]. For each o €
M2 (Ja,b], BN [a,b]) and each j € Ny, let

sl ::/[ ’ to(dt). (3.1)

Further, for all o € M; ([a,b],B N [a,b]) and all m € Ny, let fl{g] (respectively,

m

ﬁégjn) denote the first (respectively, second) block Hankel matrix associated with

(sg-g])ffg' Landlet H 1[01]71 (respectively, HQ[UJW) be the first (respectively, second) block
Hankel matrix associated with the interval [a,b] and the sequence (sg.a])?:&' e,
the matrices H {Uln, I:Iégjn, H R]n, and Hégln are given by
H = (5700 A = (557010, (3:2)
HY) = —aH) + A, and HY) =bAP) — HY). (3.3)
For each m € Ny, let the (m + 1)g x ¢ matrix polynomial E,, be defined by
1y
21y
En(z)=| 2%, | . (3.4)
2™,

Obviously, E,,(0) = v, for each m € Ny. Further, for each m € Ny and each
z € C, from (1.6) and (1.7) it follows immediately

E,.(z) = Ry, (2)Um. (3.5)

Now we state important integral representations for the block Hankel matri-
ces introduced in (3.2) and (3.3).
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Lemma 3.3. Let 0 € M ([a,0], B N [a,b]). For each m € Ny, then

B (o (dt) E}, (1) = 1), / HE (o (dt) By (1) = AL,
[a,b] [a.b]

/[ b] Vi = aEn(t)o(dt) (Vt — aBu(t))” = HY7,.
and

,m*

Vb — tE, (t)o(dt) (\/b - tEm(t)>* = HU)
[a.b)

In particular, for each m € Ny, the matrices ﬁl[i]w Hl[gjn, and Héajn are nonnega-
]

tive Hermitian, and the matrix fNIng 1s Hermitian.

Lemma 3.3 can be proved by straightforward calculation. We omit the details.

From Lemma 3.3 we get immediately a necessary condition for the existence
of a solution of the matricial version of M.G. Krein’s moment problem.

Remark 3.4. Let n € Ny and let (sj)?zgl be a sequence of compler q X q matrices
such that M [[a,b],B N [a,b]; (sj)iiérl] # (. From Lemma 3.3 one can easily see
then that all the matrices ﬁlm, Hy ,, and Hy, are nonnegative Hermitian and

that the matriz ﬁg,n is Hermitian. In particular, s sj for all j € Ny opy1.

[

J
Lemma 3.5. Let S € Ryla,b], and let o be the Stieltjes measure of S.
(a) For z € C\R,
Z—z [ap] \ T —2 t—z

and

Sa() - 83() _ /[ b] (WJ ) ot (i b thq>* R

zZ—2z t—=z

(b) The matriz-valued functions Sy and Sy are both holomorphic in C\ [a,b] and,
for each w € T, the matrices Im Sy (w) and Im Se(w) are both nonnegative
Hermitian.

Proof. (a) Let z € C\ R. In view of (1.3) and (1.10) we obtain
& an . B B
Si(z) = Si(2) _ / (z a z a) o(dt).
z—z Z=2 Jap \t—2 -2z

z—a z—a (z—2)(t—a)

Since

t—z t—z (t—2)(t—2)
is valid for each ¢ € [a, b], it follows (3.6). Analogously, (3.7) can be verified.
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(b) Obviously, the right-hand sides of (3.6) and (3.7) are both nonnegative
Hermitian for each z € C\ R. For each k € {1,2} and each z € C\ R, we have

5 Sik(z) = Si(2)

Im Sk(z) = -Im 2. (3.8)

zZ—Z

Thus the assertion stated in part (b) follows immediately. O

If S : C\[a,b] — C?*7 is given, then, as already mentioned in [KN, Appendix,
Ch. 3] for the case ¢ = 1, the first matrix-valued function S; and the second matrix-
valued function S associated canonically with S can be used to characterize the
case that S belongs to the class R4[a, b].

Lemma 3.6. Let S be a complex q X q matriz-valued function defined on C\ [a,b].
Then the following statements are equivalent:
(i) S belongs to Rqla,b].
(ii) The matriz-valued functions Sy and So are both holomorphic in C\ [a,b] and
the inequalities Tm Sy (w) > 0 and Im Sy (w) > 0 hold for all w € T1 .

Proof. Lemma 3.5 shows that (ii) is necessary for (i). Now suppose (ii). Since
1 ~ ~
S@ =, (Sl(z) + sg(z))

is satisfied for all z € C\ [a,b], the function S is holomorphic in C \ [a,b] and
satisfies Im S(w) > 0 for all w € II;. Now let t € (—o0,a). Then we get

ImS(t) = h{)&o ImS(t+1ie) >0 (3.9)
and 3 }
(t—a)ImS(t) =Im S, (t) = h{)&o Im Sy (t +ie) > 0. (3.10)

Since t — a < 0 holds, from (3.9) and (3.10) we obtain Im S(¢) = 0. Further, for
each ¢ € (0,+00) we have then

0 <ImS;(t+ic) = (t —a)Im S(t +ic) + e Re S(t + ie) < e Re S(t + ic)
and consequently

S(t) =ReS(t) = lim ReS(t+ie) > 0.
e—0+0
Similarly, it follows —S(x) > 0 for all « € (b, +00). Hence, (i) is verified. O

Let S : C\ [a,b] — C?%*? be holomorphic in C\ [a,b]. Then Lemma 3.6 and
(3.8) show that if the right lower ¢ x ¢ blocks of the matrices KFA and Kéﬂ]l,
given by (1.11) and (1.12), are nonnegative Hermitian for each z € I, then the

function S necessarily belongs to R4[a, b]. Thus the inequalities K {SA(Z) >0 and
Késn(z) > 0 holding for each z € II ensure that S belongs to Rq[a, b].

Now we are going to discuss the right upper (n+1)g x g blocks of the matrices
K}Si(z) and K; ] (2). Before doing this let us observe that, in view of (1.4) and

n
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(1.6), for each n € Ny the matrix-valued function Ry, : C — C(*TDex(n+1)a giyen
by (1.5) can be represented via

n

Ry, (2) =Y 2T) (3.11)
§=0

for all z € C and that the identities
Ry (w)Rr, (2) = Rr, (2)Rr, (w), (I —wT,)Ry, (2) = Ry, (2)(I —wT,),
and
Ry, (w) — Ry, (2) = R, (2)((I — 2T,) — (I — wT,)) R, (w)
= Ry, (2)(wT, — 2T,)Rr, (w) = (w — 2)Rr, (2)Tn R, (W) (3.12)
are satisfied for every choice of w and z in C.

Lemma 3.7. Let n € Ny and let (sj)?zgl be a sequence of compler q X q matrices
such that MY [[a, ], Bn[a, b]; (sj)?l'gl] is nonempty. Let S € Ry [[a, b]; (sj)izgl]
and let o be the Stieltjes measure of S. For each z € C\ R, then

KLST]L(Z) - Ve (Eln(?() o(dt) [\/t —a (E;n(?q>] *

[a,b] t—z t—z

0 v (5w oo (5]

[a,b] t—z t—z

and

Proof. From S € R, [[a,b}; (sj)?zgl] we get o € qu [[a,b],% N [a, b]; (sj)fiérl].

In view of Lemma 3.3 and Lemma 3.5 it is sufficient to verify that

R (2)[on1 () — r.n] = / (Vi —aBu)oldr) ({f _Z“Iq)* (3.13)

0.t -
and
Rr, (2)[0nSa(2) — ugn] = /[ ; (\/b - tEn(t)> o(dt) <‘f’_zt Iq> (3.14)

are satisfied for all z € C\R. Let z € C\R. Using (1.10) and (1.9) we can conclude
R, (2)[v051(2) — u1n] = (2 — a) Ry, (2)v,8(2) — Rr, (2)(I — aTp)un.  (3.15)

In view of (1.3) we have

S(z) = /W)] (t ! qu> o(dD)]I: (3.16)

From Lemma 3.3, (1.5), and (1.7) we see immediately that

Up = —Hy v, = — En(t)o(dt)I; = — / Ry, (t)vpo(dt)I; (3.17)
[a,b] [a,b]



A Matricial Moment Problem 135

holds. Because of (3.15), (3.16), and (3.17) we infer then
R, (2)[nS1(2) — u1.0]

- / i N :RTn(z)vna(dt)Ig Jr/ Rr, (2)(I — aTy)Rr,, (t)vao(dt) 1. (3.18)
la,b] ¥ — [a,b]

For each real number ¢, from (3.12) we obtain

a

RTn (Z)(I - aTn)RTn (t) = RTn (Z)RTn (t) - ‘_

. (Rz,(t) — Rr,(2)).  (3.19)
Consequently, equations (3.18) and (3.19) provide us
Rr, (2) (”ngl(z) —u1n)

- /[ ) (t i | [2R7,(2) + (¢ = 2)Rr,, (2) R, (1) — aRr, (1)] vn> o(dt)I;. (3.20)

Using (1.5), for every choice of ¢ in R, we obtain

zRr, (2)+ (t — 2)Ry, (2)Rr, (t) = Rr, (2) (Z(I —tT,) + (t — Z)I)RTn (t)
= RTn (Z)t(] — ZTn)RTn (t) = tRTn (t) (321)

From (3.20) and (3.21) it follows

t—a

Ry, (2) (0nS1(2) —urn) = / R, (tyv,o(dt)I}

[a,b] t—2z
t o *
_ /[ . Vit — aBRa, (t)ono(dt) (i_ z“1q> . (3.22)

The equations (3.22) and Ry, v, = E, imply (3.13). Analogously, (3.14) can be
proved. O

If n € Ny and if (sj)?zgl is a sequence of complex g X ¢ matrices, then we will

use the notation P [[a, b]; (sj)fzgl] to denote the set of all solutions of the system
of the fundamental matrix inequalities of Potapov-type associated with [a,b] and

(sj)iiérl, i.e., the set of all matrix-valued functions S : C\ [a, b] — C2*? which are

holomorphic in C\ [a, b] and for which the matrices K (z) and K (z) are both

1,n 2,n
nonnegative Hermitian for every choice of z in C\ R.

Proposition 3.8. Let n € Ny and let (sj)fiérl be a sequence of compler q X q

matrices. Then Ry [[a, b]; (sj)?zgl] is a subset of the set Py [[a,b]; (sj)?zgl] of
all solutions of the system of the fundamental matriz inequalities of Potapov-type

associated with [a,b] and (sj)iiérl.

Proof. Apply Lemma 3.7. 0
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4. From the system of fundamental matrix inequalities to the
moment problem

Throughout this section, we again assume that a and b are real numbers which

satisfy @ < b. Further, let n be a nonnegative integer and let (sj)fzgl be a se-

quence of complex ¢ X ¢ matrices. We will continue to work with the notations
given above. In particular, if a matrix-valued function S : C\ [a,b] — C?*7 is
given, then let S; (respectively, Sy) be the first (respectively, second) matrix-
valued function which is associated canonically with S (see (1.10)). We will again
use the notation Py [[a, b]; (s )Q"H] to denote the set of all solutions of the system
of the fundamental matrix inequalities of Potapov-type associated with [a,b] and

(Sjﬁn?)_l
Remark 4.1. If P, [[a, bl; (5])?"'6'1] is nonempty, then Hi , >0, Hy, >0, I:ILn >0,
ﬁ;n = Hg’n, and in particular s7 = s; for each j € Ny 2n1-
Remark 4.2. Suppose Pq [[a, b]; (sj)?zgl] #0. Let S € Py [[a,b]; (5])3”31] Then
Sy and Sy are both holomorphic in C\ [a,b]. Moreover, for each k € {1,2} and
each w € 111, from K,[Csjl(w) >0 and (3.8) it follows immediately Tm Sy (w) > 0.
Lemma 4.3. P, [[a,b]; (s;)72¢'] € Ryla,b] .
Proof. Use Remark 4.2 and Lemma 3.6. O
Lemma 4.4. Suppose that s} = s; holds for each j € No2n11. Let S : C\ [a,b] —
C?*% be a matriz-valued function. For each k € {1,2}, let Fy, : C\ [a,b] —
CntDaex(n+1)a pe defined by

Frn(w) i= Hen Ty Ry, (w) + Rr, () (0aS0(w) = wen ) iRy, (w). (41)
For each k € {1,2} and for every choice of z in C\ R, then

An(2)K[S(2) 15 (2) = QL (2) (42)
and
T (2)Q) ()15 (2) = K[ (2) (4.3)
where K,[Csn(z)7 Ecsi(z),An(z), and Ty, (2) are given by (1.11), (1.12),
5y . Hk kn(2 A4
k;,n(z) . (F,:yn(?;) Fk,n(zz):_fk,n(z)> ’ ( . )
. Tint1)q 0
N (z) = (RT (ITw Rr (2)on ) (4.5)
and

. Int1)q 0
Ln(2) := (—v;‘LRTn(z)Tn vr )’

n
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Proof. Let k € {1,2} and let z € C\ R. First we verify (4.2). Let Qgcsi(z) =
An(z)K,[CSi(z) A (z) and let QECSL be partitioned into (n 4+ 1)¢ x (n + 1)g blocks

via

) (Z) B(z)
Obviously, A(z) = Hgn, B(z) = Fin(2), and C(z) = Fy, (2). Moreover, from
(1.11), (1.12), and (4.5) we see easily that

D(z) = (Rr,(2) - Tn, Ry, (2)v)
( Hy,n Ry, (2) (0nSk(z) — ukn)) (T;Ri}n(z)>

(Rr () (0050(2) = win) ) 81(2)-5i) ViR, (2)
= Ry, (2)THy T, RT, (2) + Rr, (2)vn k(2) = 5(2) v RT (2)
z—z

YRy, (2)T0Rr, (2) (vngk(z) - ukyn) iR} (2)
+ (RTn(z)TnRTn (2) (vngk(z) — uk,n) v;R}n(z))* .

Using (3.12) we can conclude

R, ()T R, (2) (vnék(z) - uk,n) iRy, (2)
= I (4,80 < ) i, (2

zZ—z
1

= (Rn() (k) — wan) 3R, (2)

zZ—Zz
R, (2)0nSk(2)05 R, (2) + R, (2)ue v B, (2))

and therefore

D)= ((zfz)RTn(z)TnHk,nT;Ri}n(z)

z—z

+Rr (2) (vngk(z) - uk,n) v RY (2)

R, (2)u 0 R, (2) = B, (2)0n (v08k(2) = wn ) R (2)

—Rr, (z)vnuszi}n (z)) (4.6)
Proposition 2.1 provides us

B, (2)uknvy By, (2) = B, (2)vpug , B, (2)
= B, (2)(uk,n vy, — vntj ) BT, (2)
= Re, (2)(Hn T — T Hyn) R, (2). (4.7)
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Hence from (4.6) and (4.7) we infer

Dz = (R, ()1 = 2T) Hen T R, (2)

zZ—Zz

— Ry, ()T Hyn (I — 2T7) Ry (2) + R, (2) (vngk(z) - ukyn) ViR (2)
—Rr, (2)vn, (vngk(z) — ukn) " RT. (z))

In view of Ry, (2)(I — 2T,) =1 and (I —2T;)R} (2) =1, we get

1
D(z) = (Hk,nT;R;;n(z) — Ry, (2)THyom

YRy (2) (unSk(z) - ukyn) ViR (2) — Rr, (2)vn (vngk(z) - uk,n)* Ri}n(z))
_ Finle) — Fia(2)

zZ—Z

Consequently, (4.2) is verified. In view of (1.6) and (1.7), we have v} Rr, (2)v, = I,
and therefore I'y,(2) A, (2) = I. Thus from (4.2) it follows finally (4.3). O

Proposition 4.5. Let S : C\ [a,b] — C9*? be a matriz-valued function which is
holomorphic in C\ [a,b]. For k € {1,2}, let Fy,, : C\ [a,b] — C+tDax(n+1a fop
each w € C\ [a,b] be defined by (4.1). Then S is a solution of the system of the
fundamental matriz-inequalities of Potapov-type associated with [a,b] and (sj)iiérl
if and only if for each z € C\ R the matrix QECSL(Z) given by (4.4) is nonnegative
Hermitian.

Proof. Apply Remark 4.1 and Lemma 4.4. d

Lemma 4.6. Suppose Pq [[a,b]; (sj)?zgl] # 0. Let S € Py [[a,b]; (sj)?zgl] and

let Fy and Fa, be the matriz-valued functions which are defined on C\ [a,b]
and which are given by (4.1). For each k € {1,2}, then F,En = Rstr.g, Fypn
belongs to Ro,(nt1)q and the spectral measure pig n of FEn satisfies the inequality
Hk,n(R) < Hk,n-

Proof. Apply Proposition 4.5 and Lemma 8.9. O

In the following we will use results stated in the appendix (Section 8). In particular,
we will consider matrix-valued functions which belong to the classes R, R;, and
Ro,q which are described there.

Lemma 4.7. Suppose Py [[a, b]; (sj)?zgl] # 0. Let S belong to Py [[a, b]; (sj)iiérl]
and let o denote the Stieltjes measure of S. Then Hl[ajl < Hyp, HQ[UT]L < Hyp,
and ﬁl[gjl < Hi,.
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Proof. First we observe that from Lemma 4.3 we know that S belongs to Rg[a, b].
Let k € {1,2}. In view of (3.5), the function Fj, : C\ [a,b] — Cr+hax(nt+la
given by (4.1) admits the representation
Fion(2) = Un(2) + Bu(2)50(2) B3 () (45)
where E,, : C — C(»t1ax4 and @, , : C — C»+1)ax (14 are given by (3.4) and
Upn(w) = HlynT;R}n (w) — Rp, (w)ukynv:R}n (w).
From (1.6), (3.4), and (3.5) we see easily that Uy, ,, and E,, are matrix polynomials.

In particular, ¥y, ,, and E,, are both holomorphic in C. For every real number z,
Remark 4.1 and Proposition 2.1 yield

k() — U (@)
= Ry, (2) ((I —aTp)Hp Ty — upnv) — TnHpn(I — 2T)) + vnuzm) R}n (2)
= Ry, (2) (HknT; —ToHim — (Uknvy — vnuzn)) RY (x) = 0.

According to Lemma 8.13, the function SE := Rstr.m, Sk belongs to R;. Let pg

denote the spectral measure of Sk['. For all real numbers o and 3 which satisfy
a < B, pr({a}) =0, and pr({8}) =0, (4.8) and Theorem 8.6 provide us then

1
1 E,dp.EX = li Im Fy. ., i)\ (dx). 4.9
[t Badnes = |t [ RN, @)

According to Lemma 4.6, the matrix-valued function F} En := Rstr.;r, Fi,» belongs
to Ro,(n+1)q and the spectral measure i, of F,E’n fulfills
,u;g,n(R) < Hg p. (4.10)
For all real numbers o and 8 which satisfy o < 3, pk,n({a}) = 0, and u . ({5}) =
0, from Theorem 8.2 and (4.9) we infer
1
pren((a,8)) = lim Im Fj, (2 + ie)A(dz) = / La,p) Endpr ;. (4.11)
7T e—040 [OL,,B] R ’
In view of Remark 3.2, there are sequences ()52, and (3,,)2°_; of real numbers
which satisfy the following conditions:

(i) For all m € N, the inequalities ;41 < @ < 0 < B < Bt hold.
(iii) For all m € N,

e ({am}) = 0, pn({Bm}) = 0, pr({am}) =0, and  pp({Hn}) = 0.

Because of (ii) there is an mg € N such that
oy < a<b< By (4.12)

for all integers m with m > mg. In view of (4.11) it follows

pen(R) = Um pgn((am, Bm)) = lim L B) Endpr By, (4.13)
m— 00 R
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Let o1 : BN[a,b] — C?*? and o3 : BN[a,b] — CT*7 be given by (8.24) and (8.25).
Further, let 61 : B — C7%7 and 65 : B — C7*? be defined by (8.27). By virtue of
Lemma 8.13 we have then p; = 6; and ps = 0. In view of (4.12) and Remarks 3.3
and 8.12, for each integer m with m > mg, we have then

[ s OB @520 = [ 1B 0B 0
R R

— [ E0o@E 0= | (Re,Ov)o(d) (e, (00)"
[a,b] [a,b]

- En(t)o1 (dt)EL(t) = B = HY) (4.14)
[a,b]

and similarly
[ o O patat 5(0) = L7 = ),
Hence, for each k € {1,2}, from (4.14), (4.13), and (4.10) we see

Y = Tim | 1o, g0 (O E. (D)o (d) B} () = pn(R) < Hi .

’ m—00

Finally, taking into account (2.1), we obtain then

rrlo 1 o o 1 ~
Hl[,n = b—a (H][.ﬂl, + H2[,7]L) < b a(Hl,n +H2,n) = Hip.

O

Remark 4.8. Let m € N and let u € CtD9™  Then P, : R — C9%9 defined by
P.(y) := Ziju*Tguyj
j=0
is the restriction of a matriz polynomial onto R. In view of (3.11) it admits the

representation P,(y) = u*Rr, (iy)u for each y € R. Hence if

hrf uw*Rr, (iy)u=0 or lim «"Rr, (iy)u=0,
y—-+oo y——o0

then P,(y) =0 for all y € R and consequently u*u = P, (0) =0, i.e., u=0.

Lemma 4.9. Suppose Pq [[a, b]; (sj)?zgl] # 0. Let S belong to Pq [[a, b]; (sj)iz"gl].
For each k € {1,2}, then

lim Ry, (iy) - (vngk(zy) - uk,n) = 0. (4.15)

y——+0o0o
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Proof. Let k € {1,2}. For each y € (0,+00), we have then K,[Csi(zy) > 0 and
therefore, in view of Remark 8.8,

Sk(iy) — S; (iy)

2
| <l |7,

0 < || B, (iy) (vaSe(iy) = urn)

< [|He,nl

15k (iy)l|
e, (4.16)

From Lemma 4.3 we know that S belongs to Rg[a, b]. Thus from Remark 8.11 we
see that letting y — 400 the right-hand side of (4.16) converges to 0. The proof
is complete. O

In the following, for each o € MY ([a,b],% Na,b]) and each m € Ny, let

S0
g
uﬁ] =—1 "1, u[lg]m = u[rz] - aTmug], and u[;Jn = —ULZ] + bTmuLZ]
i
where sgg], j € Ny, are given (3.1).

Lemma 4.10. Suppose P, [[a, bl; (sj)?zgl] # (. Let S belong to P, [[a, bl; (sj)?z)rl]
[o] o]
= U1n, and

n )

and let o denote the Stieltjes measure of S. Then sy = so, u[1
T
2,n — Y2n-

Proof. Let k € {1,2}. Using Lemma 4.9 we get (4.15). Obviously, o belongs to
MY |[a,b],B N [a,b]; (sg.a])?zgl]. Hence S belongs to R, [[a,b]; (sgg})fz'gl} . Ap-

plying Proposition 3.8 we obtain then that S belongs to P, [[a,b]; (sgg])fzgl].
Thus Lemma 4.9 also yields

lim _FRr, (iy) (vngk(iy) - uL"}n) = 0. (4.17)

y—+oo :
From (4.15) and (4.17) it follows then
Jm R, (iy) - (UESL - Ukn) =0
and therefore
Jim (], = wi)” - R, (i) - (07, = win)) = 0.

In view of Remark 4.8 this implies quL = Uy, and in particular 8([)0] = 5p. O

Remark 4.11. Let m € N and let (q)?Z‘O be a sequence of complex q X q matrices
which satisfies the following two conditions:

(1) Co = 0.

(ii) The block Hankel matriz C,, := (cj+;€)§f,§:0 is nonnegative Hermitian.
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Then Remark 8.8 shows that the matriz cap, is nonnegative Hermitian and that
c; = 0 holds for each j € Ny opm—1.

Proposition 4.12. P, [[a bl; (s )2"+1] C Ry [[ bl; (s )2n+1]

Proof. Assume that S belongs to P, [ 2"+1] By virtue of Lemma 4.3,
the matrix-valued function S belongs then to R qla,b]. Let o denote the Stieltjes
measure of S. From Lemma 4.10 we see that

sy = s0 (4.18)
holds. Lemma 4.7 shows that
HY) < Hyn, HY) < Hy,, (4.19)
and
Hy,—HF) >0 (4.20)
hold. The inequalities stated in (4.19) imp17y in particular
—asy) 4 s81 ) < —asan + S04 (4.21)
and
bs[;z - 5[22]+1 < bson — Son+1- (4.22)

In the case n = 0, from (4.18), (4.21), and (4.22) we obtain then s’} = s; and
consequently S € Rg [[a,b]; (s )2"“] Now suppose n > 1. In view of (4.18) and

(4.20), application of Remark 4.11 to the block Hankel matrix Cj, A \n—H {le
provides us

sgg] =s; forallje Nyoy_i. (4.23)
In particular, it follows

asgj] + 5[10] = —aso+ $1. (4.24)

Hence using the first inequality in (4.19), (4.24), and Remark 4.11, for every integer
7 with 0 < j < 2n — 1, we obtain

asl?? 4+ sl = —as; + 5501 (4.25)
Combining (4.23) and (4.25) for Jj =2n—1 we infer
skl = s, (4.26)
From (4.21), (4.22), and (4.26) we can conclude then
sl = soni1 (4.27)
Since S belongs to R,[a,b] the equalities (4.23), (4.26), and (4.27) imply finally
that S belongs to R [[a, b]; (sj)ifgl] . O

Now we obtain a proof of our first main result of this paper (see Theorem 1.2),
which shows that the sets Ry [[a, b]; (s )QEH] and Py [[a, b]; (sj)Q"H] coincide.

Proof of Theorem 1.2. Apply Propositions 3.8 and 4.12. O
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5. Nonnegative column pairs

Let J be a p x p signature matrix, i.e., J is a complex p X p matrix which satisfies
J* = J and J? = I. A complex p x p matrix A is said to be J-contractive
(respectively, J-expansive) if J— A*JA > 0 (respectively, A*JA—J >0). If Aisa
complex px p matrix, then A is J-contractive (respectively, J-expansive) if and only
if A* is J-contractive (respectively, J-expansive) (see, e.g., [DFK, Theorem 1.3.3]).
Moreover, if A is a nonsingular complex p X p matrix, then A is J-contractive if
and only if A=! is J-expansive (see, e.g., [DFK, Lemma 1.3.15]). A complex p x p
matrix is said to be J-unitary if J — A*JA = 0. If A is a J-unitary complex p X p
matrix, then A is nonsingular and the matrices A* and A~! are J-unitary as well.

A matrix-valued entire function W : C — CP*P is said to belong to the
Potapov class P ;(I1) if
J=W*(2)JW(z) >0 (5.1)
is satisfied for all z € II;.. A matrix-valued function W that belongs to (1) is
called a J-inner function of P ;(I1;) if

J=W*(x)JW(x) =0
holds for all x € R.

Lemma 5.1. Let J be a p X p signature matriz and let W be a J-inner function of

PBs(ALy).
(a) For each z € C, the matriz W (z) is nonsingular and
W(2)] = JW*(2)J (5.2)
and
J =W)X TW ()]t = J(J — W(2)JW*(2))J. (5.3)
(b) For each zell_ :={( € C:Im( € (—0,0)},
W*(z)JW(z)—J > 0. (5.4)

(c) For each z € C\R,

> 0. (5.5)

Proof. Let W% : C — CP*P be given by W¥(z) := W*(z). Obviously, W* and
V := J — WEJW are entire matrix-valued functions. For each € R, we have
V(z) = 0. The Identity Theorem for holomorphic functions yields V(z) = 0 and
hence
JW*(2)JW(z)=J? =1

for all z € C. Thus (5.2) and (5.3) follow. Let z € II_. Then z € I and we
get that W(z) is J-contractive. Consequently, (5.3) shows that [W(z)]~! is J-
contractive. This implies (5.4) and (5.5). For each z € I, inequality (5.5) follows
from (5.1). O
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For our further considerations, the 2¢q x 2¢q signature matrix

- (0 —il,
Jy = <in 0) (5.6)

is of particular interest. Indeed, on the one hand, we work with the class Rq[a, D]
and, on the other hand, for all complex ¢ X ¢ matrices C we have

(Icq>*(jq) <g> =2ImC. (5.7)

For each Hermitian complex (p + q) X (p + ¢) matrix J in [FKK, Definition 51]
the notion of a J-nonnegative pair is introduced. We are going to modify this
definition for our purpose in this paper. In the following, we continue to suppose
that a and b are real numbers which satisfy a < b.

Definition 5.2. Let P and @ be q X q complex matriz-valued functions which are

meromorphic in C\ [a,b]. Then g 15 called a column pair which is nonnegative

with respect to —J, and [a,b] if there exists a discrete subset D of C \ [a,b] such
that the following four conditions are satisfied:

(i) The matriz-valued functions P and Q are holomorphic in C\ ([a,b] U D).
(ii) For all z € C\ ([a,b]UD), rank (ggg) =gq.
(iii) For all z€ C\ (RUD),
1 (z—a)P(2)\" (z—a)P(z)
(_ q) > 0.
2=\ Q) Q)
(iv) For all z€ C\ (RUD),
1 (b—2)P(z) (—J.) (b—2)P(z) > 0.
2Im 2z Q(z) Q(z)
In the following, let P(—.J,, [a,b]) denote the set of all column pairs which
are nonnegative with respect to —.J, and [a, b].

1

I

Remark 5.3. Let S : C\ [a,b] — C9%% be a matriz-valued function, and let Sy
(respectively, Sa) be the first (respectively, second) matriz-valued function associ-
ated canonically with S, i.e., Sy : C\ [a,b] — C%*9 and Sy : C\ [a,b] — CI*4
are given by (1.10). For each k € {1,2} and each z € C\ R from (5.7) one gets

immediately
1 (8=, - (S Sk(z) = [Sk(2))
(3 ><%%kl>—k I (5.8)

2Im z z—z

If (g) belongs to P(—.Jy, [a,b]) and if F is a ¢ x ¢ complex matrix-valued
function which is meromorphic in C \ [a,b] and for which the complex-valued

function det F' does not vanish identically, then it is readily checked that (g?)
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also belongs to P(—Jj, [a,b]). Pairs (511 ) and (5‘;) which belong to P(—Jj, [a, b])

are said to be equlvalent if there exists a ¢ X ¢ complex matrix-valued funct1on F
which is meromorphic in C\ [a, b] such that the following conditions are satisfied:

(i) The function det F does not vanish identically.
(ii) The identities P, = P1F and Q2 = Q1 F hold.

One can easily see that this relation is really an equivalence relation on
P(—J,, [a,b]). If (g) € P(—Jg, [a,b]), then we will write <(g)> for the equiva-

lence class of all column pairs ( S) € P(—Jy, [a,b]) which are equivalent to (g)

Remark 5.4. From Remark 5.3 and Lemma 3.5 it is obvious that, for each S €
Rqla,b], the matriz-valued function ( ) belongs to P(—Jg, [a,b]).

If f is a meromorphic matrix-valued function, then let H; be the set of all
points at which f is holomorphic.

The following two lemmas can be proved similarly as the implication “(i7) = (i)”
in the proof of Lemma 3.6. That’s why we omit the details of the proofs.

Lemma 5.5. Let ¢ be a q X q matriz-valued function which is meromorphic in
C\ [a,+00) and which fulfills Im ¢(z) > 0 for all z € I, NH,. Suppose that the
function @1 : H, — C?*9 defined by p1(w) := (w — a)p(w) satisfies Im ¢1(z) >
0 for all z € I NH,,. Then, for each x € (—oo0,a) N H,, the matriz ¢(z) is
nonnegative Hermitian.

Lemma 5.6. Let ¢ be a g X g matriz-valued function which is meromorphic in
C\ (—o00,b] and which fulfills Im @(z) > 0 for all z € I1L NH,. Suppose that the
function o : H, — C7*? defined by 2 (w) := (b — w)p(w) satisfies Im @a(z) >0
for all z € Iy NHy,. Then, for each x € (b,+00) NH,, the matriz —p(z) is
nonnegative Hermitian.

Proposition 5.7. Let P and Q be g X ¢ matriz-valued functions which are mero-
morphic in C\ [a, b]. Suppose that (g) is a column pair which is nonnegative with
respect to qu and [a,b] and that the function det Q does not vanish identically in
C\ [a,b]. Then S := PQ™" belongs to Ryla, b].
Proof. Obviously, <S> belongs to P(—.J,, [a, b]). Hence there is a discrete subset
D of C\ [a,b] such that S is holomorphic in C\ ([a,b] U D) and that
1 z—a)S(z)\", = z—a)S(z

(95 gy (950 = 59)

2Im z

2111112 ((b : ZI)S(Z))* ) ((b - ?S(Z)> >0 (5.10)

and

i
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are satisfied for all z € C\ (RUD). Let ¢ : Hg — C?*? and ¢, : Hg — C?*7 be
given by ¢1(z) := (z — a)S(2) and p2(z) := (b — 2)S(z) for all z € Hg. For each
z € 14 \ D, from (5.9) and (5.10) we obtain

Ié;mwﬂa=2;w(“?“”)(—Q(“?“”)zo
and
IHllZIm 2(z) = I:n P <(b . ZI)S(Z)> (=) <(b B ZJ>S(z)> = 0.
Thus we have
Ime1(2) >0 and Im @y(z) >0 (5.11)
for all z € II. \ D. Hence, in view of S =, (1 + p2), it follows
Im S(z) >0 (5.12)

for all z € I \ D. Applying Lemma 5.5 and Lemma 5.6, from (5.11) we can
conclude

S(z) e CL* forall =€ (—o0,a)\D (5.13)
and
—S(z) e CL*? forall x € (b,+00)\D. (5.14)

Because of (5.12) one can easily see that S is holomorphic in II (compare, e.g.,
[DFK, Lemma 2.1.9]). In other words,

RStI.H+S S Rq. (515)

Let g € (—o00,a) \ D. Then there is a positive real number n such that
(xo —myxo + 1) C (—o00,a) \ D. In view of (5.13) and the symmetry princi-
ple, we see then that S is holomorphic in TI_ and satisfies S(z) = S*(z) for
all z € II_. It remains to show that S is holomorphic at each point which belongs
to R\ [a,b]. Let 2y € R\ [a,b]. Then there exists a positive real number n such
that (zo — 0,20 + 1) € R\ [a,b], (xo — n,20) N D = 0 and (xg, 70 + 1) ND = 0.
In view of (5.15), let (o, 3, 7) be the Nevanlinna parametrization of Rstr.i, S (see
Section 8). Using Proposition 8.3 we obtain

1+t
S(z):a+ﬂz+/ + ZV(dt)
R\E t—2z
for all z € IT; U EUTI_ where F := (z¢ — 1, x0) U (20, Zg + n). The matrix-valued
function ¢ : T U (29 — 1,20 + n) UTI_ — C?*? defined by
1+t
P(z) =a+ Bz+ / + Zy(dt) (5.16)

R\(zo—n,z041) %

is holomorphic in 14 U (zg — 1, 2o + ) UII_. Then

LTz o)) (5.17)

v
o — %
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for all z € I UEUII_. Let u € CP. From equation (5.17) we see that

1+ xox

u*S(x)u = u*p(x)u + . w'v({xo})u

Tro —
holds for each = € E. If u*v({zo})u > 0, then this would imply
lim u*S(z)u=—o00
r—xo+0
and

limﬁO u' (=S(x))u=—o00

in contradiction to (5.13) and (5.14), respectively. Hence we get u*v({zo})u =0
and consequently v({zo}) = 0. Thus S(z) = 1(z) is satisfied for every choice of z
in II; U EUTI_. Since x¢ was arbitrarily chosen from R \ [a,b] we see that S has
no poles in R\ [a,b] as well. Hence S belongs to R4[a, b]. O

6. Description of the solution set in the positive definite case

In this section, we suppose again that a and b are real numbers which satisfy
a < b. Further, let n be a nonnegative integer. Let MY ([a, b],B N [a, b]) denote
the set of all nonnegative Hermitian ¢ x ¢ measures defined on B N [a,b]. For
all 0 € MY ([a, 0], N [a,b]) and all nonnegative integers j, let sg-a] be given by
(3.1). From Lemma 3.3 we know that, for each 0 € M ([a,b],B N [a,b]) and for

every nonnegative integer m, the matrices H R]n and HQ[U}TL given by (3.2) and (3.3)
are both nonnegative Hermitian. Hence, in view of the considerations in Section
1, if (sj)fzgl is a sequence of complex g X g matrices such that the solution set

Ry [[a, b]; (sj)?zgl] of the (reformulated) matricial version of M.G. Krein’s moment

problem is nonempty, then the first block Hankel matrix H; ,, and the second block
Hankel matrix Hj , associated with the interval [a,b] and the sequence (sj)fzgl
are both nonnegative Hermitian. In this section, we will give a parametrization of
the set Rq [[a, b]; (sj)?ggl] under the assumption that the block Hankel matrices

H, , and H,, are both positive Hermitian.

For our following considerations we will apply the description of the set
[S]

Ry [[a, b]; (sj)?zgl] given in Theorem 1.2 where the matrix-valued functions K,
and Kési given by (1.11) and (1.12) are used. However, first we are going now

to present a class of measures o € MY ([a,b],% N [a,b]) for which the block Han-

kel matrices H l[ajn and HQ[UJW are positive Hermitian for every nonnegative integer
m. Let A denote the Lebesgue measure defined on B N [a,b] and let £ ([a,b],
BN [a,b], A; C) designate the set of all (BN [a, b]) — B-measurable complex-valued

functions which are defined on [a, b] and which are integrable with respect to A.

Lemma 6.1. Let X = (X;i)j ,—; : [a,0] — C?*9 be a q x ¢ matriz-valued function
every entry function X ;i of which belongs to L1 ([a,b],B N [a,b], \; C) and which
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satisfies A ({t € [a,b] : X(t) € CT*1\ CL"}) = 0. Then p : BN [a,b] — CI*1
defined by

(B) = /B Xd\

belongs to MY ([a,b],B N [a,b]) and, for every nonnegative integer m, the block
Hankel matrices H") and HY"

1m 2.m are both positive Hermitian.

Proof. Let m be a nonnegative integer. From Lemma 3.3 we see that the repre-
sentations

HY = [ vt = aBp(H)pldt) [Vt — aEm(t)] = / (t — @) En ()X () E, (t)A(dt)
[a,b] [a,b]

and
HY, = / (£ — ) B (1) X (1) B2 ()A(d)
[a,b]

hold where E,, is the matrix polynomial which is for each z € C given by
(3.4). Let x € Cm+Dax1\ {0}, Then one can easily see that the set M, :=
{t € [a,b] : EF,(t)x = 0} is finite. In particular, A(M U {a, b}) = 0. Hence we ob-
tain

A{t € a,b] : (t — a)z* Em(t)X (D) EX (H)z € (—00,0]}) =0

and consequently

o HY o = / (t — a) (EL (H)2) " X (£) B (t)z A(dt) € (0, +00).
[a.]

Analogously, one can see that m*HQ[“}nm € (0,400) holds. O

Observe that the constant matrix-valued function X : [a,b] — C?*9 with

value bian is a simple example for a matrix-valued function which satisfies the

assumptions of Lemma 6.1. In particular, there exists a sequence (rj)?zgl of com-

plex ¢ x ¢ matrices such that the block Hankel matrices (—arjix + rj+k+1)?k:0
and (brj+k — 7j+k+1)] x—o are both positive Hermitian.

Recall that Theorem 1.2 shows that a given matrix-valued function S : C\ [a, b] —

C9*4 belongs to Ry [[a, bl; (sj)?zgl] if and only if S is a solution of the system of

the fundamental matrix inequalities of Potapov-type associated with the interval

[a, b] and the sequence (sj)?:gl of complex ¢ X ¢ matrices, i.e., if and only if S is a

holomorphic function for which the matrices K {S} (z) and K. és] (2) given by (1.11)

n n

and (1.12) are both nonnegative Hermitian for all z € C\ R.

Remark 6.2. Suppose that (sj)?zgl is a sequence of complex qgx q matrices such that
the matrices Hy,, and Ha,, are both positive Hermitian. Let S : C\ [a, b] — C7*4

be a matriz-valued function. In view of Remark 8.8, one can easily see that the
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matrices Kﬁ]l(z) and Késjl(z) are both nonnegative Hermitian for all z € C\ R if

and only if for each k € {1,2} and each z € C\ R the matriz

ofhe) = I 75O
- (unék(z) —uk,n> R, (2)]" Hy L R, (2) (vnék(z) —uk,n> (6.1)
18 nonnegative Hermitian.

In the following, we again use the notation jq for the signature matrix given
by (5.6).

Lemma 6.3. Let (sj)fiarl be a sequence of complex qx ¢ matrices and let k € {1,2}.

Suppose that the block Hankel matriz Hy, 5, is positive Hermitian. Then U;g,n :C —
C29%2¢ defined by

Ukn(z) = Ioq +i(z — a)(uk,n, vn)*[Rr, (z)]*H,;}lRTn (a) - (ug,n, vn)jq (6.2)

s a 2q X 2q matriz polynomial of degree not greater than n + 1. Furthermore, the
following statements hold:

(a) Forall z€C,
jq - Uk,n(z) ) jq : [Uk,n(z)]*

= —i(2 = 2)(wkn, va) “[Br, (2)]" Hy, R, (2) - (hn, ). (6.3)
In particular, for each w € Il
jq — Ukn(w) . jq : [Ukn(w)]* > 0. (6.4)

Moreover, for each real number x,
Jy = Upn(@) - Jg - [Ugn(2)]* = 0. (6.5)
(b) For all z € C, the matriz Uy ,(2) is nonsingular and the identities

Uk (2)] 7

= Iy —i(z — a)(ukmn, vn)" [ R, (a)]*H,;iRTn(z) (Ukyms Un) g
and

jq - [Uk,n(z)]_*jq[ﬁkm(z)]_l

=i(z = 2) - Jy(.n, vn)*[Re, (2)]" Hy, ) Re, (2) - (e, 0n)Jy  (6.6)
hold.

Proof. For all z € C we have Rr, (z) = Z?:o 2JTJ. Hence one can easily see that

U k,n 1S a matrix polynomial of degree not greater than n + 1. Obviously, for each
w € C, the identities

Ry (w) - (I —wT,)=1 and (I —wT,)Ry, (w)=1 (6.7)
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are satisfied. From Proposition 2.1 we obtain

HinTy — ToHyn = (U, On) Jg (U n, Un) ™ (6.8)
Let z € C. Using (6.7) and (6.8) a straightforward calculation provides us
Jg = Uk (2) Jq[Ukn(2)]* = i(tun, vn)* [Rr, (2)]* Hy, L R, (a)
Qun(2,0) - [Br, (@) Hy R, (2) - (thins vn) (6.9)
where
Qpn(z,0) = —(z2—a)(I — 20,)Hy (I — aT}))
+(z —a)(I — aTp)Hy o (I — 2T5) + |2 — a|*(Hy T — Ty Hi ).
A further straightforward calculation shows that 2 (2, a) can be represented via
Qpn(z,a0) = (z — 2)(I — aTp)Hi (I — aTy). (6.10)
In view of (6.7), (6.9), and (6.10) it follows (6.3) and hence (6.4) and (6.5). Part (a)
is proved. Application of Lemma 5.1 and part (a) yield the proof of part (b). O

Lemma 6.4. Let (sj)fz‘gl be a sequence of complex q X q matrices such that matrices
Hi,, and Ha,, are both positive Hermitian. For each k € {1,2}, then Ukn :C —
C27%24 defined by (6.2) is a J,-inner function of the Potapov class B, (T1).

Proof. If A is a complex 2¢g X 2g matrix, then A* is jq—contractive (respectively,
Jg-unitary) if and only if A is J,-contractive (respectively, J,-unitary). Hence from
Lemma 6.3 the assertion follows immediately. O

Lemma 6.5. Let (sj)fz‘gl be a sequence of complex q X q matrices such that the
matrices Hy n, and Ha p are both positive Hermitian. Let k € {1,2} and let Uy,
C — C29%2% be defined by (6.2). Let S : C\ [a,b] — C9%9 be a matriz-valued
function. Further, let Sy : C\ [a,b] — C2*9 and CN‘][CSA : C\ [a,b] — CT%2 pe
given by (1.10) and (6.1). For all z € C\ R, then the matric C',[Csi(z) admits the
representation

o= (S’}(Z)) [Uk,n<z>1-*Jq[Uk,n<z>]-1(S'}(z)) (6.11)

i(z — 2)
Proof. Let z € C\ R. From Remark 5.3 we see that (5.8) is true. Further, we have
7

)
vngk(z) — Upp = L (Wkn, vn)jq (Skl(z)> ) (6.12)

Because of Lemma 6.3, equation (6.6) is valid. Using (6.1), (5.8), (6.12), and (6.6),
we obtain finally (6.11). O
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Remark 6.6. Let M be a complex ¢ X q matrix, let
I 0 I M
A= (M I> andlet Ag:= (0 I) .

A} J AL = Jg + diag(i(M* — M), 0)

Then

and R R

A Jg Ay = Jg + diag(0,i(M — M™)).
In particular, Ay is jq—umtary if and only if M* = M. Moreover, Ay is jq-um'tary
if and only if M* = M.
Lemma 6.7. Let (sj)fz‘gl be a sequence of complex q X q matrices such that the
matrices Hy ,, and Ha , are both positive Hermitian. Let

M = (a — b)v, [ R, (a)]*HQ_,}lRTn (a)vn, (6.13)
Ma = (a — b)u ,[Rr, (a)]*Hi ) Ry, (a)us n, (6.14)
o I 0 o I _M2,n
Al,n = <M17n I) 5 and Agyn = <0 I > . (615)
Let k € {1,2} and let Uy, : C — C29%%4 be given by (6.2). Then
Uk,n = Uk,nAk,n (616)

18 a 2q x 2q matriz polynomial of degree not greater than n+ 1. Moreover, Uy, ,, is
a Jq-inner function of the class B ; (IL1). For each z € C, the matriz Uy,n(z) is
nonsingular. Moreover, for each z € C, the identities
Ukm(z)jq[Uk,n(Z)]* = Ukm(z)jq[ﬁk,n(zﬂ* (6.17)
and ~ R o
[Uk7n(z)]_*Jq[Uk7n(z)]_1 = [Uk,n(z>]_*Jq[Uk,n(Z>]_l (6.18)
are satisfied.

Proof. Obviously, the matrices M; , and —M> ,, are both Hermitian. Remark 6.6
shows then that A;, and A, are J,-unitary. Consequently, all the matrices

Al A5, Ai}l, and A;; are also J,-unitary. Thus (6.17) and (6.18) follow
for each z € C. In view of Lemma 6.3 the proof is finished. O

Proposition 6.8. Let (sj)?zgl be a sequence of complex q X q matrices such that

the matrices Hy,, and Ha,, are both positive Hermitian. Let S : C\ [a, b] — C7*4
be a matriz-valued function. Then S belongs to R, [[a, bl; (sj)?l'gl] if and only if

S is holomorphic in C\ [a,b] and the matriz inequality
1 Si(2) ’ - Ly [ Sk(2)
Ukn *Jg[Uk.n >0 6.19
Z.(ZZ)( D) Wen e () 2 (6.19)
is satisfied for each k € {1,2} and each z € C\ R.
Proof. Use Theorem 1.2, Remark 6.2, Lemma 6.5, and Lemma 6.7. O
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Remark 6.9. Let (s )2n+1 be a sequence of complex q X q¢ matrices such that the
matrices Hy , and H2 n are both positive Hermitian. Straightforward calculations
show that the matriz-valued functions Uy 5, and Us 5, admit for each z € C the block
representations

U,(2) U(2) UR.(2) UD.(2)
Urn(z) = and  Us,p(z) =
Ush(2) UBl(2) Usih(2) USL(2)
where
U (2) =1 + (2 — a)uj ,[Re, (2)]"Hi L R, (a) (w1 My — vn),
Uiy (2) = (2 — a)u} ,[Re, ()" Hi } Re, (a)ur n,
Usion(2) 1= M + (2 — a)vs [Rr, ()] Hy R, (@) (0 My — v),
Ussha(2) =1 + (2 — a)vi[Rr, (2)]" Hi R, (a)uy n,
U (2) =1 — (2 — a)uj ,[Rr, (2)]"Hy ) R, (a)vn,
Ush(2) = —May + (2 — a)us ,[Rr,, ()" Hy ) R, () (v Moy + 2,0),
U, (2) == —(z — a)v} [Rr, (2)]" Hy R, (a)vn,
and

U (2) =1 + (2 — a)o}[Rr, (2)]" Hy B, () - (vn Mo + 2,0).

Proposition 6.10. Let (53)2”+1 be a sequence of complex q X q¢ matrices such that

the matrices Hy, and Hs, are both positive Hermitian. Then V, : C — C29%29

defined for all z € C by
. Vi n(z) Vi ,n(z)
Vi (2) := (V; ") x/i;(z)) (6.20)

and
Vitn(2) = Iq = (2 — a)us ,[Re,, (2)]* Hy R, (@), (6.21)
Vign(2) = uj ,[Rr, (2)]" Hy » R, (@)ui,n, (6.22)
Vain(2) := —(b— 2)(z — a)uy[Rr, (2)]* Hy p, R, (a)on, (6.23)
Voo (2) := Iy + (2 — a)vy[Rr, (2)] Hy R, (a)u1,n (6.24)

18 a 2q X 2q matriz polynomial of degree mot greater than n + 2. Moreover, the
following statements hold:

(a) For each z € C\ {a}, the identity
Vi(z) = (z 61 g) Upn(2) - <(z foa)fq Ii) (6.25)

is satisfied where Uy, is given by (6.2), (6.15), and (6.16).
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(b) For each z € C\ {b}, the identity
Vn(Z) — <b (Z)I 2) . U27n(z) . <(b —OZ)IQ ]2) (6.26)

is satisfied where U, is given by (6.2), (6.15), and (6.16).
(¢) For all z € C, the matriz V,,(z) is nonsingular.

Proof. We use the notations given above. For each z € C\ {a}, we see then that
1

Vizw(z) = Ulal(z) and Vazin(2) = Upy), (2)
are satisfied. Hence to prove part (a) it is sufficient to verify that
Vit (2) = Ui (2) and Vora(2) = (2 — @)U, (2) (6.27)
hold for each z € C\ {a}. For every choice of w and ¢ in C, we have
Ry, (w)Rr, (¢) = Br,, (C)Rr, (w). (6.28)

From (6.28), (2.4), and (1.9), we obtain then
[Rr, (0)] "' R, (a)Re,, (2)u1,n = Rr, (2)[Rr, (b)) ' Rr, (a)ui,n
= Ry, (2)[Rr, (b)] ‘i, = —Rr, (2)ug.n (6.29)
for each z € C. This implies
ULn(2) = Vi (2) = (2 = a) (uf o [Rer,, (2)]" Hy R, (0) (w0 My = 0n)
+uj,[Rr, (Z)]*HiiRTn (a)vn)
= (z — a)uj o[Rr, (2)]" (Hi 2 R, (@) (10 My — v)
— [Rr, (@)]*[Rx,, (b)]*H, , R, (a)vy) (6.30)

for each z € C. Since Hy, and Hs, are Hermitian matrices from (6.13) and
Lemma 2.2 we can conclude

Ry, (a)(u1 nMipn — vp)

= ((a = b)Rr, (a)u1 noy, [Rr, (a)]* — Ha,p) Hy R, (@),

= [(Han + [Rr, (b)) 'Ry, (a)H1n)* — Hap) Hy R, (a)vn

= Hy n[Ra, (a)]*[Re, (b)) Hy,, R, (a)vn. (6.31)

Thus from (6.30) and (6.31) we see that the first equation in (6.27) holds for all
z € C. Using (2.4) we get

(b—2)I; + (z — a)[Rr, (a)]"[Rr, (0)]

=[(b=2)(I = aT}}) + (z — a)(I = bT,;))] R, (a)]"

= (b—a)(I = 2T7)[Rr, (a)]" = (b — a)[R, (2)]”"[Rr, (a)]"
and consequently

(2 = a)[Br, (2)]"[Rer, (@)]"[Rr, (0)] " = (b= a)[Rr, (a)]" — (b= 2)[Rr,, (2)]" (6.32)
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for each z € C. Hence, for every complex number z, from (6.13), (6.31), and (6.32)
it follows

(2 = @)U, () = Varn(2)
= (2= @) [Min + (2 = )v; [Re, (2)]" i} R, (@) (wn,0 M = v)
+(b— 203 [Re, ()] Hy \ B, (a)on

= (2= )0} ((a = B)[Bx, (@] + (2 = )[Re, ()[R, (@) [, ()]

+(b = 2)[Br, (2)]" ) Hy s R, (@) = 0
and therefore the second equation in (6.27). Thus part (a) is proved. Obviously,
Vita(z) = Uiih(2) and Vara(2) = (b = 2)Us)), (2)

are valid for all z € C. Hence, to check part (b) it remains to show that

1
Viz(2) =, _ UDl(2) and Vaza(2) = U3 (2) (6.33)

hold for all z € C\ {b}. For each z € C, from (6.14) and (6.22) we see that

Us) (2) = (b= 2)Vizn(2) = (b— a)ui , [Rr, (a)]*Hy R, (a)us

n

+(2 — a)us ,[Rr, (2)]" Hy R, (a) (0n Mz, + 2,0)

)

= (b= 2)ui R, (2)] Hi R, (@)us,n (6.34)
is valid. Because of (6.29) we have
[Rr, (b)) 'Rz, (a)Rr, (a)u1 ., = —Rr, (a)ugp. (6.35)
Using (6.14), Lemma 2.2, and (6.35) we infer

RTn (a) (UnMQ,n + U2,n)

= (a — b) R, (a)vpuy ,[Rr, (a)]*HfﬁRTn (a)u1,n + Ry, (a)ugn

_ (Hgyn + [Re, (b)] 'R, (a)H17n>HiiRTn (@)ur.n + R, (a)uz.n

= Ha o Hy , R, (a)u1 - (6.36)
In view of (6.29) it follows

u3 (R, (2)]"Hy p R, () (vn My 5 + g )
= —u} ,[Rr, (2)]*[Rr, (a)]*[Rr, (b)) Hy  Rr, (a)us (6.37)

n
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for each z € C. From (6.34), (6.37), and (6.32) we see then that

Us), — (b= 2)Vizin(2)

= ui (b = )[Rz, (@) ~ (= — )[Rz, ()] [Re, (@] [z, (5))
(b= 2)[Rr, (2)]") H AR, (@)us o = 0

holds for all z € C. Hence the first identity in (6.33) is verified for each z € C\ {b}.
The second one follows immediately as well. Indeed, for each z € C, identity (6.36)
implies

Usin = Varn(2)

n

= (z — a)v}[Rr, (2)]" |Hy p Rr,, (@) (vn Mo, + u2,n) — Hy  Rr,, (a)u,n | = 0.

Thus part (b) is proved. Lemma 6.7 shows that U ,(z) and Uz ,(z) are
nonsingular for each z € C. In view of (6.25) and (6.26), part (c) is also verified. O

In the following, let V,,, Vii.n, Viz.n, Vo1,n, and Vaa,, be the matrix polynomi-
als given in (6.20) - (6.24), let Wjg,, := Rstr.c\[a,5)Vjk;n for j,k € {1,2} and let
Wn = RStI‘.C\[a,b] Vn

Lemma 6.11. Let (sj)fz‘gl be a sequence of complex q X q matrices such that the

matrices Hy ,, and Ha,, are both positive Hermitian. Let (g) € P(—Jy, [a,b]), let
P =Wy, P+ Wl2;nQ and let Q1 := Wor.n P + W22;nQ. Then det P; and det Q1
are complez-valued functions which are meromorphic in C\ [a,b] and which do not

vanish identically. Moreover, the column pair (511) belongs to P(—J,, [a,b]).

Proof. According to Definition 5.2, P and @ are ¢ x ¢ complex matrix-valued
functions for which there exists a discrete subset D of C\ [a,b] such that the

conditions (i), (ii), (iii), and (iv) in Definition 5.2 are satisfied. First we are going
to show that (gll) also belongs to P(—.J, [a,b]). In view of Proposition 6.10 and
(i), P1 and @, are meromorphic in C \ [a,b] and holomorphic in C \ ([a,b] U D).

By virtue of part (c) of Proposition 6.10 and (ii), we get

s () oo ()] s () -0 o

for each z € C\ ([a,b] U D). According to Lemma 6.7, for each k € {1,2}, the
matrix-valued function Uy, ,, given by (6.2) and (6.16) is a J,-inner function of the
class P 5, (I1;), and hence from Lemma 5.1 we obtain

Uk P TVl 5y

i(z — 2) “ iz — 2) (6.39)



156  A.E. Choque Rivero, Y.M. Dyukarev, B. Fritzsche and B. Kirstein

for each z € C\ R. Using Proposition 6.10 we can see that
() (5 Dy (82)
el ) ) e

=Uspn 6.41
( o 2@ (o0 (6.41)
are satisfied for all z € C\ (R U D). From (6.40), (6.39), and (111) it follows

1 (z—aPlz Z—a)Pl
>0
21Im z Q1(2) -
for each z € C\ (RUD,). Sumlarly using (6.41), (6.39), and (iv) we get

o (") 0 (C GG 20

for all z € C\ (RUD). Hence ( ) belongs to P(—Jy, [a, b]). Now let z € C\ (RUD).

From Lemma 6.7 we know that det U; , does not vamsh in C. Therefore, in view
of (6.40) we have

<<z Qc?;(z)) R <<z p ?(5)1(2)) , (6.42)

From (iii) and (6.42) we can conclude

L (CEOY waen dnaten (C R 2o

i(z— 2

For each g € N[P1(z)] := {h € C?: Pi(z)h = 0}, this implies

(zlfz> (Ql(() )9 ) Uin (@] Jo[Urn(2)] ! (Ql(() v ) > 0.

<z1—z> <Ql? ) )" (Ql?ag) =

holds for all g € C%, we see then that

(Ql(()z)g>* e [Ul’n(;()ijgwl’n(z)]l (Ql?z)g> <0 (6.43)

is true for each g € N[Pi(z)]. On the other hand, Lemma 6.7 and part (b) of
Lemma 6.3 provide us
jq - [Ul,n(z)]_*jq[Ul,n(Z)]_l

i(z — 2)

and

Since

= jq(ul,n, vn)*[Rr, (z)]*Hl_JlLRTn (2)(Wi,m, Un) g (6.44)
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Since the matrix Hj , is positive Hermitian, the right-hand side of (6.44) is non-
negative Hermitian. In view of (6.43), for each g € N[Py(2)], thus we get

(Ql?zm) Tt o) 1R () H o B ()1, 0e) (@&)g) -
and, in view of det Rr, (z) # 0, then
0= (u1,n,vn)Jy (Q1?Z)g> = —iu1 nQ1(2)g.

According to (1.9) this implies s9Q1(z)g = 0 for all g € N[P1(z)]. Since Hy , is
positive Hermitian, the matrix sg is nonsingular. Hence

(@)=

for all g € N[Pi(z)]. Thus (6.38) shows N[P;(z)] = {0}. Hence the matrix P (z)
is nonsingular. Analogously, one can check that the matrix Q1(z) is nonsingular.
The proof is complete. O

Now we are able to prove the main result of this section.

Theorem 6.12. Let (s;)2" ¢! be a sequence of complex q x q matrices such that the
273=0

matrices Hy ,, and Ha ,, are both positive Hermitian.

(a) For each (g) € P(—Jy, [a,b)), the matriz-valued function

S = (Wit P + Wi2.0Q)(Warn P + Wa2.n Q)1

belongs to R [[a, b]; (s])szl] :

(b) For each S € Ry [[a, b]; (sj)?zgl] , there is a column pair (g) € P(—Jy,la, b))
of matriz-valued functions P and @ which are holomorphic in C\ [a,b] such
that S admits the representation

S = (Wit P 4+ Wiz Q) (War;n P + Wazin Q).
(c) If (511) and (Si) belong to P(—Jy, [a,b]), then

(Witn Pr + Wi, Q1) (Warn Pt + Wao., Q1)1
= (Wll;nPZ + Wl2;nQ2)(W21;nP2 + W22;nQ2)71 (645)

(o)) =((2)) w40

Proof. (a) Let (g) € P(—Jy, [a,b]). By virtue of Lemma 6.11, then (gll) de-

fined by P; := Wii;nP + Wi2,nQ and Q1 := War.n P + Wa,,Q also belongs to

P(—Jq, [a,b]) and, moreover, the function det @1 does not vanish identically in
C\ [a,b]. From Lemma 5.7 it follows that S := P;Q;" belongs to R,[a,b]. One

if and only if
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can easily see that the column pair (g) given by P .= PQl_l and Q = QQl_l
also belongs to P(—Jj, [a,b]). Obviously,

(5)=(5)er=w(5)ar=m(})

holds. In view of part (c) of Proposition 6.10, it follows

(g) =W, (2) (6.47)

Proposition 6.10 yields that (g) is holomorphic in C \ [a, b]. Since (g) belongs
to P(—Jy, [a,b]), we have then
o (gl ) (TG ) e e
and _ . ~
Y (e e
for each z € C\ R. From (6.47), (1.10), Lemma 6.7, and Proposition 6.10 we get
() = v (51) (6.50)
and - -
) ()

for each z € C )\ [a,b]. Thus from (6.48), (6.49), (6.50), and (6.51) we see that
inequality (6.19) is satisfied for each k € {1,2} and each z € C\ R. Applying
Proposition 6.8 it follows that S belongs to Ry [[a, b]; (sj)fzgl].

(b) Now we consider an arbitrary matrix-valued function S which belongs to
Ry [[a,b]; (s;)325 1] Let

P = (I,,0)W,* (f) and Q:= (0,1,)W, " (f) . (6.52)

From Proposition 6.10 we see that the matrix-valued function W, ! is holomorphic
in C\ [a,b]. Hence P and @ are also holomorphic in C \ [a, b] and we obtain

ran P(Z) = ran S(Z) =
k(Q(z)> k( . ) q (6.53)

for each z € C\ [a, b]. Using (6.52), Lemma 6.7, and Proposition 6.10 it is readily
checked that the identities (6.50) and (6.51) are fulfilled for all z € C\ [a, b]. Since
from Proposition 6.8 we know that inequality (6.19) holds for each k € {1,2} and
each z € C\ R it follows then that the inequalities (6.48) and (6.49) are satisfied
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for all z € C\ R. In view of (6.53) thus we see that (g) belongs to P(—Jj, [a, b]).
From (6.52) we obtain

(5) = () = (Mo )
I "\Q War1.n P + Wa2.,Q
and therefore
S=S5- Iq_l = (Wu;np"‘ Wl2;n@)(W21;nP+ W22;n(2>_1'

(c) Let (gll) and (52) belong to P(—Jj, [a,b]). Obviously,

(Wll;npk + W12;an> W (Pk >
Watm P + Waon Qr "\ Qk

for each k € {1,2}. In view of part (c) of Proposition 6.10 and Lemma 6.11 this
implies
(Pk> —w-l Wit Pr + Wi2:n Qe

@k " A\ Wain P + WaznQp

_Wnlc 11504k 12; Qlc)(l 21 Lk 22:n Q) >(W21;nPk+W22;an) (6.54)

for each k € {1,2}. Now suppose that (6.45) holds. From (6.54) we get then

()

o {(Witon Po+Wisn Q1) (Waton P+ Wann Q1)1
— Wt (( 110 P2 12, Ql)(] 210 P1 220 Q1) >(W21;nP2+W22;nQ2)

= <é;11> (Warn Pt + Waoin Q1) ™ (War;n Po + WazinQ2) = <511§>

where I’ := (W21;nP1 + WQQ;an)il(W21’nP2 + WQQ’nQQ) is a matrix-valued func-
tion which is meromorphic in C\ [a, b]. Moreover, from Lemma 6.11 we know that
det F' does not vanish identically. Hence (6.46) holds.

Conversely, now assume that (6.46) is satisfied. Then there is a matrix-valued
function F' which is meromorphic in C \ [a,b] such that det F' does not vanish
identically and that P, = PiF and Q2 = Q1 F hold. Then (6.45) immediately
follows. O

Corollary 6.13. If (sj)fz‘gl 18 a sequence of compler q X q matrices such that the
matrices Hy , and Ha ,, are both positive Hermitian, then

qu Ha7 b, B N [a,b]; (8_7‘)?231] # 0.
Proof. In view of Remark 5.4, apply Theorem 6.12. g
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7. A necessary and sufficient condition for the existence of a
solution of the moment problem

In this section, we turn our attention to a characterization of the case that the
matricial moment problem on a finite interval considered in this paper has a solu-
tion.

Remark 7.1. Let (5(1))§Z$1 and (s (2))2n+1 be sequences of complex q X q matrices,

j
let a be a positive real number, and let r; = 8(1)

0<j<2n+1. For m € {1,2}, let

A7 = (ST HYY = (8T ) ko

+ as for each integer j with

H™ = —aB"™ + A, and  HY = 0H" — AT

1,n
Suppose that the block Hankel matrices H( ) and H( ) are both nonnegative Hermit-

ian and that the block Hankel matrices H1(7)l and H2(’I’)L are both positive Hermitian.
Then the block Hankel matrices (—arjii +7j4k+1) pmo and (b7j4k — Tj1k41)5 ko
are positive Hermitian as well.

Now we verify a further main result which was already formulated in Theorem
1.3 (see Section 1).

Proof of Theorem 1.3 1t MY [[a,b],B N [a,b]; (s;)72¢"] is nonempty, then Re-
mark 3.4 shows that the block Hankel matrices H; n and Hy, are both nec-
essarily nonnegative Hermitian. Conversely, we suppose now that the matrices
H,, and Hy, are nonnegative Hermitian. In view of Lemma 6.1, let (rj)fiérl
be a sequence of complex ¢ X ¢ matrices such that the block Hankel matrices
(—arjik + Tjrk+1)] =g and (brjtrx — 7j4k+1)7 4o are both positive Hermitian.
For each real number ¢ which satisfies 0 < € < 1 and each integer j which satisfies
0<j<2n+1,lets;. = sj+er;. According to Remark 7.1, for each ¢ € (0, 1], the
block Hankel matrices (asjir,c + 8j+k+1,e)] k=g a0 (bSj4k,e — Sjtk+1,e)} p—o are
both positive Hermitian. From Corollary 6.13 we see then that for each € € (0, 1]
the set M [[a,b], B N [a,b]; (s, 5)5”31] is nonempty. Now let (£,,,)3°_; be a se-
quence of real numbers belonging to the interval (0, 1] which satisfies

lim ¢,, =0.

m— 00
For each positive integer m, we can choose then a nonnegative Hermitian ¢ x ¢
measure o, which belongs to M% [[a,b],B N [a, b]; (s}, )7 "]. Using the nota-

J
tion given in (3.1), we have stoml = = s, for all positive integers m and all integers

j which satisfy 0 < 57 < 2n + 1. Obviously, it follows
om(la,B]) = siy™) = s0.c,, = 50 + mro < 50+ 70 (7.1)

for all positive integers m. In view of (7.1), application of the matricial version
of the Helly-Prohorov theorem (see [FK, Satz 9]) provides us that there are a
subsequence (0., )72, of the sequence (o,,,)39_; and a nonnegative Hermitian ¢ x ¢
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measure o € M [[a,b],B N [a,b]] such that (o, )52, converges weakly to o, i.e.,
such that -

k—o00

lim fdom, = / fdo
[a,b] [a,b]

is satisfied for all continuous complex-valued functions defined on [a, b]. Therefore
we can conclude then

. [om,] .
klggo s; = leHOIO(Sj +Em,T5) = Sj

o] _

5

for every integer j which satisfies 0 < 7 < 2n 4+ 1. Hence o belongs to
MY [[a, b],B N [a, b]; (sj)?zgl]. In particular, M% Ha, b],B N [a,b]; (sj)?iérl] # .
B B O

Finally, let us give a remark concerning the scalar case ¢ = 1. M.G. Krein
[Kr2, Theorem 4.2, p. 48] (see also [KN, Theorem 4.1, p. 110-111]) showed that
the set ML [[a,b],B N [a,b]; (sj)fiérl] contains exactly one measure if and only if
H, , and Hj, are both nonnegative Hermitian matrices and at least one of them
is nonsingular.

8. Appendix: Certain subclasses of holomorphic matrix-valued
functions and a generalization of Stieltjes’ inversion formula

Our investigations in this paper heavily lean on various classes of holomorphic ma-
trix-valued functions. Therefore, we summarize now some material on this topic.
For a comprehensive treatment of this subject we refer the reader to the paper [GT]
and the references cited therein. Let R, be the set of all matrix-valued functions
F : 114 — C9%9 which are holomorphic in II; and which satisfy Im F(w) > 0 for
each w € II;. Obviously, if a and b are real numbers with a < b, then for each
S € Rqla,b] the matrix-valued function sH = Rstr.;, S belongs to R,. Every
function F' which belongs to R, admits a unique integral representation which in
the scalar case is due to R. Nevanlinna.

Theorem 8.1.

(a) For every matriz-valued function F which belongs to the class Ry, there are
a unique Hermitian complex q X ¢ matriz a, a unique nonnegative Hermitian
complex matrix 3, and a unique nonnegative Hermitian q X ¢ measure v €
ML (R, B NR) such that

v(dt) (8.1)

is satisfied for each z € 11, .

(b) Every matriz-valued function F : 11y — C9%9 for which there exist a Hermit-
ian complex q X q matrix o, a nonnegative Hermitian complexr q X q¢ matrix
B, and a nonnegative Hermitian q x ¢ measure v € ML (R, B NR) such that
(8.1) is satisfied for all z € T, belongs to the class R,.
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This matricial version of Nevanlinna’s famous theorem can be proved using
the classical version of the theorem in the case ¢ = 1 and the fact that, for each
F € R, and each u € CY, the function f, := u*Fu belongs to R;. We omit
the details. For each F' € Ry, we will call («, 5,v) given in (8.1) the Nevanlinna
parametrization of F and in particular the unique nonnegative Hermitian ¢ x ¢ mea-
sure v on BNR described in part (a) of Theorem 8.1 the Nevanlinna measure of F.

Let X denote the Lebesgue measure which is defined on B NR. Further, let By
designate the system of all bounded sets which belong to 8 N R. Observe that for
each B € By and each v € ML (R,B NR), it is readily checked that the function
fB : R — C7%? defined for each t € R by

Fa(t) = 1p(t)V/1+ 21,

belongs to ¢ x ¢ — L2(R,B N R, v). Now we formulate a matricial version of the
Stieltjes-Perron inversion formula.

Theorem 8.2. Let F' belong to R,. Let v be the Nevanlinna measure of F' and let
w: By — C1* be for all B € By be defined by

u(B) = /B (ﬁ + t21q) v(dt) (ﬁ + mq)*. (8.2)

Further, let a and b be real numbers such that a < b. Then

1 . . 1
lim [ In (a4 i)\ de) = pl(,b) +  (u({a}) + p({b}))
7T e—0+0 [a,b] 2
Since for each u© € CP and each F' € R, the function f, := u*Fu belongs to
R1, Theorem 8.2 can be easily verified using the scalar version of Theorem 8.2,
which is proved, e.g., in [KN, Appendix, Chapter 1]. We again omit the details.

Proposition 8.3. Let M be a finite union of open intervals of R and let
p: I UMUIIL — C7Y be a matriz-valued function which satisfies the following
conditions:
(i) ¢ is holomorphic in I UM UTI_.
(i) Rstr.ar, ¢ € Ry.
(iii) For all x € M, the matriz ¢(z) is Hermitian.
Denote (v, 3,v) the Nevanlinna parametrization of Rstr.r, . Then

o(z) :a+/6’z+/ 1+t21/(dt)

rmy =2
forallze I, UM UIIL_.

Proof. Let ¢ and d be real numbers such that ¢ < d and (¢,d) € M hold. We

show that v((c,d)) = 0. We consider an arbitrary vector v € C?. Let ¢, := u*pu.

Then ¢, := Rstr.;1, ., belongs to Ry and v, := u*vu is the Nevanlinna measure

of @,. Let p := dzc. Denoting ¢, := ¢+ f and d,, := d — P for all m € N

we obtain [¢y, dm] C (¢,d) and | [em,dm] = (¢,d). Then ¢, is bounded on the
m=1
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set Dp, := {2 € C: Re z € [em,dn], Imz € [0,1]}. Let (ex)72, be a decreasing
sequence of real numbers belonging to the interval (0, 1] and satisfying klim er =0.

Using Theorem 8.2, Lebesgue’s dominated convergence theorem and (iii) we can
conclude then

e (o mlen)) + (5 ()

1 1
= lim Im ¢, (z + ieg)A(dz) = / lim Im g, (z + ieg)M(dx)
T k—oo [Cm;dm] i [Cm,7dm,] k—oo
=0
and consequently vy ([cm,dm]) = 0. Hence v,,((¢c,d)) = 0 follows. Since u was
chosen arbitrarily in C?, we have then v((¢,d)) = 0. Applying Theorem 8.1 the
proof is finished. O

Remark 8.4. Let S € Ryla,b]. Using the Stieltjes-Perron inversion formula one
can show similarly to the proof of Proposition 8.3 that the Nevanlinna measure v

of S satisfies v(R\ [a,b]) = 0.

Let R; be the set of all I’ € R, for which, if v denotes the Nevanlinna
measure associated with F', the matrix-valued function f : R — C?*¢ given by
f(t) := V1412 belongs to ¢ x ¢ — L2(R,B NR,v). In view of Remark 3.1, for
each I € Ry, then p: B NR — C7*7 defined for all B € BN R by (8.2) belongs
to ML (R, NR) and this nonnegative Hermitian measure p is called the spectral
measure of F. In order to prove a generalized version of Stieltjes’ inversion formula
we will use a result on integrals (with respect to nonnegative Hermitian measures),
which depend on a parameter.

Proposition 8.5. Let K be a metric space, let (2, ) be a measurable space, let p €
ML (Q,2) and let o € K. Further, let T : KK x Q — CP*? gnd A\ : K x  — C"4
be mappings which satisfy the following three conditions:

(i) For every choice of ¢ in K, the pair [[¢e, Ace| consisting of the matriz-valued
functions T¢e : Q — CP*7 and D¢ : Q@ — C™*1 defined by I'ce(w) := (¢, w)
and DN¢e(w) := A(C,w) are both left-integrable with respect to fu.

(ii) For every choice of w in Q, the matriz-valued functions Loy, : K — CP*4
and Dey : K — C™*9 given by Tey, (¢) :=T(¢,w) and Neyn () := A(C,w) are
continuous in the point (.

(iii) There are real numbers C and D such that

P w)lle<C and || A w)lle <D

hold for all ¢ € KL and all w € Q.
Then the matriz-valued function H : IC — CP*" defined by

HK%:ANQMMMMA&MV

18 continuous in (g.
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Proposition 8.5 follows from the corresponding result in the scalar case p =
g=r =1 (see, e.g., [E, 5.6]) by using standard techniques.

Now we turn our attention to the announced generalized inversion formula.

Theorem 8.6. Let F' € R, and let v be the Nevanlinna measure of F. Let ® : C —
CP*9 be a matriz-valued function which is holomorphic in C and let ¥ : C — CP*P

be a matriz-valued function which is continuous in C and which satisfies U*(t) =
U(t) for all t € R. Let G : 11 — CP*P be for each w € I be defined by

G(w) == ¥ (w) + (w)F(w)®* (w), (8.3)

and let a and b be real numbers which satisfy a < b. Then

_ lim . Im G(z + i) \(dx) = /(M) V1 + 28 () (dt) (\/1 + t2<I>(t))
+; [(1 4 a®)®(a)v({a})®*(a) + (1 + b*)D(b)v({b})D*(b)] . (8.4)

If F' moreover belongs to the subclass R, of Ry the right-hand side of (8.4) is equal
to

* 1 * *
/( ) ®dud” +  (2(a)u({a})®"(a) + 2(b)u({b})2" (b))

where 1 denotes the spectral measure of F.
Proof. Let ¢c:=a—1 and d := b+ 1. Since ® is continuous on C the matrix-valued
®; : R — CP*9 given by ®(t) := 1, q(t)®(t) is Borel measurable and bounded.
Hence ®; belongs to p x ¢ — L2(R, B NR,v). Thus p: BNR — CP*P defined by

p(B) := / Lea®dv (11 q®)” (8.5)

B

belongs to M% (R, 8 NR). For each z € C\ R and each ¢t € R we have

1+tz
t—=z

< 11+
Ttz
and |t — z| > [Im z| > 0. Consequently, for each ¢ € II;, the integral
14+t
¢y = [T pla (57)
R t—¢
exists. In other words, g : II;. — CP*? given by (8.7) is a well-defined matrix-valued
function. Let

+ 2] (8.6)

K:={z€eC:a<Rez<band —1<Imz <1}

and let w € K. Since ® is holomorphic in C there is a matrix-valued function
®,, : C — CP*? which is continuous on C such that

B(2) = B(w) + (2 — w) Py (2) (8.8)
holds for all z € C. Obviously, the function ¢ 4, : R — CP*? defined by
e1,0(t) == (1 + tw) 1o g () Pu(t)
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is Borel measurable and bounded. Hence ¢ ,, belongs to p x ¢ — L2(R, B NR, v).
Similarly, we can see that g, : R — C2*? given by

P2,0(t) == 1jc,q (1) (w)
belongs to p x ¢ — L2(R, B NR,v). For all t € R\ [a,b] we have |t —w| > 1 and
hence, in view of (8.6), the Borel measurable mapping x1,, : R — C7%? given by

Ltwr e R\ [a,b
e { R+ BV
Ogxq t € [a,b]

satisfies ||x1,.(t)||z < v/q(|1 +w?| + |wl|) for all ¢ € R. Therefore x1,,, belongs to
qgx q— L3R, BNR,v). Clearly, we also have Ir\[a,p) g € g X q— L2(R,BNR,v).
Thus we can conclude that all the pairs [©1,w, Y2,w], [P, ©1,0], and [X1,w, 1r\[a,6)Lq]
are left-integrable with respect to v. Therefore all the mappings ¢ : K — CP*P,
O: K — CP*P_and x : K — C?%? given by

o(0) = /[ (OB (0), (8.9)
0(C) = /[ d]é(t)y(dt)[(l—&—t()fﬁ((t)]ﬂ (8.10)
and
o 1+4+1¢¢ 5 N
Q) = /R ot ()1 (8.11)

are well defined. The functions I' : K X [¢,d] — CP*P and A : K X [¢,d] — CP*P
given by
[(¢,t) ;== (1+t()Pc(t) and A((,1):=2*(C)

are continuous. Since K x [¢,d] is a compact subset of C x R, the matrix-valued
functions T' and A are both bounded. Moreover, we get that, for all ¢ € [a, ],
the functions T'e; : K — CP*P and Ae : K — CP*P given by I'e:(¢) := I'((, 1)
and Aet(¢) := A((,t) are continuous. Applying Proposition 8.5 we obtain then
that ¢ given by (8.9) is continuous on K. Similarly, we see that the matrix-valued
functions © and x given by (8.10) and (8.11) are also continuous on K. In view
of the assumption that v is the Nevanlinna measure of F, let a be the unique
Hermitian complex ¢ X ¢ matrix and  the unique nonnegative Hermitian complex
g x g matrix such that (8.1) is satisfied for all z € 1. Then let h: K — CP*P be
defined by

h(¢) = %(Q) + @(¢) (a + B¢ +x(¢) 2" (¢) — ¢ () — B(¢) (8.12)

Since all the matrix-valued functions ¢, ®, ¢, ©, and x are continuous on K, the
matrix-valued function h is also continuous on K. Now we verify that G(z) =
h(z) + g(z) is satisfied for all z € K NII;. From (8.7), (8.5), and Remark 3.1 we

get
1+ 1+1C §
o0 = [ (L) stann = [ atmanae) s
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for all ¢ € I1;. From (8.9) and (8.8) we can conclude

o= [ T @O (8.14)
for all ¢ € TI; N K. Using (8.10) and (8.8) we infer
o) = /M LS atmtan (e - @ (0)’ (8.15)

for all ¢ € IIL N K. From (8.13), (8.14), (8.15), and (8.11) we obtain then

9(0) — 2(0) — O() = B(C) ( /. (L 7n) v(dt)f;> ® () (316)

for all ¢ € TIL N K. In view of (8.12), (8.16), (8.1), and (8.3), it follows

00 +9(0) = v@) + @) (arsc+ [ (T8 )anr; ) o @

=T(Q) + 2(OF(C)2" (¢) = G(Q) (8.17)
for all ¢ € II4 N K. Because of (8.7) and part (b) of Theorem 8.1 the function

g belongs to R, and p is the Nevanlinna measure of g. Applying Theorem 8.2
provides us

1
li I i) A(d
o dim - m g(x + i) A(dx)

:/ (\/1 + t2lp) p(dt) (\/1 + tZIp)*+ ; [(1+ a®)p({a}) + (1 + b*)p({b})] -
(a7b)
From (8.5) and Remark 3.1 it follows then

it /ablmg 7+ ie)(dr) = /(M)(\/l +t2‘1>(t)) v(dt) (\/1 +t2<I>(t))*

2 e—040

+; [(1+a®)®(a)v({a})®*(a) + (1+ b*)D(b)r({b})D*(b)] . (8.18)

A straightforward calculation yields x*(¢) = x(¢) and (¢(t) +©(t))* = ¢(t) + O(¥)
for every choice of t in [a,b]. By assumption we also have ¥*(t) = U(t) for each
t € [a,b]. Thus from (8.12) we can conclude that Im h(t) = 0 holds for all ¢ € [a, b].
Since the matrix-valued function h is continuous on the compact subset IC of C,
applying Lebesgue’s dominated convergence theorem provides us then

lim Imh(x + ie)A(dz) = / lim Imh(z +ie)A(dx)
e7040 Jab) [a.b] <70
= / Im h(z)A(dz) = 0. (8.19)
[a,b]

From (8.17), (8.18), and (8.19) it finally (8.4). The rest follows easily. O
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We thank the referee for providing us the following historical information. In
the scalar case, a slightly different version of Theorem 8.6 was obtained by M.S.
Livsic in his candidate dissertation [L]. The result of M.S. Livsic also appears as
Lemma 2.1 in [Krl]. An operator-valued version of the inversion formula in M.S.
Livsic’s form was obtained by Yu. L. Shmulyan in his second doctorate thesis
(Kiev, Institute of Mathematics of the Ukrainian Academy of Sciences, 1970).

Now let us consider the class Rg4 of all matrix-valued functions F' which
belong to R, and which satisfy

sup  y|[F(iy)]| < +oo.
y€E€[l,4+00)

Using standard arguments one can check the inclusion Rg , C R;. Every matrix-
valued function F' which belongs to Rg 4 fulfills obviously

lim F(iy) =0 (8.20)

y——+o0
and admits a particular integral representation.

Theorem 8.7.

(a) For each F € Rg,, there is a unique nonnegative Hermitian measure [ €
ML (R, B NR) such that F admits the representation

1
F = dt 8.21
)= [, (3.21)
for all w € 1, namely the spectral measure of ', and

w(R) = lim yImF(iy) = —i lim yF(iy) =14 lim yF*(iy).
y——+00 y——+0o0 y—+00

(b) If F : I1I1. — C9%? is a matriz-valued function for which there exists a p €
ML (R, BNR) such that (8.21) holds for allw € Iy, then F belongs to Ro 4.

Using the classical scalar version of Theorem 8.7 and the fact that, for each
F € Ry,q and each u € C9, the function f, := u*Fu belongs to Ro,1 one gets
easily a proof of Theorem 8.7. We omit the details.

In our considerations we encounter several situations in which we have to
check that certain block matrices are nonnegative Hermitian. Hereby, the following
well-known criterion is useful.

Remark 8.8. Let A € CP*P et B € CP*?, let D € CI1%9, and let
A B
pe (2 8)

Albert [A] proved that the block matriz E is nonnegative Hermitian if and only if
the following four conditions are satisfied:

(i) A>0

(i) AATB=B
(iii) C = B*.
(iv) D—CATB>0.
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(For a slightly different but related version of a characterization of nonnegative
Hermitian block matrices, we refer to a paper of Efimov and Potapov [EP]). More-
over, it is readily checked that if E is nonnegative Hermitian, then the inequality
IBI[? < |A]l - | DI| holds.

Lemma 8.9. Let M be a complex q x ¢ matriz and F : I, — C9%7 be a matriz-
valued function which is holomorphic in Il and which satisfies the inequality

M F(w)
Frw) F@-F @ >0 (8.22)
for each w € 1. Then F' belongs to the class Ro,q and fulfills
sup g F(iy)| < [ M]. (8.23)
y€(0,400

Moreover, the spectral measure pu of F satisfies u(R) < M.
Proof. Inequality (8.22) and Remark 8.8 provide us
F(iy) — F*(iy)
21y
for all y € (0, +00). Thus (8.23) follows. Because of (8.22) we also have
F(w) — F*(w)
w

— w*

IF(iy)lI* < [1M]]

1 :
< IMI-IFG)

Im F(w) = -Imw>0

for each w € II;. Hence F' belongs to Rg 4. From (8.22) we obtain
iyF*(iy)  yiy(F(iy) — F*(iy) ) =
for all y € (0, +00). Using part (a) of Theorem 8.7 we can conclude then
M M(R)>
> 0.
(u(R) nR)) =
From Remark 8.8 it follows finally
0 <M~ p®)(WR)Tu(R) = M — pu(R).
O
Remark 8.10. Let S € Ry[a,b]. Using part (a) of Theorem 1.1 one can verify that
F :=Rstr.p, S belongs to Roq. In particular, from (8.20) it follows immediately
lim S(iy) = 0.
y—oo
Moreover, in view of Remark 8.4, one can check that if o denotes the Stieltjes

measure of S, then the spectral measure p of F satisfies u(B) = o(B N [a,b]) for
all BeBNR.
Remark 8.11. Let S € Rga,b]. From Remark 8.10 one can easily see that
lim S1(1y) =0 and lim S1(i)
y—+oo Yy y—Foo Yy

=0.
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We again work with the notations stated in (1.2) and (1.10).

If S:C\J[a,b] — C?™ is a matrix-valued function we have associated to it the
matrix-valued functions S; and S, given by (1.10). Now we will introduce the
corresponding construction for matrix measures. If o0 € M% ([a,b], B N [a,b])
we will associate with it two particular measures o1 and oo which belong to
MZ([a,b],B N [a,b]) and which are absolutely continuous with respect to o.

Remark 8.12. Let o € MY ([a,0],B N [a,b]). From Remark 3.1 one can immedi-
ately see that o1 : B N [a,b] — C9*9 and o2 : B N [a,b] — CI*9 given by

o1 (B) = /[ . (15()vt — al, ) o(dr) (15()v1 — al,)’ (8.24)

and
o9(B) i= /[ ) (15()Vb = t1,) o(dt) (15(t)Vb - tzq)* (8.25)

belong to MY ([a,d], B N [a,b]) as well and satisfy o1 + o9 = (b — a)o. Moreover,

in view of Lemma 3.3, it is readily checked that HR}} = Hﬂn and I:Igjfrg = Hégin
hold for all m € Ng.

Lemma 8.13. Let S € Rya,b], let o be the Stieltjes measure associated with S,
and let o1 : BN [a,b] — C*? and o3 : B N [a,b] — C1*7 be given by (8.24) and
(8.25). Then

Sy =S —5(la,b]) and S = S 4+ o ([a, b]). (8.26)
Moreover, for each k € {1,2}, the matriz-valued function SkD = Rstr.op, S, belongs
to Ry, and Oy : B — CI*7 given by
0r(B) := o (B NJa,b]) (8.27)
is the spectral measure of SkD.

— 1 and hence, in view of

Proof. For each z € C\ [a,b], we obtain
Remark 3.1,

z—a t—a
t—=z t—=z

Si(2) = (2 — a) / U o) = / T ol
a0t~ 2 [a.0) £~

_ Vi Lo (dt)(VE —al,) — / Lo(d)I;

[ap] t—% [a.b]

:/[ ) 1 o1(dt) — o([a, b)) = S (2) — o([a, b]).

t—2z

Therefore the first identity in (8.26) is verified. The second one follows analogously.
Let k € {1,2}. Theorem 1.1 yields that S\?*} belongs to R,[a,b]. From Remark
8.10 we get then that F}, := Rstr.;, Slesl belongs to Ro,q and that 6, is the spectral
measure of Fj. Every constant ¢ x ¢ matrix-valued function defined on II; and
having a nonnegative Hermitian value belongs to Rfl and the spectral measure of
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which is exactly the zero measure belonging to M% (R, BNR). In view of (8.26) we

see then that the matrix-valued function SkD belongs to R; and that the spectral
measure of which is 6y,. O
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Shift Operators Contained in Contractions,
Schur Parameters and
Pseudocontinuable Schur Functions

V.K. Dubovoy

Abstract. The main goal of the paper is to study the properties of the Schur
parameters of the noninner functions of the Schur class S which admit a
pseudocontinuation. To realize this aim we construct a model of completely
nonunitary contraction in terms of Schur parameters of its characteristic func-
tion (see Chapters 2 and 3). By means of the constructed model a quantitative
criterion of pseudocontinuability is established (see Chapter 4 and Sections
5.1 and 5.2). The properties of the Schur parameter sequences of pseudocon-
tinuable noninner Schur functions are studied (see Sections 5.3 and 5.4).
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tor function, Schur function, Schur parameters, pseudocontinuability of Schur
functions.

0. Introduction

Let T be a completely nonunitary contraction in a separable Hilbert space $ over
C. Then it is known (see, e.g., Arov [4]) that T can be considered as a fundamental
operator of an appropriately chosen scattering system. Such system can be con-
structed with the aid of the Sz.-Nagy dilation of T'. The procedure of constructing
this dilation (see Sz.-Nagy /Foias [33], Foias/Frazho [25]) can be roughly described
as follows. There are orthogonally supplemented two other Hilbert spaces to the
originally given Hilbert space $§ and in this spaces the shift and coshift associ-
ated with T act. These shift and coshift operators generate of outer channels. The
scattering along these channels is described by the characteristic operator function
(c.o.f.) of the contraction T'. It is known (see Brodskii [12], Sz.-Nagy/Foias [33],
Foias/Frazho [25]) that every holomorphic operator function in the unit disk the
values of which are contractive operators can be represented as the c.o.f. of some
completely nonunitary contraction.
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In the study of contractions and their characteristic operator functions an
important role is played not only by the outer channels of the scattering system
but also by the inner ones. These channels are generated by the maximal shift and
maximal coshift which are contained in 7" or more precisely these channels are sub-
spaces in which these shift and coshift act. According to the role of these channels
in the theory of scattering systems with loss we refer the reader to Arov [4], and
[8], [9]. We mention that other problems are linked with these shifts and coshifts,
too. For example in the cycle of papers [19] their connection with the asymp-
totical behavior of the semiradii of the Weyl matrix balls in the “infinite” Schur
interpolation problem associated with the c.o.f. of the contraction T is shown. At
the same time, in the papers [20], [10] their relations to the problem of extension
of holomorphic contractive operator functions are discussed. There are close con-
nections between these extensions and constructing Darlington representations of
Schur functions (Arov [3]-[5]). In [10] it is shown that the pseudocontinuability of
the c.o.f. of the contraction T is completely characterized by the mutual position
of the maximal shift and maximal coshift contained in T". These maximal shift and
maximal coshift have close contact with the theory of orthogonal polynomials on
the unit circle (see Chapter 2, Comments).

We note that the holomorphy of the c.o.f. of a contraction is a consequence
of the orthogonality of outer channels of a scattering system. In contrast to the
outer ones the inner channels of a scattering system are not orthogonal in the
general case. Therefore the scattering function which describes scattering through
the inner channels is not holomorphic in the general case (see [8]).

The main goal of this paper is to describe interrelations between the maxi-
mal shift and the maximal coshift which are contained in a completely nonunitary
contraction and to study the properties of the Schur parameters of the noninner
functions of the Schur class S which admit a pseudocontinuation. The choice of
Schur parameters is caused by profound interrelations between the Schur interpo-
lation problem and the maximal shift and the maximal coshift contained in T'.

In Chapter 1 we present a short survey of the basic facts from the theory
of unitary colligations which are necessary for the later considerations. Hereby,
in contrast to other approaches, particular attention will be drawn to the shifts
and coshifts contained in T'. We note that a detailed presentation of the theory of
unitary colligations was given, for example, by Brodskii [12].

In Chapter 2 a model of a unitary colligation will be constructed in the lan-
guage of Schur parameters of its c.o.f. The construction of this model is connected
with the orthogonalization of a special vector system. This leads us to the con-
struction of a (canonical) orthonormal basis in §) which is closely related to the
contraction 7. One of the basic technical difficulties on the way of constructing
of the model will be mastered in Lemma 2.7 which is obviously of own interest.
In this paper the model will be constructed for complex-valued characteristic op-
erator functions. Exactly in this case one can succeed in the best possible way
to trace the interrelations between the procedure of constructing the model, the
procedure of orthogonalization and the Schur algorithm which was worked out by
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I. Schur in his classical paper [31]. The operator case requires different methods. It
will be treated in a separate paper. Section 2 ends with the description of connec-
tions between unitary colligations and Naimark dilations of operator-valued Borel
measures on the unit circle. Actually, this connection permits us to associate our
results with the approaches proposed by Geronimus [26], Gragg [27], Teplyaev [34],
Constantinescu [14].

In Chapter 3, we present a model representation for the maximal shift Vp
which is contained in a completely nonunitary contraction T' (see Theorem 3.6).
In Chapter 4, we indicate the connections between the mutual position of the
subspaces in which the maximal shifts Vp and Vp« are acting and the pseudo-
continuability of the corresponding characteristic operator function (c.o.f.) of the
contraction 7.

We list the reasons why, in our opinion, the constructed model turns out to
be a sufficiently effective tool to study the mutual interpendence between shifts
and coshifts in a completely nonunitary contraction:

1) The model space is the space I with the usual scalar product.

2) The model has a layered character which expresses the layered character of
the stepwise Schur algorithm.

3) The coshift contained in T can be easily picked out from the model.

On the other side, the proposed model seems less useful at the investigation of
questions which are not related to the construction of a canonical basis in $).
What concerns other models for contractive operators in Hilbert space we refer
the reader to Sz.-Nagy/Foias [33], Brodskii [12], Foias/Frazho [25] and Nikolski
[29, v. 2].

The main part of this paper is Chapter 5. Using the constructed model, in
Section 5.1, a quantitative description of the interrelation between the mutual po-
sition of V and V- and the pseudocontinuability of the c.o.f. of the contraction T’
will be obtained. This quantitative characteristics are expressed in terms of prop-
erties of a particular sequence (0, (7)), of Gram determinants (see Theorem
5.5). In this way, rational Schur functions are characterized in terms of their Schur
parameters (see Theorem 5.9), a quantitative criterion of pseudocontinuability is
established (see Theorem 5.10) and, moreover, a connection between pseudocon-
tinuability and the nonnegative definiteness of a special matrix is indicated (see
Theorem 5.13). In Section 5.3, the properties of the Schur parameter sequences
of pseudocontinuable Schur functions are studied. In particular, if v = (v;)52, is
the sequence of Schur parameters of a pseudocontinuable noninner Schur function
then there exists a nonnegative integer mg(7) such that for all m > mg(y) + 1 the
Schur parameter 7, is uniquely determined by the subsequent Schur parameters
Y41, Ym+2, - - - (see Theorem 5.19). The character of this dependence is investi-
gated. Examples are adduced.

The main results of the paper were announced without proofs in [21]-[23].
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1. Shifts contained in contractions, unitary colligations and
characteristic operator functions

1.1. Shifts contained in contractions and unitary colligations

Let T be a contraction acting in some Hilbert space 9, i.e., ||T|| < 1 (in this
paper all Hilbert spaces are assumed to be complex and separable, all operators
are assumed to be linear). The operators

Dy :=+/Is —T*T and Dp. := /Iy — TT*
are called the defect operators of T. The closures of their ranges
Dr :=Dr(9) and Dr«:= Dr«($)
are called the defect spaces of T'. The dimensions of these spaces
Or :=dimDr and O~ := dim Dp=

are called the defect numbers of the contraction T'. In this way, the condition i = 0
(resp. 67+ = 0) characterizes isometric (resp. coisometric) operators, whereas the
conditions 07 = dp« = 0 characterize unitary operators. Note that an operator
is called coisometric if its adjoint is isometric. Clearly, T D3 = D2.T. From here
(see, e.g., Sz.-Nagy/Foias [33, Chapter I]) it follows that TDp = Dp-T. Passing
the adjoint operators we obtain

T*Dr. = DpT* . (1.1)

Starting from the contraction 7" we can always find Hilbert spaces § and &
and operators F' : § — 9, G : H — G and S : § — & such that the operator
matrix

T F
U—<G S):fo@%%@@@ (1.2)

is unitary, i.e., the conditions U*U = Iqqz, UU* = Igge are satisfied. Obviously,
these identities can be rewritten in the form
T"T+G'G=1q, FFF+5*S =1z, T"F+G*S =0

TT*+ FF* =14, GG*+55*=1g, TG*+ FS*=0. (1.3)

As an example of such a construction one can consider the spaces § := Drp-,
® := Dr and the operators
F:=Rstr.p,.Dr- :§—9H, G:=Dr:H— &, S:=Rstr.p,..(-T"):§— & .

Using (1.1) it is easily checked that the conditions (1.3) are fulfilled in this case.
Note that in the general situation from (1.3) it follows G*G = D%, FF* = DZ.,.
Hence,

G*(6) =Dy, F(3)=Dr- (1.4)
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Definition 1.1. The ordered tuple
A=(9F6TFQG,S) (1.5)
consisting of three Hilbert spaces $,§,® and four operators T, F,G,S where
T:9—9 F:§—9HG:H—-6, 5:§-6

is called a unitary colligation (or more short colligation) if the operator matriz U
given via (1.2) is unitary.

The operator T is called the fundamental operator of the colligation A.
Clearly, the fundamental operator of a colligation is a contraction. The operation
of representing a contraction 7" as fundamental operator of a unitary colligation
is called embedding T" in a colligation. The space §) of the colligation A is called
inner and the spaces § and & are called outer. This embedding permits to use
the spectral theory of unitary operators for the study of contractions (see, e.g.,
Sz.-Nagy /Foias [33])

The spaces 9z := V T"F(F), Hs = \ T G*(&) and their orthogonal
n=0 n=0

complements .‘7)3‘ =9 e 93, 56é = 9 O Hs play an important role in the theory
of colligations. Clearly,

H=9;D93,9 =95 D Ne. (1.6)

The spaces Hz and He are called the spaces of controllability and observability,
respectively. From (1.4) it follows that these spaces can also be defined in an
alternate way, namely

o0 o0
95 = \/ T"Dr+, $H¢:=\/ T""Dr . (1.7)
n=0 n=0
Consequently, the spaces Hz and $Hs do not depend on the concrete way of em-
bedding 7' in a colligation. Note that $z is invariant with respect to 1" whereas
e is invariant with respect to T*. This means that ﬁé‘ and Sﬁé are invariant
with respect to T and T, respectively. Switching over to the kernel of the adjoint
operators in the identities (1.7) we obtain

9z = [ ker(Dr-T*"), $g = [ ] ker(DrT™) . (1.8)
n=0 n=0
Theorem 1.2. The identities H={h € H : ||[T"h| = ||hll, n = 1,2,3,...} and
ﬁ%‘:{h €N: || T*h| = |||, n=1,2,3,...} hold true.

Proof. For n = 1,2,3,..., clearly ||[T"h|?=(T*"T"h,h) = (T 1T""h,h) —
(I*"=tDZT"'h,h). Now the first assertion follows from (1.8) and the identity
| T Lh||2-|T™h||?>=|| DT h||?, n = 1,2,3,.... Analogously, the second asser-
tion can be proved. O
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Corollary 1.3. The space ﬁé (resp. .‘7)%‘) is characterized by the following properties:

(a) g (resp. Hz) is invariant with respect to T (resp. T*).
(b) Rstr. 5. T (resp. Rstr. ﬁ§T*) is an isometric operator.
(c) Hg (resp. Hz) is the mazimal subspace of $ having the properties (a), (b).

From the foregoing consideration we immediately obtain the following result.

Theorem 1.4. The identity $Hy N H3={h € H : |T*"h|| = |h|| = [T R[], n =
1,2,3,...} holds true.

Corollary 1.5. The subspace Sﬁé N ﬁé‘ is maximal among all subspaces $' of $
having the following properties: $ reduces T and Rstr. /T is a unitary operator.

A contraction T on §) is called completely nonunitary if there is no nontrivial
reducing subspace £ of § for which the operator Rstr. ¢7T" is unitary. Consequently,
a contraction is completely nonunitary if and only if $g ﬂ.‘?)é‘ = {0}. The colligation
A given in (1.5) is called simple if $§ = Hz V He Hence, the colligation A is simple
if and only if its fundamental operator T is a completely nonunitary contraction.

Taking into account the Wold decomposition for isometric operators (see, e.g.,
Sz.-Nagy /Foias [33, Chapter I]) from Corollary 1.3 we infer the following result:

Theorem 1.6. Let T' be a completely nonunitary contraction in $. Then the sub-
space Sﬁé (resp. ﬁé‘) is characterized by the following properties:

(a) The subspace $Hg (resp. H3) is invariant with respect to T (resp. T*).

(b) The operator Rstr. o T (resp. Rstr.ﬁéT*) is a unilateral shift.

(c) Hg (resp. HF) is the mazimal subspace of $ having the properties (a), (b).

We say that a unilateral shift V : £ — £ is contained in the contraction T’
if £ is a subspace of $ which is invariant with respect to T" and Rstr. ¢T =V is
satisfied.

Definition 1.7. Let T be a completely nonunitary contraction in . Then the shift
Vr := Rstr. 57)LT is called the mazximal shift contained in T .

By a coshift we mean an operator the adjoint of which is a unilateral shift. We
say that a coshift V : € — £ is contained in T if the unilateral shift V* is contained
in T*. Then from Theorem 1.6 it follows that the operator V- = Rstr. 5§T
the maximal shift contained in 7*. If $ = {0} (resp. H3 = {0}) we will say that
the shift Vi (resp. Vi) has multiplicity zero.

Definition 1.8. Let T' be a completely nonunitary contraction in §). Then the coshift
Vr := (Vp«)* is called the maximal coshift contained in T.

Theorem 1.9. Let T be a completely nonunitary contraction in $. Then the mul-
tiplicities of the maximal shifts Vi and Vp« are not greater than dp~ and T,
respectively.
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Proof. 1t is sufficient to show that the multiplicity of the shift Vi is not greater than
dr+. Then the second assertion follows immediately via replacing the contraction
T by the contraction T*. Let £y be the generating wandering subspace for the shift

Vr and let Pg, be the orthogonal projection of § onto £9. Then g = @ VAL =
n=0

oo
P T"Ly. According to the decomposition $ = .‘bé @ He the operator T is given

T_(‘(/)T 1{2) (1.9)

To prove the inequality dim £y < dp« it is sufficient to verify the identity

n=0
by the block matrix

£y = Pe,Dr- | (1.10)

which is equivalent to £y Nker Dy« = {0}. We set My := Lo Nker Dy« and My :=
T*Ny. From (1.9) follows T*Ly L Hg. This implies

Moy L Hg - (1.11)
We will show that for each h € 9y the identities
|7 =a]l, n=1,2,3,... (1.12)

hold true. Indeed, h = T*f for some f € 9My. Because of Dy C ker D, we have
Th=TT"f = f. Thus, [|f|| = |TT*f|| = |Thl]| < ||hl] = [IT*f[| < [[f]|. Hence,
(1.12) is proved for n = 1. Hereby || f|| = ||A]|- If n € {2,3,...} from the inclusions
Ny C Lo C Hg and Theorem 1.2 we obtain ||T7h|| = [T Th| = |T"1f|| =
I £]l = ||h]l. Now from (1.12) and Theorem 1.2 it follows 9y C $g. Combining
this with (1.11) we obtain 9t = {0} and thus, 9y = {0}. O

Corollary 1.10. Let A be a simple unitary colligation of type (1.5). Denote £o

and £y the generating wandering subspaces for the mazimal shifts Vi and Vp-,
respectively. Then Pg,F(§) = £o, Pg G*(8) = £o, where Pg, and P~ are the

orthogonal projections from $ onto £ and E, respectively.

Proof. The validity of the first of the identities follows from (1.4) and (1.10). The
second one is verified by changing T for T*. g

Remark 1.11. In [19, part III] it was shown that the multiplicity of the shift Vi
coincides with o~ if and only if the multiplicity of the shift Vi« coincides with o .
Moreover, all remaining cases connected with the inequalities

0<dimgy < 5T*7 0< dlmz‘/o < ot

are possible.
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1.2. Characteristic operator functions
Let § and & be Hilbert spaces.

Definition 1.12. The symbol S(D;F, &) denotes the set of all operator-valued func-
tions which are defined and holomorphic in D and the values of which are contrac-
tive operators acting between § and 6.

Definition 1.13. Let A be the unitary colligation given in (1.5). The operator func-
tion

OA(C) =S+ (G5 —CT) 'F, CeD, (1.13)
is called the characteristic operator function (c.o.f.) of the colligation A.

The next result is very important (see, e.g., Brodskii [12]):

Theorem 1.14. The characteristic operator function Oa of the unitary colligation A
belongs to the class S(D;F, ). Conversely, suppose that 0 is an operator function
belonging to the class S(D;§, ®). Then there exists a simple unitary colligation A
of the form (1.5) such that 0 is the characteristic operator function of A.

Definition 1.15. Let Ay = (9%, 5, 6; Tk, Fi, Gk, Sk), k = 1,2, be unitary colliga-
tions. Then A1 and Ao are called unitarily equivalent if Sy = So and if there exists
a unitary operator Z : 1 — $Ho which satisfies ZT) =ToZ, ZF, = F>, GoZ = G.

It can be easily seen that the characteristic operator functions of unitarily
equivalent colligations coincide. In this connection it turns out to be important
that the converse statement is also true (see, e.g., Brodskii [12]):

Theorem 1.16. If the characteristic operator functions of two simple colligations
coincide then the colligations are unitarily equivalent.

1.3. Naimark dilations

Let us consider interrelations between unitary colligations and Naimark dilations
of Borel measures on the unit circle T := {t € C: |t| = 1}.

Let € be a separable complex Hilbert space and denote [€] the set of bounded
linear operators in €. We consider a [¢]-valued Borel measure p on T. More pre-
cisely, p is defined on the o-algebra B(T) of Borelian subsets of T and has the
following properties:

(a) For A € B(T), u(A) € [€].

(b) (@) = 0.

(¢) For A € B(T), u(A) > 0.

(d) w is o-additive with respect to the strong operator convergence.

The set of all [¢]-valued Borel measures on T is denoted by 9(T, &).

Definition 1.17. Let p € M(T, &) and assume u(T) = I. Denote by (sp)necz the
sequence of Fourier coefficients of u, i.e.,

Sp = /tfn,u(dt) , NEZ. (1.14)
T
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By a Naimark dilation of the measure p we mean an ordered triple (R, U, ) having
the following properties.

1. R is a separable Hilbert space over C.

2. U is a unitary operator in R.

3. T is an isometric operator from € into R, the so-called embedding operator,
e, T:€— Kand 771 = I¢.

4. Forn € Z
Sp =T U"T . (1.15)
A Naimark dilation is called minimal if
f=\ ur(e. (1.16)
neZ

Definition 1.18. Two Naimark dilations (8;,U;,7;), 7 = 1,2, of a measure u €
M(T, &), u(T) = I, are called unitarily equivalent if there exists a unitary operator
Z : R1 — Ro which satisfies UsZ = ZUy and ZT = To.

Analogously with Theorem 1.16 one can prove

Lemma 1.19. Any two minimal Naimark dilations (R;,U;, 1), 7 = 1,2, of a mea-
sure € M(T, €), w(T) = I, are unitarily equivalent (i.e., a minimal Naimark
dilation is essentially unique).

According to the construction of a Naimark dilation of the measure p we
consider two functions. The first of them has the form

B(¢) :/zjgu(dt) ,CeD. (1.17)
T

Obviously, ®(¢) is holomorphic in D. Moreover, R[®(¢)] = 1[®(¢) + *(¢)] > 0,

¢ € D, and, as it follows from (1.14), ®({) has the Taylor series representation
B(C) =T+251C+282C%+... ,CeD. (1.18)

Thus, ®(¢) belongs to the Carathéodory class C(D, €) of all [€]-valued functions
which are holomorphic in D and have nonnegative real part in D.
The second of these functions () is related to ®(¢) via the Cayley transform:

¢O(C) = (®(¢) = I)(@(¢) +1)~" . (1.19)

From the properties of 6 and the well-known lemma of H.A. Schwarz it follows
that 6(¢) € S(D; &) where S(D; &) := S(D; &, €). The functions ®(¢) and 6(¢)
are called the functions of classes C(D; €) and S(D; €), respectively, which are
associated with the measure pu.

If

9(() :Co—l-ClC—‘rCQCQ—‘r... (120)



184 V.K. Dubovoy

then from (1.18) and (1.19) we obtain
(co+eiCHcal®+ .. )T +s51C+852C2+...) =51 +83C+83C2+... .
Thus
S1 =100, Sn =C0Sn—1+ C18n—2+ -+ cCn_as1+cn_1, n € N\ {1} . (1.21)
Theorem 1.20. Let u € IMM(T, &) and assume u(T) = I. Denote by 0(C) the function
from the class S(D; €) associated with .
(a) Let A = (9,¢,&T,F,G,S) be a simple unitary colligation which satisfies
Oa(¢) = 6(¢). Then the triple
(BU,T) (1.22)

whereﬁzﬁ@@,llz(g g):Y)EBQ‘EHSjEBQ‘EandTis the operator

of embedding € into H & €, i.e., e = (0,e) € HPB € for each e € &, is a
minimal Naimark dilation of the measure L. B
(b) Let (R,U,T) be a minimal Naimark dilation of the measure p and 7(€) = €.

Let § = RO ¢ and suppose that according to the decomposition K = $H @ ¢
the unitary operator U has the matrix representation

T F ~ ~
u_<G S).ﬁ@@fﬂﬁ@(’f.

Then the tuple (9,€, & T, Fr,7*G,7*ST) is a minimal unitary colligation
which satisfies Oa () = 0(().

Remark 1.21. The spaces § and & in the unitary colligation (1.5) are different,
whereas they are identified in the consideration of Naimark dilation. For this reason
one has to distinguish between the unitary operator U from (1.2) and the unitary
operator U from (1.22). The first of them acts between different spaces, whereas
the second one acts in the space K.

Proof. (a) Suppose that 6 has the Taylor series representation (1.20). In view of

0(Q)=S+CGUI—CT)'F=S5+> ("GT"'F, (€D,
n=1
we obtain
co=8,¢c,=GT"'F neN. (1.23)
Observe that concerning the proof of the identities (1.15) it is enough to
prove them for n € N. For this, it is sufficient to prove that

U”:<* x"),nEN (1.24)

*  Un
where

Ty =T" 'Fsg+T" ?Fsy 4+ +TFsp_o+ Fsp_1 (1.25)
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and
Yn = Sn . (1.26)
Indeed, if the identity (1.24) is verified, for n € N we get

T"L{"T-(O,I)(i z" ) <?>—yn—sn.

From (1.21) and (1.23) we infer that (1.24) is satisfied for n = 1. Applying the
method of mathematical induction we assume that (1.24) is satisfied for n. Then

< *  Tptl > — unJrl = UU™

* Yn+1
T F ] *  Tp . * Txy+ Fyn
G S * Yo )\ *x Gzp,+ Sy, ’
This, together with (1.21), (1.23), (1.25) and (1.26), yields the validity of (1.24) for
n+1, too. Hence the triple (1.22) is a Naimark dilation of the measure p. According
to the proof of minimality, we note that from (1.24) it follows that \/ U"€ =
n=0
m—1 o] 00
(V T"F(¢))® ¢ me N. Thus, \ U"€ = (\/ T"F(€)) @ €. Analogously, we
n=0 n=0 n=0
0 00
get V U"E=(V T*"G*(€))® €. Now the minimality condition (1.16) follows
n=-—oo n=0
from the simplicity of the colligation A. The assertion of (b) follows from the fact
that the above considerations can be done in the reverse order. 0

Remark 1.22. Thus, the model of unitary colligations is also a model for the
Naimark dilation of Borel measures on the unit circle.

2. Construction of a model of a unitary colligation via
the Schur parameters of its c.o.f. in the scalar case

In this chapter, a construction of a model of a simple unitary colligation A of type
(1.5) will be given for the case dim§ = dim & = 1. In this case, § and & can be
identified with the field C of complex numbers. Then in view of Theorems 1.14
the corresponding c.o.f. Oa(¢) is characterized by the following conditions: 6 (¢)
is defined and holomorphic in D and 04 (D) C D. The set of all functions having
these properties will be denoted by S. Thus, S = S(D; §, &), if dim F =dim & = 1.

2.1. Schur algorithm, Schur parameters
Let 6(¢) € S. Following I. Schur [31] we set 6y(¢) := 6(¢) and 7o := 6(0). Obvi-
ously, |yo| < 1. If || < 1, we consider the function
1 6o(¢) — 0
01(¢) := .
= 1 3000(0)
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In view of the Lemma of H.A. Schwarz 0;(¢) € S. As above we set y; := 61(0) and
if |v1| < 1 we consider the function 62(() := é 19_1241)9:'&).

procedure inductively. Namely, if in the jth step a function 6;(¢) occurs for which
|71 < 1 where ~y; := 0;(0) we set

9j+1(<) =

Further, we continue this

16;(C) —
¢1— Y 0; (©)
and continue this procedure. Then two cases are possible:

(1) The procedure can be carried out without end, i.e., |v;| < 1,5 =0,1,2,....
(2) There exists an n € {0,1,2,...} such that |y,] = 1 and, if n > 0, then
[l <1,5€{0,....,n—1}.
Thus, a sequence (v;)%_, is associated with each function 6(¢) € S. Hereby we
have w = oo in the ﬁrst case and w = n in the second. From I. Schur’s paper [31]
it is known that the second case appears if and only if §(¢) is a finite Blaschke
product of degree n.

Definition 2.1. The sequence (’yj)‘]‘-’zo obtained by the above procedure is called the
sequence of Schur parameters associated with the function 6(() .

The following two properties established by I. Schur in [31] determine the
particular role which the Schur parameters play in the study of functions of class S.

(a) There is a one-to-one correspondence between the set of functions 8(¢) € S
and the set of corresponding sequences (7;)4_-
(b) For each sequence (7;)5_, which satisfies

vl <1, je{0,1,2,...}, if w=o00,
vil <1, 7€{0,...,w—1}, ||=1, if 0<w< o0,
hol =1, if w=0
there exists a function 6(¢) € S such that the sequence (v;)%_, is the Schur
parameter sequence of ().
Thus, the Schur parameters are independent parameters which determine the
functions of class S.
2.2. General form of the model
Let 6(¢) € S. Assume that
:(ﬁ7®7gaT7F7G7S> (21)

is a simple unitary colligation satisfying 6(¢) = 6a(¢). In the considered case is
§ = 6 = C. We take 1 as basis vector of the one-dimensional vector space C. Set

¢ =F(1), ¢, :=G*(1) . (2.2)

Then (see (1.7)) H5 = \/ ¢, He = \/ T¢I (fa)aca is some family of

vectors from H the symbol V fa denotes the smallest (closed) subspace of H
acA



Contractions and Schur Parameters 187

which contains all vectors of this family. The orthogonalization of the sequence
(T™¢})52, emphasizes an important place in the construction of the model. First
we assume that (T"¢} )22, is a sequence of linearly independent vectors. Then the
Gram-Schmidt orthogonalization procedure uniquely determines an orthonormal
basis (¢r)72 ; of the subspace $z such that, for n € N the conditions

n—1

Voow=\ TF1 . (T"'¢1,6,) >0 (2.3)
k=1

are satisfied. Observe that for n € {2,3,...} the second condition is equivalent to
(Tpn—1,¢n) > 0. It is well known that the sequence (¢r)52, is constructed in the
following way. We set

o, =TF 1), ke {1,2,3,...} (2.4)

and define inductively the sequence of vectors (gbk) °, via

k—1

O1i=¢)  or =k — D Akt k€{2,3,...} (2.5)
s=1

where the coefficients A5 are determined by the conditions dy L ¢, 5 eql, ...,
k — 1}. This means that the sequence ()\ks)’:;ll yields a solution of the system of

k—1
linear equations ) Ars(d5,d)) = (¢, #;), 7 € {1,...,k — 1}. Now we set ¢y :=

s=1

|¢1 ‘|¢k7k€{1727}Thus,qsl:“;/”(blly(bk) |¢ HTk 1¢/+Uk; 1,]{36{2 3 }
k

where u, € \/ ¢;. These relations are equivalent to T*~1¢| = Bkl (dr — ur—_1),
Jj=1

u =0, ke{l,2,... } From these identities we obtain for k € N

Tor = T+ Tup—y = 1611l (1 — un) + Tugs
6 k” | k“
_ ”gbiH”qkaJrvk
1|
k
where v, € \/ ¢;. Thus,
j=1
¢1 = |61l (2.6)
k1
and Toy, = > tjpp; where
j=1
o1k = 19%-+1l Cke{1,2,...}. (2.7)

el
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Denote T3 the restriction of T onto the invariant subspace $)z. From the
above consideration it follows that the matrix of the operator Tz with respect to
the basis (¢y)72, of Hz has the form

0 t32 e tgn
: : (2.8)
0 0 ... tptim

We assume that ﬁ%‘ = 96 Nz # {0}. Remember that the maximal shift Vp-
= Rstr. ﬁ§T* acts in ﬁé‘. Denote EO the generating wandering subspace for the
shift Vp«. Then

hy =P1"L (2.9)
n=0

where in view of Theorem 1.9 we have dim £y = 1. In view of Corollary 1.10 there
exists a unique unit vector ¥; € £y such that

(@h,41) >0 (2.10)

where ¢/ is defined in (2.2). In view of (2.9) and (2.10) the sequence (b )xerny Where
VY = Ty | k € {1,2,...} is the unique orthonormal basis in 56%- satisfying
the conditions

(1,41) >0, Yyr =T %y, ke {1,2,...} . (2.11)
Definition 2.2. The constructed orthonormal basis
¢17¢27~-~5¢17¢27~-~ (212)

of $ which satisfies the conditions (2.3) and (2.11) is called canonical.

From the form of the construction it is clear that the canonical basis is
uniquely defined by the conditions (2.3) and (2.11). This allows us to identify
in the following considerations operators and their matrix representations with
respect to this basis. We note that we suppose in the sequel that the vectors of the
canonical basis are ordered as in (2.12). From the above considerations it follows
that the matrix of the operator T" with respect to the canonical basis of §) has the

block form
Ts R ~ .
T=\ "5 2], Vo= (V) 2.13
(0 VT> T=(Vr+) (2.13)
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where the matrix of Ty is given by (2.8),

/
" 8 0 1
"2 0 1
R=| @ , Vp = 0 (2.14)
o0

Hereby missing matrix elements are assumed to be zero. Because of (2.2) and (2.6)
the matrix of the operator F' with respect to the canonical basis has the form

F =col(||¢1],0,0,...;0,0,0,...) . (2.15)

For the remaining elements of the unitary colligation A we obtain the following
matrix representations

G= (917927937"';90070705"') ) SZG(O) =70, (216)
where, in accordance with the above notations, we get
g = Gor = (G, 1) = (6, G*(1) = (61, 0}) , k€ {1,2,...},
Joo = GY1 = (GY1,1) = (P1,G"(1)) = (Y1, ¢)) -

The remaining entries in formula (2.16) are zero since from the colligation condition
TG* 4+ FS* = 0 we have for k € {2,3,...}
G = (G, 1) = (T"¢p-1,G" (1)) = (hp-1, TG*(1)) = = (-1, F'S™(1))
= =01, F(1)) = =0/l 1[[($r-1,¢1) =0 .

Expressing the matrix elements in (2.13)-(2.16) in terms of Schur parameters
we obtain the final form of the model of a unitary colligation. Hereby we will
see under which conditions the elements of the sequence (T"¢])32, are linearly
independent (see Corollary 2.6) and also when $) = )5 is satisfied (see Corollary
2.10).

From the colligation condition F*F + S*S = I we get ||[F||> = 1 — |yo|*.
Therefore, from (2.15) we infer

651 = 1F1l = v/1 = Jyol? . (2.17)
We determine the remaining elements in following order. First we determine ¢,,11 5,

n (2.8). After that we will find the sequence (gx)32; in (2.16). The knowledge of
this elements will permit us to find all others.

2.3. Schur determinants and contractive operators. Computation of ¢, ,,
Clearly, to determine the sequence (tx+1,%)5>; it suffices, in view of (2.7), to find

the sequence (||qA§k||)z°:1 As it is known (see, e.g., Akhiezer/Glasman [2, Chapter I])
from (2.5) it follows

||$k||2 _ F(¢l17 .. ad);c)

sk 2,3,...}, 2.18
D@ tf ) F S B (219
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where I'(¢], ..., ¢}) is the Gram determinant

(@1, 00) - (9 01)

L(¢1, ..., ) = : :

(@1,01) - (0, 01)

Lemma 2.3. Let 6(C) € S. Assume that 0(C) has the Taylor series representation
0¢)=co+crl+-+en("+...,CeD. (2.19)

Suppose that A is a simple unitary colligation of type (2.1) which satisfies Oa = 0.
Then the sequence (2.4) satisfies the conditions

L(dy,...,¢%) =det(I — C;_Cr_1) ,k €N, (2.20)
where
Co 0 0
C1 Co 0
Cr = ) ) . . , ke{0,1,2,...}.
Cr Ck—1 Co

Proof. Denote by Ji, k € {0,1,2,...}, the matrix of (k 4+ 1)th order given by

0o ... 1
Jo:=1 and Ji = s ’Lf keN.
1 ... 0
If we set Cp = JCiJk, k € N, then for proving (2.20) it suffices to verify the
identity
T(¢h, ..., ¢,) =det(I —Cr_1Cf_,) k€N . (2.21)

From (1.13) we obtain 6(¢) = S+ Y. ¢*GT*~'F, ¢ € D. Hence,
k

=1

co=8,c =GT*F, ke{l,2,...}. (2.22)
Thus,

o . S GF GTF ... GT*'F

0" K 0 S GF ... GTF?2F
. 0 ¢ Cr—1
Cr = : = : : : :

i 0 0 0o ... GF
0 0 €0 0 0 0o ... S

= diag ;1 (9) + diagy, (G)triang yy 4 (15, T)diag o (F) (2.23)
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where we use the following matrices: diag,,(S) := diag (S, S,...,5),
td

3Ry e
N~ -~

k+1
0 Q QT ... QT+
00 Q .. QT2
triang ;1 (Q,T) == | © Qe ln].
00 0 ... Q
0 0 O 0

From this taking into account the colligation conditions (1.3), we obtain
I — CCy = diag 41 (F*) {diag p41 (Ig) + triang .y (T') + (triang 41 (T)*
—(triang 1 (I, T))"diag 1, (Iy — T"T)triang ., (I, T) } diag 41 (F)

where triang ;. (T') := triang (T, T). After some simple manipulations the ex-
pression in braces takes the form

I T ... Tk I
T T*T ... T*Tk T*
. . . = (I,T,...,T%
T*k Tk . TRTE Tk
Thus,
F*
L F*T*
I—CyCi = , (F,TF,....,T"F), k€ {0,1,...} . (2.24)
F*T*k

Taking into account the identities F*T*/T'F = (T*F(1), T?F(1)) = (¢},1, ¢}, 1)
we obtain (2.21). O

It should be mentioned that analogous expressions were obtained in [19, part
1] for (I — CCy)", n € Z.

The determinants det(I — C{C%), k € {0,1,2,...} were introduced by L.
Schur in [31] and it is known (see, e.g., Bertin et al. [7, Ch.3]) that

det(I — CxCr) = (1= o) 1A = )" .. (1 = nl®) Lk € {0,1,2,... }(2.25)
where (vx)i_, are the Schur parameters of the function 6.

N 1
Lemma 2.4. For k € {1,2,...} the identities |¢x| = [] /1 — |v;[? hold true.
0

j=

Proof. For k =1, from (2.5) and (2.17) we infer ||g/b\1|| = ||¢}]l = /1 — |70/2. For
k €{2,3,...} the assertion follows from (2.18), (2.20) and (2.25). O
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From (2.7) and Lemma 2.4 we get the following result.
Corollary 2.5. The identities
tesir =1 — w2, ke{1,2,...} (2.26)
hold true.

Corollary 2.6. The sequence (T"¢})22, consists of linearly independent vectors if
and only if |vi| <1, k€ {0,1,...}.

The proof follows from Lemma 2.4 and the observation that the sequence
(T"¢})22, consists of linearly independent elements if and only if ||¢x| > 0, k €
{1,2,...}.

2.4. Schur determinants and contractive operators again. Computation of g,
We return to the Schur algorithm and set 0y(¢) := 0(¢). We assume that
[ve] < 1, k € {0,1,2,...}. Then 6,(¢) = éf‘i(gzeo_&‘;. Using the representation
(1.13) we get
1
¢
= (I-¢D)7'FPL),6* (1) = (I~ ¢T) 161, 01)
where ¢, and ¢/ are defined in (2.2). Taking into account the series representation
(2.19), (2.22) and the colligation conditions (1.3) we obtain

[00(¢) — 0] = G(I = ¢I)™'F = (G - ¢T) ' F(1),1)

1 —400(C) =1 — S(S +¢y C”GT”F) =(I-8*8)~¢Y ¢"S*GT"F
n=0 n=0

= F'F+(¢Y ("F'T"'F=F"(I-(T)"'F
n=0

= (I =¢D)7'F(Q), FQ) = (I - ¢T) " ¢}, 1)

Thus, 0:(¢) = Eg:gg:z%i%; In other words,

a0+a1C+a2C2+...

0 , 2.27
1(©) bo + b1C + baC2 + ... (2.27)
where taking into account (2.4) we get for n € {0,1,2,...}
an = ("¢, 64) = (&1, 1) (2.28)
and
by = (T"¢1, ¢1) = (dpgr, d1) - (2.29)

Exactly for the functions represented via (2.27), I. Schur [31, part 1,§4] derived

the following representation for the ~;’s:
dp—

= =M k2,3, (2.30)
bo Ok—1
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ke N\ {1},(2.31)

ke N\ {1} .(2.32)

Observe that in (2.30) the index associated with ~y is shifted for one unit in
comparison with [31]. This is related to the fact that I. Schur had obtained these
formulas under the assumption that 6y(¢) had the form (2.27).

We denote the columns of the determinant dy by g1, lx2, - -

.y Ik, 2k The value

of dj, does not change if [, o is replaced by the linear combination

lAk,zk = lgok — M1,k — Met120k k01 — - — Motk bk, 261 (2.33)

where (Ary1,5)%_; is taken from (2.5). Using coordinates we get

lk,2r = col (Prk, Pkk—1s - - -

yPk1,qkk> dk,k—1, - - -

aqkl) .

Taking into account (2.28) and (2.29) for j € {1,...,k} we obtain

Pkj = @Ukjv&%) , Gkj = @Ukj,¢ﬁ) (2.34)
where wy; = ¢;+17)\k+17k,j+1¢’1 - '*>\k+1,k¢§-- Observe that for j € {1,... k—1}
Twi; = Wk j41 + Net1,6—j P - (2.35)
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From (2.5) it follows wyy = QASkH, k € {1,2,...}. Thus, taking into account Lemma
2.4, (2.2) and (2.16), we obtain for k € {1,2,...}

ek = (Drr1s ) = ks | (Drsr, 81) = | drr | (drrr. G(1))
k
|Prs1]|Grr1 = grsn H \/1 — |02 . (2.36)

j=0
Moreover, in view of ¢Tk L ¢y, ke {2,3,...} we infer qp, = (gngrl,d),l) =0,
ke {1,2,...}. Consequently, we get the additive decomposition

lpo = il(clgk + Efgk (2.37)

11, = col (pwr,0,...,0,0,0,...,0) and

il(f%k = col (0, prk—1s- - Pk1, 0y Qre—1, - - -5 Qi1 ) -

where

Lemma 2.7. The determinant obtained by replacing the last column in dy, by i,(f%k
vanishes, i.e., det(lg1,. .., lk,gk,l,/l\,(f%k) =0,ke{1,2,...}.

Proof. We will show that the column /l\,(f%k is a linear combination of the vectors

lks- -y lk k=1, i-€., there exists a vector = col (21, ..., x,) which satisfies
k—1
> iy = Uiy - (2.38)
j=1
Let
Qg e 0 bo e 0
A= D Be=| '
a ... Qo bk e bo

Then from the form (2.31) of the determinant dj it can be seen that the system
(2.38) can be rewritten in the form

Bk_gl‘ =Dk , (2.39)
Ap—2x = qi , (2.40)
where pr = col (Prk—1,---,Pk1), @k = Ol (qk k—1,---,qr1). Because of by = ||¢} ||

= (1—1v0/?) > 0 the matrix Bj_» is invertible and the system (2.39) has a unique
solution. To complete the proof it suffices to show that this solution also solves
(2.40). Let Zy_o := Ay_2B,;",. Then

Zi—2Bp—o = Ap_s . (2.41)

From the structure of the matrices A;_o and Bji_o we obtain that Z;_o has the
same structure, namely

20 e 0
Ly =
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Hence, formula (2.41) can be rewritten in coordinate form as
Zjb0+2’j,1b1+"'+20bj :(lj ,j S {0,1,7k72} .

Taking into account (2.28) and (2.29) these equations can be rewritten for j €
{0,1,...,k — 2} in the form

From the colligation condition GG* + SS5* =1 and (2.17) we get
(¢1,8)) = 1= hol* =1 - S5 = GG* = (61, 9}) (2.43)

and for r € {1,2,...}
(@5, T7¢4) = (T"F(1), T ¢})
= —(G"S(),T"'¢}) = —0(¢1, 6,) = — (61,704} -
Hence, the system (2.42) can be rewritten in the form
Zj(glla 5,1) - Zj71($3’70¢3) - 20(8,1370925‘/7) = (5,13 ¢;’+1) ,J € {Oa 17 BERE) k— 2} .

This is equivalent to

hy Ly ,je{0,1,....k—2} (2.44)
where
hy = 201 = Yo(zj-10) + 22 + -+ + 200}) — Dy - (2.45)
From (2.2) and (1.4) it follows that (2.44) is equivalent to
hj € ker(I —T*T) ,j € {0,1,....k—2} . (2.46)

Thus, equation (2.41) is equivalent to the conditions (2.44) and also to (2.46). Note
that for j € {0,1,...,k— 3}

hjyr = 21105 + Th; . (2.47)

Let  be the unique solution of the system (2.39). Then from (2.41) it follows
Ap_ox = Zy_oBp_ox = Zi_opi. To complete the proof it suffices to verify that

Zy—2Pk = Gk - (2.48)
Using coordinates the system (2.48) can be rewritten in the form
2Pk k-1 + Zj—1Pk -2+ + 20Dk k—j—1 = Qkk—j—1 7 € {0,1,... .k —2} .
Taking into account (2.34) these equations can be rewritten again as
(w1, Zj&l) + (Wi k-2, ijl(g&) + o (W k—j—1, ZOQ~5/1) = (Wk,k—j—1, 1)

or equivalently for j € {0,1,...,k — 2}

(wk,k—1, chgﬁ) + (Wi k-2, Zj—lgﬁ) +-

+H(wh ks> 2100) + (Wh k-1, 2001 — ¢1) =0 . (2.49)
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From (2.45) and (2.46) we infer for j = 0 now zod} - ¢}, = ho € ker(I — T*T).
Consequently, taking into account (2.35) the last term in (2.49) can be rewritten as
(wh kg1, 2001 — ¢)
= (Twkr—j-1,T(200) — ¢1)) = (Wkk—j + Met1,+161, T (2061 — 61))
= (wkk—j> T (2001 — ¢1)) = (we k-5, Tho) -

Hereby, we have taken into account that from the colligation condition T*F +
G*S = 0 and (2.44) it follows

(@1, T (200} — ¢1)) = (F(1), Tho) = (T*F(1), ho)
= (G"S(1),ho) = =70(G"(1), ho) = —70(1, ho) =0 .
Combining now the last two terms in (2.49) and taking into account formula (2.47)
for j = 0 we rewrite (2.49) for j € {0,1,...,k — 2} in the form
(wh—1,2561) + (Whk—2, Zj-101) + - + (We—j415 2201) + (Wi, ha) = 0.

Taking into account now that h; belongs to ker(I —T*T') the above considerations
can be repeated. After the kth step the system (2.49) has the form (wgx, Th;) =0,
j€{0,1,...,k — 2}. The validity of these conditions follows from the fact that
according to (2.45) and the colligation condition TG* + F'S* = 0 the relations

k ~
Thje \/ ¢.,j€{0,1,...,k—2} are satisfied, but wgr = ¢r+1. Hereby, keeping
r=1

- k
in mind the orthogonalization procedure, we have ¢ri1 L \/ ¢l. O

r=1

Corollary 2.8. For k € {1,2,...} the identities

di = —gi10k1(1 — [0 [?) \/1 —lyl?, =1 (2.50)

hold true.
Proof. From (2.33), (2.37) and Lemma 2.7 we get
dp = det(lk1,. .., lk2k—1,lk2k) = det(lg, . . ., lk,2k7172\k,2k)
= det(lg1,.. -alk,2k717,l\;(€1,%k) = —prrMi 2k

where M o5 is the minor of the element at position (1,2k) in the determinant
(2.31). Computing M o with the aid of the Laplace formula for the kth column
and taking into account (2.29), (2.17) and (2.32), we obtain Mi or = bpdg—1 =
(1= |y0|*)8k—1, k € {1,2,...}. From this and (2.36) we infer dy = —pgrMi 2r =

k
—gr105-1(1 = |0l?) TT /1= |yl ke {1,2,... ). O
§=0
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Lemma 2.9. For k € {1,2,...} the identities

k—1
gk = [1 /1 hsl? (2.51)
=0

hold true.
Proof. From (2.16), (2. 17) (2.28) and (2 30) we infer
b
(¢17 ¢1) ||¢/ || (¢17 ¢1) ||¢/ || =N ||¢2|| a! \/1 |’70

i.e., formula (2.51) is proved for k = 1. For k € {2,3,...}, using (2.30) and (2.50),
we get

k—1
Ok—1
= = o) [T /1= bl (2:52)
k—2 =0
It is known (see Schur[31, part I, §4]) that 1 — |y;41]* = 5%;3#1 ,7€40,1,2,...},
0_1 = blz. Hereby, comparing with [31] one has to take into account that we have
0
k=2
. . . . . s
shifted the index associated with ~y; for one unit. Thus, jl;[o(l —yis1l?) = 5015 kk 21 7
k € {2,3,...}. Taking into account the identity by = 1 — |yo|?, we obtain
5 k—1
k—1
= (L= o) [T = 1s* -
Ok—2 :
7=0
Substituting this expression in (2.52) we obtain (2.51) for k € {2,3,...}. O

Corollary 2.10. The vector system (¢},)52, (see (2.4)) is not total in 9 if and only
if the product

oo

[Ta -1 (2.53)

J=0

converges. If this condition is satisfied then

g0 = [1 /1 -1l (2.54)
j=0

Proof. Because of the Corollary 1.10 the vector system (2.4) is not total in § if
and only if the vector ¢j = G*(1) does not belong to 9z, i.e.,

6311 = 1| Po #411* > 0 (2.55)
where Pg . is the orthogonal projection from $§) onto $z. From the coordinate
representation (2.16) and (2.43) we get

|90c” = 16417 = [ P #1117 = (1 = Inol*) z:lgkl2
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Using (2.51) we obtain

l9sc? = hm{ (1—|vl*) Z\’Yk|2H (1=

o0

— i [[ - = [[a- ) (2.56)

Jj=0 Jj=0

Hence, the inequality (2.55) is satisfied if and only if the infinite product (2.53) con-

verges. Using now the normalization condition (2.11) we obtain gee = (¢}, %1) > 0.
From this and (2.56) we get (2.54). O

If the vector system (2.4) is not total in §) then we obtain H3 = HOHg # {0}.
In view of Theorem 1.6 this implies that T contains a nonzero maximal shift Vip«.
Because of 67 = 1, from Theorem 1.9 we obtain that the multiplicity of Vi« is
equal to 1, too. In view of Remark 1.11 this is equivalent to the fact that 7" contains
a nonzero maximal shift Vp of multiplicity 1. Thus, we have obtained the following
result.

Lemma 2.11. Let 6(¢) € S and let A be a simple unitary colligation of the form
(2.1) which satisfies Oa(C) = 0(¢). Then the contraction T (resp. T*) contains a
nonzero mazimal shift if and only if the infinite product (2.53) converges. If this
condition is satisfied the multiplicities of the mazximal shifts Vi and Vi~ are both
equal to 1.

Remark 2.12. [t is known (see, e.g., Bertin et al. [7, Chapter 3]), that

s

3 1 0|2
T10 =) = exel, [ w1 - jpe)Pydat

—T

where 0(e'“) denotes the nontangential boundary values of 9(C) which exist and are
finite almost everywhere in view of a theorem due to Fatou. Hence, the convergence
of the product (2.53) means that In(1 — |6(e'*)|?) € L[—mn, 7.

(oo}
2.5. Description of the model of a unitary colligation if [] (1 — |y;|?) converges
j=0
In this case we have in particular |y;| < 1 for all k& € {0,1,2,...}. Therefore,
in view of Corollary 2.6 the sequence (2.4) does not contain linearly dependent
elements whereas the Corollary 2.10 states us that this vector system is not total
in $). This means that the canonical basis in $) has the form (2.12). The operators
T, F,G and S have with respect to this basis the matrix representations (2.13)-
(2.16). In view of the above results in order to reach a complete description of
the model of a unitary colligation it is sufficient to find the elements (tg;)" Ly
k € {1,2,...} in the matrix representation (2.8), (2.13) of Tz and (r},)3>, in the

matrix representation (2.14) of R.
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From the colligation condition T*F+G*S = 0 and (2.15) we conclude T*¢; =

16, HT*F( )= IWHG S. From this in view of (2.16) and (2.17) we get

s ew== " 0 {ngﬁgwwl}. (2.57)

_ 0
V1= l? 70l %
On the other side, the matrix representations (2.8), (2.13) and (2.14) yield T*¢; =

> t1k¢r +71p1. Comparing this series representation with (2.57) and taking into
k=1
account (2.51) and (2.54), we obtain

Yo
t11 = — g1 = —YM (2.58)
\/1 = [l?

k—1
=y 1 0= 0 [Tt hsl ke 23} (2.59)
e U

and

r_ Yo _ - 2
= - 9o = Y0 \/1 = |yl (2.60)
V1= e LV

Thus, the elements in the first row of the matrix representation (2.13) of T" are
determined.

We consider the colligation condition T*T + G*G = I. Using the matrix
representation (2.13), we get

T: 0 T R
A § 7 GG=1]. 2.61
(R* VT>< 0 VT>+ (2:61)

Postmultiplying in this identity the kth row with the first column and taking into
account formulas (2.8), (2.14) and (2.16) we get for k € {2,3,...} the equations
t1xt11+Hlortor +g,g1 = 0. Substituting in this identity the expressions (2.58) for 11,
(2.59) for t1x, (2.26) for t9; and (2.51) for g after straightforward computations

k—1
we obtain tos = —7v;vator = —V17Vk H V1= 1712, k € {3,4,...}. Multiplying in

(2.61) the row with elements (r )°° 1 Wlth the first column we get 7t11 + rhta1 +
Joog1 = 0. Inserting in this 1dent1ty the expressions (2.58) for t11, (2.26) for ta,

(2.60) for r} and (2.54) for g as above we obtain rf = —v, H V/1 = |;]2. Thus,
we have determined the elements in the second row of the matrlx representation

(2.13) of the operator T
Postmultiplying now in (2.61) the rows with the second column, as above,

k—1
we obtain t33 = —7v973, tsk = —YoVk |1 \/1— |v12, k € {4,5,...}, and r§ =
j=3
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o]
—2 [T /1 — |7;]2. Thus, the elements in the third row of the matrix represen-
j=3

tation (2.13) of the operator T are determined. Applying the method of mathe-
matical induction we assume that the first n rows in the matrix representation
(2.13) of T are determined. Then postmultiplying in (2.61) the rows with the
nth column as above we obtain for n € {1,2,...} the formulas t,, = —v,_1Vn,

k—1 o0
bk = =Yoo [ V1= k> n+1and 7, = =y [T /1 - |yl
j=n j=n
Let us set D, := \/1 — |vil?, 7 €{0,1,2,...}. Thus, we obtain

Theorem 2.13. Let 0(¢) € S and let A be a simple unitary colligation of the form
(2.1) which satisfies Oa(C) = 0(C). Assume that for the Schur parameter sequence
of the function 6(¢) the product (2.53) converges. Then the canonical basis of the
space §) has the form (2.12). The operators T, F,G and S have with respect to this
basis the following matriz representations:

- ) (2.62)
0 Vr

where the operators in (2.62) are given by

n—1
Yo —YoDyre oo =y II Dy
j=1
n—1
D, N2 oo =7 1L Dy
j=2
n—1
Ts = 0 Dy, oo 72 jl;[3 Dy | (2.63)
0 0 o ~Yn-1Vn
0 0 D,
_’YO H D'Y] O 0
j=1
- [IDy, 0 0 0 10
_ =2 ~ 0 0 1
R= . ) VT - 0O 0 O )
—Tn H D'Yj 0 0
j=n+1

F =col(D+,,0,0,...;0,0,0,...), (2.64)
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1 n—1 fe%s)
G =Dy, 2 [[ Dys--osmn [ D5 [[ Doy 0,0,-0) (2.65)
=0 =0

7=0
and S = .
We consider the model space
H =l @l = {{(wx)il, We)iz] : 2r,yk € C Y |akl* <00, > [yk|* <00} (2.66)
k=1 k=1
For by = [(2j1), ()i, € 9, j = 1,2 we define
hi+hg = [(T1k + Tak)g21s (Yik +Y2r)ie1] > A = [(Az1k)5 21, Aik)izq] s A € C

(h1,h2) : Z$1k$2k + Zylkymg

Equipped with these operations $ becomes a Hilbert space. By the canonical basis
in H we mean the orthonormal basis

P T R /N C/ S CA (2.67)
where e; = [(6;%)521, (0ok)7Z4], €] = [5016 k= 17(51'16)20:1]7 j€{1,2,...}, and, as
usual, for j,k € {0,1,2,...} §; = { (1) - .’. We suppose that the elements
of the canonical basis are ordered as in (2. 67

Corollary 2.14. (Description of the model) Let 6(() € S and let A be a simple
unitary colligation of the form (2.1) which satisfies Oa(¢) = 0(C). Assume that
the product (2.53) formed from the Schur parameter sequence of the function 6(¢)
converges. Let us consider the model space (2.66) and let T be the operator in
9 which has the matriz representation (2 62) with respect to the canonical basis
(2.67). Moreover, let F:C— Y) G : $H — C be those operators which have the
matriz representations (2.64) and (2.65) with respect to the canonical basis in 9,

respectwely Furthermore, let S = = 7. Then the tuple A= (9H,%,6;T,F,G,S)

where S ® = C, is a simple unitary colligation which is unitarily equivalent to
A and, thus, 0% (C) 6(¢).

Proof. From Theorem 2.13 it is obvious that the unitary operator Z : § — ?)
which maps the canonical basis (2.12) of § to the canonical basis (2.67) of § via
Z o = e, Z = ek, k = 1,2, satisfies the conditions

ZT=T7Z ,ZF=F ,GZ =G . (2.68)

Thus, the tuple Ais a simple unitary colligation which is unitarily equivalent
to A. O
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2.6. Description of the model of a unitary colligation in the case of
o0
divergence of the series ) |v;]2
j=0
In the case considered now the sequence of Schur parameters does not terminate.
Thus, |v;] <1 for all j € {0,1,2,...}. From Corollary 2.6 we obtain that in this
case the sequence (2.4) does not contain linearly dependent vectors. On the other
hand, the infinite product (2.53) diverges in this case. Thus, in view of Corollary
2.10, we have $z = $. This means that in this case the canonical basis of the
space ) consists of the sequence

¢17¢27"'a¢na"' . (269)

Hence, in the case considered now we have T' = T. So we obtain the following
statement.

Theorem 2.15. Let 0(¢) € S and let A be a simple unitary colligation of the form
(2.1) which satisfies Oa(() = 0(C). Assume that the Schur parameter sequence

(7vi)5%0 of the function 0(C) satisfies
> il =400 (2.70)
§=0

Then the canonical basis of $ has the shape (2.69). The operator T has the matriz

representation (2.63) with respect to this basis, whereas the matriz representation
of the operators F,G and S with respect to this basis are given by

F = col(D,,,0,0,...) , (2.71)
1
G =Dy, 2[[ Dayoo oo [[ Doso---) (2.72)
=0 =

and S = .

In the case considered now as model space $ we choose the space lo equipped
with the above defined operations. By the canonical basis in 5 we mean the or-
thonormal basis e; = (0;%)72,, j € {1,2,3,...}. Hereby, the elements of this basis
are supposed to be naturally ordered via

€1,€2y s Cryenn . (2.73)

Corollary 2.16. (Description of the model) Let 6(() € S and let A be a simple
unitary colligation of the form (2.1) which satisfies Oa(C) = 0(C). Assume that
the Schur parameter sequence (v;)52, of the function 0(() satisfies the divergence
condition (2.70). Let us consider the model space 9 =1y and let T be the operator
in  which has the matriz representation (2.63) with respect to the canonical basis
(2.73). Moreover, let F:C— f) G : f) — C be those operators which have the
matriz representations (2.71) and (2.72) with respect to the canonical basis in 9,

respectively. Furthermore, let S = = 7. Then the tuple A A = (9,5.6;7T,F,G,S)
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where § =6 = C, is a simple unitary colligation which is unitarily equivalent to

A and, thus, 03 (¢) = 0(¢).

Proof. 1t suffices to mention that the unitary operator Z : § — S~§ which maps the
canonical basis (2.69) of §) to the canonical basis (2.73) of § satisfies the conditions
(2.68). O

2.7. Description of the model in the case that the function 6
is a finite Blaschke product

Now we consider the case when the product (2.53) diverges whereas the series
(2.70) converges. Obviously, this can only occur, if there exists a number n such
that || <1, k=0,1,...,n —1; |y,| = 1. As already mentioned this means that
the function 6(¢) is a finite Blaschke product of degrees n. From (2.26) it follows
that in this case txy16 > 0,k =1,2,...,n—1; tp41, = 0. Then from (2.7) we see
that this is equivalent to the fact that the vectors (¢},)7_, are linearly dependent

whereas the vector ¢, is a linear combination of them. This means that in the
n

o0

case considered now we have ) = 3z = \ ¢, = V ¢} . Hence, dim$ = n and
k=1 k=1

the canonical basis in $ has the form

¢1, 02, bn - (2.74)

As above we obtain the following result.

Theorem 2.17. Let 6(¢) be a finite Blaschke product of degree n and let A be a
simple unitary colligation of the form (2.1) which satisfies O () = 0(¢). Then the
canonical basis of the space ) has the form (2.74). The operators T, F,G and S
have the following matriz representations with respect to this basis:

n—1
Yo —YoDvive oo =7 Il Dy
j=1
n—1
D'Yl —Y172 e ™M H D’Yj'yn
j=2
T= n—1 , (2.75)
0 D,, cee Y9 Doy
j=3
0 0 ~Yn-17n
F =col(D~,,0,...,0), (2.76)
1 n—1
G:(71D70772HD7J'7"'7’Y?1HD’Yj)7 (277)
j=0 j=0

and S = y.
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In the case considered now we choose the n-dimensional Hilbert space C™
as model space 5 By the canonical basis in $ we mean the orthonormal basis
ej = (0k)f_y, J € {1,...,n}. Hereby we assume that the elements of this basis
are naturally ordered via

€1,€2,...,€n . (2.78)
As above the following result can be verified:

Corollary 2.18. (Description of the model) Let 6(C) be a finite Blaschke product of
degree n and let A be a simple unitary colligation of the form (2.1) which satisfies
Oa(C) = 0(C). Let ()¢ be the Schur parameter sequence of the function 0. Let

us consider the model space :‘73 —C" and let T be the operator in :‘73 which has the
matriz representation (2.75) with respect to the canonical basis (2.78). Moreover,
let F: C — 5 G: 5 — C be those operators which have the matriz representations
(2.76) and (2.77) with respect to the canonical basis in 9, respectively. Furthermore,

let S = Yo. Then the tuple A = (9,5,6;T,F,G,S) where § = & = C, is a simple
unitary colligation which is unitarily equivalent to A and, thus, 03 (¢) = 6(¢).

8. Comments

A. Let p € M(T,C) and assume p(T) = 1, i.e., the measure p is a scalar, normal-
ized Borel measure on T. Let us define the usual Hilbert space of square integrable
complex-valued functions on T with respect to p by

L*(p) = L*(u,T) = {f : f is p-measurable and /\f(t)|2u(dt) < oo}

On the space L?(u) we consider the unitary operator U* which is generated by
multiplication by ¢ where ¢ € T is the independent variable : (U* f)(t) = tf(¢), f €
L?(p).

Let 7 be the embedding operator of C into L?(u), i.e., 7 : C — L?(u) and
for each ¢ € C the value 7c is the constant function with the value c. It is obvious
that the triple (L?(u),U*, ) is the minimal Naimark dilation of the measure .

Consider the subspace ), := L*(u) © 7(C). According to the decomposition
L?(p) = 9, ® 7(C) the operator U* is given by the block matrix

T* F*
= o)

Then from Theorem 1.20, statement (b), it follows that the set
Ay = (9., C.CT™, F*r, 7" G*, 75" 1)
is a simple unitary colligation. Moreover, the characteristic function 0a,(¢) is
associated with the measure p. Thus, if the function ®(¢) has the form (1.17) then
from (1.19) it follows that (04, (¢) = (®(¢) — I)(®(¢) + 1)~ !
It is important that the canonical basis (2.12) for the colligation A, is

generated by the system of orthogonal polynomials in L?(u1). Hence (see Theorem
1.20 and Remark 1.22), Theorem 2.13, Theorem 2.15 and Theorem 2.17 give the
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matrix representation of the operator U* in this basis. The first appearance (1944)
of this matrix is in Geronimus [27]. Ya.L. Geronimus considered the case when the
sequence of the orthogonal polynomials is basis in L?(u), i.e., when the series

o0

> |12 diverges (see Theorem 2.15). W.B. Gragg [27] in 1982 rediscovered this
j=0

matrix representation and used it for calculations. A.V. Teplyaev [34] (1991) seems
to be first to use it for spectral purposes. What concerns the role of this matrix
representation in theory of orthogonal polynomials on the unit circle we refer the
reader to B. Simon [32, Chapter 4].

B. The full matrix representation (see Theorem 2.13) appeared in Constantinescu
[14] in 1984 (see also Bakonyi/Constantinescu [6]). He finds it as the Naimark
dilation. Let us establish some connections with results in [14]. We note that from
Remark 1.22 it follows that the above constructed models of unitary colligations
are also models of Naimark dilations of corresponding Borel measures on T. Under
this aspect we consider in more detail the model described in Corollary 2.14. In
this case the model space £ for the Naimark dilation (1.22) has the form

R=9aC=(Ldlk)®C. (2.79)

T F
G S
the vectors k£ € & have the form

Moreover, U = (b l)®C — (ladlz) ®C. In accordance to (2.79),

k= (z1,22,...,Tn,- - ;Y1,Y2, -y Yny---5C) , (2.80)

where (2g)ren € lo, (Yr)ken € l2, ¢ € C. The operator 7 embeds C into K in the
following way: 7¢ = (0,0,...,0,...50,0,...,0,...;¢), ¢ € C. We change the order
in the considered orthonormal base of & in such way that the vector k which has
the form (2.80) is given in the following way

E=( 0 Unsee Y2, Y1, C 1, T2y e ooy Ty e )
In this case, it is convenient to set ¢ = zg, yp = x—, k € {1,2,...}, i.e.,
E=( ., @ pye s, 1, T &1, L2 ceeyTyy...) (2.81)
where we have drawn a square around the central entry with index 0. Now
729 =(...,0,...,0, o ,0,...,0,...).
We associate with the representation (2.81) the following orthogonal decomposition
R=1@lf (2.82)

where I; = {k€ R: 2, =0,k >0} and I ={k € &: 2, =0, k < 0}. From
the form of the operators T, F', G and S it follows that the operator U has the
following matrix representation with respect to the new basis and with respect to
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the orthogonal decomposition (2.82): th Uy , where Ui =0,
Uz Uz
00 D,
§=0
' o 00 =y [ Dy,
Un = 0 , U = Jj=1
10 .o .
1 0 0
0 0 ~Tn ]._[ D'YJ
j=n+1
and
n—1
Y% Dym e I1 Dy
§=0

n—1

D’Yo —Yo71 -+ 7o Hl D'yj Tn
j=
n—1

Uy = 0 D, ... -7 jl;lz Dyyn ... . (2.83)
0 0 o ~Yn_1Vn
o0 .. D,

In this form but using different methods a Naimark dilation is constructed
in Constantinescu [14] and Bakonyi/Constantinescu [6, Chapter 2].

C. We consider a simple unitary colligation A of the form (2.1). If we choose in $
the canonical basis in accordance with (2.15) we obtain for the contraction (S, G)
the matrix representation (S,G) = (S, 91,92, .- -, o0, 0,0,...). The above results
show that if we parametrize the contractive block row (S,¢1,92,...,9n,...) by
the method proposed in Constantinescu [15, Chapter 1] we will obtain all blocks
described in Theorem 2.13 with exception of the coshift ‘7T .

D. Because of U;2 = 0 the operator Uss is an isometry acting in l;‘. We mention
that the representation of an isometry in the form (2.83) plays an important role
in Foias/Frazho [25, Chapter 13] in connection with the construction of Schur
representations for the commutant lifting theorem.

E. If |y| < 1, k € {0,1,2,...} and the product (2.53) diverges then & = I,
i.e., U = Uss. In this case the layered form of the model is particularly clear. For
example, if we pass in the Schur algorithm from the Schur function 6y(¢) = 6(¢)

to the function 6 (¢) = C(f“_(gig&%)) the Schur parameter sequence changes from
(76)72o to (vk)52,. This is expressed in the model representation (2.83) in the
following way. One has to cancel the first column and the first row. After that

one has to divide the second row by —~,. This “layered form” finds its expression
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in the following multiplicative representation of Uss which can be immediately
checked (see also Foias/Frazho [25], Constantinescu [15]): Uaz = VoVi1 Vo .. V- =
s — lim VVi...V, where Vp = R,,®1®1® ..., V1 =10 R, 1D ...,

n—oo
Vo=101®R,,®... and RW is the elementary rotation matrix associated with
s o i D,Y_ .
i, le, Ry = 7 1,75€10,1,2,...}.
gl v ( D, v, ) jed }

3. A model representation of the maximal shift
contained in a contraction 7T’

3.1. The conjugate canonical basis
Let 6(¢) € S. Assume that

A=(9,3,6;T,FG,S) (3.1)

is a simple unitary colligation satisfying 0(¢) = 6a(¢). As above we consider the
case § = & = C. Moreover, we choose the complex number 1 as basis vector
of the one-dimensional complex vector space C. We assume that the sequence
v = (75)§=o of Schur parameters of the function (¢) is infinite (i.e., w = o) and
that the infinite product (2.53) converges. In this case, as it follows from Theorem
2.13, the canonical basis of the space $) has the form (2.12). Hereby, the matrix
representation of the operators of the colligation A with respect to this basis are
given by formulas (2.62)—(2.65).

We consider the function 6(¢) which is associate to 6((), i.e., 8(C) = 6(C), ¢ €

D. Clearly, that 8(¢) € S and
A= (9,8,5T, G F*,S%) (3.2)

is a simple unitary colligation satisfying 0(¢) = 63 (¢)(see Brodskii[12]). The uni-
tary colligation (3.2) is called adjoint to the colligation (3.1). Hence, the function
0(¢) is the c.o.f. of the contraction 7. It can be easily seen that the Schur pa-

rameter sequence (7;)32, of the function g(() is given by 7; = v;,7 € {0,1,2,...}
and, consequently, the product (2.53) converges for (7;)52, too. This means that
the canonical basis of the space $ which is constructed for the colligation A will

also consist of two sequences of vectors

517525"';12;151;27"' . (33)

From the considerations in Section 2.2 it follows that this basis can be uniquely
characterized by the following conditions:

(1) The sequence (Jsk);;l arises in the result of the Gram-Schmidt orthogonal-
ization procedure of the sequence (T**~1G*(1))2, taking into account the

normalization conditions (T*¥~1G*(1), ¢~5k) >0, ke{l,2,3,...}.



208 V.K. Dubovoy

(2) The vector 7:/;1 is that basis vector of the one-dimensional generating wan-
dering subspace of the maximal unilateral shift V acting in 9L =909

which satisfies the inequality (¢1, 1;1) > 0 and, moreover,
Vps1 = Tr, k€ {1,2,3,...}. (3.4)

Definition 3.1. The canonical basis (3.3) which is constructed for the adjoint col-
ligation (3.2) is called conjugated to the canonical basis (2.12) constructed for the
colligation (3.1).

Remark 3.2. In view of 6(¢) = (6(C)) and A = (A) the canonical basis (2.12) is
conjugated to the canonical basis (3.3).

Our approach is based on the study of interrelations between the canonical
basis (2.12) and the basis (3.3) which is conjugated to it. For this reason, we
introduce the unitary operator U(7v) : $ — $ which maps the first basis onto the
second one:

Uk = Pk, UL = Pr, ke {1,2,3,...}. (3.5)

The orthonormal systems (¢5)7; and (¢5)72 , are bases of the subspaces 3 and

Sﬁé‘, respectively, whereas the orthonormal systems (¢5)52 ; and (zzk)zozl are bases

of the subspaces g and ﬁé, respectively. Therefore, the operator U(y) transfers
the decomposition ) = Hg EBYJ? into the decomposition § = He EBSjé taking into
account the structures of the canonical bases. Consequently, the knowledge of the
operator U(~y) enables us to describe the position of each of the subspaces $g and
Sﬁé in relation to $z and Sﬁ%‘. We emphasize that many properties of the function
6(¢) and the corresponding contraction T' depend on the mutual position of these
subspaces.

In view of 7; = v,,j € {0,1,2,...}, the replacement of the canonical basis
(2.12) by its conjugated basis (3.3) requires that in corresponding matrix repre-
sentations we have to replace 7; by 7;. In particular, the following result holds:

Theorem 3.3. The matriz representation of the operator T* with respect to the
canonical basis (3.3) is obtained from the matriz representation of the operator T
with respect to the canonical basis (2.12) by replacing v; by Vi JE {0,1,2,...}.

3.2. A model representation of the maximal unilateral shift V-
contained in a contraction 7'

Let 6(¢) € S and assume that A is a simple unitary colligation of the form (3.1)
which satisfies (¢) = Oa(¢). We assume that the sequence of Schur parameters of
the function () is infinite and that the infinite product (2.53) converges. Then it
follows from Lemma 2.11 that in this and only this case the contraction T' (resp.
T*) contains a nontrivial maximal shift V- (resp. Vr+). Hereby, the multiplicity of
the shift Vi (resp. Vr+) equals 1. The shift V- in the model representation asso-
ciated with the canonical basis (2.12) is immediately determined by the sequence
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of basis vectors (¢1)5, since 91 is a basis vector of the one-dimensional generat-
ing wandering subspace of V- and ¢y, = Vi 'y, k € {2,3,4,...}. Analogously
(see property (2) of the conjugate canonical basis (3.3)) the sequence ({/}vk)go:l of
the basis (3.3) determines the maximal shift V. Thus, representing the vectors
(Jk)zil in terms of the vectors of the basis (2.12) we obtain a model representa-
tion of the maximal shift Vi with the aid of the canonical basis (2.12). The main
goal of this paragraph is the detailed description of this model. In the following we
use the same symbol for an operator and its matrix with respect to the canonical
basis (2.12).
The unitary operator (3.5) has the matrix representation

_( R(v) £
“(”‘(P(v) Qm) (3:6)

where R, P, £ and Q are the matrices of the operators

Pg Rstr. .U : 15 — H5 , PyiRstr.g U Hz — 9%,

Py Rstr. o U : 5 — 95 and Py Rstr. o1 U = 93 — 93,

respectively. Hereby, if K is a closed subspace of $), the operator Pg denotes the
orthoprojection from $ onto K.
From (3.5) we see that the columns of the matrix

(5) @

provide the coefficients in the representation of the vectors (wk) © , with respect
to the canonical basis (2.12). Thus, the model description of the shift Vi leads to
the determination of the matrix (3.7). We note that the matrix (3.7) shows how
the subspace 56é is located relatively to the subspaces Hz and .‘7)‘%.

Theorem 3.4. The identities

(Y1, 1) = H (1 -1y (3.8)
j=1
and
(1) =0, j €{2,3,...} (3.9)
hold true.

Proof. In view of ¢y = v 1| |2G*(l) from the matrix representation (2.65) of
—170
the operator G it follows

1, ¢1 1 (1- 3.10
(W1, 61) = ¢1f|o\2w I:[ 1) (3.10)

Since changing from (¢4, gbl) to (¢17 ¢1) is realized by replacing v; by 7; = v,
j€{0,1,2,...,}, formula (3.8) follows from (3.10).
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For j € {2,3,...,} we obtain

~ 1 ~
(1/)‘7¢1) Tw 1, (1)> = (¢—17T*F(1))
’ " \/1*|“Yo|2 \/1*|70|2 ’
From the colligation condition (1.3) we infer
T*F(1) = =G*S(1) = =G (1) = =0/1 = [0* ¢1.
Thus, (¢35, $1) = —Yo(¥5-1,61) = 0. 0

Definition 3.5. Denote by I' the set of all sequences v = (Vj)?:o which occur as
Schur parameters of Schur functions. Furthermore, denote I'ly the subset of all
sequences belonging to T' for which the product (2.53) converges. Thus,

Iy = {7 = (7])_(7)10 TS C7 |’7]| < 17] € {07172a} and Z|7]|2 < OO}
=0

We define the coshift W : Iy — Iy via

(707717727 .. ) = (717727737 .. ) , V= (7])?20 S l2- (311)
In the sequel, the system of functions (L, (7)), which was introduced for

v € I'ly in [21] will play an important role. For v € T'ly we set
Lo(v) =1, Ln(v) = Ln(0:71,72,--.) == (3.12)

n 00 o0 o0
Z(_l)TZ Z Z ce Z Vir V1451 Vi2 Vjotso + - VirVjpts,:
r=1

s1+...+8r=n j1=n—51 j2=J1—S2 Jr=Jr—1—Sr

Here the summation runs over all ordered r-tuples (s1,...,s,) of positive integers
which satisfy s; + s2 + ...+ s, = n. For example,

Li(v) Z%%H? Lo(y Zw%+2+z Z Vs Vi 41V Vjot1-

j=0 J1=1j2=j1—-1

In view of 4 € I'ls the series in (3.12) converges absolutely.

Theorem 3.6. (Model representation of the mazximal shift Vi with respect to the
canonical basis (2.12)) Let 6(C) be a function of class S the Schur parameter se-

quence vy = (7j);?';0 of which belongs to T'ls. Further, let A be a simple unitary
colligation of the form (3.1) which satisfies 0(¢) = Oa(C). Then the vectors (7:/;]);‘;1
of the conjugate canonical basis (3.3) admit the following representations in terms
of the vectors of the canonical basis (2.12):

Uy = > MLy (W) + Y QP )y (3.13)

k=j k=1

where

Hk:H\/1*|W|27 ke{0,1,2,..} (3.14)
j=k
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and

=Y L) (3.15)
=0

Hereby, the sequence (L, (7))o, is defined by (3.12) whereas the coshift W is given
via (3.11). The series in (3.15) converges absolutely.

&)

Proof. Clearly, we have ¥y = S (¥1, ¢)dr + > (1, ¥ )tbg. If k € N, then taking
k=1 k=1

into account I # 0 we define ®j_1(y) := (d’l’f’“) and Qi (v) == (41, ¥r). Thus,

U= @i 1 (Nr + Y Qul(7) k- (3.16)
k=1 k=1

Then from (3.8) it follows ®o(y) = 1. Thus, in view of (3.12) we have
Do (v) = Lo(W). (3.17)
As well the vectors (qb] )721 and (¢;)%2, from the canonical basis (2.12) as

the vectors (gb]) °, and (w]) °, from the conjugate canonical basis (3.3) clearly
depend on 7. For this reason, we will mark this dependence on + in the following
consideration by the notations ¢; (), (), () and ¢ (), j € N. The identity

Vi1 (y) = <¢](O )> ,jEN (3.18)

will turn out to be essential in the sequel. In order to prove (3.18) we will mainly
use the layered structure of the model of the colligation A (see Theorem 2.13).
Namely, the matrix representation (2.62) implies

T(7) = ( F(Vh) ﬂTO(C;[(/VVV)V) ) (3.19)

where

_ [ Ts(Wr)  R(Wv)
T(Wr) = ( § . U > (3.20)

and where T'(y), F(v) and G(v) are given via (2.62), (2.64) and (2.65). Hereby,

we have V(W~)=Vr(vy) = Vr. From (3.19) we infer

0 0T (W), G" (W)(1)
70 ( gy ) = ( T(VA)01 (W) ) (321

In view of ¢ (Wy) = Jie | G*(W’y)(l) we get

(1 (W), G*( =1 P (Wy) , 61(Wr)) =



212 V.K. Dubovoy

Taking into account the identity T(W~ )y (W) = 1ho(W~) from (3.21) it follows

0 0
~ = ~ . 1 1 i i
that T'(v) ( (W) > ( Da (W) ) Analogously, the identity

"0 (g ) = (Gt ) "N

can be obtained. Thus, for n € N we have

70 D11 D111 1

Using Theorem 1.2, we obtain ( 7:[; (va ) € Sﬁé. This implies
1
(.00 ) =S wde) (322)
- = i) :
1 (W) =~

0 -
where y; = (( T (W) >, ¥j(7)), j € N. Combining formula (3.22) with Theorem

3.4 we infer

_ 0 1 _ 0
- (( 1 (W) ) 7 < 0 >)_(< Y1 (W) > » 217)
= ZZM(JJ(’Y)  01(7) =11 (11 (), é1(7)) = 1Tl
Hence y; = 0. Thus, from (3.22) we get
v ot 3.23
(RS RIS SR (3:29)

From the matrix representation (2.62) we find

T(¥)$1(7) = =v97101(7) + D4, b2 (7).
This implies

B = ) wme)+ ) TE6). (324

Y1
Therefore, taking into account Theorem 3.4 for j > 3 we obtain

Gi) - ) = ) wn), 6O+ ) G0) . TR )
= Dlﬁ (1), T(1)¢1(7)) = Dlﬁ (T* (V& (7) 5 61(7))

b (Bia)  ér() =0.
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From this and (3.23) we get

0 ~
(70 )+ 200 =16 . 62, (329

From (3.8) it follows that

0 0
(o ) o= & | ] o = (3.26)
On the other hand, using (3.24) and Theorem 3.4 we obtain
(Bal0) a1 = ) onlan) )+ (W) TE)6)
= . W=0) TGO = ) (T 0R0), 6i)
= . (). 6l =T

Combining this with (3.26) and (3.25) we infer yo = 1. Comparing now the norms
of the vectors of both sides of identity (3.22) we obtain formula (3.18) for j = 1.
Assume now that formula (3.18) holds true for some j € N. Then using (3.19)
we get

Fs2(0)=T()By1(1) =T (2 >( )

B < T(Wv)%j(Wv) ) < i Wv )

Thus, formula (3.18) is proved by mathematical induction. Consequently,

%) = < BratW) ) - < Bt ) ( zbo(]wyxll )

Hence, from (3.16) and (3.18) it follows that for j € {2, 3,4

= anq’k—j(Wj_lv)qbk + Z Qr(W7 =19 (3.27)
—j k=1
Thus, the matrices £(y) and O(v) in (3.7) have the form
I 0 0
51 (7) 1y 0
H3¢2(7) Hg‘bl(W’y) H3 e
L(y) = : : : (3.28)

Hn(pn—l(’)’) Hn(bn—Z(W’y) Hn(bn—S(W27)
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and
Qi(7) Qi(Wy) Q1(W3y)
Q2(7) Q2(Wry) Q2(W?y)
QM =1 Qs(v) Qs(Wn) Qs(W?y) : (3:29)
respectively.
Since lim II,, = 1 and since £(7) is a block of a unitary operator matrix,
from (3.28) it follows that
lim @, (W"y) =0, k€ {1,2,3,...} (3.30)
and
D 1@k (Wy)? < oo, j€{0,1,2,.. }. (3.31)
Analogously, from (3.29) we infer
IRy < o0, j€{0,1,2,...}. (3.32)

Taking into account Ehe identities~T1f/)v;C = {/}vkil, T*Yy = 1/{kv+17 ke Nfor jeN
we get Q;(W7) = (¥2,95) = (Tv1,15) = (1, T¢;) = (¥1,¥541) = Qj41(7)-
Thus, for j € {2,3,...} we obtain

Qi(7) = Qj—1(Wr) =+ = Qu(W'™1y). (3.33)
The identities (3.33) show that the matrix Q(v) has Hankel structure

Qi () Q(Wy)  Qu(W?y)
QL(Wy)  Qu(W?y) Qu(W3y) ...
Q:i(W?7)  Qi(W) 1(W4v) | (8:34)

Hereby from (3.32) we infer

Sl (V)P < o0 (3.35)

k=0
whereas the representations (3.16) and (3.27) take the form

= 3 Ml (W )+ > QW )y, jEN. (3.36)

k=j k=1

From (3.36) and the matrix representation (2.62) we find

(T91,61) = =701 O ver1P%(7) + Q1(7))- (3.37)

k=0
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On the other side, in view of (3.9) we have
(T4, 61) = (Y2, 1) =0. (3.38)
Assume that o # 0. Then the identities (3.37) and (3.38) provide

Q) == W1 ®i(y). (3.39)
k=0
Now we show that the identities
Or(y) = Le(Wy), ke {0,1,2,...} (3.40)

are satisfied, herein the sequence (L (7))3, is given via (3.12). In view of (3.17)
the identity (3.40) holds true for & = 0. As above from formula (3.36) and the
matrix representation (2.62) we find

(T, 63) = V/1 = |92 ®1(7) = ¥olTs (O v 11®%(7) + Q1 (7).
k=2

Taking into account (3.39) we get (T1, ¢3) = I5(®1(7)+717). On the other side,
from (3.36) we infer (T41,¢3) = (2, ¢3) = 3P (W+). The last two relations

imply ®1(7) = =717z + @1(Wr). Thus, ®1(7) = — >~ VeVey1 + L1 (W"y). Using
k=1
the limit process n — oo and (3.30) we obtain ®1(v) = — > W Verr = L1(Wr)
k=1

and the identity (3.40) is proved for k = 1. Starting from (T'{El,ﬂﬁzl) one can
analogously verify that formula (3.40) is also true for kK = 2. We assume that
(3.40) holds true for 0 < k < mn — 1. Then, as above, we obtain

(T91, $ns2) = V1 = st 2180 (1) — Ypgg Mra( Z Yi+1%5(7) + Q1(7))
Jj=n+1

= V1= 1P 1 @0 (9) + Vo1 g2 D 41 95(7)

p=0
n—1 n—1
= ILhs2[®n () + Vo4t Z Vo+1Pp(V)] = Mg [Pn (V) + Vnpa Z Vo+1Lp (W)
p=0 p=0

On the other hand, (T%1, dni2) = (2, bni2) = Iupo®, (Wr). Thus, we obtain

the recurrent formula

n—1

On(7) = —Vpi1 D W1 Lp(W) + 0 (Wr). (3.41)
p=0
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m n—1
This implies ©5(7) = = >- Vnirt1 Zo Votht1 Lp(WHHy) 4 @, (W), Ap-
k=0 p=

plying the limit process m — oo and taking into account (3.30) we get

oo n—1

n(y) = =D D Wtk Vnsnrr Lo(WFT).
k=0 p=0

Changing the order of summation we find

n

227p+k7n+k+1Lp ((WHHy).

p=1 k=0

Substituting new variables of summation via sy =n—(p—1), j1=n—s1+k

n o0 )
we have @,(Y) =~ 35 X V4174148 Loos (WHTT7F519). Thus,

s1=1j1=n—s1

n—1 0o
P (y Z’YJ1+17]1+1+n Z Z Vir+1Yjy 4145, Ln— 51(W]1+1 "e1y)(3.42)
71=0 s1=1j1=n—s1

Taking into account for simplicity that & = j; — n + s; from (3.12) we find

n—sq
Ly, (W]H_I_TH_SI'Y) = § (*1)T E
r=1 s2+83+...4+spp1=n—51
o o
E s § Vot 1+kVko+14+k+ss " Vhrya +1+’€’7kr+1+1+k+sr+1 .
ko=n—s1—s2 kry1=kr—sr41

Inserting this expression into (3.42) and introducing in the second sum new indices
of summation via j; = k; + k, 1 € {2,3,...,r 4+ 1} we obtain

n—1 n—s;

Z 7]1+17]1+1+n + Z Z T+1 Z

71=0 s1=1 r=1 s1+824...+5rp1=n

j : z : e z : Vit 175141451 Ve +1 T jo+ 1452 * 7 Vire1 +17 jrp 1 +145,01
J1=n—s1j2=j1—82 Jr+1=Jr—Sr+1
This implies

oo

Z 7]1+17]1+1+n + Z T+1 Z Z

71=0 s1t+s2+...+8r41=n ji=n—s
1<s5:<n—1

oo
Z Z Vit 17 j141481 Va2 41V o+ 1482 7 Virg1 +1V o1+ 1480410 (3.43)
Je=j1—S2 Jr41=Jr—Sr41
Hereby, the sum runs over all ordered (r 4+ 1)-tuples (s1, S2, ..., Sy+1) of positive
integers satisfying s1 +s2 + ...+ $,41 = n and 1 < s; < n — 1. This means that
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the sum
n—1
PGS
r=1 S1+s2+...+Srr1=n

1<s1<n—1

can be replaced by an analogous sum of the type

> (=1 > e (3.44)

r=2 s1+s24...+Ssrp1=n
1<s1<n—1

Taking into account that the first term in (3.43) corresponds to the index s1 =n
in the sum (3.44), i.e., r = 1, from (3.43) we find ®,(y) = L,(W+). Thus, the
identity (3.40) holds true for all k € {0,1,2,...,}.
From (3.39) and (3.40) it follows that
Q1(7) ==Y W1 Li(Wr) = QW) (3.45)
k=0
where Q() is given by (3.15). From (3.31) and (3.40) we get
D IL(WIy)? < o0, j €N, (3.46)
k=1
Obviously (3.46) holds also true for j = 0. As v € TI'ly from (3.46) it follows the
absolute convergence of the series in (3.15). From (3.36), (3.40) and (3.45) we
obtain the representations (3.13).
Finally from (3.40) and (3.45) it is clear that ®x(v), k£ € {0,1,2,...} and
Q@1 () do not depend on 7. Since v is an arbitrary number from D we see now
that the assumption vy # 0 can be omitted. 0

Corollary 3.7. The matrices £(v) and Q(v) introduced via (3.6) can be expressed

as
1L, 0 0
Mo Ly (W) II, 0
HgLQ(W’y) H3L1(W2’7) Hg ce
L(y) = : : ; - (3.47)
HnLn—l(W’V> HnLn—2(W27) HnLn—3(W37>
and

(3.48)
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where (Ln(7))oLy, (I1,)5 and Q(v) are defined via formulas (3.12), (3.14) and
(3.15), respectively, whereas W is the coshift introduced in (3.11).

Proof. The representation formula (3.47) follows from (3.28) and (3.40), whereas
formula (3.48) is an immediate consequence of (3.34) and (3.45). O

Corollary 3.8. ([21]) Each sequence (v;)32, € T'lz satisfies the following orthogo-
nality relations:

SO Lk (Ea(Wh) + Y QUi = £ o R
n:O b) b) ) bR B

n=0

Proof. Tt suffices to consider for the sequence v = (0,79, 71, . - .) the representations
(3.13) and to substitute them into the orthogonality relations

~ ~ _ 1, lfk:Oa
(¢17¢k+1)—{ 0, if ke{1,2,3,...}.

O
Corollary 3.9. The recurrent formulas
Lo(v) = Lo(Wn) (3.49)
and
n—1
Ln(y) = La(W7) =7, Y _%L;(y), n €N, (3.50)
j=0
hold true.

Proof. The relation (3.49) is obvious whereas the formulas (3.50) follow by com-
bining (3.40) and (3.41). O

The Hankel matrix (3.48) is the matrix of the Hankel operator which de-
scribes the mutual position of the subspaces Sﬁé and f)é‘ in which the maximal
shifts Vp and Vi« are acting, respectively. As it was already mentioned (see Intro-
duction) the subspaces .‘bé and 5%‘ are interpreted as inner channels of scattering
in the scattering system associated with the contraction 7'. In this connection we
introduce the following notion.

Definition 3.10. The Hankel matriz (3.48) will be called the Hankel matrixz of the
maximal shifts Vp and Vp« or the Hankel matriz of the inner channels of scattering
associated with T .

We note that the unitarity of the operator matrix given via (3.6) implies

I—9"(7)Q(y) = £ (MLM)-

This means the matrix £(y) plays the role of a defect operator for Q(v). Taking
into account (3.15) and (3.12) from (3.48) we infer Q*(v) = Q(%).
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From the form (3.47) we get immediately the following observation.

Lemma 3.11. The block representation

H1 0
2= ( sty eovs) ) (351

with B(y) = col (o Ly (W~),H3La(W=), ..., 11, Ly,—1(W7),...) holds true.
Theorem 3.12. It holds

L£(y) = M(v)£(Wn) (3.52)
where
D., 0 0
—7172 D.,, 0
—71D+,73 —Y273 D,,
M(vy) = : : : g (3.53)

n—1 n—1 n—1
—n I Dyv =72 [1 Dyyvn =3 11 Doy
j=2 j=3 j=4

and D, = \/1—|y;|?, j€{0,1,2,...}.
Proof. From (3.4) we infer T*Jk+1 = Jk, k € {1,2,3,...}. Thus, T* maps the
sequence (g, 3,1y, ...) to the sequence (1,2, 3, ...), i.e.,

(Jla&?ang?n"') = (T*1;27T*J37T*J47"')' (354)

From (2.62) it follows that the matrix representation of the operator T* with
respect to the canonical basis (2.12) has the shape

. (Ti 0
T = ( 7 > . (3.55)
Hereby, as it can be seen from (2.66) and (3.53), we have
Ty = (=yon(v) , M) ) (3.56)
where
n—1
n(y) == col (v, Y9 Drrs - s Yn H Dy,,...). (3.57)
j=1
Taking into account (3.7), (3.48) and (3.51) we get the representations
a7 £()
)= 3.58
(Grdetin) = 50) (3.59)
and
oo ((gh)
(w27 1/)37 1/)47 o ) = (W’-Y) (359)
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with respect to the canonical basis (2.12). Inserting the matrix representations
(3.55), (3.58) and (3.59) in formula (3.54) we find in particular

X 0
o) =7 (g )-
Combining this with (3.56) we obtain (3.52). O

Corollary 3.13. It holds

I=My)M*(7) = n(y)n*(7) (3.60)
where n(vy) is given via (3.57).

Proof. From (2.65) and (3.57) we obtain
G =Dy (n°(7);: [[ Dy, ,0.0,...). (3.61)
j=1

Substituting now the matrix representations (2.62) and (3.61) in the colligation
condition I —T*T = G*G we infer in particular I, —T5T5 = (1—|vo|*)n(v)n* (7).
Substituting the block representation (3.56) in this representation we get (3.60).

0

Lemma 3.14. The matrices P(7y) and £(7) introduced via (3.6) are linked by the
formula P(y) = £(7)*.

Proof. Let P(v) = (prj (7))35=1 and £(7) = (lk;j(7))7;=1- Since the change from
the canonical basis (2.12) to the conjugate canonical basis (3.3) is connected via
the replacement of ~; by v;, j € {0,1,2,...} and taking into account matrix

representation (3.47) we get pg;(y) = ((Z~5j7¢k) = (¢j,%@) = (thbj) = lLin(y) =

4. The connection of the maximal shifts V; and V- with the
pseudocontinuability of the corresponding c.o.f. ¢

4.1. Pseudocontinuability of Schur functions

Let f be a function which is meromorphic in D and which has nontangential
boundary limit values a.e. with respect to the Lebesgue measure on T := {{ € C:
|¢] = 1}. Denote by D, := {¢ : |{| > 1} the exterior of the unit circle including the
point infinity. The function f is said to admit a pseudocontinuation of bounded
type into D, if there exist functions «(¢) and 8(¢) # 0 which are bounded and
holomorphic in D, such that the boundary values of f and ]? = g
on T. From the Theorem of Luzin—Privalov (see, e.g., Koosis [28]) it follows that
there is at most one pseudocontinuation.

The study of the phenomenon of pseudocontinuability is important in many
questions of analysis. We draw our attention to two of them. For more detailed

coincide a.e.
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information we refer the reader to Douglas/Shapiro/Shields [17], Ross/Shapiro
[30], Arov [3], Nikolskii [29], Cima/Ross [13].

In the Hardy space H?(D) we consider the unilateral shift U which is gen-
erated by multiplication by the independent variable ( € D, i.e., (U*f)(¢() =
Cf(¢), f € H?(D). The operator which is adjoint to U* is given by

f(¢) = £(0)
¢

If we represent a function f € H?(ID) as Taylor series via

W) = , [ e H*D).

fO)=ap+arl+ax*+---+a("+..., (€D,

and identify f with the sequence (ay)2, € [? then the actions of the operators
U* and W (by preserving the notations) are given by

U*: (ag,a1,a2,as,...) — (0,a9,a1,az,...)

and
W : (ag,a1,a9,as,...) — (a1,az2,as3,aq4,...).

In view of the Beurling theorem (see, e.g., Koosis [28]) the invariant subspaces
of the shift U in H?(D) are described by inner functions whereas a function f €
H?(D) is cyclic for U* if and only if f is outer. In this connection we note that in
view of a theorem due to Douglas, Shapiro and Shields [17] a function f € H?(D)
is not cyclic for the backward shift W if and only if it admits a pseudocontinuation
of bounded type in D..

Following D.Z. Arov [4] we denote by SII the subset of all functions belonging
to § which admit a pseudocontinuation of bounded type in D.. We note that the
set J of all inner functions in D is a subset of SII. Indeed, if 8 € J then the function

6(¢) = 971(2)7 ¢ € D, is the pseudocontinuation of 6.

It is known (see Adamjan/Arov [1], Arov [4]) that each function of the Schur
class S is realized as a scattering suboperator (Heisenberg scattering function)
of a corresponding unitary coupling. D.Z. Arov indicated the important role of
the class SII in the theory of scattering with loss (see Arov [3], [4], [5]). In this
connection the following result is essential for our subsequent considerations.

Theorem 4.1. (Arov [3], De Wilde [16], Douglas/Helton [18]) A function 6 belongs
to the class ST if and only if there exists a 2 X 2 inner (in D) matriz function
Q(C) which satisfies

$(C) 0(0)

The fact that the function ©(¢) has unitary boundary limit values a.e. on T
means that Q({) is the scattering suboperator of an orthogonal coupling without
loss.

Q) = < X(C) ¢(<) >’ ¢ eD. (4.1)
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Definition 4.2. Let

_flete=eif ae D)\ {0},
wa(C) _{ 1C7 C ’Lfa:O

denote the elementary Blaschke factor associated with a. By an elementary 2 x 2-
Blaschke—Potapov factor we mean a 2 X 2-inner (in D) matriz function of the
form

b(¢) =Tz + (wa(¢) — )P (4.2)

where wy(€) is an elementary Blaschke factor whereas P is an orthoprojection in
C? of rank one, i.e., P> = P, P* = P and rank P = 1. A 2 x 2-matriz function
B(¢) which is inner in D is called a finite Blaschke—Potapov product if B admits
a representation of the form

B(¢) = uby(Q)b2(¢) - -+ - bn (<) (4.3)

where w is a constant unitary matriz and (bx(¢))r_, is a sequence of elementary
2 x 2-Blaschke—Potapov factors.

It follows easily from a result due to D.Z. Arov [3] that a function 6 € S is
rational if and only if there exists a finite Blaschke—Potapov product £(¢) of the
form (4.1). Thus, a function 6 € S is rational if and only if it can be represented
as a block of a finite product of elementary 2 x 2-Blaschke—Potapov factors.

The following statement shows the principal difference between the properties
of Schur parameters of inner functions and the properties of Schur parameters of
pseudocontinuable Schur functions which are not inner.

Theorem 4.3. ([21]) Let 6 € SII and denote (v;)5—, the sequence of Schur param-
eters of 0. If 0 is not inner then w = oo and the product (2.53) converges. If 8 is
inner then the product (2.53) diverges.

Proof. If § € SII \ J then the function ¢ in the representation (4.1) does not
identically vanish. Hence, In(1 — |0(e'¥)|?) = 2In|¢p(e'¥)| € L[—7, 7] and in view
of Remark 2.12 the product (2.53) converges. If § € J then from Remark 2.12 we
infer that the product (2.53) diverges. O

Corollary 4.4. Let § € SII\ J. Then the sequence of Schur parameters of 6 belongs
to Flg

4.2. On some connections between the maximal shifts V- and V-
and the pseudocontinuability of the corresponding c.o.f. 6

Let 6 € S. Assume that A is a simple unitary colligation of type (3.1) which
satisfies Oa(¢) = 0(¢). We suppose that the Schur parameter sequence of 6 be-
longs to I'ls. Then from Lemma 2.11 it follows that in this and only in this case
the contraction T (resp. T*) contains a nontrivial maximal shift Vp (resp. Vp«).



Contractions and Schur Parameters 223

Hereby, the multiplicities of the shifts Vpr and Vp« coincide and are equal to one.
We consider the decompositions (1.6). Let

Nog =N NHz , Nge = N5 N H, (4.4)
Neg = Ne ©Neg , Nz = N5 © Nge. (4.5)

Then
9 =9 & Heg & Nog, (4.6)
9 =Nge @ D50 S Ny - (4.7)

From (4.4) and (4.5) it follows that

965 = Py 93 5 H36 = Py Ne- (4.8)

Thus,
dim Hez = dim Hze, (4.9)

The following criterion of pseudocontinuability of a noninner Schur function
(see, e.g., [10, Theorem 3.17]) plays an important role in our subsequent investi-
gations.

Theorem 4.5. Let 0 € S and assume that A is a simple unitary colligation of
the form (3.1) which satisfies Oa(C) = 6(C). Then the conditions Negz # {0} and
Nze # {0} are equivalent. They are satisfied if and only if § € SIT\ J.

Theorem 4.5 will be complemented by the following result (see Arov [5])
which is obtained here in another way.

Theorem 4.6. (Arov [5]) Let 0 be a function of class S such that its Schur parameter
sequence (’yj);?';o belongs to T'ls. Assume that A is a simple unitary colligation
of the form (3.1) which satisfies Oa(C) = 6(C). Then 6 is a rational function
if and only if dimHez < co (resp. dimHzs < o00). If dimHez < oo then
dim Hez (resp. dim Hze) is the smallest number of elementary 2 x 2-Blaschke—
Potapov factors in a finite Blaschke—Potapov product of the form (4.3) with block 6.

Proof. From Lemma 2.11 it follows that in the given case we have fJé # {0} and
ﬁé‘ # {0}. Hereby the multiplicities of the shifts Vr and V- are equal to one.

Assume that dim gz < co. Taking into account that f)é ﬂf)é‘ = {0} we see
that in the decomposition (4.6) the relation Mgz # {0} holds true. Since Hg and
5%‘ are invariant with respect to T then gz is also invariant with respect to 7.
Hereby it is easily seen that the operator ‘7% = Rstr. ;1™ is the maximal shift
which is contained in T (see matrix representation (1.9)). Thus, with respect to
the decomposition (4.6) the operator 7" has the matrix representation

T=| 0 Teg * (4.10)
0 0 Vi
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where Teg 1= Rstr. g, (Pye; 1) : Heg — Heg. From (4.10) it follows in view of
[10, Theorem 3.3] that 6 admits the factorization

0(6) = 0.10e5(6) ) (a.11)

where fg5 is the c.o.f. of the contraction Tez.

Let n = dim Hez. For the contraction Tez we consider the nested chain of
invariant subspaces (ﬁg%)zzl where dim f)gc% = k. This chain generates a repre-
sentation of the function 65 ({) as product of n elementary 2 x 2-Blaschke-Potapov
factors of the form (4.2) (see Brodskii [12], Sz.-Nagy/Foias [33]).

Suppose that in addition to (4.11) the function §(¢) admits the factorization

01 = 0,080 ( | ) (1.12)

where B(() is a finite 2 x 2-Blaschke-Potapov product of the form (4.3) with m
factors. Then we will show that m > n.

We proceed by contradiction. Assume m < n. Then using [10, Theorem 3.19]
from (4.12) it follows that the space $) admits the decomposition

H=NoHoN (4.13)

With respect to the decomposition (4.13) of $ the operator T has the matrix

representation
*

*

v
0
0 |4

o Ny *

Hereby, (0,1) and ( (;

coshift ‘7, respectively, whereas B(() is the c.o.f. of the contraction T.

Obviously, an elementary 2 x 2-Blaschke—Potapov factor is the c.o.f. of a
completely nonunitary one-dimensional contraction. Since every of these factors is
an inner function then (see Brodskii [12]) their product is regular. In the case of
regular factorizations the inner space will be summed up. Hence, it is dimSAj =m.
Thus,

) are the characteristic function’s of the shift V' and the

dim § < dim He;. (4.14)

Let 590 == 9H S (Y)é‘ \/ﬁé). Obviously, $p C Hez and Hy C ?) Further, let
ﬁgg)g = Nz S No, 5%0 = ?_)@f)o. From (4.14) it follows dim?)o < dimf_)g))g. Hence,
there exists a vector h # 0 with the properties

henyk, hL 5. (4.15)

It can be easily seen that .‘7)&% C Pgﬁﬁé-. Hereby, 56&% N 5%‘ = {0}. Thus, there
exists a vector f; € f)é‘ which satisfies h = Pg,, f1. Hereby, g1 = fi —h #0, i.e.,

h=fi—g1, f1 €95, 01 € D, k] <Al (4.16)
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On the other hand, from (4.15) we infer h L 9. Using (4.13) this implies
h € 9D & N. Hereby, we have 91 C .‘bé and 91 C .‘ZJJS-. Consequently, there exist
vectors fo € .‘731%‘ and g € .‘?Jé satisfying fo L go and h = fo — go. Thus,

h=fo—g2, f2 €93, 92 € N, bl = [ f2]l. (4.17)
Because of 3 N H = {0} from (4.16) and (4.17) we get f1 = fo and g1 = go.
Hence, ||h]| < ||f1]l = ||f2]l < ||#]|- This contradiction shows that the assumption

m < n was wrong. Hence, m > dim ;.
Now assume that 6(¢) is rational. We represent 6 in the form

01 = 0.0B@ (] )

where B(() is a finite Blaschke-Potapov-product of the form (4.3). We assume that
the number of elementary 2 x 2-Blaschke—Potapov factors satisfies the minimality
condition. Denote by m this minimal number of elementary 2 x 2-Blaschke-Potapov
factors. Using now the factorization (4.11) of 6({) we obtain, as in the above
considered case of the factorization (4.12), that dim gz < m < oo. Since m
satisfies the minimality condition we obtain the equality dim Hez = m. O

Lemma 4.7. It holds

‘JI@S = ker Q*(’}/) (418)

where Q(v) is that Hankel operator in Sﬁé‘ the matrix representation of which with
respect to the basis ()52, has the form (3.48).

Proof. From (4.4) it follows that h € Mgz if and only if h € ﬁé‘ and h L 9.
Combining this with the fact that the vectors (3.13) form an orthonormal basis in
Hg we obtain (4.18). O

5. Some criteria for the pseudocontinuability of a Schur function
in terms of its Schur parameters
5.1. Construction of a countable closed vector system in )5 and investigation of
the properties of the sequence (0,,)22 ; of Gram determinants of this system

Let 6(¢) € S and assume that A is a simple unitary colligation of the form (3.1)
which satisfies 4 (¢) = 0({). As in the preceding chapter it is assumed that the
Schur parameter sequence (7;)32, of 6(¢) belongs to I'la.

Theorem 5.1. The linear span of vectors

ho = b~ Y Ly j(Win)i;, n € N (5.1)

j=1

is dense in Heg. Here (¢r)72, and (zzk)zozl denote the orthonormal systems taken
from the canonical basis (2.12) and the conjugate canonical basis (3.3), respectively,
whereas W, (Li(y))32, and (I1x)32, are given via (3.11), (3.12) and (3.14).
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Proof. Since (¢x)5, is an orthonormal basis in $z, from (4.8) it follows that the

vectors h, = Py, ¢n, n € N, form a closed system in $eg. Since (¢)72, is an
o0

orthonormal basis in g, the identities hy, = Pyy dn = dn— Y. (¢n, zzj)zzj, n €N,
j=1
hold true. It remains to note that from the decompositions (3.13) we obtain

~‘ _ HnLn—j(Wj’y>7 lfjg n,
(%%)—{ 0, if j>n. =
Corollary 5.2. It holds
(h1,h1)  (ho,h1) ... (hn,h1)
(h1,h2)  (ho,h2) ... (hn,h2)
: : . =I-2.(7)£.(7), neN (5.2)
(h1,hn)  (ho,hy) oo (hp,hy)
where
11 0 0 .0
oLy (W) I, 0 0
Co(y) = | HsLe(Ww)  TzLy(W27) IT3 0 (5.3)
M, L, 1(Wy) H,L, o(W?y) L, s(W3) ... TI,
is the nth order principal submatriz of the matriz £(v) given in (3.47).
Proof. The identities (5.2) are an immediate consequence of (5.1). O
In the sequel, the matrices
An(y) = In — £,(1)L5(7), n€N (5-4)
and their determinants
o 1, if n=0,
on(7) = { det A, (7), if n €N (5.5)

will play an important role. They have a lot of remarkable properties. In order to
prove these properties we need the following result which follows from Theorem
3.12 and Corollary 3.13.

Lemma 5.3. It holds

L£n(7) = M (1)L (W) (5.6)
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where £, () is given via (5.3) whereas

D., 0 0 .0
—M172 D’Y2 0 0
—71D~,73 —Y273 D, 0
M, (7) = . . . (5.7)
n—1 n—1 n—1
—n I Dyve =72 [ Dyyve =3 I Dyyyn - Do,
j=2 j=3 j=4

is the nth order principal submatriz of the matriz M(vy) given in (3.53). Hereby,

I — M (V)M () = nu (V)05 (7), n €N, (5.8)
where
n—1
nn(’Y):C01(71372D715"'77nHD’YJ')' (59)
j=1

Corollary 5.4. The multiplicative decompositions

L0 (7) = Mu(y) - M (Wr) - M, (W35) -, ne€N
hold true.
Proof. From the form (5.3) of the matrices £, (7) it can be seen that

lim £,(W™v) =1, forallnecN.

m—00

Now using (5.6) we obtain the assertion. 0

Theorem 5.5. ([23]) Let 0(C) be a function from S the sequence (v;)32, of Schur
parameters of which belongs to I'ly. Assume that A is a simple unitary colligation
of the form (3.1) which satisfies Oa(C) = 0(C). Then the matrices A, (7y) (see (5.4))

and their determinants (o, (7)), have the following properties:
(1) Forn €N, it hold 0 < o,(y) <1 and ,(y) > ops1(7)-
Moreover, lim o,(y) = 0.
(2) If there exists some ng € {0,1,2,...} which satisfies op,(y) > 0 and
Ong+1(77) = 0, then rank A, (v) = ng for n > ng holds true. Hereby, ng =
dim Hez(= dim Hze) where Hez and Hge are given via (4.5).
Conversely, if dim Hez(= dimHge) is a finite number ng then on,(y) > 0

and op+1(y) = 0.
(3) It holds

An(7) = 10 (V)1 () + M (V) A (W), (7), n €N (5.10)

where M, (v) and () are defined via (5.7) and (5.9), respectively.
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Let (A j(7))j=1 denote the increasingly ordered sequence of eigenvalues of the
matriz A, (), n € N, where each eigenvalue is counted with its multiplicity,
then

0 >\n,1(W7) S )\n,l(’y> S >\n,2(W7) S )\n,2(’7) S ..

<

Thus, the eigenvalues of the matrices Ay, (y) and A, (W+) interlace.
Forn € N, it holds

C(h1, ha, ..., b, G(1) H (1= |v1?) (5.12)

where T'(hy,ha,. . .,hn,G*(1)) is the Gram determinant of the vectors (hy)i_,
given by (5.1) and the vector G*(1) defined by (2.2). Hereby, the rank of the
Gram matriz of the vectors (hi)p_, and G*(1) is equal to rank A,(W~) + 1.
If o, () > 0 for every n € N then the sequence

(Ma-nm7

=0 n(7)
monotonically decreases. Moreover,

i on (W)

o 04 ()

= [P, G OIF (513)

where Iy and Negz are defined via formulas (3.14) and (4.4), respectively.
Assume that on(y) > 0 for every n € N. Then o,(W™v) > 0 for every
m,n € N. Moreover, if the limit (5.13) is positive, then

- Wm+1
T )

>0 5.14
A g (Wmn) (5:14)

for every m € N.

Proof. (1) Since by Corollary 5.2 A, () is a Gram matrix then o, (y) > 0, n € N.
On the other side, in view of v € T'ly the matrix £,,() is invertible. Thus, from
(5.4) we infer o, (y) < 1, n € N. From (5.3) it follows that

An(y ) —£,(7)bn(7)
Ans = (L8 1o b ) (5.15)

where

bn(7) = piacol (Ln (W), Ln—1(W?7), ..., Li(W"y)). (5.16)
From (5.15) we find

Ava) = Fua) (457 i) Faat) (5.17
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where F,, 1(y) = ( anr(’y) (1) >, Xn1(y) = =b5(v) €5 (1) A (7), and

Ald(y) =1 =112 1y = b5 ()b (y) = B (N Ea(N AL (N En(Mba(y)  (5.18)

is the Schur complement of the matrix A, () in the matrix A,41(7y). The symbol
AT () stands for the Moore—Penrose inverse of the matrix A, (v) (see, e.g., [24,
part 1.1]). Thus,

Tn+1(7) = on (1) AL (7). (5.19)

In view of A,41(7) > 0 we have Al (v) > 0. Taking into account I, > 0 and
lim II, = 1 from this and (5.18) we obtain 0 < A\7(7) < 1 and lim Al(~) = 0.
Now (1) follows from (5.19). o
(3) Using (5.6) we get
A7) = In = £a(NLL(7) = Lo = M) L (W) £, (W)M, ()
= Ly = M (V)M () + I (7) A (W) M5, ()
Combining this with (5.8) we obtain (5.10).

(4) Since £,(7),n € N, is a contractive invertible matrix, from (5.4) we get
0<X;(v) <1, neN, je{l,2,...,n}. (5.20)

From (5.8) we see that the matrix 9, () is contractive. Therefore, using
(5.6) we find

I = £,(V)€n(v) = L — £, (W), ()0, (7) €0 (W)
= I = £, (W)L, (W) + £, (W) [I — I, (7). (7)] £, (W)
I — £,(Wv)Ln(Wr).

V

Thus, taking into account that the eigenvalues of the matrices I,, — £, (7)£5 ()
and I, — £ (7)£,(7) coincide and using minimax principles for the eigenvalues of
Hermitian matrices we get

Agp(Wy) < Aik(y), neN, ke{l,2,...,n}. (5.21)

On the other side, applying (5.10) for 2 € C™ and n € N we obtain

(An(Mz, 2) = [(2, 72 (7)) + (An (W), (7), DT, (7)) (5.22)
In the case n = 1 the inequality (5.11) follows from (5.21). Let n > 2,k €
{1,2,...,n} and assume that (wj)§:1 is an arbitrary sequence of vectors from

C™. In view of 4 € T'ly from (5.7) it follows that the matrix 9, () is invertible.
Let w; := M, (Y)w;, 7 € {1,...,k} and 7, (7) := M, 1 (V)nn(y). For z € C,
we set y = M (y)x. From (5.8) it can be seen that the conditions ||z|| = 1
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and (z,7,(y)) = 0 imply [y[| = 1. Hereby, (z,w;) = (O~ (v)y, w;) = (y,0;)-
Therefore, using (5.22) and the minimax principle, for k € {1,2,...,n—1} we find

Ani(7) = wi e |\x|\:1,(w,w,-)rg(i)r,lje{l,...,k—u(A"(V)x’x)
S U lelmL o) =0 ) =0se L kfl}(A”(V)x’x)
T L e o)=0 s 0get oy T V)
= o HyH:l,(y,ﬁJ?)liI(lJ,je{l,...,k}( (W), y)
= A1 (W7).

Combining this with (5.20) and (5.21) we get (5.11).
(2) Assume that ng € {0,1,2,3,...} satisfies oy, (y) > 0 and op,+1(y) = 0. If

no = 0 then using o1(y) = 1 — [[ (1 — |v4]?), we infer v; = 0,5 € N. Thus, (5.3)
j=1

implies £,(y) = I,,n € N and A,(y) = 0,n € N. Consequently, from (5.2) it

follows that dim Hez = 0. In view of (4.9) this means dim Hze = 0.

Let ng € N. From (5.3) we get the block partition

B I, 0
L) = ( Buia(7) £.(W7) > (5:23)

where
Bn+1(7) = col (Hng(W’}/), H3L2(W’7), ey Hn+1Ln(W7)). (524)

From this, we obtain the block representation

(118 SILB ()
“““*1”)—<—n13n+1<7> Au(WA) — By (1) Bl () ) (5.25)

We consider this block representation for n = ng + 1. Since det A, +1(y) = 0, in
view of (5.11), we have det A,,+1(W+~) = 0. Assume that z € C™*1 z #£ 0 and

x € ker Ay +1(W+). Then from (5.25) we see that the vector T := ( 2 ) belongs

to ker Ap,+2(7).
Now we consider the block representation (5.15) for n = ng + 1. Let y €
Crotlly # 0 and y € ker Ay,+1(7). Then (5.15) implies that the vector y :=

g belongs to ker A, ,12(7). If the vectors Z and y are collinear then from
0

their construction we get that ker A, +2(7) contains the vector w = [ z | where
0

z € C™ and z # 0. Then the representation (5.15) for n = ng + 1 implies that

(

z € ker Ay, (7). However, o,,,(y) > 0 and consequently ker A, () = {0}. From

o

€ ker Ay, +1(7y). Now using representation (5.25) for n = ng + 1 we obtain

N
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this contradiction we infer that the vectors & and y are not collinear. This means
dim ker Ay, +2(y) > 2. Thus rank A, +2(y) < ng. On the other side, using (5.15)
we obtain rank Ay 12(y) > rank A, (v) = no. Hence, rank A, 42(7y) = no.

Applying the method of mathematical induction to the matrices Ayg4m ()
by analogous considerations we get rank A, 4+m(7) = no for m € N. Now using
(5.2), (4.9) and the fact that (h,)%2, is a system of vectors which is total in Hez
we find dim Hze¢ = dim Heg = no. The converse statement follows immediately
from (5.2) and the above considerations.

(5) Because of G*(1) € Hs and ¢; € H§, j € N, from (2.65) and (5.1) we get
k—1
(G*(1),hi) = (G*(1), 0k) = v, [[ Dvy» K EN.
j=0

Combining this with (5.9) it follows that
col ((G*(1),h1), (G*(1), h2),...,(G*(1), hy))

n—1
= D’YOCOI (71772D717 e In H D'Yj) = D’Yonn(’Y)'
j=1

Thus, taking into account (G*(1),G*(1)) = 1 — |y|? and using (5.2) and (5.10)
we get

R e
M (V)15 (7) + DMy (V) A (WML (V) 10(7) ’
D

= (1 - |70\2) 772(7)

Subtracting now the (n + 1)th column multiplied by 7, from the first column
and, moreover for k € {2,...,n}, subtracting the (n + 1)th column multiplied by

k—1
Y [ D5, from the kth column, we obtain
j=1

= (1= ]ol*)on(W7)| det My (). (5.26)

From (5.7) we see det M, (y) = [[ D,,. Thus, (5.12) follows from (5.26). From
=1

J
the concrete form of the matrix

( M, (1) An (W) (v) 0 (7) )
0 1

it is clear that the rank of the Gram matrix of the vectors (hy)y_, and G*(1) is
equal to rank A, (W~) + 1.
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(6) From (5.12) we get

T2y (W)  T(ha,ha,.o b, G*(1))
j];[l(l b)) T Tlhahe,.. . hy 0 EN (5.27)

Denote by P,, the orthoprojection from $) onto H © Lin{hy, ha,...,hy},n € N.
Because of G*(1) € $¢ using well-known properties of Gram determinants (see,
e.g., Akhiezer/Glasman [2, Chapter I ]) we see

F(hh h27 LR h’na G*(l))
T(hi,ha, ... hy)

This implies that the sequence on the left-hand side of formula (5.27) is monoto-
nically decreasing. Since the sequence (h,)%2, is total in Hez the decomposition

(4.6) shows that Py, is the strong limit of the sequence (Py)nen. Therefore,
(5.13) follows from (5.27) and (5.28).

(7) Assume that o,(y) > 0 for every n € N. Then the block representation
(5.25) shows that o, (W+) > 0 for every n € N. From this by induction we get
on(W™y) > 0 for all n,m € N. Assume now that the limit (5.13) is positive.
This means that Negz # {0} and Py, G*(1) # 0 are satisfied. As already men-
tioned, the operator Rstr. m, ;7™ is the maximal unilateral shift contained in 7.
Denote by 7, ||7]| = 1, a basis vector of the generating wandering subspace of this
shift. Then the sequence (T*("~1)7),cy is an orthonormal basis in Mggz. Since
Nez C H3 (see (4.4)) and since the part ()72 of the canonical basis (2.12) is

an orthonormal basis in 563, we obtain the representation

= PG ()% (5.28)

T = [ + Batha + -+ Buthn + - - (5.29)
where §; = (1, ¢;),j € N. Because of T*¢; = ¢;41,j € {1,2,...}, we get
T**7 = B + Botrga + -+ + Bnran + -+, kEN. (5.30)

From (2.68) we see

HD% : 1),9:) =0, ke {2,3,...}. (5.31)
Combining (5.30) and (5.31) it follows that (G*(1),T**7) =0, k € N. Thus,
Py, G*(1) = > (G*(1), T*r)T**7 = (G*(1),7)7 = B, H D,,r.
k=0 7=0
This means
1Pros G (V)] = 16:] ] D5, (5.32)

Thus, the condition || Py, G*(1)|| # 0 is equivalent to (7,11) # 0. This is equiva-
lent to the fact that ¢, is not orthogonal to e z. Now we pass to the model based
on the sequence W~ = (y1,72,73, - ..). We will denote the corresponding objects
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associated with this model by a lower index 1. For example, G1,MNe3,1,%;1 etc.
The identity (4.18) takes now the form Mgz = ker Q5 (y) where the matrix of
the operator Q;(7) is obtained by deleting the first row (or first column) in the
matrix of Q(7). Therefore, if the vector 7 with coordinate sequence (5;)32; (see
(5.29)) belongs to Mgz then in view of (4.18) it belongs to ker Q*(y). Thus, in
view of the Hankel structure of Q*(v) it follows that the vector with these coor-
dinates also belongs to ker Q7 (7). Hence, in view of (4.18) this vector belongs to
Neg,1. Thus, the condition B; # 0 implies that 1)1, is not orthogonal to Nez;1.
This is equivalent to || Pr, , G7(1)| # 0. Hence, if the limit (5.13) is positive then
the limit (5.14) is positive for m = 1. The case m € {2,3,4,...} is handled by
induction. O

Using considerations as in the proof of statement (7) of the preceding The-
orem and taking into account the “layered” structure of the model (see Theorem
2.13 and Corollary 3.7), we obtain the following result.

Corollary 5.6. Suppose that the assumptions of Theorem 5.5 are fulfilled. Moreover,
assume that op,(y) > 0 for all n € N. Suppose that there exists an index m €
{0,1,2,...} for which (5.14) is satisfied and denote by mo(7y) the smallest index
with this property. Then for m > mg(y) the limit (5.14) is positive. The number
mo(7) is characterized by the following condition. If T is a normalized basis vector
of the generating wandering subspace of Vry then

T = Brmo()+1¥mo(n)+1 T Bmo(v)+2¥mo(v)+2 + -+ and Brg(y)+1 # 0. (5.33)

Hereby, the relations

_ mo(y), if mo(y) =
mo(W) = { mo(x) 1, if mo(4) > (5:34)

hold true.

Definition 5.7. Assume that v € Tls. Let 6(¢) be the Schur function associated
with v and let A be a simple unitary colligation of the form (3.1) which satisfies
0(¢) = 0a(Q). If Nez # {0} then the number mo(y) characterized by condition
(5.33) is called the level of the subspace Nez or also the level of the sequence . If
Neg = {0} we set mo(y) 1= 0

Thus, it is convenient to consider the vectors 11,9, 13, ... as levels of the
subspace .‘7)%‘. Hereby, we will say that the vector ¢y, k € {1,2,3,...} determines
the kth level. Then the number mq(y) expresses the number of levels which have
to be overcome in order to “reach” the subspace NMgg.

Theorem 4.5 implies that a function 6(¢) belongs to SII'\ J if and only if
mo(7y) < oo. Hereby, as (5.32) shows, the verification of the statement Mgz # {0}
with the aid of the vector G*(1) is only possible in the case mg(y) = 0, this means
that NMegz “begins” at the first level. Therefore, if Negz # {0} but Py, G*(1) =0
then it is necessary to pass from the sequence 7 to the sequence W-y. Then from
(5.34) it follows that the subspace Mgz will be “found” after a finite number of
such steps.
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5.2. Some criteria of pseudocontinuability of Schur functions

Theorem 5.8. ([21]) Let 0(C) be a function from S whose the sequence (v;)52, of
Schur parameters of which belongs to I'ly. Then the vector

£(7) = (QW),QW?y),...,Q(W"y),...)

where Q(v) is given in (3.15), belongs to la. The function 6(C) admits a pseudo-
continuation into De if and only if £(y) is not cyclic for the coshift W (see (3.11))
m l2.

Proof. The vector £(7y) is not cyclic for W in [ if and only if ker Q(y) # {0}, where
Q(7) is defined via (3.48). The Hankel structure of Q(y) implies that ker Q(v) #
{0} if and only if ker Q* () # {0}. Now the assertion of the Theorem follows from
Lemma 4.7 and Theorem 4.5. 0

The following series of quantitative criteria starts with a criterion which char-
acterizes the Schur parameters of a rational function of the Schur class S.

Theorem 5.9. ([23]) Let 0(C) € S and denote v = (v;)$=¢ the sequence of its Schur
parameters. Then the function 0(C) is rational if and only if one of the following
two conditions is satisfied:

(1) w< o0, ie, |y =1.
(2) v €Ty and there exists an index n € N such that o,,(y) = 0, where o, (7y) is
defined via (5.5).
Hereby:

(1a) w =0 if and only if 6(¢) = Y0, 70| = 1.
(Ib) w € N if and only if 6(C) is a finite Blaschke product of degree w.

Let v € Tly. If ng € {0,1,2,...} satisfies 0,y (7) > 0 and o,y+1(7) = 0 then:

(2a) ng = 0 if and only if 6(¢) = o, |y0| < 1, t.e., if and only if 6(C) is not a
constant function with unitary value but a block of a constant unitary 2 x 2
matriz.

(2b) ng € N if and only if 6(() is not a finite Blaschke product, but a block of a
finite 2 x 2-matriz-valued Blaschke—Potapov product of the form (4.3) where
ng s the smallest number of elementary Blaschke—Potapov factors forming
such a 2 x 2-Blaschke—Potapov product.

Proof. All what concerns condition (1) is the well-known criterion of Schur [31,
part I] who described the Schur parameters of finite Blaschke products. Condition
(2) follows from the corresponding assertions (2) of Theorems 5.5 and 4.6. O

Theorem 5.10. ([23]) Let 0(C) € S and denote by v = (7;)52, the sequence of
its Schur parameters. Let on(7), n € {0,1,2,...}, be the determinants defined via
(5.5). Then 6(¢) € ST\ J if and only if v € T'la and one of the following conditions
18 satisfied:
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(a) There exists an index n € N such that oy, () = 0.
(b) If on(y) > 0 for all n € N then there exists a number m € {0,1,2,...} such
that

" Werl
T 7)

> 0. 5.35

Suppose that there exists an index m for which (5.35) is satisfied and denote mq(7)
the smallest index with this property. Then (5.35) is satisfied for all m > mo(7y).
The number mo(7y) is characterized by condition (5.33), i.e., mo(7y) is the level of
the sequence .

Proof. Theorem 5.9 implies that condition (a) is satisfied if and only if the function
0(¢) is rational and therefore belongs to SII\ J. In the case that 6(¢) is not rational
the assertions of the Theorem follow from the assertions (6) and (7) of Theorem
5.5, Corollary 5.6 and Theorem 4.5. O

For the proof of the next criterion we need additional facts about the matrices
A, (7), n € N, and their determinants.

Lemma 5.11. Assume that v € T'ls and o,41(7y) > 0 for some n € N. Then

n

Mo —as U Al s (536)

e on(7) 1—|mlf?

where
Ay () =col (v 'yQD,?zl ) 73D;21D;31 yeres Tn H D;jl). (5.37)

Proof. From formula (5.25) it follows that in the considered case the matrix
A, (W+) is invertible. Therefore, taking into account the invertibility of 9, (v)
and using (5.10) we get

An(7) = M (7) AR (W) [ X (1) X55(7) + Ln] A (W), (7) (5.38)
where X, (v) = An 2 (W)L (7)na (7). By direct computation it is checked that
M (VAR (7) = Dy (7)- (5.39)

Thus, X, (y) = ’1./4;1( W~)A, (7). Taking the determinant in (5.38) and using
the form (5.7) of the matrix 9%, () we obtain

H (1= Iy ) (W) det(I, + X (1) X (7).

From this and the identity det(l, + X, (7)X2(7)) = 1 + X (7)Xn(7y) (see, e.g.,
[24, Lemma 1.1.8]) we obtain (5.36). O
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Lemma 5.12. Assume that v € Tls and that o, () = 0 for some n € N. Denote by
mo(7y) the level of the sequence vy, i.e., mo(7y) is characterized by condition (5.33).
Then:

(a) For m > mg(v) it holds rank A, (W™v) = rank A, (W™*!y), n € N.
(b) If mo(y) > 1, me {0,1,...,mo(y) — 1} and no(m) is such that
Tno(m)(W™) >0 and 0y (m)+1 (W) = 0 then

(W
rank A, (W™~) > rank A, (W™ y), n € {1,2,...,n0(m) — 1},
rank A, (W™y) = rank A, (W™ y) + 1, n > no(m).

Proof. (a) Tt suffices to consider the case mg(y) = 0. In the opposite case it is
necessary to change from ~ to W™~ Thus, assume that mg(y) = 0. Because
of 31 # 0 from (5.32) we get Pn,,G*(1) # 0. This means, for arbitrary n € N
the rank of the Gram matrices of the vectors (h;)%_; is one smaller than the rank
of the Gram matrix of the vectors (h;)7_; and G*(1). Now for the case m = 0
the assertion follows from statement (5) of Theorem 5.5. The case m > 0 can be
treated analogously.

(b) Tt suffices to consider the case m = 0. The other cases can be considered
analogously. Thus, let m = 0. In the considered case we proceed as above and take
into account that now ;1 = 0. Hence, Py, G*(1) =0 and G*(1) € Heg- O

Theorem 5.13. ([23]) Let 6(¢) € S and denote by v the sequence of its Schur
pammeters Then 0(¢) € SIT\ J if and only if v € Tly and there exist numbers

m € {0,1,2,...} and ¢ > 0, which depends on m, such that
AW Tly) - A(W™)
where

A(y) =T - L)L (),

A(y) =col(v1, %05} D' DL v D5 (5.41)

and £(7y) is given via (3.47). Suppose that there exists an index m for which (5.40)
is satisfied and denote by mo(vy) the smallest index with this property. Then (5.40)
is satisfied for all m > mg(y). The number mo(7y) is characterized by condition
(5.33), i.e., mo(7y) is the level of the sequence .

Proof. We suppose first that o, (y) > 0 for all n € N. Then from statement (6) of
Theorem 5.5 and Lemma 5.11 it follows that the sequence (A% ()AL (V) A (7)),
is monotonically increasing and bounded from above if and only if the limit (5.13)
is positive. Thus, the existence of a number ¢ > 0 such that for all n € N the

inequality

A (DA (NAR() < ¢ (5.42)
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is satisfied is equivalent to the positivity of the limit (5.13). On the other hand, in
view of A, (y) > 0, n € N, the condition (5.42) is equivalent (see, e.g., [24, Lemma
1.1.9]) to the inequality

An(Wr)  An(v)
( A () C ) >0, neN. (5.43)

But the conditions (5.40) and (5.43) are equivalent in the case m = 0.

Passing from the sequence ~y to the sequence W™ and using analogous con-
siderations we obtain that the limit (5.35) is positive if and only if the condition
(5.40) is satisfied. Thus, the application of Theorem 5.10 shows that the assertion
is proved if o,,(7y) > 0 for all n € N.

Assume now that o,,() = 0 for some n € N. We suppose that mo(y) = 0. In
the opposite case, we pass from the sequence 7 to the sequence V™0 (")~ Assume
that ng € {0,1,2,...} satisfies oy, () > 0 and oypy+1(7) = 0. Then, if the constant
¢ fulfills condition (5.42) for n = ng, condition (5.43) will also be satisfied for
n = ng. We will show that for a constant ¢ chosen in this way the inequality (5.43)
will also be satisfied for all n > ng.

Let k € N and n = ng + k. The matrix A,,+r(7y) admits the block represen-
tation

_ Ano(’y) Bno7 (’7)
.An0+’€(7) - ( B:L()7k(7) Cno,:(’y> ) .

Statement (2) of Theorem 5.5 implies (see [24, Lemma 1.1.7]) that this block
representation leads to the factorization

] G PG (5.44)

I, 0 " _ .
where Fnoyk(r}/) = ( X I:(’V) I > ) Xﬂo,k(r}/) = Bno,k(V)Anol(rY)' Using (539)
m0,

we rewrite (5.10) in the form

1
L—|ml[?
On the one hand, statement (a) of Lemma 5.12 implies that rank A,,+x(y) =

rank A, +x(W+). Then from (5.45) for n = ng + k it follows that A,,4x(7y) is
contained in the range of A, 4+ (W+). Thus, we have the representation

An(7) =My (y) ( A (VAL (V) + An(Wry) ) M (y), n €N, (5.45)

I, 0 Ay (7) )
A, = o 0 . 5.46
0+k(7) ( Xno,k(W'Y) I > < 0 ( )
We consider the matrix (5.43) for n = ng + k and multiply it from the left by
-1
the matrix < F"“vkéwry) (1) > and from the right by the adjoint of this matrix.

Taking into account (5.44) and (5.46) this gives us the nonnegative Hermitian
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matrix
Ane(Wy) 0 Any (7)
0 ! 0 ( O7 )
(AL(), 0) c

Thus, the matrix (5.43) is nonnegative Hermitian for n = ng + k, too.

Hence, in the considered case the Theorem is proved for the case m = 0. The
case of an arbitrary m € {1,2,...} is treated as above. One has only to pass from
the sequence v to the sequence W™~. O

Corollary 5.14. Let 0(¢) € S and denote by 7 the sequence of its Schur parameters.
Then 0(¢) € STI\J if and only if v € Tly and there exists an indexm € {0,1,2,...}
Jor which the vector A(W™~) belongs to the range of the operator Az (Wm+1y).
Suppose that there exists such an index m and denote by mo(y) the smallest one.
Then for all m > mgo(y) the vector A(W™~) belongs to the range of the operator
A2 (W), The number mo(v) is characterized by condition (5.33). This means
that mo(7) is the level of the sequence 7.

Proof. Because of A(W™~) >0, m € {0,1,2,...}, the assertion follows from The-
orem 5.13 and the well-known criterion for nonnegative Hermitian block matrices
(see, e.g., [11, Lemma 2.1]). O

Remark 5.15. The matriz representation (3.6) implies
AW) =1 =£()L () = R(HR"(0)-

Therefore, Corollary 5.14 remains true if the range of the operator A (Wmtly)
is replaced by the range of the operator R(W™t1y).

5.3. On some properties of the Schur parameter sequences
of pseudocontinuable Schur functions

In the term A% (7)A,; ' (W~v)A,(y) (see Lemma 5.11) the parameter ~; is only
contained in A, (7). This enables us to give a more concrete description of the
dependence of this expression on ;. For this we consider the representation (5.25).
We assume that for n € N the matrix A,41(7y) is invertible and introduce the
notations

Hn(v) = An(W) = Bns1(7) Brrya (7) (5.47)
and
HI(y) =1 -1} =T B;, . (1) H,, ' (7) By (7)- (5.48)
Then from (5.25) it follows
An+1(7)

_<(1) H182+}:7)Hn1(7)) <HLC](§7) HS(7)> (—HlHn‘l(vl)BnH(v) IO)
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Thus,
'A;Jlrl ()
1

= 0 B O 1 LB (v)H ()
B (HlHnl(’Y)Bn%»l(’Y) I, ) <H (S ) Hnl("}/)> ( 0 +In >

1 1 . i 0 0
= 1) (mHnlw)BnH(w)) (I B () H () + ( 0 Hn1(7)>'

Using this product representation and the equality A,4+1(y) = < -1 /;Y 1( ) >

we find

A (DAL (W) A () (5.49)

- H[C(lw)wngmww (W) B (W)

1 *
+1 _ |72|2A W (W) H L (W) A (W).

Hereby, 41 occurs only in the expression in the modules.

Definition 5.16. Denote IIT" (resp. IIT'y) the set of all v € T for which the associ-
ated Schur function belongs to SII (resp. SII\ J).

Lemma 5.17. Let v € IIT'ly. Assume that o, () > 0 for alln € N and mg(y) = 0.
Then

lim H(y) =0 (5.50)

where H\ () is given via (5.48).
Proof. In view of (5.47) for n € N we get

Bl (VH, (V) By (7)

= Bl (1) An (W) (I — An (W) Bt (1) Bl (1) An 2 (W)™
. -3 _ — k _ Qn(r}/)
An (W) Bria(y) = k:1qn(v) =1 ()

where ¢, (y) = B;+1(7)A;1(W7)Bn+1(7), n € N. Thus,

Hld — T2 _ 112 an(7) . neN. 551
n (7) 1 1y _ %(7) ( )
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Using the block partition (5.23) of the matrix £,,41(y) we obtain for n € N
by analogy with the derivation of the formulas (5.19) (see, e.g., [24, Lemma 1.1.7])
on1(7) = det(lny1 = £541 (1) €nia (7))

et ( 1—T2 — B: (1) Bap1 () =B (7)€ (Wr) )
—£,(Wv)Bni1(7) I, — £(Wy)L,(Wn)

= on(WN{ 1-T13= By (V) ( 1 + £a(WA) A (W) €5, (W7) ) Bria(7)}
= 0, (Wy)(1 =105 = B i (A (W) Basa (7))

This means o, 41(7) = 0, (W~)(1 =102 — ¢, (7)), n € N. Comparing this expression
with (5.19) we obtain

L= on(Wy) 1=TI —ga(7)

It holds lim Al (y) = 0. Hereby, in view of mg(v) = 0, the limit (5.13) is positive.
Thus, lim g,(y) =1 —II3. Now (5.51) implies (5.50). O

Lemma 5.18. Let v € MTly. Assume that mo(y) = 0 and that there exists an
index ng € N such that o,,(y) > 0 and opy1+1(y) = 0 are satisfied. Then there
exists a unique constant vector a = col(as,...,an,) such that a; # 0 and for
j€40,1,2,...} the relations

(Ing = L5 (WIN) L (Wiy))a = 1~ by (W), (5.52)
no+j+1
. J .
( Hno+]+1£1n0(W ’Y)a ) c kerAn0+1(W]’Y) (553)
and
* j Hn j En Wj a Hn 1 En WjJrl a
gﬁn0+1(W37)( o+j+1 10( ’Y) ) _ D%o+j+1 ( o+j+2 10( ’Y) )5.54)

are fulfilled where I1,,,b,(y) and My, (7y) are defined via (3.14), (5.16) and (5.7),
respectively.

Proof. From the assumptions of the lemma we obtain analogously to (5.17)

it 0 ) (0 D) (B B ) o3

where

X 1(7) = =An (1) Lo (7)o (7)- (5.56)
Let a(’Y) = (Ino - 2;:,0 (’Y)Eno (7))711)?10 (’Y) Thus,

(Ino = L35 (V) €no (M)a(y) = byy (7). (5.57)
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From (5.55) and (5.56) we see that the vector

< Lng (vl)a(v) ) (5.58)

belongs to ker A, +1(7). Because of mg(y) = 0 Lemma 5.12 implies that for arbi-
trary j € N the relations

Ong (Wj’Y) >0, O'noJrl(WjJrer) =0 (559)

hold true. This means dim ker A, +1(W7v) =1, j € {0,1,2,...}. For this reasons,
all computations can be done in the same way if we replace v by Wiy, j € N.
Thus, for j € {0,1,2,...} we have

( EnO(Wiz)a(ij) ) € ker Apg o1 (W), (5.60)

Using (5.10) and (5.59) we infer
m;0+1(Wj7)(ker ‘An0+1(Wj7)) = kerAn0+1(Wj+17) , JE {07 L,2,.. }
This means for j € {0,1,2,...}

W) ( Sno(ijl)a(va) > 4, ( SnO(Wﬂ'Hyl)a(Wij) ) (561)

Hereby, from (5.7) we get
kj=Dopsyer s 5€40,1,2,..}. (5.62)

Using (5.10) it follows n,,+1(W77) L ker A,,1(W77), j € {0,1,2,...}.
Therefore, in view of (5.8), the operators M (W) and M, 1| (W) coin-
cide on the subspace ker A,,,+1(W7~). Combining this with (5.6) and (5.7) we find
for j € {0,1,2,...} the equations

o) (SO Y i (S0P )

1 1
_ ( M (W) 0 > ( Lo(Wiv)a(Wiy) ) _ ( Lo(WIHy)a(Wiy) >
* * 1 *

Taking into account (5.61) and (5.62) from this we get

a(Witly) = D;n10+j+la(ww) , j€{0,1,2,...}.
This means

J
a(Wiy) = [[ DL a(v) 7 €40,1,2,...}. (5.63)

k=1
If weset a:= H;{}Ha(fy) then (5.63) implies a(W77) = Il,4 410, j € {0,1,2,.. .}
Substituting this expression into formulas (5.57) for W7+~ instead of v, (5.60) and
(5.61) we obtain (5.52), (5.53) and (5.54), respectively.
If we assume that a; = 0 then representation (5.3) shows that the first
component of the vector (5.58) is 0. Then representation (5.25) implies that
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ker A, (W+) # 0. This contradiction shows that a; # 0. Finally, the uniqueness
of the vector a follows from (5.57). O

Before formulating the next result we note that all functions A, (v), H,(7)
and B, () only depend on (71,72, ...). This means that the functions A, (W™~),
H,(W™~) and B,,(W™~) only depend on (Vm+t1, Ym+2; - - -)-

Theorem 5.19. Assume v € ITls. Denote by mo(7y) the level of the sequence
~. Then for every m > mo(y) + 1 the element ~,, is uniquely determined by the
subsequent elements Ym+1, Ym+2, - - .- Moreover, the following statements hold true:

(1) Assume that o, () > 0 for all n € N. Then
Ym = Mgz - T AL (W) Hy (W) Boga (W)
m>mo(y)+1  (5.64)
where M, Ap (), Ho(y) and Bpi1(7y) are defined via (3.14), (5.37), (5.47)
and (5.24), respectively.

(2) Assume that there exists an n € N such that o,(y) = 0 is satisfied. Let ng €
{0,1,2,...} be chosen such that o, (W™ M~) > 0 and 0,1 (W™ ) = 0.
Then there exists a function w(y) = w(vy1,72,...) such that the identities

Y = w(W™y) , m>mo(y) +1 (5.65)

are fulfilled. Hereby, we have the following cases:
(2a) If ng =0 then w(v1,72,...) =0, i.e., ym =0 for m > mo(vy) + 1.
(2b) Ifng € N then

E?r
3

w w 5.66
== i) Zwk a1 (5.66)
where for k € {1,2,...,no}
k .
wi(Y) = Mo 1Ty Y a;Le— (W) and wnyia(y) = 1. (5.67)
j=1
Hereby, the constant vector a = col (a1, as, ..., an,) satisfies (5.52) for

J = mo(y).

Proof. Without loss of generality we assume that mq(y) = 0. If ,,() > 0 for all
n € N then Lemma 5.11 implies that the expression (5.49) has to be bounded if
n — oo. Thus, in the case m = 1 formula (5.64) follows from the boundedness of
the expressions (5.49) and (5.50). For arbitrary m > 2 formula (5.64) is verified
analogously by passing from the sequence ~y to the sequence W™ 1.

Assume now that there exists an n € N such that o,(y) = 0 is satisfied.
Without loss of generality, as above, we assume that mg(y) = 0. If np = 0 then

o1(y)=0,ie,1— 'H1(1 — |41%) = 0. This implies (2a).
]:
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Suppose now that ng € N. Then (see the proof of Theorem 5.13) there exists
m > 0 and a constant ¢ > 0 such that the inequality

Ang 1 (W y) - Ayt (W) )
o m 0 >0 5.68
( Aby 2 (W) c (5.68)
holds true. Let
H’I’Lo Sno
Y(y) = ( - tr)e ) : (5.69)

where the vector a satisfies (5.52). Then (5.53) implies Y (W) € ker A,,,+1 (W=).
From this and (5.68) for m = 0 we infer

ALy (MY (Wr) = 0. (5.70)
Using (5.69) and (5.3) we see that Y () has the form

Y(’V) = col (wl (7)7 w2(7)7 R wno+1(7))

where the sequence (wj(’y));ﬁ‘fl is defined via (5.67). Taking into account (5.37)
and substituting the coordinates of Y () in (5.70) we obtain the identity (5.65)
for m = 1. Hereby, w(7) has the form (5.66). Passing now from v to W™~ 1y and
repeating the above considerations we obtain from Lemma 5.18 the formulas (5.65)

form € {2,3,4,...}. O
The theorems proved above motivate the introduction of the following notation

Definition 5.20. The elements v of the set IIl'ly are called I1-sequences. A TI-
sequence 7y is called pure if mo(y) = 0. If v,y € T'la then ' is called a extension
of v if there exists an n € N such that W™y = ~ is satisfied. If v is a pure II-
sequence and ' is a extension of vy then ~' is called a regqular extension of v if '
is also a pure I-sequence. Assume that v € IIls. Let 6(¢) be the Schur function
associated with v and let A be a simple unitary colligation of type (3.1) which
satisfies (¢) = Oa(C). Then the number dim Hez(= dim Hze) is called the rank
of the Il-sequence .

Theorem 5.19 shows that in the case of a pure Il-sequence v = (v;)5%,
every element 7,, n € N, is uniquely determined by the sequence v = (7;)52,,11-
Therefore, every II-sequence v is a extension of a pure II-sequence W0 ().

Let us consider an arbitrary Il-sequence v = (’Yj)}?io Then obviously the
sequences (v;)?2, and v = (v;)32_; where [y_1| < 1 are II-sequences. This
means that as well deleting an arbitrary finite number of first elements of a II-
sequence as finite extension of a II-sequence gives us again a II-sequence. However,

if v = (7;)320 is a Il-sequence then the freedom of choice is restricted only to the
first mo(y) + 1 elements (’yj)?:”év). Beginning with the element 7, ()41 all the

following elements of the sequence « are uniquely determined by the corresponding
subsequent ones. Namely, the existence of a determinate chain (Vj)fr?o(v) .
the pseudocontinuability of the corresponding function 6(¢) € S. Therefore, in

order to understand the phenomenon of pseudocontinuability it will be necessary

| ensures
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to study the structure of pure II-sequences. Theorem 5.19 shows that a regular
extension of a pure II-sequence is always unique and preserves this structure.

Let v be a pure II-sequence and + one of its nonregular one-step extensions.
Then, as it follows from Theorem 4.5, Lemma 4.7 and the structure of the kernel
of a Hankel matrix, an arbitrary extension of 7’ can never be a pure II-sequence.

The combination of statement (2) of Theorem 5.5 and Theorem 5.9 shows
that a II-sequence ~ has finite rank if and only if its associated function 6(¢) is
rational. Hereby, this rank coincides with the smallest number of elementary 2 x 2-
Blaschke-Potapov factors of type (4.2) occurring in a finite Blaschke-Potapov
product which has the block 6.

Lemma 5.12 shows that a regular extension of a pure Il-sequence of finite
rank has the same rank. On the other hand, the rank of every nonregular one-
step extension of a pure Il-sequence is one larger. Since every Il-sequence -y is a
nonregular mg(7)-steps extension of a pure II-sequence VoV~ we have

rank y = mg(7y) 4 rank W, (5.71)
Hereby, rank W™y = rank WmoM+ny n € {1,2,3,...}.

5.4. The structure of pure Il-sequences of rank 0 or 1

Lemma 5.21. FEvery Il-sequence v of rank 0 is pure and has the form
Y= (705070707"') 5 |70| < 1. (572)

Conversely, every sequence of type (5.72) is a pure II-sequence of rank 0.

o0

Proof. Indeed, if ranky = 0 then o1(y) = 0, i.e., 1 — [[ (1 — |v;/*) = 0. This
j=1
implies v, =0, j € {1,2,3,...}. The converse statement is obvious. O

Thus, IT-sequences of type (Yo, V1s---5Vn,0,0,...), |7n| > 0, n € N are never
pure. They are n-step extensions of a pure II-sequence of type (5.72) where || > 0.
Obviously, every such sequence has rank n.

Theorem 5.22. ([23]) A sequence v = (7;)72o € I is a pure Il-sequence of first rank
if and only if v1 # 0 and there exists a complex number \ such that the conditions

0< A <1—|m] (5.73)
and
Ym41 = A o , meN (5.74)
[T —=1]v?)
j=1

are satisfied.

Proof. Assume that  is a pure II-sequence of first rank. Using Theorem 5.19 we
see that in the case (2b) for ng = 1 the function w(y) has the form

1 ~1
w(r}/) = 7w1(7)71D71 wQ(V)'
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Hereby, we have wq(y) = slliar and wa(y) = wpo+1(y) = 1. Thus, w(y) =
— ajﬁl’ . From this and (5.65) we see that the elements of the sequence ~y are related
1

by the identities ~,, = — 7;’[? ' m > 1. This means
arili, 1
_ 2 _ 2 Ym
TYm+1 = _alan’Ym = —all'[l

fla-mpk)

Setting A := —a 117 this gives us (5.74). Hereby, because of a; # 0 we have \ # 0.
From (5.74) it follows 1 # 0 since otherwise we would have that v has rank 0.
Thus, |, >0 for j € N.

From (5.74) we get

N
ol L= )
j=1
Thus, lim hf’flll = Iﬁ\zl In view of v € I'ls, this implies
n—00 m 1
N <2 < 1. (5.75)

The identities (5.74) can be rewritten in the form
Dy Dy, - ... Dy Y1 = Ml , m €N (5.76)

Taking into account the equations
o0
2 2 2 2 2 2
Z D'le'yg T 'Dwm,|7m+1| =1- |71| _Hl
m=1

and Y |y |*12, ., = 1—1I7, from (5.76) we get II3 (1 — |y1|? —113) = [A[*(1—1I3).
m=1
Thus, 112 is a root of the equation

22 —z(1— |2+ A3 + A =0. (5.77)

Hence, this equation has a root in the interval (0,1). Consequently, taking into
account (5.75) we obtain (5.73).

Conversely, assume that 0 < |y1| < 1 and that the conditions (5.73) and
(5.74) are satisfied. Then

Al Il 7l
= < . 5.78
= bl ] = 14l 79
The identities (5.74) can be rewritten for m € {2,3,4,...} in the form
Y1 =M o, (5.79)

[T =%

Jj=2
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where \; = 17(}“'2. From (5.78) we see 0 < |y2| < 1. Hereby, it can be immediately
checked that

0<|M\| <1 |l (5.80)

Thus, after replacing A by A1 and v; by vj+1,7 € {1,2,3,...} the conditions (5.73)
and (5.74) are still in force and go over in the conditions (5.80) and (5.79). In
particular, this implies

AL Y2 Y2
e W kel el
L—|y2| 1+ 2| = 1+ |2l

Applying now the principle of mathematical induction we obtain

1] < ,meN
This implies that the inequalities
e MRS bl el bl
m — - f— P — ) )
1|+7|’j;*i|1| L+ 2vm-1] 7 14 3vm—2| L+ m|m|

hold true. Hence, v € T'ly. Hereby, we have o1(y) > 0.
Using (5.74) we find

o0 oo ’Ym
Li(yih2-+) = =D WmVmar =AY Im m
= =R (D
j=1
- A
e Y Rl =0 (G
1 =1 1
On the other hand, rewriting (5.74) in the form
2 m
Y = )\1 OO’YH . meN
[T (=1
j=m+1
we obtain
o H2 o Y
Li(m,725--.) = — Z TmVm4+1 = — )\1 Z 00 VYm+1
o= =T
j=m+1
2 m—1
:*M%OWF+WwFﬂ*hM%+~-+WmFIIﬂ*hﬂ%+~J
j=1
117

= — 1 —112).
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Combining this with (5.81) we get |L;(W~)|? = (17H%(217H§). Thus,

2

0_2(7) _ 1-— H% —H1H2L1(W’y)
—IL Mo Ly (W) 1 —TI5(1 + [Ly(WH)[?)

= (1-I3)(1 - 13) — 3L (W) = 0.

Hence, the sequence v has rank 1. Since the sequence 7y is not an extension of a
sequence of rank 0, in view of (5.71), it is pure. O

Corollary 5.23. Let v = ()32 € I'l2. Then it is

. (1= = P - - P
> vvals T o = . (5.82)
= L= i

Equality holds true if and only if there exists a compler number X\ such that
0 <A <1—|y1] and the conditions (5.74) are satisfied. In this case we have:

(1) If y1 = 0 then the sequence 7y is a pure II-sequence of rank 0.

(2) If 71 # 0 and X\ = 0 then the sequence vy is a nonregular one-step extension
of a pure Il-sequence of rank 0.

(3) If v1 # 0 and A # 0 then the sequence 7 is a pure II-sequence of rank 1.

Proof. The inequality (5.82) is equivalent to the condition o2(v) > 0. For this
reason equality holds if and only if o2(y) = 0. However, this occurs if and only if
we have one of the three cases mentioned in Corollary 5.23. g

As examples we consider the functions 1J2FC and 2i ¢ which belong to SII'\ J.

As it was shown by I. Schur [31, part IT], their Schur parameter sequences are
(;, g, g, 3, ...)and (;, é, 4117 é, ...), respectively. We note that both sequences fulfill
the conditions of Theorem 5.22 with values A = :1,) and g, respectively. Thus, both
sequences are pure Il-sequences of rank 1. Furthermore, it can be easily checked

that the functions
(1 +a) +ePC(1 - aw)
(14 a) —eB(a—w)

belong to SIT'\ J and that their Schur parameter sequence (y)32, is given by

0(¢)=¢e ,o0eER, weD, a>0

) eilo+np) N
.  neN. 5.83
Yo =ew, v adtn " (5.83)

Using the identity 1—|v,|? = (a+n(all%—;n+l)

computations that the sequence (5.83) also satisfies the conditions of Theorem 5.22

with A = e%? a1~ Hence, the sequence (5.83) is a pure II-sequence of rank 1, too.

it can be checked by straightforward



248 V.K. Dubovoy

Acknowledgement

A larger part of this paper was written during the author’s research stay at the
Department of Mathematics of the Weizman Institute in Rehovot (Israel), where
he had been a awarded a Meyerhoff Visiting Professorship in the period March to
June 2000. The author is grateful to Professors V. E. Katsnelson and H. Dym for
helpful discussions. The pleasant atmosphere at the Weizman Institute promoted
this research. The work on this paper was finished during the author’s research
stay at Leipzig University. The author thanks the Saxonian Ministry of Science and
Arts for the financial support. Moreover, the author thanks Professors B. Kirstein
and B. Fritzsche for helpful discussions and giving warm welcome. The author is
grateful to S. Bogner and S.S. Boiko who carefully read the manuscript and gave
some useful hints and remarks.

References

[1] Adamjan, V.M., Arov, D.Z.: On the unitary couplings of isometric operators, Math.
Issled. Kishinev I(2)(1966), 3-64(in Russian).

[2] Akhiezer, N.J., Glasman, J.M.: Theory of linear operators in Hilbert space, 2nd ed.,
Nauka, Moscow(1966) (in Russian). English transl.: Frederick Ungar, New York,
1961.

[3] Arov, D.Z.: Darlington realization of matriz-valued functions, Izv. Akad. Nauk SSSR,
Ser. Mat.37(1973), 1299-1331(in Russian). English transl.: Math. USSR Izvestija
7(1973),1295-1326.

[4] Arov, D.Z.: On unitary coupling with loss, Funk. Anal. i ego Prilozh. 8(4)(1974),
5-22 (in Russian).

[5] Arov, D.Z.: Stable dissipative linear stationary dynamical scattering systems, J. Op-
erator Theory 2(1979), 95-126 (in Russian); English transl. in Operator Theory:
Advances and Applications, v. 134, Birkhduser Verlag, Basel-Boston-Berlin(2002),
99-136.

[6] Bakonyi, M., Constantinescu, T.: Schur’s algorithm and several applications, Pitman
Research Notes, v. 261, 1992.

[7] Bertin, M.J., Decomps-Guilloux, A., Grandet-Hugot, M., Pathiaux-Delefosse, M.,
Schreiber, J.P.: Pisot and Salem numbers, Birkhauser Basel-Boston-Berlin, 1992.

[8] Boiko, S.S., Dubovoy, V.K.: On some extremal problem connected with the subop-
erator of the scattering through inner channels of the system, Dopovidi NAN Ukr.
4(1997), 8-11.

[9] Boiko, S.S., Dubovoy, V.K., Fritzsche, B., Kirstein, B.: Contractions, defect functions
and scattering theory Ukrain. Math. J. 49(1997), 481-489 (in Russian).

[10] Boiko, S.S., Dubovoy, V.K., Fritzsche, B., Kirstein, B.: Shift operators contained
in contractions and pseudocontinuable matriz-valued Schur functions, Math. Nachr.
278, No. 7-8(2005), 784-807.

[11] Boiko, S.S., Dubovoy, V.K., Kheifets, A.Ja.: Measure Schur complements and spec-
tral functions of unitary operators with respect to different scales, Operator Theory:



Contractions and Schur Parameters 249

Advances and Applications, v. 123, Birkhduser Verlag, Basel-Boston-Berlin(2001),
p- 89-138.

[12] Brodskii, M.S.: Unitary operator colligations and their characteristic functions, Us-
pekhi Math. Nauk 33, 4(202)(1978), 141-168 (in Russian); English transl.: Russian
Math. Surveys, 33(4)(1987), 159-191.

[13] Cima, J.A., Ross, W.T.: The backward shift on the Hardy space, Math. surveys and
monographs, V. 79(2000).

[14] Constantinescu, T.: On the structure of the Naimark dilation , J. Operator Theory,
12(1984), 159-175.

[15] Constantinescu, T.: Schur parameters, factorization and dilation problems, Operator
Theory, Advances and Applications, v. 82, Birkhauser Basel-Boston-Berlin, 1996.

[16] De Wilde, P.,: Roomy scattering matriz synthesis, Technical Report, Berkeley, (1971).

[17] Douglas, R.G., Shapiro, H.S., Shields, A.L.: Cyclic vectors and invariant subspaces
for the backward shift, Ann. Inst. Fourier 20(1971),37-76.

[18] Douglas, R.G., Helton, J.W.: Inner dilations of analytic matriz functions and Dar-
lington synthesis, Acta Sci. Math.(Szeged) 34(1973), 61-67.

[19] Dubovoy, V.K.: Indefinite metric in Schur’s interpolation problem for analytic func-
tions, Teor. Funkcii, Funkcional. Anal. i Prilozen (Kharkov), part I: 37(1982), 14-26;
part II: 38(1982), 32-39; part III: 41(1984), 55-64; part IV: 42(1984), 46-57; part V:
45(1986), 16—-26; part VI: 47(1987), 112119 (in Russian); English transl.: part I: II.
Ser., Am. Math. Soc. 144(1989), 47-60; part II: II. Ser., Am. Math. Soc. 144(1989),
61-70; part IV: Oper. Theory: Adv. Appl. 95(1997), 93-104; part V: J. Sov. Math.
48, No. 4(1990), 376-386; part VI: J. Sov. Math. 48, No. 6(1990), 701-706.

[20] Dubovoy, V.K., Mohammed, R.K.: Defect functions of holomorphic contractive ma-
triz functions, reqular extensions and open systems, Math. Nachr. 160(1993), 69-110.

[21] Dubovoy, V.K.: Schur’s parameters and pseudocontinuation of contractive holomor-
phic functions in the unit disk, Dopovidi NAN Ukr., v. 2(1998), 24-29.

[22] Dubovoy, V.K.: On a contraction operator model constructed by using Schur’s pa-
rameters of its characteristic function, Dopovidi NAN Ukr., v. 3(1998), 7-10.

[23] Dubovoy, V.K.: Some criteria for the pseudocontinuability of contractive holomorphic
functions in the unit disc in terms of its Schur parameters, Dopovidi NAN Ukr., v.
7(2004),13-19.

[24] Dubovoy, V.K., Fritzsche, B., Kirstein B.: Matricial Version of the Classical Schur
Problem, Teubner-Texte zur Mathematik Bd. 129, Teubner, Stuttgart-Leipzig 1992.

[25] Foias, C., Frazho, A.E.: The commutant lifting approach to interpolation problems,
Operator Theory: Advances and Applications, v. 44, Birkh&user Basel-Boston-Berlin,
1990.

[26] Geronimus, Ya.L.: On polynomials orthogonal on the circle, on trigonometric mo-
ment problem, and on allied Carathéodory and Schur functions , Mat. Sb., v.
15(1944), 99-130 (in Russian).

[27) Gragg, W.B.: Positive definite Toeplitz matrices, the Arnoldi process for isometric
operators and Gaussian quadrature on the unit circle , Numerical methods of linear
algebra ( Gos. Univ. Moskow), 1982, 16-32 (in Russian); English transl.: J. Comput.
Appl. Math., 46(1993), 183-198.



250 V.K. Dubovoy

[28] Koosis, P.: Introduction to H? spaces, Cambridge Univ. Press, Cambridge etc. 1998.

[29] Nikolski, N.K.: Operators, functions and systems: an easy reading, Math. surveys
and monographs, v.92, Contents: v. 1, Hardy, Hankel and Toeplitz (2002); v. 93,
Contents: v. 2, Model operators and systems, 2002.

[30] Ross, W.T., Shapiro, H.S.: Generalized Analytic Continuation, Amer. Math. Soc.,
Providence, RI, University Lecture Series, v. 25(2002).

[31] Schur, IL.: Uber Potenzreihen, die im Innern des Einheitskreises beschrinkt sind, J.
reine und angew. Math.,part I: 147(1917), 205-232; part II: 148(1918), 122-145.

[32] Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 1:Classical Theory
,Amer. Math. Soc. Colloq. Publ., Providence, RI, v. 54(2004).

[33] Sz.-Nagy, B., Foias, C.: Harmonic analysis of operators in Hilbert space, North Hol-
land Publishing Co., Amsterdam-Budapest, 1970.

[34] Teplyaev, A.V.: Continuous analogues of random orthogonal polynomials on the cir-
cle , Dokl. Akad. Nauk SSSR, v. 320(1991), 49-53 (in Russian); English transl.:
Soviet. Math. Dokl. 44(1992), 407-411.

V.K. Dubovoy

Department of Mathematics and Mechanics
State University

Svobody Square 4

61077 Kharkov

Ukraine

e-mail: dubovoy@online.kharkiv.com



Operator Theory:
Advances and Applications, Vol. 165, 251-290
(© 2006 Birkhéuser Verlag Basel/Switzerland

The Matricial Carathéodory Problem in Both
Nondegenerate and Degenerate Cases

Bernd Fritzsche, Bernd Kirstein and Andreas Lasarow

Abstract. The main goal of this paper is to present a new approach to both the
nondegenerate and degenerate case of the matricial Carathéodory problem.
This approach is based on the analysis of central matrix-valued Carathéodory
functions which was started in [FK1] and then continued in [FK3]. In the
nondegenerate situation we will see that the parametrization of the solution
set obtained here coincides with the well-known formula of D.Z. Arov and
M.G. Krein for that case (see [AK]).

Mathematics Subject Classification (2000). Primary 44A60, 47A57, 30E05.

Keywords. Matricial Carathéodory problem, Arov-Krein representation of the
solution set, central matrix-valued Carathéodory functions.

0. Introduction

Interpolation problems have a rich history. Important results for the scalar case
were already obtained in the first half of the 20th century. In the early 1950’s
a new period started, where interpolation problems for matrix-valued functions
were considered. These investigations culminated in a series of monographs (see,
e.g., [BGR], [DFK], [Dy], [FF], [FFGK], and [Sa]). An essential common feature
of these monographs is that the considerations mainly concentrated on the so-
called nondegenerate case which is connected with positive Hermitian block Pick
matrices built from the interpolation data.

The study of the degenerate case (where the associated block Pick matrix
is nonnegative Hermitian and singular) began with the pioneering work [Du] of
V.K. Dubovoj in the framework of the matricial Schur problem. In the sequel,
quite different approaches to handle degenerate cases of matrix interpolation were

The work of the third author of the present paper was supported by the German Academy of
Natural Scientists Leopoldina by means of the Federal Ministry of Education and Research under
grant number BMBF-LPD 9901/8-88.
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used (see, e.g., [BH], [BD], [Br], [CH1], [CH2], [DGKS3], [Dy, Chapter 7], and [Sa,
Chapter 5]).

The principal object of this paper is to present an approach to the matricial
Carathéodory problem in both nondegenerate and degenerate cases. Our method
is essentially based on the first and second authors former investigations [FK1] and
[FK3] on the central matrix-valued Carathéodory function associated with a finite
Carathéodory sequence of matrices. In particular, we will make frequently use of
the matrix ball description of the elements of matricial Carathéodory sequences.
The main results of this paper (see Theorems 1.1, 3.2, 3.7, and 4.1) contain de-
scriptions of the solution set of a matricial Carathéodory problem in terms of a
linear fractional transformation, the generating matrix-valued function of which is
a matrix polynomial. The canonical blocks of this matrix polynomial will be con-
structed with the aid of those quadruple of matrix polynomials which were used
in [FK3] to derive right and left quotient representations of central matrix-valued
Carathéodory functions (see Theorem 1.3).

A different approach to the degenerate matricial Carathéodory problem was
used in the paper [CH2] of Chen and Hu. Their method is based on an adaptation
of the Schur-Potapov algorithm to the degenerate case along the line proposed
in [DGK3, Section 3]. The descriptions of the solution set which were given in
[CH2, Theorems 3.5 and 4.1] are quite different from our parametrizations given
in Theorems 1.1, 3.2, 3.7, and 4.1. In fact, the parameters of the linear fractional
transformations presented here are expressed more explicitly by the given data of
the interpolation problem.

In the nondegenerate case, our approach provides quickly those parametri-
zations of the solution set of a matricial Carathéodory problem (see Theorem 5.6)
which was stated (without proof) by D.Z. Arov and M.G. Krein in [AK] for that
case. The right and left Arov-Krein resolvent matrices possess contractivity pro-
perties with respect to the signature matrices

. I, 0 0 -1
jqq:—(g —Iq> and Jq:—(_lq Oq>'

A main theme of Section 4 is to show that appropriate degenerate analogues of
the Arov-Krein resolvent matrices satisfy natural generalizations of the above-
mentioned contractivity properties with respect to jqq and J;. Moreover, we will
see that the recurrent formulas for the Arov-Krein resolvent matrices (see [FK3,
Section 5]) admit generalizations to the degenerate case as well.

Finally, we study in Section 6 the special case that the matricial Carathéodory
problem has a unique solution. In particular, we shall obtain some characterizations
of that case in terms of the central matrix-valued Carathéodory function correspon-
ding to the given data by the problem. Roughly speaking, the central matrix-valued
Carathéodory function has a simple structure in this situation. It is a finite sum of
rational Carathéodory functions having exactly one pole (which is located at the
unit circle). This result can be regarded as a matricial extension of a well-known
fact for the scalar case.
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1. Preliminaries

Throughout this paper, let p and ¢ be positive integers. We will use C, Ny, and N
to denote the set of all complex numbers, the set of all nonnegative integers, and
the set of all positive integers, respectively. If m € Ny and if n € Ny or n = oo,
then we will write N,, ,, for the set of all integers k satisfying m < k < n. The
set of all complex p x ¢ matrices will be designated by CP*9. For each A € CP*9,
let AT be the Moore-Penrose inverse of A, let R(A) be the range of A, and let
||A]| be designate the operator norm of A. If A € C?*9, then det A stands for the
determinant of A and tr A denotes the trace of A. Further, for each A € C7*9, let
Re A be the real part of A, i.e., let Re A := ;(A + A*). The null matrix which
belongs to CP*? will be denoted by 0px4. If the size of a null matrix is obvious,
we will omit the index. For each A € CP*P and each B € C?%9, let

. A0
dlag(A, B) = (O B) .
If n € Ng and if (')’ is a sequence of complex g x ¢ matrices, then we associate
with (I';)7_, the block Toeplitz matrices S,, and T}, given by

Ty 0 0 ... 0
r, Ty 0 .. 0
Sp=| I'e I Ly o (1.1)
: : 0
r, T,y Ty ... Ty
and
T, :=Re S,. (1.2)

If n € Np, then a sequence (Fj)}’zo of complex ¢ X ¢ matrices is called ¢ X ¢
Carathéodory sequence if the matrix T, is nonnegative Hermitian. Obviously, if
n € No and if (I'j)’_, is a g x ¢ Carathéodory sequence, then for each m € No
the sequence (I';)7., is also a ¢ x g Carathéodory sequence. A sequence (I'y)72,
from C%*9 is said to be a ¢ x ¢ Carathéodory sequence if for every nonnegative
integer n the sequence (Fj);-’zo is a ¢ X g Carathéodory sequence.

Let D:={2z € C:|z] <1} and T := {z € C: |z| = 1} be the unit disk and
the unit circle of the complex plane, respectively. A ¢ X ¢ matrix-valued function
Q : D — C? which is holomorphic in I and which has nonnegative Hermitian
real part Re Q(z) for each z € D is called g x g Carathéodory function (in D). The
set of all ¢ x ¢ Carathéodory functions (in D) will be denoted by C, (D).

The well-studied matricial version of the classical Carathéodory interpolation
problem consists of the following:

Let n € Ny and let (Fj)?:o be a sequence of complex q X q matrices. Describe the
set Cy[D, (I'j)7_0] of all ¢ x q Carathéodory functions Q (in D) such that
1
J!
holds for each j € Ny, where QU(0) is the jth derivative of Q at the point z = 0.

QW (0) =Ty (1.3)
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If n € Ny and if (T';)}_, is a sequence of complex ¢ x ¢ matrices, then the set
Cy[D, (T')7—o] is nonempty if and only if (I';)_ is a ¢ x ¢ Carathéodory sequence
(see, e.g., [Ko] or [FK1, Part I, Section 4]). In the case of a given nondegenerate
q x g Carathéodory sequence (I';j)’_,, i.e., that the block Toeplitz matrix 7;, de-
fined by (1.1) and (1.2) is positive Hermitian, there are various parametrizations
of Cy[D, (T';)%_o] via linear fractional transformations (see, e.g., [AK], [BGR], [FF],
[Ko], or [FK1, Part V]). The main results of this paper present such parametriza-
tions in the general case of an arbitrarily given ¢ x ¢ Carathéodory sequence
(I'j)j—o- To formulate a particular version, we introduce now some further terms.

If m € Ny, let e, ¢ and €y, ¢ be the matrix polynomials defined by

em,q(2) = (Iq, 21y, 2%y, ..., zmIq> (1.4)
and
2™,
Zm—l[q
Em,q(2) = (1.5)
zl,
Iy

for all z € C. Let e be a ¢ X ¢ matrix polynomial, i.e., there are a nonnegative
integer m and a complex mg x ¢ matrix E such that e(z) = e ¢(2)E for each
z € C. Then the reciprocal matriz polynomial e of e with respect to the unit
circle T and the formal degree m is given, for all z € C, by

eml(2) i= Erep q(2).
If n € Ng and if (T';)}_, is a sequence of complex g x g matrices, then let
L1 := Re FO7 R1 := Re F(), (16)

and in the case n > 1 moreover

Iy
1 1] I2
Zn:= (Fn,rn,l, . .,rl), Yo=o | L | (1.7)
r,
and
Lni1:=Relo — Z,T+ ,Z5, Ruy1:=Rely— Y T |V, (1.8)

Observe that the matrices L, 41 and R,y are both nonnegative Hermitian if
(I'j)7_o is a g x g Carathéodory sequence (see, e.g., [DFK, Lemma 1.1.9]).

Recall that a matrix-valued function S : D — C?*¢ which is holomorphic in
D is called g x g Schur function (in D) if, for each z € D, the value S(z) of S at
the point z is a contractive matrix, i.e., the matrix I — (S(z))*S(z) is nonnegative
Hermitian. The set of all ¢ x ¢ Schur functions (in D) will be denoted by Syx4(D).

A main goal of this paper is to prove the following description of the solution
set Cy[D, (I'j)7_o] of the matricial version of the classical Carathéodory problem.
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Theorem 1.1. Let n be a nonnegative integer and let (I';)}_, be a g¢xq Carathéodory
sequence. Let the matrix polynomials a,, by, c,, and d, be given by

an(2) = { Lo+ zen,lyq(z)SzflTilen ifn>1, (1.9)
o 1, if n=0
bn(2) = { I, - zen,lyq(z)T;ilYn if n>1, (1.10)
. T if n=0
en(2) = { Z, T Sk 260 14(2)+To if n>1, (1.11)
and
. 1, if n=20
dn(z) = { ~Z,TF jzen14(2)+ 1, if n>1 (1.12)
for each z € C. Then the following statements hold:
(a) For each S € Syxq(D) and each z € D,
det (zdgﬂ(z)\/LnH T S(2)/Ros1 + bn(z)) £0
and
det( VIns18(z)/Rog1 B (2 (z)) £0.
Moreover, for each S € Syxq(D), the matriz-valued function Q : D — C9*4
given by

O(2) ::( 2l () F(2) + an(z)) (Z(Zgﬂ(z)F(z) n bn(z))_l

belongs to Cy[D, (T';)}_y], where F := VLnt1 +S\/Rn+1, and admits the rep-
resentation

Q(2) :(zG(z)BLy](z) + dn(z)) (—zc(zm;ﬂ(z) + cn(z))

for each z € D, where G := \/Ln+1S\/Rn+1 *
(b) For each Q € Cy[D, (T';)7_o], there is an S € Syxq(D) such that the identity

Q(2) :( — 2l () F(2) + an(z)> (zdgﬂ(z)F(z) + bn(z))

is fulfilled for each z € D, where F := \/Ln+1 +S\/Rn+1.

In fact, we prove some results which include Theorem 1.1 as a special case
(see Theorems 3.2 and 3.7 for the exact formulation). A key role in the proof of
these results plays a comparison of possible candidates for solutions with a distin-
guished solution, namely with the so-called central g x ¢ Carathéodory function
corresponding to the given ¢ x ¢ Carathéodory sequence (Fj);-‘zo. For this reason,
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it seems to be useful to give some preliminaries. Let us consider an arbitrary non-
negative integer n and an arbitrary ¢ x ¢ Carathéodory sequence (Fj)?:(y Using
(1.2) and (1.7), let furthermore

o Ogxq if n=20

My = { Z,TF Y, ifn>1. (1.13)
In view of (1.13), then [FK1, Part I, Theorem 1] leads to the notion of central
q x g Carathéodory functions as follows. If we put I';,11 := 2M,, 41, then [FK1,
Part I, Theorem 1] implies particularly that (Fj);liol is a ¢ x g Carathéodory
sequence. Consequently, we can continue this procedure, i.e., similar as in (1.13)
let My yo:= Zy 1T Yyi1, we put Tpyio := 2M,, 12, and [FK1, Part I, Theorem 1]
provides that (Fj)?ig is a ¢ x ¢ Carathéodory sequence, and so on. Therefore, if
(I'j)j—o is a given g x g Carathéodory sequence, then the choice

Coyivk =2Mpi14k, k€N, (1.14)

yields a particular ¢ x ¢ Carathéodory sequence (I';)72, and hence (see, e.g., [BGR]
or [Ko]) a particular function which belongs to Cy4[D, (I';)}_,], the so-called central
q x q Carathéodory function €., corresponding to (I';)}_q. If (I';)}_y is a ¢ x ¢
Carathéodory sequence, then we call the sequence (I'y)52, given by (1.14) also the
central ¢ X q Carathéodory sequence corresponding to (Fj);?zo. Clearly, the central
g x q Carathéodory function {2 , admits the Taylor series representation

Qen(z) = Z 2"
k=0

for each z € D, where (I'x)32, is the central ¢ x ¢ Carathéodory sequence corre-
sponding to (I';)7_,.

If (Fj)(])‘:o is a ¢ x ¢ Carathéodory sequence, then the constant function (de-
fined on D) with value Ty is the central ¢ x ¢ Carathéodory function corresponding
to (T;))—o (see [FK3, Remark 1.1]). In the case that a positive integer n and a
q % q Carathéodory sequence (I';)?_, are given the central ¢ x ¢ Carathéodory
function corresponding to (I'j)7_, is a rational matrix-valued function which can

be explicitly constructed (see Theorem 1.3 below).

Remark 1.2. Let n be a positive integer and let (Fj)?:o be a ¢ x g Carathéodory
sequence. Then the matrix T ,Y,, belongs to the set
Vo ={VeCW¥: T,V =Y,}
and the matrix Z,T." | belongs to the set
Z, ={WeCr" . WT,_,=2,}
(cf. [FK3, Remark 1.4]). Moreover, [FK3, Proposition 2.2] implies that T,} Y,

actually belongs to the set jn of all V,, € ), such that det b, vanishes nowhere
in D, where b,, is the matrix polynomial defined by b, (2) := I; — zen—1,4(2)V,.
Furthermore, from [FK3, Theorem 2.3] one can see that Z, T, actually belongs
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to the set gn of all W,, € Z, such that det d,, vanishes nowhere in D, where d,, is
the matrix polynomial defined by d,,(z) :== —Wy,ze,_1,4(2) + I,

Theorem 1.3. Let n be a nonnegative integer and let (I';)}_, be a g¢xq Carathéodory
sequence. If n > 1, then let the matriz polynomials e,—1 4 and €,—1 4 be defined by
(1.4) and (1.5), let Vi, € Yn, and let Wy, € Z,,. Then:

(a) The central q x ¢ Carathéodory function Q.. corresponding to (I';)7_ is the
restriction of the rational matriz function a,b, ! onto D, where a,, and b, are
the g x q¢ matriz polynomials which are defined, for each z € C, by

an(2) = { To+ zen_14(2)S% Vi if n>1 (1.15)

and
o 1, if n=0
bn(2) 1= { Ij—zen_14(2)Ve if n>1. (1.16)
(b) The function Q... is the restriction of the rational matriz function d,'c,
onto D, where ¢, and d, are the ¢ X q matriz polynomials which are given,
for each z € C, by

Cn(Z> T { Wns;;leé‘n,Lq(Z) +F0 Zf n Z 1 (117)

and
o 1, if n=0
dn(2) i= { —Wpzen_1,4(z)+1, if n>1.

A proof of Theorem 1.3 is given in [FK3, Theorems 1.7 and 2.3, Remark 1.1].

(1.18)

2. On particular matrix polynomials

In this section we study the matrix polynomials realizing the representations of the
central Carathéodory function €2, according to Theorem 1.3. In fact, we deduce
certain formulas for these matrix polynomials which are useful in view of the proof
of Theorem 1.1. Before, some further remarks on the matrices L, +1, Rp+1, and
M,,+1 are stated which can be computed from a given g x ¢ Carathéodory sequence
(I'j)j=o via (1.6), (1.8), and (1.13).

Remark 2.1. Let n € Ny and (Fj);liol be a ¢ x ¢ Carathéodory sequence. The
matrix

+ +
Kni1:= /Lyt (3T n41 — Myt) VRt (2.1)
is contractive and the equation éFnH — M1 = \/Ln+1Kn+1 \/Rn+1 holds (see
[FK1, Part I, Theorem 1] and [DFK, Lemma 1.5.1]). Hence the matrices

Sos1 =L} (3Tn1 — Mny1)  and  gny1 = (30ng1 — Mu) RE (2.2)
fulfill the identities
Ln+1fn+1 = ;Fn+1 - Mn+1 and gn+1Rn+1 = érn+1 - Mn+1- (23)
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Let CZ*? be the set of all nonnegative Hermitian ¢ x ¢ matrices and let CL*?
be the set of all positive Hermitian ¢ x ¢ matrices. Further, we will write A > B or
B < A to indicate that A and B are (quadratic) Hermitian matrices of the same
size such that A — B is a nonnegative Hermitian matrix. If A is a complex p x ¢
matrix, then we will use A/(A4) to denote the null space of A.

Remark 2.2. Let 7 € N or 7 = +o0, and let (I';)]_, be a ¢ x g Carathéodory
sequence. For each n € Ny ;, let the matrix K, be defined by (2.1). Then

0< Lyt1 = VLu(I = KyK})\/Liy < Ly,
0 < Ruy1 = VRu(I — K} K,)\/Ry < R,
and, in particular, N'(L,) € N(Lyp41), N(Ry) CN(Rp1),
+ +
\/Ln\/Ln \/LnJrl = \/Ln+1a and \/Rn+1 \/Rn \/Rn = \/RnJrl
hold for each n € Ny ; (see [DFK, Remark 3.4.3]).

Remark 2.3. Let n € N and let (Fj)?:o be a g x ¢ Carathéodory sequence. Further,
let V,, € Y, and W,, € Z,,. In view of the equations

S* Vi =2Y, — Sp1V, and W,S% | =27, — WnSu_1

it is readily checked that, for each z € C, the matrix polynomials a, b,, ¢,, and
d,, given by (1.15), (1.16), (1.17), and (1.18) admit the representations

an(z) = en,q(z)SnVnDa bn(z) = enyq(z)VnD,
en(z) = WESnEn,q(Z), and d,(z) = Wnuan,q(z)7

where the matrix polynomials e, ; and €, 4 are defined by (1.4) and (1.5),

VO .= (I“I/n) . and WP .= (—Wn, Iq>.

Let Fy be the constant matrix-valued function with value O4x4. For each
neN, let F, : C — Cthax(n+1)a he defined by

0 0 0 ... 0 0

zl, 0 0 ... 0 0

221q 2zl 0 ... 0 O

Fu(z) := ZSLI 221q zI, ’ : :
: : : .0 0

2", 2", 2, ... zI, 0

Proposition 2.4. Let n € No and let (T';)7_, be a q x q¢ Carathéodory sequence. If
n > 1, then let V, € YV, and W,, € Z,,. Let the matrix polynomials a,, by, ¢y,
and dy, be defined by (1.15), (1.16), (1.17), and (1.18). Let the matrices Ryp4+1 and
Ly 41 be given by (1.6) and (1.8). Then:
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(a) For every choice of z in T,

Re ((an(z))*bn(z)) =R,+1 and Re (cn(z)(dn(z))*) =Lny1.
(b) The identities
al? (2)bn (2) + B (2)an (2) = 22" Ru
and ~
en(2)dM (2) + dp (2)dM(2) = 22" L, 44
hold for each z € C.

Proof. (a) The case n=0 is trivial. Suppose n>1. Using [DFK, Lemma 4.2.1] we
get

F,(w)Sy, = SpFy(w) (2.4)
for each w € C. Moreover, for each w € C\ {0}, it is readily checked that

(ema (1)) enalw) = B (1) + 1+ (Fa(w)
holds. Now let z € T. Then we have

(enq(2)) eng(2) = Fu(2) + 1+ (Fu(2)) "
Taking into account Remark 2.3, (2.4), and (1.2) it follows

*

) <s;; (Fal2)+ 1+ (Fa()") + (Fu2) + T+ (Fu(2))") sn> vE
= (VE) " (SiFa(2) + 5 + (Fa(2)) "S5 + SuFa(2) + S + (Fa(2))" S )V

=2(V2) (TuFul2) + T+ (Fu(2)) T ) Vi (2.5)

The matrix 7T;, is nonnegative Hermitian and admits the block representation

_ [Rely, Y
Tn N < Yn Tn—l) '

This implies 15,1 € C17™, R,y 1 € CL*Y, and
To T Y, =Y,
(see [Al], [EP], or [DFK, Lemma 1.1.9 and Theorem 1.1.1]). Thus

7 y0 - (ReTo = YaVoY _ Relo — YT, \T—1Vi\ _ [ Rut1
e Yn*Tnflvn N 0nq><q N anxq ’

Consequently, from (2.5) we obtain then

Re ((00(2) 80(2)) = (R Ops) Fu (V2 + R + (V) (Bula) (g0 ).
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Because of (Rn+17 qunq> Fo(2) = Ogx(n+1)q it follows the first equation in (a).
The second one can be proved analogously.
(b) For each z € T, from [DFK, Lemma 1.2.2] and part (a) we obtain

al?) (2)bn(2) + B (2)an(z) = Z”(an(i))*bn(zwzn(bn(i))*an(z)
= z”((an(z))*bn(z) + (bn(z))*an(z))

= 2z”Re((an(z))*bn(z)) = 22"Rp41.

Since the left-hand side and the right-hand side of this equation form matrix
polynomials, one can conclude a.” (2)bn(2) + lsg?}(z)an(z) = 2z"Rp41 for each
z € C. Similarly, the second equality can be derived from part (a). O

For a ¢ x ¢ matrix polynomial e, we use in the following the notation
Ne :={w € C: dete(w) = 0}.

Corollary 2.5. Let n € No and let (I';)}_, be a g x q Carathéodory sequence. If
n > 1, then let V, € Y, and W,, € Z,,. Let the matriz polynomials ay,, by, ¢y, and
d,, be defined by (1.15), (1.16), (1.17), and (1.18). Furthermore, let the matrices
Ryt1 and Ly be given by (1.6) and (1.8). Then

d
Re (bn() (an(2) ") = (an()) " Rugi(an()) " 20, 2 €T\ N,

Re (u(2)(ba()) ') = (bu(2))

M0,(2)) = (en()”

Rn+1( ))7120, 2 €T\ N,
L

nt1(en(2)) >0, z€T\N,,,

Re ((cn(z)) B

and
Re ((dn(z))_lcn(z)) = (dn(z))_an_H (do(2))" >0, z€T\Ng,.

The sets Ny, and Ny, consist of at most n-q elements (and hence the sets T\ Ny,
and T\ Ny, are nonempty).

Proof. From part (a) of Proposition 2.4, it follows

1

Re (bn(z) (an(z))*l) = (@) ((an(z))*bn(z) n (bn(z))*an(z)> (an(2))

= (20() " Re ({002 0) (a0(2))

= (an(z) " Rupa (aa(2) " 2 0
for each z € T \ NV,,. Analogously, the relations with respect to z € T \ N,
z € T\N,,, and z € T\ N, are an easy consequence of part (a) of Proposition 2.4.
Moreover, since b, (respectively, d,,) is a ¢ X ¢ matrix polynomial of degree at most
n such that b,(0) = I, (respectively, d,,(0) = I,), one can conclude that the set
Ny, (respectively, Ny ) consists of at most n - ¢ elements. In particular, the set
T\ M, (respectively, T\ Ng, ) is nonempty. O

-1
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Note that in view of (1.15) and (1.17) one can immediately see that the sets
T\N,, and T\ N, can be empty. Otherwise, for the special situation that a ¢ X ¢
Carathéodory sequence (Fj);-’zo with nonsingular matrix I'y is given, then the sets
N, and N, consist of at most n - ¢ elements (cf. [FK3, Section 3]). Hence the
sets T\ Ng, and T \ M., are nonempty in that case.

Proposition 2.6. Letn € Ny, k € N, and (I" )"H“ be a g x q Carathéodory sequence.
If n > 1, then let V,, € YV, and W, € Z,. Further, let a,, b,, c,, and d, be
defined by (1.15), (1.16), (1.17), and (1.18). For each j € Ng y_1, let the matriz
polynomials an4j41, bntjt1, Cntjt1, and dnyjr1 be defined by

antj+1(2) = anyj(2) + zémﬂ(z)fwﬂ, (2.6)
b1 (2) 1= by (2) = 2do T (2) fu i, (2.7)
o entj1(2) = Cnij(2) + gnijrrzal i (2), (2.8)
At j31(2) 1= i (2) = gni g2 (2) (2.9)

for each z € C, where fnyjr1 and gnyj+1 are the matrices given by (2.2). For each
J € No k—1, the following statements hold:

(a) The central g x ¢ Carathéodory function Qe nyj41 corresponding to the g X g
Carathéodory sequence (Fg)"ﬂ'H admit the representations

— _ g1
Qentjt1 =anajabijor and Qenijir=dpy1Cnrjrn.

(b) If n =0 or in the case n > 1 both V,, € jn and W, € ZNn are chosen, then
the functions det b,1 ;11 and det d4;41 vanish nowhere in D.

Proof. The assertion follows applying Theorem 1.3, Remark 2.1, and [FK3, Re-
mark 4.2, Proposition 4.4, Remark 4.5, Lemma 4.6]. g

Corollary 2.7. Let n € No and let (I';)7_, be a ¢ x q Carathéodory sequence. Let
the matrices Lypt1, Rnt1, and M,11 be defined by (1.6), (1.8), and (1.13), let K
be a contractive q X q matriz, and let

Fn-‘rl - 2Mn+1 + \/2Ln+1 \/2Rn+1

If n > 1, then let V,, € yn and W, € Zn. Furthermore, let the matriz poly-
nomials an, by, cn, and d, be given by (1.15), (1.16), (1.17), and (1.18). Then
(Fj)?iol is a ¢ X q Carathéodory sequence. Moreover, for each z € D, the matri-

ces zd” (2)\/Ln+1 +K\/Rn+1 +bn(2) and zy/Lpy1K\/Rnia Fpln) (2) +dn(z2) are
nonsingular and the central ¢ x q¢ Carathéodory function Q¢ ny1 corresponding to
the q x q Carathéodory sequence (Fj)?iol admits the representations

() =2V L1 KR +n2) (o) s B R 40(2)

and

Qen1(2 (Z\/Ln+1K\/Rn+1 b[n]( )+dn(z>)71<_z\/Ln+lK\/Rn+l +(~1£?](z) +Cn(z>)~
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Proof. Since (T';)7_, is a ¢x ¢ Carathéodory sequence, the matrices Ly, 11 and Ry, 11

are nonnegative Hermitian. According to [FK1, Part I, Theorem 1], by (Fj)?iol

a g x g Carathéodory sequence is given. Moreover, the matrices f,+1 and gn41
defined by (2.2) admit the representations

+ +
fn+1 = _\/Ln+1 K\/Rn+1 and gn+1 = _\/Ln+1K\/Rn+1 .
Consequently, if the matrix polynomials a1, bn+1, Cnt1, and d,41 are given as

in (2.6), (2.7), (2.8), and (2.9) (with j = 0), then
~[n +
ani1(2) = an(z) — 287(2) VELnt1 Ky/Rota,
5 +
buy1(2) = bn(2) + ng?](z)\/LnJrl K\/Rn+17
t-[n
cnt1(2) = cn(2) — Z\/Ln+1K\/Rn+1 aL](Z%

and
+~
dnt1(2) = dn(z) + Z\/Ln+1K\/Rn+1 bg{”(Z)
for each z € C. Application of Proposition 2.6 completes the proof. g
Corollary 2.8. Let n € Ny and let (Fj)?iol be a q x q Carathéodory sequence. If
n > 1, then let V,, € Y, and W,, € Z,,. Further, let f,11 and gny1 be defined by

(2.2). The q x q matriz polynomials a,, by, ¢n, and d, given by (1.15), (1.16),
(1.17), and (1.18) satisfy the identities

gnr1 (@M, +0May,) = (cnd™ + dpd™) frin
and
(&w]bn + i%[f]an)QZH = f;Jrl (Cn(ﬂ?] + dn@[?])

Proof. In the case n = 0 the assertion is obviously satisfied. Now let n > 1. Further,
let the matrix polynomials a,41, bpt1, Cnt1, and dp41 be defined by (2.6), (2.7),
(2.8), and (2.9) (with j = 0). From Theorem 1.3 and Proposition 2.6 we get

dpay = cuby, alMldinl = pinlenl (2.10)
and dp41ap4+1 = Cp11bn11. Hence, for each z € C, it follows
dn(2)an(2) = gn4120, (2)an(2) + 2dn (280" (2) Frsr = gna12700 (2)E0 (2) frin

= (dn(2) ~ gnir2B7(2)) (@n(2) + 2 o) = s (g (2)

= Cni1(2)bnt1(2) = (en(2) + gnr12a)(2)) (bn(2) = 2d)(2) fr1)

= cn(2)bn(2) + gn+12a1 (2)bn(2) = 26n(2)di (2) Frsr = g1 2@ ) o
and consequently
*9n+121~77[f](2’)an(z) + zdn(z)éif](z)fnﬂ = gn+1zd£?](z)bn(z) - ZCn(Z)(i[zn] (2) frs1-

Thus the first identity follows. The second identity is an immediate consequence
of the first one. d



Matricial Carathéodory Problem 263

Corollary 2.9. Let n € Ny and let (T’ )n+1 be a q x q Carathéodory sequence. If
n>1, thenlet V, € Y, and W, € Z,. Further let the matrix polynomials ay, by,
Cn, and dy, be given by (1.15), (1.16), (1.17), and (1.18), let the matriz polynomials
Ant1, bnt1, Cnt1, and dy 1 be defined by (2.6), (2.7), (2.8), and (2.9) (with j = 0),
and let the matrices fn41 and gny1 be defined as in (2.2). For each z € C, then

al 1 (2)bnr1(2) + 00 (2) a1 (2) = 2@l (2)bn (2) + B (2)an (2)) (T~} frr)s
' ()b (2) + 00 (2)ant (2) = 2(T= 4 19n4) (@ ()b, (2) + 817 (2)an(2)),

e (VA () + duin (D8 2) = 2(ea(D)A ) + du ()8 (2)) (T farrghgn),
and

en1 (VAN E) + dnan ()81 () = 20— f10) (a2 (2) + du () (2)).
Proof. Let z € C. Using (2.10), which follows from Theorem 1.3, we obtain

al  (2)bng (2) + 00 (2)ansa (2)

= (2l (2) + fri10n(2)) (bn(2) = 2d7(2) fuin)
+(25[n](2)—f;+1d (2 ))( n(2) + zel (2 ) fnt1)

= 2l (2)ba (2) — 22l (2)d (2) frsr + Frpacn(2)ba(2)
—2fr1en(2)d (2) Fagr + 2B (2)an(2) + 22050 (2)E(2) fta

—fry1dn(2)an(z) — 2 n+1d ()& (2) faa
= 2(all(2)bn(2) + b (2)an(2)) = 2 frp1 (en(2)d (2) + dn(2)EN(2))
Hence, in view of Corollary 2.8, we get that the first and the second identities
hold. The other identities can be verified analogously. O

Note that Corollary 2.8 and Corollary 2.9 can also be derived from part (b)
of Proposition 2.4 in combination with Remark 2.1 and Remark 2.2.

3. Description of the set C,[D, (I';)}_]

The main goal of this section is to prove Theorem 1.1. More precisely, combining
Theorem 3.2 and Theorem 3.7 we will even verify a more general result which
shows us that Theorem 1.1 corresponds to that particular case which is associated
with a canonical choice of the matrix polynomials under consideration.

Lemma 3.1. Let n € Ny and let (T, ) _o be a q x q Carathéodory sequence. If

n > 1, then let V,, € yn and W, € Zn. Let the matriz polynomials ay, by, cp,
and d,, be given by (1.15), (1.16), (1.17), and (1.18). If K is a contractive q X q
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matriz and if z € D, then the matrices Z&L?](Z)\/Ln+1 +K\/Rn+1 + bn(2) and
Z\/Ln+1K\/Rn+1 +l~)7[;l] (2) + dn(2) are nonsingular, the equality

(-2 @V Enin v/ Rusa+an(2)) (20 (2)V L Hrc\/}z%ﬁbn(z)y1
— (z\/Lnle(\/Rn+1 il (z)+dn(z))71(—z\/Ln+1K\/Rn+1 gl (z)+cn(z))

is satisfied, and

Re ((—ze,[;ﬂ (2)/Lns1 Ky/Rnir +an(z)) (zdgﬂ ()VLnp1 Ky/Roia +bn(z))1>

is a nonnegative Hermitian q X q matriz, where the matrices L,y and R,11 are
defined by (1.6) and (1.8). Moreover, in the case n > 1, if a,, by, ¢, and d,, are
further matrix polynomials which can be represented, for each z € C, via

a,(z) =T0 + zen_1,4(2)Sh_1Vn, bup(z) =1, — zep_1,4(2)Vy (3.1)
and
Cn(2) = WyS) _1zen_1,4(2) +T0o, dn(z) =—-Wyze,_14(2)+ 1, (3.2)
with some V,, € jn and W,, € Zvn, then the identity

(-2 Los By B 00 (2)) (20 (2) v Lovir Ty Ria tba(2))

= (_Zéw] (Z>\/Ln+1 Jr‘K\/‘RTL-‘:-I —l—an(z)) (Z(ﬂ?] (Z>\/Ln+1 Jr‘K\/‘RTL-‘:-I +bn(z>>
is fulfilled for each z € D.

-1

Proof. The assertion is an immediate consequence of Corollary 2.7. g

Now we are able to prove a result which includes the statement of part (a)
of Theorem 1.1.

Theorem 3.2. Let n € Ny and let ( i)j—o be a q x g Carathéodory sequence. If
n > 1, then let V,, € yn and W, € Z Let the matrix polynomials ay,, by, ¢y, and

dp be given by (1.15), (1.16), (1.17), and (1.18). Further, let the matrices Ly11
and Ry41 be defined by (1.6) and (1.8). If S € Syxq4(D), then

det (zdgﬂ(z)\/LnH T S(2)\/Ros1 + bn(z)) £0 (3.3)
and
det ( VIns1S(2)\/Rog1 (2 (z)) £0 (3.4)
for each z € D and the function Q : D — C9%? given by
O(2) = (fzég?](z)F(z) n an(z)> (zdggﬂ (2)F(2) + bn(z)> B (3.5)

belongs to Cy[D, (T';)7_,] and satisfies, for each z € D, the representation

) = (20 +du(2) (~0EANE) +ea).  (36)
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where
Fi=/Lns1 S\/Rps1 and G :=/Lps1Sv/Rus1 . (3.7)

Moreover, in the case n > 1, if S € Syxq(D) and if a,, by, ¢y, and d,, are further
matriz polynomials which can be represented, for each z € C, via (3.1) and (3.2)
with some V,, € Y, and W, € Z,,, then

Q(2) = (—2el (=) F(2) + an(2) ) () (2)P() + bn(z))_l (3.8)
for each z € C, where F is defined as in (3.7).

Proof. Let S € Syxq(D) and let zp € D. Then K := S(z) is a contractive ¢ X ¢
matrix. Consequently, from Lemma 3.1 we get that (3.3), (3.4), (3.6), and (3.8)
hold for z = zg and that

Re Q(z) € CL.

Therefore, since zp is arbitrarily chosen in D, we get that (3.3), (3.4), (3.6), and
(3.8) hold for each z € D and that via (3.5) a ¢ x ¢ Carathéodory function € is
given. It remains to prove that Q fulfills the condition (1.3) for each j € Ny . In

view of W,, € Z,, (3.3), and (3.7), we obtain that Y, : D — C9*4 defined by

T (2) 1= =22 (dp(2)) " Los1 F(2) (zdggﬂ (2)F(2) + bn(z)> (3.9)

is a well-defined matrix-valued function which is holomorphic in D. Because of
Vi € Y, Wy, € Z,,, and Theorem 1.3 the central ¢ x ¢ Carathéodory function €2, ,,
corresponding to (I';)}_, admits, for each 2 € D, the representations

Qen(2) = an(2)(bn(2)) and Qcn(z) = (dn(z))_lcn(z).

In particular, d,a, = ¢,b,. Thus using (3.5) and part (b) of Proposition 2.4 we
get, for each z € D, the identity

Q(Z) - Qc,n(z)
= (dn(2)) (=2 ()8 () F (2)+ du(2)an (2) = 20(2) 1 (2) F (2) = a(2)0(2) ) -
(=l @ FG) + ()

1 - -1
= (@ () (=25 Luia F(2) (24} (2)F(2)+ba(2)) = T (2).

-1

Hence, because each entry of the matrix-valued function Y, forms a complex-
valued function which is holomorphic in D and has a zero at least of order n + 1
at the point 0 (see (3.9) and note d,(0) = I, and b,(0) = I,), there is a sequence
(Aj)32,,41 of complex g x ¢ matrices such that
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for each 2 € D. Consequently, since €. ,, belongs to Cy[D, (I';)}_,] and we already
know that Q is a ¢ x ¢ Carathéodory function, the matrix-valued function 2 belongs
to Cy[D, (I';)7_o] as well. O

It should be mentioned that if S € Syxq(D), then the matrix-valued func-
tions F' and G defined by (3.7) do not belong to Syx4 (D) in general. This will be
emphasized by the following simple example.

Ezample 3.3. By setting

Ty := <(1) 2) and S := ((1) (1)>,

then (Fj)?:() is a 2x 2 Carathéodory sequence for which L1 = Ry =Ty and S is a

contractive 2x2 matrix. Moreover, v/L1Sv/R; | = (VL1 +S\/Rl)* and because of
+ * + 30
L — (VL1 SvVR) VL1 SVR, = &

the complex 2 x 2 matrices v/L1Sv/R:  and /L1 T Sy/R; are not contractive.

Now we are going to prove an inverse statement to Theorem 3.2, i.e., we will
show that any solution Q € C,4[D, (I'j)_,] can be represented via (3.5) and (3.6)
with some S € S;x4(D), where F and G are defined as in (3.7).

Remark 3.4. Let A and X be complex p x ¢ matrices such that the following three
conditions are satisfied:

(i) R(A) € R(X).

(ii) R(A") € R(X™).

(iii) det(I + XTA) #0 or det(I + AX™) #0.
Then, in view of [DFK, Lemma 1.1.8, Theorem 1.1.1, and Corollary 1.1.2], it is
readily checked that det(I + XTA) # 0, det(I + AX™) # 0, and

X(IT+XTA) ™ =(T+AXT) !X,
Remark 3.5. Let F € (Cgﬂrq)x(pﬂ) with block partition
A B
=(e5),
where A is a p X p block. Then one can easily see that ||B]|? < ||A] - |D|| holds.
Lemma 3.6. Let Q € Cy(D) and let

o0
Qz) = > Tuz* z€D, (3.10)
k=0
be the Taylor series representation of ). For each nonnegative integer n, let Q. ., be

the central g x q Carathéodory function corresponding to (Fj)?:o- For each compact
subset IC of D, the sequence (Qe,n)2%, converges uniformly on K to .
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Proof. For each n € N, let o

Qen(z) = ZF,(:)Z’“, z €D,
k=0
be the Taylor series representation of 2. . Since Q belongs to C4(ID), the sequence
(Tk)52, is a g x ¢ Carathéodory sequence, i.e., for each n € Ny the matrix 7T}, given
by (1.1) and (1.2) is nonnegative Hermitian. Hence the block matrix

Re Fo ;F;;
érk Re Fo
is nonnegative Hermitian for each & € N. Consequently, Remark 3.5 yields that
ITkll < [I2ReLoll = [To + 5] < 2T
holds for each k € N. Analogously, for each n € N and each k € N, we get
1T < 20671 = 2Tl

Thus, for each n € Ny and each z € D, we obtain

19c.n(z) = QI < Y- ITF) =Tl [2F < 4Tl D J2l*
k=n+1 k=n+1
The assertion immediately follows. O

Theorem 3.7. Let n € No and let (I';)}_, be a g x g Carathéodory sequence. If
n > 1, then let V,, € fn and W, € Zvn Let the matrix polynomials ayn, by, cn, and
dp be given by (1.15), (1.16), (1.17), and (1.18). Further, let the matrices Ly11
and Ry11 be defined by (1.6) and (1.8). Let Q2 € Cy[D, (T'y)}_,]. Then there is an
S € Syxq(D) such that the conditions (3.3) and (3.4) are fulfilled for each z € D
and that Q admits, for each z € D, the representations

0(z) = (~2d () F () + an(2)) (20 () F(2) + bn(z))*1 (3.11)
and

Q(2) = (2G()b(=) + dn(z))_l (—2G=)a () + ea(2))
where F = \/Ln+1 +S\/Rn+1 and G = \/Ln_HS\/R,H_lJr as in (3.7).

Proof. In view of Q € Cy[D, (I';)}_o], let (I'x)zZ,, 4, be the sequence of complex
¢ x g matrices such that (3.10) is satisfied. Since 2 is a g x ¢ Carathéodory function,
for all k € Ny, the sequence (Fj);?:o is a ¢ x ¢ Carathéodory sequence. For each
k € Ny, let Q.1 be the central g x g Carathéodory function corresponding to
(Fj);?:o. Application of Lemma 3.6 provides, for each z € D, the relation

kli_)rg@ Qer(z) = Q2). (3.12)

Since V,, € )7n, the function det b,, vanishes nowhere in D. Theorem 1.3 yields that
Q. admits, for each z € D, the representation Q¢ ,(2) = a,(2) (bn(2)) ~! For each
J € Ny, let the ¢ x ¢ matrix polynomials apn4j+1, bntjt+1, Cntj+1, and dp4j41 be
defined by (2.6), (2.7), (2.8), and (2.9), where fy4+;+1 and gn4,+1 are the matrices
given by (2.2). Since the function det b, vanishes nowhere in I, Proposition 2.6
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implies that, for each j € Ny, the function det b, ;41 vanishes nowhere in I as
well. We are going to prove that, for each k € Ny and each j € Ny, thereis a ¢ x ¢
Schur function S, defined on D such that

det (quﬁj]]] \/Ln+J+1 Sjk (2 \/Rn+J+1 + bnj(z )) #0 (3.13)
and _

Qoo (2) = (280 () Bi(2)+anes () (2 B () +bnss(2) - (3.14)

hold for each z € D, where Fjj:=+/Lnyjt1 JrSj;~C /Rt js1. If k=0, we choose the
constant ¢ x ¢ Schur function S;o (defined on D) with value Og4x, for all j € Ny.
For each z € D, then (3.13) holds and, moreover, Theorem 1.3 and Proposition 2.6
yield that (3.14) holds as well. Now we consider the case k = 1. Let j € Ny. From

+ +
Remark 2.1 we see that Kn+j+1 = \/Ln+j+1 (érn+j+1 - Mn+j+1) \/Rn+j+1
is a contractive matrix and that

+
VEntjt1 Knpjriy/Ropion = Lh iy (30ntin — Magjtn) = favjrns (3.15)

+
VEIntjt1Knpjriy/Rorjer = (3Tntjet = Mayjin) RY 0 = gnijir. (3.16)
Thus the constant function S;; (defined on D) with value —K 4,41 is a ¢ x ¢ Schur
function and from (3.15), (2.6), (2.7), and Proposition 2.6 we obtain

det (Zd[ +‘]](Z)\/Ln+j+1 Si1(2)\/ Ratjs1 + bnyj(z ))
= det ( 2" g +bn+]~(z)> = det byyj41(2) £ 0

and, by setting Fjl = \/Ln+j+1 +Sj1 \/Rn+]‘+1, moreover

—1
Qentjr1(2) = anyjr1(2)(bnyjri(2))

= (ZCE?LJ]( ) it + an+j(z)) ( 2N 2) g + bn+j(2))

= (=2 O FR ) + ans () (205 () Fin () + buis(2)

for every choice of z in . Hence there exists a x € N such that, for each £ € Ny,
there is a sequence (Sg;)2, from Syxq(ID) such that

det (Zd:fzz] (2)V/Lnyer1 Sen(2)y/Rusers + bn+e(2)) #0 (3.17)
and _

Qemtern(2) =(— 280 2 Bk (2) F ansal2)) (20 B (2) 4 bse(2)) (3.18)

hold for all £ € No, and z € D, where Fyy:=+/Lnir41 +s@,.ﬂ/RnHH. Let j € No.
The matrix-valued function

+
Siwt1 = VLIntjr2/Intjvz Sjtin (3.19)
obviously belongs to Syxq(D). The matrix-valued function ©; ;41 : D — C9%9,
D pr1:D— C™ and ¥; 41 : D — C?*? defined by

0541(2) = V/Lntss1VIntits Sjust(2)V/Rutjiay/Rurjin 5 (3.20)
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D) rt1(2) = Knpjr1 — 20,x41(2), (3.21)
and

Ujnt1(2) =1 = 2K 41105 541(2) (3.22)

are holomorphic in . Because of det ¥; ,.41(0) = det I, # 0 there is a discrete
subset A of D such that
det \I/j,,ﬁl(z) 7é 0 (323)

holds for each z € D\ A. Hence S .41 := <I>j7,€+1\11jfi+1 is a well-defined matrix-
valued function which is meromorphic in D. For each z € D\ A we have

(C)r+1(2) Wjer1(2) = (Drr1(2)) @1 (2)
= 1=K}y 1 K= 127 (0,011(2) (I =Koy 11 Ky 11)011(2)
=I-K} i Ko —|2VRotjn Jr\/Rn+j+2 (B5011(2)) VEnsj+2 +\/Ln+j+1 '
(I =Kntj1 Ky )Vt 17/ Lnyjve +Zj,n+1(z)\/Rn+j+2\/Rn+j+1+- (3.24)
From Remark 2.2 we obtain
VIntitz VInsinr (I = Knpii1 K1) /Invgory/ Lt
= Lnyjto +Ln+j+2 VLntjto T = VIntjray/Lnyjio "

Thus, in view of (3.19), for each z € D\ A it follows

+

VRiutint vV Bupis2 (L1 (2) VEnsis2 VEnejr ([ = Knpjnr Ky i) -
v/ Lntjs1v/ Lnjsz +Zj,n+1 (2)V/Rutjv2/Rutis i
= VRt VB2 (St () VEntis2vLnsisz Sjnia(2)yRosiszy/Rusi
=v/Rn+js1 +\/Rn+j+2 (Bjk11(2)) Zjoes1(2)v/Burjra/Butjsn I (3.25)

From Remark 2.1 and Remark 2.2 we can conclude

+

I - K2+j+1Kn+j+1
=1—\/Rnyjn +\/Rn+j+1
+V/Rusisr vV Bupir(I = K1 Kng o)y Rosjiiy/Rosiin
= I~ /Rutjt1 v/Rutjr + VRotis1 Rusjary/Rosier - (3.26)
Then using (3.24), (3.25), and (3.26), for each z € D\ A, we get
(P011(2) W11 (2) = (B n41(2)) Bjinsa(2)
=1—/Ruyji +\/Rn+j+1
+v/Rutjer v/ Rosjso (I* |2 (Zjmr1(2)) Ej7n+1(z)>\/Rn+j+2 VRnsi1 -

+
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For every choice of z in D\ A, the right-hand side of this equation is nonnegative
Hermitian. Consequently, in view of the identity

I = (Sjrs1(2)) Sjmns1(2)
= (Wer1(2) (W12 Wnra(2) = (@jocia(2)) @jocia(2) ) (Whnsal2)

for all z € D\ A, we see that Sj,,ﬁl is a meromorphic matrix-valued function which
is both holomorphic and contractive in D \ A. Since A is a discrete subset of D,
because of Riemann’s theorem on removable singularities of bounded holomorphic
functions there is a ¢ x ¢ Schur function S; .41 (defined on D) such that S; .41 is
the restriction of S x4+1 onto D \ A. For each z € D\ A, from (3.23), (3.22), and
(3.20) we have

(5001(2) "V Ry
—1
= (I — 2K} 4 11195k11(2)V Rot i1/ Rot ) VERntjii
For each z € D\ A, because of (2.1), (3.20), (3.22), and (3.23), from Remark 3.4
it follows det (1 NI R < jH@j,Hl(z)\/RnHH) 40 and
(ql]7n+1 ) \/Rn+J+1
+ o x -1
= V/Ruyjn (I — 2/Ruyjn Kn+j+1®j,n+1(z)\/3n+j+1) . (3.27)
For each z € D\ A, from (3.20), Remark 2.2, (3.16), and (3.19) we get
I=2y/Rusjir KOs (2 Rutsn
+
=1—2\/Ruyjr1 K1V Lnsjsry/Lngjso
+
%1 (2)VButjray/Bovjtn vV Rotin
o +
=I—2yRojin KoV Loy Intive Simi1(2)v/Rayjie

. +
=1—2g5, i1V Lnsjrz Sjt1e(2)y/ Rutjro. (3.28)
In particular, for each z € D\ A, the matrix on the right-hand side of (3.28) is
nonsingular. Thus, for each z € D\ A, from (3.27) and (3.28) we get

(Vsnr1(2) "/ Rugjn
=/ Rutj (I — 2gn i1V Lntjye +Sj+1,n(z)\/Rn+j+2) _1- (3.29)
Using (3.21), (3.20), (3.19), (3.15), and Remark 2.2, for each z € D\ A, we obtain
VIntj +‘I’j,n+1(2)\/Rn+j+1 = VLntj i (Kntjr1 — 20;541(2)) v/ Rugjin
=/ Lntjr +Kn+j+1 VRnyjs
—2y/Lntjn +\/Lnﬂ‘+1 VEInijse +Zm+1 (2)\/Rntjr2y/Rusis +\/Rnﬂ‘+1
= faritt — 2/ Lntjrz Siv1n(2)y/ Rusiso (3.30)

-1

+
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and, moreover, by application of (3.29), (3.30), (2.7), and (2.9) then
—zd,, nﬂ] 2)v/Latjt +Sj,n+1(z)\/Rn+j+1 + bntj(2)
dﬂfj W ntjr ®jppi(2) (U)041(2)) " v/ Rujr1 + buti (2)
—2d () L T 41(2)V/ Rttt
: (I — 2054 i1V Intive 5j+1,~(2)\/Rn+j+2) J bntj(2)
= (bn+j(2) (I =295 511V Intise +Sj+1,n(z)\/Rn+g‘+2) dL:f (2) (frtjsr
—2v/Lnsjsz Sirtn(2)V Rt )) (I*ZQZHH\/LnHw +Sj+1,n(2)\/Rn+j+2)_1
- (bn+j( ) = 25 ) frgan + 2 (AT @) = burs (Vg gn) VEnbivz
: Sj+1,n(2)\/Rn+j+2> (1 — 20y i1V Intive +Sj+1,n(z)\/Rn+J‘+2> -
= (bn+j+1( )+ de:r]]:f] 2)\/Ln+j+2 +Sj+1,n(z)\/Rn+j+2) .
: (I — 2gn i1V Lntjte +Sj+1,n(2)\/Rn+g‘+2> o (3.31)
Taking into account (3.29), (3.30), (2.6), and (2.8), for each z € D\ A, we get
22l (2) /Loty St (2)y/ Rt + anag(2)
= 20, nﬂ] 2)/Lytjt1 +<I>j,;~e+1(z) (¥ nt1(2)) \/Rn+J+1 + anyj(2)
= chﬁf]( ) (fn+j+1 — 2y/Lngjt2 Sj+1,n(z)\/Rn+j+2> .

R + -1
: (I — 205 i1V Lntjre Sj+1,n(z)\/Rn+j+2) + anyi(2)

= (Zégl:f (= )(fn+j+1*2\/Ln+j+2 +Sj+1,n(z)\/Rn+j+2) + an+j(2)(1*292+j+1'
sz i1 n(2) R )) (1—292+j+1 VEnijt2 +Sj+1,n(z)\/Rn+j+2)71

= (=2 () + a5 g) VEnrins Sivin(DV Rutive + ans(2)
+25£Z:;7] (Z)fn+j+1> (f — 2gn i1V Lntiso +Sj+1,n(2) \/Rn+j+2) -

= (=2 OV L Sit1n ()W Rutgiz + anisia(2)) -
: (I — 20n i1V Lntjte +Sj+1,n(z)\/Rn+j+2) o (3.32)

Because of (3.17), for each z € D\ A, the right-hand side of (3.31) is nonsingular.
Hence, for each z € D\ A, the left-hand side of (3.31) is nonsingular as well and,

by setting Fj .41 = \/Lnﬂﬂ*Sj,Hl\/RHﬁh from (3.32), (3.31), and (3.18),
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we obtain then

-1
(35 ) Fac (2) + anss (2) ) (=207 () Fiesr(2) + b (2)
~[n+j +
= (7ZCL:7?7J;~_11](Z)\/Ln+j+2 Sj+1’,{(z)\/Rn+‘j+2 + an+j+1(z)> .

2" () Loy jie S, o+ b -
n+j+1 )\/ n+j+2 ]+1,l~t(z) \/Rn+]+2 =+ n+]+1(z)

= Qe ntjt14x(2) = Qentjrnt1(2). (3.33)
Using Lemma 3.1 (note [FK3, Proposition 4.4, Lemma 4.6]) and a continuity ar-
gument we get that (3.33) holds for each z € D. Thus, for all nonnegative integers
j and k, there is a ¢ x ¢ Schur function S;, defined on D such that (3.13) and
(3.14) hold for each z € D, where Fjj, := \/Ln+j+1 +Sjk \/Rn+j+1. The matricial
version of Montel’s theorem yields that there are a ¢ x ¢ Schur function S defined
on D and a subsequence (Sog,, )oe—o of (Sox)5>, such that

mh_r)n()o Sok., (2) = S(2) (3.34)

holds for each z € D. From Theorem 3.2 we get (3.3) and (3.4) for each z € D.
Using (3.12), (3.14), and (3.34) we obtain (3.11) for each z € D. Application of
Theorem 3.2 completes the proof. O

Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1. Use Remark 1.2, Theorem 3.2, and Theorem 3.7. O

4. Resolvent matrices which are constructed recursively

A closer look at the construction of the matrix polynomials ay,, b,, ¢,, and d,, which
realize via Theorem 3.2 and Theorem 3.7 a parametrization of the solution set of
an arbitrary matricial Carathéodory problem shows that there is some freedom in
building polynomials a,, b,, ¢,, and d, with the required properties. The main
objective of this section is to present a recursive construction of a distinguished
quadrupel [a,, by, ¢, d,] of matrix polynomials which satisfy the assumptions of
Theorem 3.2 and Theorem 3.7.

In the present section, if a nonnegative integer n and a g X g Carathéodory
sequence (Fj)?:o are given, then always Ly41 and Ry41 stand for the matrices
defined by (1.6) and (1.8) for each k € Ny ,,. Furthermore, let ag, by, cg, and dg

be the constant matrix-valued functions defined, for each z € C, by
ag(z):==Ty, bo(z) =1, co(z):=T9, do(z):=1, (4.1)

and for all m € Ng ,,—; let the matrix polynomials a,,11, bm+1, Cm+1, and dpy1
be recursively defined, for each z € C, by

3
—
N
S~—
|
N
%
=
K

ferla (42)
m(2) — gm+1251[7T](Z>7 (4.3)

ant1(2) = am(2) + 2600 (2) i1, b (2) =

Cm+1(2) == cm(z )+gm+1za[ ]( ), dmy(z) =
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where the matrices f,,,+1 and g,,4+1 are given as in (2.2) with respect to (Fj)gniol.
In the following, we point out some results on the special structure of these matrix
polynomials. Note that from [FK3, Example 4.3] (see also Example 4.5 below) one
can see that the matrix polynomials a,, b, ¢,,, and d,, do not coincide, in general,
with the matrix polynomials a,, by, ¢,, and d,, respectively, which are defined by
(1.9), (1.10), (1.11), and (1.12). Nevertheless, they comply with the requirements

of Theorem 3.2 and Theorem 3.7.

Theorem 4.1. Let n € Ny and let (Fj)?:o be a q x q Carathéodory sequence. Then:
(a) For each S € Syxq(D) and each z € D, the inequalities

det (z&w(z)\/LnH +S(z)\/Rn+1 + bn(z)> #0
det ( VLni18(2)\/Rot1 B (2 dn(z)> £0

are satisfied. Moreover, for each S € Syxq(D), the matriz-valued function
Q:D — CI*1 defined by

Q(z):= (—zék’](z)F(z)—i—an(z)) (zakl](z)F(z)—i—bn(z))

belongs to Cq[D, (I'y)_o] and admits, for each z € D, the representations

and

Q(Z):(ZG(Z)Bgy](zndn(z)) (sz(z)égf](z)+cn(z)> (4.4)

and
-1

Q(2)= (28 (2)F(2)+an(2) ) (20 () F(2)+ba(2))

where F := \/Ln+1 +S\/Rm_l as well as G = \/Ln+1S\/Rn+1 * and where
an, by, cn, and d,, are defined by (1.9), (1.10), (1.11), and (1.12).
(b) For each Q € Cy[D, (T';)_], there is an S € Syxq(D) such that for each z € D

the representations (4.4) and
. -1
Q(2) = (—2ell) (=) F(2)+an(2) ) (2} (2) F(2)+ba(2) )

of Q hold, where F:= \/Lp1 S\/Rus1 and G := \/Lns15+/Rus1
Proof. In the case n = 0 the assertion follows immediately from Theorem 3.2 and
Theorem 3.7. Now suppose n > 1. According to [FK3 Proposmon 4.4, Remark 4.5,
and Lemma 4.6] there are some matrices V,, € yn and W,, € Z such that the
¢ X q matrix polynomials a,, b,, c,, and d,, can be represented, for each z € C,

via (3.1) and (3.2). Application of Remark 1.2, Theorem 3.2, and Theorem 3.7
completes the proof for that case. O

Remark 4.2. Let n € Ng and let (I';)7_, be a g x g Carathéodory sequence. By
induction, one can see that a,(0) = T'g, b,(0) = Iy, ¢, (0) =T, and d,(0) = I,.
In particular, the ¢ X ¢ matrix polynomials 57[? } and (ﬂf I are both of degree n
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with leading coefficient matrix I, and the ¢ x ¢ matrix polynomials é% } and (N:L? ]

are either both the constant function with value Oyx, or both of degree n with
leading coefficient matrix I'j. Moreover, an’ (0)=T%, b (0)=1,, & (0) =T}, and
al (0)=1, in the case of n = 0 and if n > 1 then in view of the recursions it is not
hard to see that a" (0)=f:To, b 0)=—1f* &l (0)=Tyg?, and ar (0)=—g:.

n?
Lemma 4.3. Let C € C?*9 be such that Re C is a nonnegative Hermitian matriz.

(a) If A is a complex p x q¢ matriz such that AC = Opxq4, then A(ReC) = Opxq-
(b) If B is a complex q X p matriz such that CB = Ogxyp, then (ReC)B = 0gxp.

Proof. Let A € CP*9 be such that AC = 0,x4. Then

(AVReC) (AVRe c)* — ;A(C oA = ; (ACA" + A(AC)) = 0y

and consequently
A(ReC) = (AVReC) VR C = OpgVReC = Opey.
Part (a) is proved. Part (b) follows easily from part (a). O

Proposition 4.4. Let n € N and let (Fj)?:o be a g x q Carathéodory sequence. Fur-
ther, let Q¢ and Q. ,,—1 be the central ¢ x g Carathéodory function corresponding

to (I'j)}—o and (Fj);-l:_ol, respectively. Then the following statements are equivalent:

(1) Qc,n = Qc,n—l-
(11 an = an—1, bn = bnfly Cn = Cn—1, and dn = dnfl-
(iii) At least one of the matriz polynomials a,, by, ¢,, and d,, is of degree not
greater than n—1.

 —

Proof. (i) = (ii): Because of (i) we have ,T', = M,. From (2.2) we obtain then
fn = 0gxq and g, = Ogxq. Using (4.2) and (4.3) we get (ii).
(ii) = (iii): Since the relations (4.1), (4.2), and (4.3) yield that a,_1, b,_1, cph_1,
and d, _; are matrix polynomials of degree not greater than n — 1, this implication
follows obviously.
(iii) = (i): First suppose that the matrix polynomial b,, is of degree not greater
than n — 1. From Remark 4.2 we can conclude f, = O4x4 so that (2.3) provides
1
2
Thus (i) holds. Analogously, one can check that if d,, is a matrix polynomial of
degree not greater than n— 1, then (i) follows. Now we suppose that a,, is a matrix
polynomial of degree not greater than n—1. Then Remark 4.2 yields f;I'g = Ogxq-
Hence Lemma 4.3 provides us

Lifn = (ReTo) fn = (£ (ReTo))" = Ogsq-
Taking into account (2.3) and Remark 2.2 we get

1_\n - Mn = Lnfn = Oq><q-

1
2Fn - Mn = Lnfn = Llfn = 0q><q~
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This implies (i). If ¢,, is a matrix polynomial of degree not greater than n — 1,
then one can similarly verify that (i) holds. O

In view of (3.1) and (3.2) (cf. the proof of Theorem 4.1), the matrix polyno-
mials a,, b,, ¢,, and d,, are special choices of the matrix polynomials a,, b,, ¢y,
and d,, given by (1.15), (1.16), (1.17), and (1.18). The following example emphasi-
zes that the statement of Proposition 4.4 depends on these special choices. In fact,
a,, b,, ¢,, and d,, can not be replaced via a,,, b,, ¢,, and d,, respectively, defined

by (1.9), (1.10), (1.11), and (1.12) (note Remark 1.2).

Example 4.5. By setting Iy := ;Iq, I'y :== 1, and I'y := I, then (Fj)?zo is a
q x q Carathéodory sequence for which T,)'Y; = I,, Z1T,f = I,, Ly = 0, Ry = 0,
T Y, = é(Iq, Iq) ,and ZoTH = é(Iq, Iq). Hence, for each z € D, it follows

1+2
Qc = I :Qc ;
72(Z> 2(1 _ Z) q ,1(2:)
but
1 3 1 1 1
ax(2) = Ig+ | 2Ig + 4Z2Iq, ba(z) = Iy — Iy — 2Z2Iq,

c2(z) = az(z), and da(z) = ba(z) if ag, b2, ca, and dy are defined as in (1.9), (1.10),
(1.11), and (1.12) with n = 2. In particular, the matrix polynomials as, bs, ¢2, and
ds are of degree 2.

A complex p X p matrix J is said to be p X p signature matrix if J* = J and
J? = I hold. In particular, the matrices

. I, O 0 -1
]qq:—<61 —Iq> and Jq:—(_lq Oq>

are 2qx 2q signature matrices. Now we are going to show that the resolvent matrices
formed by the matrix polynomials a,,, by, c,, and d,, fulfill similar formulas with
respect to these 2¢g x 2¢ signature matrices jqq and J; as the Arov-Krein’s resolvent
matrices in the nondegenerate case (cf., e.g., [FK3, Section 5]).

Proposition 4.6. Let n € N and let (Fj)?:o be a q X q Carathéodory sequence. For
each m € Ny, let ®8, : C — C29%24 gnd W2, : C — C29%2¢ be defined by

~[m] +
* () .— [ *Cm (2) am(2) )\ [V Lm+ 0
@, (2) = (za%”](z) bm(2>>< O+ \/Rm+1+> (4.5)

and

© (1) .— \/Rm+1+ 0 —za(z) 2bI(2)
Wm“"( 0 \/Lm+1+>( S ) ue

Further, for eachm € Ny 1, let Ky, 1 1= \/Lm+1 * (;Fm_H — Mm+1) \/Rm+1
Then the following statements hold for each m € Ng 5,1

+
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(a) For each z € C, the identities
D 11(2) =85, (2)Gmia(2)  and W7, (2) = Hmia (2)97,(2)  (4.7)

are satisfied, where

I -K, Liy1v/ L, 0
Gm+1(z) = ( K N T +1> < \/ +1\/ +2 +>

.- 0 \/Rm+ 1\/Rm+2

and

Hypr (2) = <\/Rm+2 VRmi1 0 )( I KZZH)

0 V/Lm+2 \/Lm+ Ky 1

(b) (I)m+1 [ G1G2 Gm+1 and \Il:n+1 = Hm+1HmH1\Ila
(c) For each z € C,

diag (Lm+2L:;L+2’ *Rm+2R;+2) - (Gm+1(z))*jqq Gmy1(2)
= diag ((1 - |z|2)Lm+2L;+2, quq) ) (4.8)

(Gm41(2)) " ding (L1 L, 1, —Rin1 R 1y) Gonet (2)
= (Gm-i-l(Z))*jqq Gm+1(2), (4.9)

diag (Rm+2R’I-:.+2’ *Lm+2L7—;+2) — Himt1(2) Jaq (Hm+1(z))*
— diag (1 =) Rt 2R y0, O (4.10)

and

Hpy1(z) diag (Rm-i-lR:@-i-h _Lm+1L;+1) (Hm+1(z))*
= Hos1(2) g (i1 (2)) (4.11)

Proof. Let m € Ny ,—1 and let z € C. From (4.2) and (4.3) we obtain

—zc[] an(z z — 1 +
@:n+1<z>—< =) an >> (Lo J}”;*)(“Lm” " +>. (112)

2d(2) bu(z)) \~20041 0 /Rmio

Since the matrices L,,+1 and R,,;11 are nonnegative Hermitian, the relations

VImi1v/Imi1 = \/Lms1 V/Imi1 and \/Riiy/Ronst - = /Rong1 /Bt
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hold. Because of Remarks 2.1 and 2.2 we have then

( 21, fm+1> \/Lm+2+ 0

_Zg:n+1 Iq 0 \/Rm+2+

+Z\/Lm+2 * N *\/Lm%»l m+1 \/Rm+1 \/Rm+2
_Z\/Rm+1 K;H—l \/Lm+1 \/Lm+2 \/Rm+2

— ( Z\/Lm+1 +\/Lm+1 \/Lm+2 * *\/Lm%»l m+1 \/Rm+1 \/Rm+2 )

—2/Roni1 Kii/Imiiv/Imiz /Rms1 /Rmiiy/Romia

\/Lm+1 0 ( 1 - m+1) Z\/Lm+1\/Lm+2 " 0 )
0 \/Rm+1 7K:a+1 I 0 \/Rm+1\/Rm+2 *

A combination of this equation with (4.12) supplies the first equality in (4.7). The
second one can be proved analogously. Part (b) follows immediately from part (a).
A straightforward calculation yields

(Gm+1( ))*jqq Gm+1( )

| | \/Lm+2 \/Lerl I— Km+1Km+1 \/Lm+1\/Lm+2
0 \/Rm+2 \/Rm+1 m+1Km+1 \/Rm+1\/Rm+2
and (note (2.1))
(Gmi1(2)) diag (Ling1Lyh 1, —Rmg1 Ry ) G (2)

|23 /L2 \/Lm+1Lm+1Lm+1(I Kini1K,44) \/Lm+1\/Lm+2 0 3
0 \/Rm+2 \/Rm+1 m+1Km+1 _I>Rm+1Rm+1 \/Rm+1\/Rm+2

Hence, it follows (4.9) and from Remark 2.2 we get furthermore

* |Z| \/Lm+2 Lm+2\/Lm+2 0
Gm Gm
( +1(Z)) Jaq Gm+1(2) = < 0 *\/Rm+2 Rm+2\/Rm+2

which implies (4.8). Equations (4.10) and (4.11) can be verified analogously. O
Corollary 4.7. Let n € Ny and let (Fj)?:o be a g x q Carathéodory sequence.

Furthermore, let the 2q x 2q matriz-valued functions ®3 and ¥ be defined as in
Proposition 4.6, let

0, — <Ln+10L:+1—Rn_£R:§+1> (\/2@-) J, (\}2(1,.>

= . RnJrlR:,_Jrl 0 . 1 °
e ( 0 —LnyiLiy, (%2‘1' )J (\/2‘1' )

(a) For each z € D, the matrices ©,(z) and E,(2) are nonnegative Hermitian.

(b) For each z € T, the identities ©,(z) =0 and Z,,(z) =0 are satisfied.

(¢) For each z € C\ (DUT), the complex 2q x 2q matrices —O,(z) and —Z,(z)
are both nonnegative Hermitian.

and let
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Proof. For each z € C, a straightforward calculation yields

Oo(z)=diag ((1—|2|*)L1LT,04xq) and Eg(z)=diag ((1—|z[*)R1 R, 0gxq) -
Application of parts (b) and (c) of Proposition 4.6 completes the proof. O
Corollary 4.8. Let n € Ny and let (T )] o be a g x g Carathéodory sequence. Then

. 0 . n 0 Rup R}
\I]n(Z) (—Iq 61> @n(,’(‘,’) = -2z +1 <_Ln+1L++1 +10 +1)

for each z € C, where the 2q x 2q matriz-valued functions ®3 and ¥? are defined
as in Proposition 4.6.

Proof. For each z € T, an application of [DFK, Lemma 1.2.2] and |z|? = 1 implies
~ * +
Zn+1<lq 0 >(\Il;(z))* — il (i"% ) \/R”+1 (C”(Z)) *\/L”"‘l n
0 -1, (bn (2) ) \/Rn+1 —(dn(2)) VLns1
(an(z)\/Rn+1+ *ZCL?] 2)\/Ln+1 +>

(2) \/Rn+1+ zd n z)\/Ln+1+

0 I,
20 (; 1)
Consequently, from

0 L\(L 0Y\_, o L,\" [0 I
-1, 0)\o —-1,) =7 \r, o) T\, 0)

and part (b) of Corollary 4.7 it follows
L] 0 I . n . ° * O 1
v () B e - —reesnee) () )

_ _2zn+1 ( 0 Rn+1Rz+1>
_Ln+1LZ+1 0

for each z € T. Since the left-hand side and the right-hand side of this equation
form matrix polynomials, one can conclude the assertion. O

Observe that the formula in Corollary 4.8 is closely related to Proposition 2.4.
In particular, using part (b) of Proposition 2.4 and (2.10) we obtain an alternative
approach to Corollary 4.8. In fact, these considerations yield that the statement
of Corollary 4.8 remains true if one replaces in the definitions of ®; and ¥
according to Proposition 4.6 the special polynomials a,, b,, c,, and d,, there by
the polynomials ay, by, ¢, and d,, defined as in (1.15), (1.16), (1.17), and (1.18)
with some V,, € Y, and W,, € Z, if n > 1. Applying the arguments of the proof
of Corollary 4.8 then in a slightly modified order, one can see that also part (b) of
Corollary 4.7 remains true under these general settings.
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5. The nondegenerate case

In this section, we will deal with the nondegenerate matricial Carathéodory prob-
lem. There can be found several approaches to this problem in the literature (see,
e.g., [AK], [Ko], [BGR], [FK1], and [FKK]). The main goal of the following consi-
derations is to demonstrate that Theorem 1.1 (respectively, Theorem 4.1) quickly
leads us to Arov-Krein’s parametrization of the solution set for this case. Before,
we give some general remarks on the nondegenerate case which are expressed in
terms of the ¢ x ¢ matrix polynomials a,, by, ¢,, and d,, defined by (1.15), (1.16),
(1.17), and (1.18).

Let n € No. A sequence (I'j)7_, of complex ¢ x ¢ matrices is said to be a
nondegenerate q X q Carathéodory sequence if the block Toeplitz matrix T), given
by (1.1) and (1.2) is positive Hermitian.

Lemma 5.1. Let n € Ny, let (Fj)?:o be a q X q Carathéodory sequence, and let the
matrices Ly, and Ry be defined as in (1.6) and (1.8) for each k € Ny py1. Then
the following statements are equivalent:

(i) (I'y)j—o is a nondegenerate q x q Carathéodory sequence.
(ii) For each k € Ny 11, the matrices Ly, and Ry, are both positive Hermitian.
(iii) Lp41 or Ryq1 is nonsingular.

Proof. (i) = (ii): From (i) and [DFK, Lemma 1.1.9] we obtain that the matrices
L, 41 and R, are positive Hermitian. Thus Remark 2.2 yields (ii).

(ii) = (iil): This implication holds obviously.

(i) = (i): Since (I';)}_y is a ¢ x ¢ Carathéodory sequence, the matrices Ly1
and R, are nonnegative Hermitian. Because of (iii) and Remark 2.2, one of the
sequences (Ly){E] and (Ry);2] consists of positive Hermitian matrices. Hence, an
application of [DFK, Lemma 1.1.9] provides us (i). O

Remark 5.2. Let n € N and let (Fj)?:o be a g x ¢ Carathéodory sequence such that

the g x g Carathéodory sequence (Fj)?;ol is nondegenerate. Then Y, = {T,; Y.}
and Z, = {ZnTn__ll}. Thus the matrix polynomials a,,, b,, ¢,, and d,, defined by
(1.9), (1.10), (1.11), and (1.12) coincide with the matrix polynomials a,, b,, c,,
and d,, which admit, for each z € C, the representations (3.1) and (3.2). On the
other hand, from [FK3, Proposition 4.4 and Remark 4.5] we obtain that a,, by,
¢n, and d,, can be constructed recursively by (4.1), (4.2), and (4.3), where the
sequences (fm41)"_o and (gm+1)"_ of complex g x ¢ matrices are given by (2.2).
Remark 5.3. Let n € N and let (I';)?_, be a ¢ x ¢ Carathéodory sequence. Further,
let the matrix polynomials a,, by, ¢,, and d,, be constructed recursively by (4.1),
(4.2), and (4.3), where the sequences (fy,+1)™_% and (gm11)"_, of complex ¢ x ¢
matrices are given by (2.2). If at least one of the matrix polynomials a,,, by, ¢, and
d,, is of degree n with a nonsingular leading coeflicient matrix, then an application
of Lemma 5.1, Remark 4.2, and (2.2) implies that the g x ¢ Carathéodory sequence

(Fj)?:_ol is nondegenerate.
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Proposition 5.4. Let n € No and let (I';)?_, be a q¢ x q Carathéodory sequence.
If n > 1, then let V,, € Y, and W,, € Z,. Further, let a,, by, c,, and d, be the
matriz polynomials which are defined by (1.15), (1.16), (1.17), and (1.18). Then
the following statements are equivalent:

(i) (I'y)j—o is a nondegenerate q x q Carathéodory sequence.
(ii) For each z€T, the matrices an(z), bu(z), cn(2), and dn(2) are all nonsingu-

lar and, moreover, the matrices Re (an(z) (bn(z))fl), Re ((dn(z))i cn(z)>,
Re (bn(z)(an(z)Yl), and Re ((cn(z))ildn(z)) are all positive Hermitian.
(iii) There is a z € T such that Re ((an(z))*bn(z)) or Re (cn(z)(dn(z))*) is a

nonsingular matriz.

Proof. (i) = (ii): According to Lemma 5.1, (i) implies that the matrices L,y and
R, 41 are both positive Hermitian. Thus part (a) of Proposition 2.4 yields that,

for each z € T, the matrices Re ((an(z))*bn(z)> and Re (cn(z) (dn(z))*) are both

positive Hermitian. Consequently, for each z € T, the matrices (an(z))*bn(z) and

cn(z)(dn(z))* are both nonsingular (see, e.g., [DFK, part (¢) of Lemma 1.1.13]).
Therefore we obtain that, for each z € T, the matrices an(2), bn(2), cn(z), and
d,(z) are nonsingular. Moreover, for each z € T, we can conclude

2Re (an(z)(bn(z)yl) - (bn(z))**((bn(z))*an(z) + (an(z))*bn(z))(bn(z))
=2 (bu(2)) "Re ((an(z))*bn(z)> (bn(z))_l e CL

and, analogously, that the matrices Re ((dn(z))_lcn(z))7 Re (bn(z)(an(z))_l)7

-1

and Re (cn(z))_ldn(z)) are positive Hermitian.

(ii) = (iil): Because of (ii) we obtain

Re ((an(z))*bn(z)> = (bu(2)) Re (an(z) (bn(z))A) bo(2)
and
Re (Cn(z) (dn(z))*> — d,(2)Re ((dn(z))*cn(z)) (dn(2))’

for each z € T. In particular, one can see that (ii) implicates (iii).
(iii) = (i): From part (a) of Proposition 2.4 and (iii) we get that at least one of
the matrices R,,+1 and Ly, 41 is nonsingular. Hence Lemma 5.1 provides us (i). O

Now we are going to prove that Theorem 1.1 quickly leads to the Arov-Krein’s
parametrization of the solution set for the nondegenerate case.

Let n € Ny and let (Fj)?:[) be a sequence of complex ¢ X ¢ matrices with
nonsingular matrix I'g. Then the matrix S,, defined in (1.1) is nonsingular as well

and there is a unique sequence (F?E)?:o of complex g X g matrices such that the
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block Toeplitz matrix

r¥ o 0 0
¥ o 0
s#.=| 1§ r1f rf :
: : Z -0
r# ¥, ¥, ... ¥

n
=0

corresponding to (I';)_. Setting T;# := Re S¥ it follows

coincides with S, 1. This sequence (Ff) is called the reciprocal q X q sequence

T# =S, 'T,S,* and T¥ =S,*T,S,". (5.1)
Hence it is obvious that (I';)7_g is a ¢ x ¢ Carathéodory sequence (respectively, a
nondegenerate ¢ x ¢ Carathéodory sequence) if and only if (F?E)?:o is a ¢ x ¢ Cara-
théodory sequence (respectively, a nondegenerate g x ¢ Carathéodory sequence).

Now we assume that (Fj)?:o is a nondegenerate ¢q x ¢ Carathéodory sequence.
Furthermore, let the ¢ x ¢ matrix polynomials 1,, ¢, 0", and (7 be defined by

1 (1 _
Nn = en,an ! ((?) y Cpi= (Ov Iq>Tn 15n,q7 (52)
and
1 (1 _
77# = en,q(Tf) 1 (5) s C# = (O, Iq> (Tf) 1671#17 (53)

where e, , and €, 4 are given as in (1.4) and (1.5). Therewith, let the 2¢ x 2¢
matrix polynomials ®,, and ¥,, be defined, for each z € C, by

o (Z) .— _Z(§#~>[[?](Z>Fal\/-[/n+l U#(Z)FE*\/RnH (54)
ZCnn (Z)\/Ln+1 nn(z) \/Rn+1
and
U, (2) = anHraZ(ﬁgﬂ“](z) VB2 (2)\ (5.5)
\/LnJrlFo Gl (2) \/Ln+1Cn(Z)
We check now that the matrix polynomials ®,, and ¥,, introduced in (5.4) and
(5.5) coincide with the matrix polynomials ®? and ¥? defined by (4.5) and (4.6).

Lemma 5.5. Let n € Ny and let (Fj)?:o be a nondegenerate q x q Carathéodory
sequence. Then ®, = ®; and ¥, = ¥ .

Proof. From Lemma 5.1 we know that the matrices R, 11 and L,; defined by
(1.6) and (1.8) are both positive Hermitian. In particular, \/Ry41 - VRt -

and \/Lpy1 = \/Lns1 . Consequently, in view of (5.4), (5.5), (4.5), (4.6), and
Remark 5.2, it is sufficient to show that the identities

Min \/Rn+1 = bn\/Rn+1 717 \/Ln+1<n = \/Ln-i-l 71dn (5-6)
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and

n#ra*\/Rn-&-l = Qn \/Rn+1 17 \/Ln-&-lF(;*C# = \/Ln-i-l 1cn (5.7)
are satisfied, where the matrix polynomials 7,,, (., 7, and (7 are defined by (5.2)
and (5.3) as well as the matrix polynomials ay,, b,, ¢,, and d,, are given as in (1.9),
(1.10), (1.11), and (1.12). The case n = 0 is trivial. Now let n > 1. Obviously, the
nonnegative Hermitian block Toeplitz matrix T;, given by (1.1) and (1.2) can be
represented via

(T Z ~ [Rel, Y7
Tn—< Z. ReF0> and Tn—( Y, Tn1>7 (5.8)

where Z,, and Y,, are given as in (1.7). From the first block representation in (5.8)
we get

(0. 1) 7" = Loty (< 2T, 1)
and consequently, by virtue of (1.12) and (5.2), the identity (, = L;ildn. This

implies immediately the second formula in (5.6). Moreover, the block Toeplitz
matrix S, given by (1.1) admits the block representations

S, = <g"Z—nl FOO> and S, = <2F;n Sf_1>. (5.9)
The first formula in (5.9), the first formula in (5.1), and
27, — Zn T Sp 1 = Z, T, 1S5,
yield
157 (0, 1)) = Lty (< 2T, 1) S = Lk (Z0T3248000 To).

Using (1.11) and (5.3) then the second formula in (5.7) follows. From the second
identities in (5.8), (5.9), and (5.1) one can similarly derive the first formulas in
(5.6) and (5.7). O

In order to describe the Arov-Krein representation of the solution set of the
nondegenerate matricial Carathéodory problem we give some further notations.
Let B be a complex 2g x 2¢ matrix and let

Bi1 B
B =
(le B22>
be the ¢ x ¢ block partition of B. If the set D := {X € C?%*7 : det(Ba; X+ Ba2) # 0}

(respectively, £ := {X € C9%9 : det(X Bya + Baz) # 0}) is nonempty, then the
right (respectively, left) linear fractional transformation Sp: D — C?9*? is given by

Sp(X) := (B11X + B12)(Ba1 X + Baa)™!, X €D,
(respectively, Tp : £ — C7*7 is given by
TB(X) = (X812+822)71(XB11+B21), XGE)

Now we are able to prove the announced result due to Arov and Krein.
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Theorem 5.6. Let n € No and let (I';)7_o be a nondegenerate g x q Carathéodory
sequence. Further, let  be a complex q X q matriz-valued function defined on D.
Then the following statements are equivalent:

(i) € belongs to Cq[D, (I'j)7_o]-

(ii) There is a g X q Schur function g in D such that Q can be represented via

Q(2) = Se,(-)(9(2)), ze€D.

(iii) There is a ¢ X q¢ Schur function h in D such that Q can be represented via
Q(Z) = T\pn(z) (h(z)), z e D.

If (i) is fulfilled, then g = h and g(z) = S(q> (=) (Q(2)) for each z € D\ {0}.

Proof. Combine Theorem 1.1, Lemma 5.1, Remark 5.2 and Lemma 5.5. g

An alternative proof of Theorem 5.6 was given in [FK1, Part V]. This proof
is based on the interrelation between the matricial Carathéodory problem and the
matricial Schur problem and makes essentially use of the analysis of the Schur-
Potapov algorithm for matrix-valued Schur functions which was done in [FK2] (see
also [DFK, Section 3.8]) on the basis of the foregoing papers of Delsarte, Genin,
and Kamp [DGK1] and [DGK2] on orthogonal matrix polynomials and related
questions.

6. The case of a unique solution

In this section, we consider finally the case of a given ¢ x ¢ Carathéodory sequence
(I'j)7—¢ for which the central g x ¢ Carathéodory function corresponding to (I';)}_,
is the unique ¢ x ¢ Carathéodory function Q fulfilling (1.3) for each j € Ny .

Lemma 6.1. Letn € Ny and let (Fj)?:o be a g x q Carathéodory sequence. Further,
let (Tx)Ry be the central ¢ x q Carathéodory sequence corresponding to (I';)}_,
and, for each ¢ € Nyt1,00, let the matrices Ly and Ry be defined as in (1.6) and
(1.8) with respect to (Fj)gzo- Then the following statements are equivalent:

(i) There is a unique Carathéodory function Q (in D) such that the relation (1.3)
is fulfilled for each j € Ny, (namely the central ¢ x g Carathéodory function
Q = Qe¢n corresponding to (I';)}_ ).
(ii) For each £ € Npt1,00, the identities Ly = 0 and Ry = 0 hold.
(111) Ln+1 =0 or Rn+1 =0.

Proof. In view of the definition of the involved parameters, the connection between
q x q Carathéodory sequences and ¢ x ¢ Carathéodory functions (see, e.g., [BGR]
or [Ko]), and the equality rank Ly, = rank Ry for each ¢ € Ny4q o (cf. [FK3,
Remark 2]), the assertion follows from [DFK, Theorem 3.4.1 and Remark 3.4.3].

g
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Proposition 6.2. Let n € No and let (T';)}_, be a q x q¢ Carathéodory sequence. If
n > 1, then let V,, € V,, and W,, € Z,. Furthermore, let ay, b,, c,, and d, be
the matriz polynomials which are defined by (1.15), (1.16), (1.17), and (1.18). The
following statements are equivalent:

(i) There is a unique Carathéodory function Q (in D) such that the relation (1.3)
is fulfilled for each j € Ng .
(ii) The identity ELLn] b, = fgkl]an is satisfied.
(iii) The identity cn(ﬂln] = fdn&[f] 1s satisfied.
(iv) For each z € T, Re ((an(z))*bn(z)) =0 and Re (cn(z) (dn(z))*) =0.
)

Re ((an(z))*bn(z)> =0 or Re (cn(z) (dn(z))*> =0 for some z € T.

Proof. Use Lemma 6.1 in combination with Proposition 2.4. O

(v

Corollary 6.3. Let n € Ny, let (T, ) _o be a ¢ x ¢ Carathéodory sequence, and let
Qc.n be the central g < q Camtheodory function corresponding to (T'; ) P - Ifn>1,
then let V,, € YV, and W,, € Z,,. Furthermore, let an, by, cn, and dy, be the matriz
polynomials which are defined by (1.15), (1.16), (1.17), and (1.18). The following
statements are equivalent:

(i) There is a unique Carathéodory function Q (in D) such that the relation (1.3)
is fulfilled for each j € Ng .
(ii) Qe is the restriction of the rational matriz function —(Bw])_ldw onto D.
(iii) Qe is the restriction of the rational matriz function —6%1((2%])’1 onto D.

(iv) The equality Re (— (Ew](z))_ldw (z)) = 0 holds for each z € T\ Ny and
the equality Re (—éw](z) (di?](z))_1> =0 holds for each z € T\ Ny

(v) The complex q x ¢ matriz Re (— (l;w(z))_ldw(z)) is nonnegative Hermitian

for some z € T\ N, jn or for some z € T \./\/J[n] the complexr q X q matriz

b

Re( (d[ < )7 ) 1s nonnegative Hermitian.

Proof. Taking into account that Corollary 2.5 yields that the set N, (respectively,

Ng,) consists of at most n - g elements and hence the set Ng[n] (respectively,
Njiny) as well, the equivalence of (i), (ii), and (iii) follows from Proposition 6.2,
Theorem 1.3, and a continuity argument. Furthermore, (iv) implicates immediately

(v). Moreover, Corollary 2.5 and [DFK, Lemma 1.2.2] imply

Re ((Bl)(2) ~'alil () = (7(2) ™ Bt (B0(0) " 2 0, 2 € T\ i,
and

Re (1)@ (2) ) = (@) Lo (d(2)) " 20, 2 e T\ NG,

where T\ Ny = T\ N, and T\ Ny = T\ Ng,. Therefore (v) involves that
Rpy1 =0 or L,y = 0 is fulfilled on the one hand and on the other hand if
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R,4+1 =0 and L,4+1 = 0 is satisfied then it follows (iv), so that Lemma 6.1 finally
yields the equivalence of (i), (iv), and (v). O

Now we are going to give a further characterization of the case that the ma-
tricial Carathéodory problem has a unique solution. This characterization is also
given in terms of the central matrix-valued Carathéodory function €. , correspon-
ding to the given data. Recall that a ¢ x ¢ Carathéodory function € is called
degenerate if the block Toeplitz matrix T, given by (1.1) and (1.2) is singular
for some nonnegative integer m, where (I'y)72, is the sequence of complex ¢ X ¢
matrices fulfilling the Taylor series representation (3.10) of Q2. Clearly, if the matri-
cial Carathéodory problem has a unique solution, then the function Q. ,, correspon-
ding to the given data has to be a degenerate Carathéodory function. The following
considerations show that (2., has a very specialized structure in that case.

Remark 6.4. Let » € N, let (z5)’_; be a sequence from the unit circle T, let
(As)i_; be a sequence of nonnegative Hermitian ¢ x ¢ matrices, and let H be a
Hermitian ¢ x ¢ matrix. Then it is readily checked that the matrix-valued function
U:C\{z1,29,...,2-} — C?*? given by

s

L+ .
U(z) = Zz 72145 +iH
s=1"7°%

satisfies Re ¥(z) >0 for each z€D and Re ¥(z)=0 for each z€T \ {21, 22, ..., 2}

Remark 6.5. Let p be a nonnegative Hermitian ¢ x ¢ Borel measure on T and let
T := tru be the trace measure of . Since a nonnegative Hermitian ¢ x ¢ matrix
A is equal to 0gx4 if and only if tr A = 0, the following statements are equivalent:
(i) There is a finite subset § of T such that u(T \ F) = Ogxq-
(ii) There is a finite subset & of T such that 7(T \ &) = 0.
If (i) or (ii) holds, one can choose § = .

Lemma 6.6. Let Q be a g x ¢ Carathéodory function (in D) and let ¢ := tr Q. The
following statements are equivalent:
(i) There are an £ € N, a sequence (ws)’_, of points belonging to T, a sequence
(as)t_, of nonnegative numbers, and a real number h such that

¢
ws + 2 .
= +1h, € D. 6.1
W@ =3 i (6.1)
(ii) There are an r € N, a sequence (zs)'_, of points belonging to T, a sequence
(As)"_; of nonnegative Hermitian q X q matrices, and a Hermitian q X ¢
matric H such that

Q(z):ZzS+EAS+iH, 2eD. (6.2)

2. —
s=1"7%

(iii) Q s the restriction of a rational ¢ x q matriz-valued function Q° which sat-
isfies Re Q¥ (2) = Ogxq for each T\ T, where § is some finite set.
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(iv) ¢ is the restriction of a rational (complez-valued) function p® which satisfies
Re p¥(2) =0 for each T\ &, where & is some finite set.

In particular, one can choose { = r, ws = zs for each s € N1, § = &, and

S: {217227"')27‘}'

Proof. (i) = (ii): Clearly, since € is a ¢ x ¢ Carathéodory function, ¢ is a 1 x 1
Carathéodory function. For each x € T, let £, be denote the Dirac measure on the
Borelian o-algebra of T which has its unit mass at the point z. Because of (i) and
the Riesz-Herglotz theorem (see, e.g., [DFK, Theorem 2.2.2]), by setting

4
T = E A g€,
s=1

we obtain the Riesz-Herglotz measure of ¢. In particular, we have 7(T \ &) = 0
for & := {wy,wa,...,we}. Thus if u denotes the Riesz-Herglotz measure of ) then
¢ = tr implies 7 = trp and from Remark 6.5 we get that p(T \ &) = Ogxq.
Applying the matricial version of the Riesz-Herglotz theorem (see, e.g., [DFK,
Theorem 2.2.2]) we can finally conclude that (6.2) is fulfilled with r := ¢, z5 := wj
for each s € Ny ., some sequence (A4;)%_; of nonnegative Hermitian ¢ X ¢ matrices,
and some Hermitian ¢ X ¢ matrix H.
(ii) = (iii): In view of Remark 6.4 we see that (ii) yields (iii) by the special choice
Fi={z1,22,...,2}.
(iii) = (iv): This implication is obviously fulfilled with & := §.
(iv) = (i): Since ¢ € C1(D), from (iv) it follows that the function 1+ % does not
vanish in D and that

_1=¢

=140
is a well-defined rational function such that its restriction onto ID belongs to
S1x1(D). Furthermore, (iv) and (6.3) imply that |B(z)| = 1 for each z € T\ &.
Consequently (see, e.g., [FFK, Lemma 36]), the function B is a finite Blaschke
product. In view of (6.3), some well-known results on finite Blaschke products
and the Cayley transform (see, e.g., [Sc| and use [DFK, Lemma 1.1.21]) one can
conclude that ¢ is a degenerate 1 x 1 Carathéodory function. Finally, applying
[FKL, Proposition 3.2] we obtain that (6.1) is fulfilled for some ¢ € N, some se-
quence (ws)’_; of points belonging to T, some sequence (as)’_, of nonnegative
numbers, and some real number h, whereby Remark 6.4 and (iv) supply that one
can particularly choose {w1,wa,...,ws} = . O

(6.3)

Note that Theorem 1.3 and Corollary 2.5 show particularly that there is a
unique rational extension Q?n of Q¢ to C\ {z1,22,...,2} for some complex
numbers 21, 22, ...,z with r < n-q.

Theorem 6.7. Let n € Ny, let (Fj)}’zo be a ¢ x g Carathéodory sequence, let 2 ,, be
the central ¢ x q Carathéodory function corresponding to (Fj)?:oy and let Q?n be
the unique rational extension of Q.. Then the following statements are equivalent:
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(i) There is a unique Carathéodory function @ (in D) such that the condition
(1.3) is fulfilled for each j € Ny, (namely Q@ = Q).

(ii) There are anr € N, a sequence (zs)5—1 of points belonging to the unit circle T,
a sequence (As)i_q of nonnegative Hermitian g x g matrices, and a Hermitian
q X q matrix H such that

Qnl(z) =3 z i zAs +iH, zeD. (6.4)

(iii) There is a finite subset § of T such that ReQ,,(2) = Ogxq for each T\ §.
(iv) ReQ,(2) = Oguq for a z € T\ N, or z € T\ Ng,, where b, and d,, are
defined as in (1.16) and (1.18) with some V,, € Y, and Wy, € Z,, if n > 1.

Proof. (i) = (iii): If n > 1 then let V,, € ),,. Furthermore, let a,, and b,, be defined
as in (1.15) and (1.16). Thus part (a) of Theorem 1.3 yields that the equality

Q% (2) = an(2) (bu(2)) (6.5)
is fulfilled for each z € C\ N,,,. From (6.5) and Corollary 2.5 we obtain then

(ba(2))" (Re Q2,.(2))ba(2) = (bn(2))" Re (an(z) (bn(z))_1> bu(2) = Rus1  (6.6)

for each z € T\ N, , where the matrix R, is defined as in (1.6) and (1.8). In view
of (i) and Lemma 6.1 we have Ry, 41 = Ogxg, S0 that (6.6) implies Re 2%, (2) = 0gxq
for each z € T \ N, . Since Corollary 2.5 includes particularly that the set N,
consists of at most n - ¢ elements, it follows (iii).

(ii) < (iii): Taking into account Theorem 1.3, the equivalence of (ii) and (iii) is an
easy consequence of Lemma 6.6.

(iii) = (iv): Because § is a finite set but Corollary 2.5 shows that T \ A, is an
infinite set, this implication follows immediately.

(iv) = (i): If ReQ,,(2) = Ogxq for some z € T\ A, then by using (6.6) we get
Ryt1 = Ogxg. Similarly, in the case of ReQ,,(2) = 0gxq for a certain z € T\ Ny, ,
where d,, is the matrix polynomial defined as in (1.18) with some W,, € Z, if
n > 1, by an application of part (b) of Theorem 1.3 and Corollary 2.5 one can
conclude L,41 = 04xq, where the matrix L,4; is defined as in (1.6) and (1.8).
Hence (iv) and Lemma 6.1 supply (i). O

-1

Remark 6.8. Let n € Ny and let (I"j)?zo be a g x ¢ Carathéodory sequence such
that (i) of Theorem 6.7 is satisfied. If n = 0 then Lemma 6.1 implies ReT'g = 0
and hence the constant function (defined on D) with value ¢Im T is the unique
Carathéodory function Q (in D) such that Q(0) = T'y. If n € N, then by virtue of
Theorem 1.3, Corollary 2.5, and Theorem 6.7 it is not hard to accept that one can
choose an r € Ny 5.4 and 21, ..., 2, belonging to

{z€T:detb,(z) =0} N{z € T:detd,(z) =0},

where b, and d,, are defined as in (1.16) and (1.18) with some V,, € ), and
W, € Z,, such that the central ¢ x ¢ Carathéodory function €2, corresponding
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to (I'j)7_, admits, for each z € D, the representation (6.4) with some Hermitian

g x ¢ matrix H and sequence (Ag)"_; of nonnegative Hermitian ¢ x ¢ matrices.

Corollary 6.9. Let n € N, let (z5)7_, be a sequence of pairwise different points
belonging to T, let (As)?_, be a sequence of nonnegative Hermitian q X g matrices
such that Y| As is a positive Hermitian q X ¢ matriz, and let H be a Hermitian
q X q matriz. Further, let Q : D — C9%? be defined by
" 2o+ 2 .
Q(z) : S:ZI - —ZAS +iH.

Then Q is a g x q¢ Carathéodory function such that Re Q(0) is a positive Hermitian
q x ¢ matriz. In particular, Q(z) is a nonsingular matrix for each 2 € D and Q™1 is
a g x q Carathéodory function. Moreover, there are a sequence (us)~?, of pairwise
different points belonging to T, a sequence (Bs)"-% of nonnegative Hermitian q X q
matrices, and a Hermitian g x ¢ matriz K such that Q=1 admits the representation

Proof. Let

Ty ::ZAS+Z'H and L, ::2Zz;jAs, j €Ny,

s=1 s=1

From [FKL, Corollary 3.4] we know that € is the unique Carathéodory function
Q2 such that the condition (1.3) is fulfilled for each j € Ny,. Furthermore, by
virtue of ReQ(0) = >-7_; A; we get that ReQ(0) is a positive Hermitian matrix.
Consequently, since [DFK, Proposition 2.1.3, Lemma 1.1.13, Lemma 2.1.10 and
Lemma 1.1.21] imply that if ¥ is a Carathéodory function fulfilling Re ¥ (0) € CL*?
then W(2) is a nonsingular matrix for each z € D, that ¥~! is a ¢ x ¢ Carathéodory
function as well, and that the first n+ 1 coefficients of the Taylor expansion of ¥~1
at the point 0 are uniquely determined by the first n + 1 coefficients of the Taylor
expansion of ¥ at the point 0, an application of Theorem 6.7 and Remark 6.8

completes the proof. O
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Abstract. A Gohberg-Heinig type inversion formula is derived for operators
I — K>K;, where K1 and K> are Hankel integral operators acting between
vector-valued Li-spaces over [0, oo]. The main result is first proved, by using
linear algebra tools, for the case when the corresponding kernel functions have
a finite dimensional stable exponential representation.
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0. Introduction

This paper deals with the inversion of the operator I — Ko K7, where K7 and Ky
are Hankel operators given by

(K;f)t) = /000 ki(t+s)f(s)ds, t>0, j=1,2. (0.1)

Here k1 € LT"P(R;) and ke € LY*™(R,), that is, k1 and k2 are matrix functions
on Ry = [0,00), of sizes m X p and p X m, respectively, and the entries of k; and
ko are Lebesgue integrable over R;. We consider K; as an operator from L7 (R )
into LT*(Ry), and K5 as an operator from L7*(Ry) into LY (Ry). The main result
is the following theorem.

Theorem 0.1. The following statements are equivalent:

(i) the operator I — KoK is invertible,

The first author is supported by the National Research Foundation of South Africa, under Grant
Number 2053733. The second author thanks the North-West University for support for a visit
during which this paper was written.
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(ii) there ezist solutions a1 € LY*™(Ry) and ag € LTP(Ry) to the equations

ay(t) — / / ka(t + s)ki(s + r)ar(r) dsdr = —ko(t), t>0, (0.2)
o Jo
as(t) — / / k1(t + s)ka(s +1)az(r)dsdr = —ki(t), t>0, (0.3)
o Jo
iii) there exist solutions a; € LP*™(R,) and ap € L *P(RL) to the equations
(iii) 1 + 1 +
ar(t) — / / a1 (ki (r + s)ka(s +t)dsdr = —ka(t), t >0, (0.4)
o Jo
an(t) — / / (P (r + $)kr (s + ) dsdr = —ka(£), £>0.  (0.5)
o Jo

Moreover, in this case the inverse of I — KoK is given by

(I — K2K) 7R = £(0) —|—/Ooo /000 a(t+ s)b(s +r)f(r)dsdr
—/OO /00 c(t+s)d(s+r)f(r)dsdr, t>0, (0.6)
o Jo

where a = a1, b= aq, and

c(t) = / kao(t + s)az(s)ds, d(t) = / a1(s)ki(t+s)ds (t>0). (0.7)
0 0
Here a1, a2, a1, a9 are the functions determined by (0.2)—(0.5).

For the case when p = m and ko(-) = k1(-)* the equivalence of the statements
(i)—(iii) is proved in Chapter 12 of [3] (see also [1]). It turns out that with some
modifications the proof of the equivalence of (i)—(iii) given in [3] carries over to
the more general setting considered here (see the second part of Section 3). The
inversion formula (0.6) is new. It can be viewed as an analogue of the Gohberg-
Heinig formula for convolution operators on a finite interval, [4]. The discrete
analogue of Theorem 0.1, with the operators K; and K5 being replaced by Hankel
operators with Wiener algebra symbols on £7*, is known and can be found in [2].

Our approach is inspired by the proof of the Gohberg-Heinig inversion theo-
rem given in [5]. We shall obtain the inversion formula (0.6) in two steps. In the
first step k1 and ko admit a stable exponential representation, that is,

kl (t) = OletAlBl, kg(t) = CQ@tAZBQ. (08)

Here A, and A are square matrices of sizes ny X np and ng X ng, respectively, and
we require these matrices to be stable, that is, the eigenvalues of A; and As are
in the open left half plane. Furthermore, C; and Cs are matrices of sizes m X n;
and p X no, respectively, and B; and By are matrices of sizes ni X p and ng X m,
respectively. In this case K7 and K5 are operators of finite rank, and we show that
the inversion formula (0.6) can be obtained by inverting the matrix M = I — PQ),
where P and @ are the unique matrix solutions of

AP+ PAy = —B1(C5, AQ 4+ QA1 = — By (4. (09)
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Notice that P has size ny X no and @ has size ny X ni, and that these matrices
are also given by

P= / M B Cyett2ds, Q= / 42 By e ds. (0.10)
0 0

We refer to M as the indicator for I — KoK corresponding to representations
(0.8). In the second step we use the fact that any L;-kernel function is the limit
in the L;-norm of a sequence of kernels with a stable exponential representation.
We derive the inversion formula (0.6) as a limit of the inverse formula for the case
when k; and ko are given by (0.8).

This paper consists of three sections (not counting this introduction). In
Section 1 we study the indicator, and we show that it can be inverted whenever
the matrix equations M Z = —PBy and M#U = —QB; are solvable. Here M# =
I—QP is the associate indicator, which is equal to the indicator for L# = I — K K,
corresponding to representations (0.8). In Section 2 we prove Theorem 0.1 for
kernel functions of the type (0.8). In the final section we prove the equivalence
of statements (i), (ii) and (iii) in Theorem 0.1, and we use the approximation
argument referred to above to prove the inversion formula (0.6) for the general
case.

Finally, we mention that in the sequel we shall often use the following fact. If
A:X — Yand B:)Y — X are bounded linear operators acting between Banach
spaces, then Iy — AB is invertible if and only if Ix — BA is invertible, and in this
case

(Iy — AB) ' =1y + A(Ix — BA)™'B. (0.11)

1. The indicator

Throughout this section M is the indicator corresponding to the representations
(0.8), and M# is the associate indicator. In other words,

M =1- PQ, M* =1-QP,

where P and @ are determined by (0.9) or, equivalently, by (0.10). From the
remark made at the end of the previous section, it is clear that M is invertible if
and only if M# is invertible.

Proposition 1.1. The indicator M is invertible if and only if the following matriz
equations are solvable:

MZ = —PBy, M#U = —QB;. (1.1)

Moreover, if M is invertible, then M¥ is invertible, and
QM = / e A2 XY e84 ds — / 42 X, Yoes A ds (1.2)
0 0

where

X, =(M#*) "By, Xo=QM By, Y1 =CiM~!, Y =CoQM L. (1.3)
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Proof. We first show that

MAl — AlM = PBQCl — Blch. (14)
To do this we use M = I — PQ and the formulas for P and @ in (0.10). Indeed,
MA1 = A1 — PQAl = A1 — P(*BQCl — AQQ)

= A; + PByCy + PA2Q
= A; +PByCq + (—A1P - Blog)Q
= A1+ PByCi — A1 PQ — B:1C2Q
AlM + PBQCl — BlCQQ.
This yields (1.4).

If M is invertible, then the matrix equations in (1.1) are solvable. To prove
the reverse implication, assume the matrix equations in (1.1) are solvable. Since
M is a square matrix of order ny, it suffices to show that x € C™ and x*M = 0,
imply that « = 0. To do this, we use (1.1). The identity z*M = 0 together with
the first identity in (1.1), yields * PBs = 0. Using the second identity in (1.1) and
MP = PM#, we also have 2* PQB; = 0.

Using 2*M = 0, 2*PBy = 0 and 2*B; = 0 in (1.4) yields 2*A; M = 0.
Repeating the above arguments with z* A; in place of * we obtain x* A2 M = 0.
Continuing by induction we see that z*AYM = 0 for n = 0,1,2,.... As we have
seen, v*M = 0 implies 2*B; = 0. Thus 2*A7'B; = 0 for n = 0,1,2,.... Using
the formula for P in (0.10), we see that the latter implies that 2*P = 0. Hence
*PQ = 0. But then

¥ =a"(I — PQ)+2"PQ =2"M + 2*PQ = 0.

Thus M is invertible.

We already know that the invertibility of M implies that of M#. Thus to
complete the proof it remains to prove (1.2). Assume M is invertible. We first
show that

As(QM ™)+ (QM YA = —(M#) 'B,CiM " + QM 'B,CoQM 1. (1.5)
Indeed, note that the definitions of M and M# imply
M#A5Q = (I = QP)AsQ = A2Q — Q(PA2)Q
and
QAIM = QA (I — PQ) = QA1 — Q(A1 P)Q.
The sum of the above equations and (0.9) gives
M#A,Q + QA1 M = —ByCy + QB1C>Q.
Next, we premultiply by (M#)~! and postmultiply by M ~! to obtain
A QM (M) ITQA; = —(M#) !By M~ + (M#)'QB1CoQM 1.
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Now use that QM = M#Q, and hence (M#)~'Q = QM~!. This proves (1.5).
Since A; and As are stable, (1.5) shows

QM = / 2 (= (M#) By Gy M+ QMBI C,QM et ds,
0

Finally, use the matrices defined by (1.3) to obtain formula (1.2). O

2. The main theorem for kernel functions
of stable exponential type

Throughout this section K7 and Ks are the Hankel operators given by (0.1), and
we assume that the kernel functions k; and ko are given by (0.8). As before M is
the indicator of I — K2 K corresponding to the representations (0.8).

To analyze I — K3 K7 in terms of the representations (0.8) we introduce the
following auxiliary operators:

Ay :C™ — L™(Ry), (A1z)(t) = Cretti,

Ay :C™ — LP(R,), (Apz)(t) = Chett2,

Iy LY(Ry) — C™, Flf:/ s B, f(s) ds,
0

Dy : LTY(Ry) — C™2, Iy f = / e*42 By f(s) ds.
0

Allowing for a slight abuse of notation we shall apply A; and Ay also to matrices,
and I'y and I's also to matrix functions. For instance, when X is an n; X ¢ matrix,
then A1 X is the matrix function of which the k-th column is obtained by applying
A to the k-th column of X. Similarly, if a € LY*9(Ry), then T'ya is the ny x ¢
matrix of which the k-th column is obtained by applying I'; to the function given
by the k-th column of a.
Note that
P =T1A,, Q =T2A4,

and hence M = I — F1A2F2A1. Furthermore, Kl = A1F1 and K2 = AQFQ. It
follows that I — Ko K1 = I — AsI'sAT'y. Now put A = AsI'sAq, B =T'1, and apply
the result mentioned in the final paragraph of the introduction. This shows that
I — K5 K, is invertible if and only if M is invertible, and in that case

(I —K3K1)™" = T+ MADoA(I—T1AT5A)7'Ty
= T+40(1 - PQ)™'Ty
= T+ AQM T
Since (1.2) provides a formula for QM !, we shall see that the above calculation

will allow us to prove (0.6) for the case when the kernel functions are given by
(0.8). For this purpose we also need the following lemma.
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Lemma 2.1. FEquation (0.2) is solvable if and only if the following matriz equation
1s solvable
MZ = —PBs. (2.1)

More precisely, if a € LY*™(R,.) satisfies

_ /OO /00 ka(t + 8)ki(s + r)a(r) dsdr = —ka(t), ¢>0, (2.2)
o Jo

then Z = Tya satisfies (2.1). Conversely, if Z is a solution of (2.1), then a =
A2 (QZ — Bs) satisfies (2.2).

Proof. Equation (2.2) can be rewritten as
a — A2F2A1F1a = 7]432 (23)

Notice that now we consider I'; as a map from L{*™(Ry) into C™**™. Similar
remarks apply to the other operators in (2.3). Put Z =T'ya. Then

MZ = (I-PQ)Tia=(I—-T1AT2A)T1a

= Tia—T1(A2T2A1Ta)

= Tha—T1(a+ ke) = —T1ky = —T'1Asks = —PBs.
Conversely, assume Z is a solution of (2.1). Put a = A3(QZ — Bg). Then

a— AsToATia = As(QZ — Bo) — AsToAT1A2(QZ — Bs)

= Aol'9A1Z — Ao By — Aol'9 A PQZ + AsT'sA1PBs

= Aol'9A1Z — Ao By — AoT'9A1(Z + PB3) + AoT'2A1 PBy

= —AoBy = —ks.
This proves that a is a solution of (2.2). 0

Proof of Theorem 0.1 with k1 and ko given by (0.8).
We divide the proof into five parts.

Part 1. In this part we show that (ii) implies (i). So assume equations (0.2) and
(0.3) are solvable. Recall that I — K2 K is invertible if and only if its indicator M is
invertible. Therefore it suffices to prove the invertibility of M. Since equation (0.2)
is solvable, we know from Lemma 2.1 that the first equation in (1.1) is solvable.
Next, we apply Lemma 2.1 to I — K1 K> in place of I — K3K;. Note that M# is
the indicator of I — K7 K5 corresponding to the representations (0.8). Moreover
equation (2.1) transforms into M#U = —@QB;. Thus (0.3) is solvable if and only
if the second equation in (1.1) is solvable. But then we can apply Proposition 1.1
to show that (ii) implies that M is invertible.

Part 2. We show that (iii) implies (i). Assume equations (0.4) and (0.5) are solvable.
Again it suffices to show that the indicator M is invertible. By taking adjoints we
can rewrite (0.4) and (0.5) in the following equivalent form:

/ / E3(t+ s)ky (s +r)aj(r)dsdr = —Ek3(t), t>0, (2.4)
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_ /000 /O°° kT (t+ s)k3(s +r)as(r)dsdr = =k (t), t>0. (2.5)

Here for any matrix function g we use the convention that ¢*(¢t) = g(¢t)*. Now let
K, and K3 be the Hankel operators corresponding to the kernel functions k7 and
k3, respectively, that is,

(1 )(t) = / Tkt f(s)ds, 120, (2.6)

(Kag)(t) = /000 kE3(t+s)g(s)ds, t>0. (2.7)

Then applying the result of the first step to I — K>K; in place of I — KK, we
conclude that I — K, K is invertible. The kernel functions k% and k3 have stable
exponential representations, namely

ki(t) = Bre! MOy, ki(t) = Biet2 0. (2.8)
Notice that
Q" = / ESAIC'TBSESAz ds, P~ :/ eSA;C’;Bi‘eSAI ds.
0

It follows that the indicator for I — KQK 1 corresponding to the representations
(2.8) is precisely equal to M*. Since I — K> K is invertible, we conclude that M*
is invertible, and hence M is.

Part 3. In this part we show that (i) implies (ii) and (iii). The implication from
(i) to (ii) is trivial. To prove (i) implies (iii), note that (i) is equivalent to the
invertibility of M. Thus (i) implies M* is invertible, which is the indicator of
I — K,K;, and hence I — K, K, is invertible. Here K; and K, are defined by (2.6)
and (2.7). It follows that equations (2.4) and (2.5) are solvable. Taking adjoints,
we see that (iii) holds.

Summarizing we have proved that statements (i), (ii) and (iii) in Theorem 0.1 are
equivalent.

Part 4. In this part we assume that I — KK is invertible and we derive the
solutions of (0.2)—(0.5). Note that our assumption implies that all operators

I - KoKy, I-K\Ky, I-—KyK,, I-—K K, (2.9)
are invertible, and hence each of the equations (0.2), (0.3), (0.4), (0.5) is uniquely
solvable. Here we used that (0.4) and (0.5) are equivalent to (2.4) and (2.5), re-
spectively. Now we apply Lemma 2.1 to each of the operators in (2.9). This yields

that the unique solutions of the equations (0.2), (0.3), (0.4), (0.5) are, respectively,
given by

ar(t) = —Chet2X, X =(M#*)"'By, (2.10)
ax(t) = —Cie™X,  X=M"'B, (2.11)
a(t) = —Ye2By, Y =Cy(M#)7L, (2.12)
as(t) Yeth B,  Y=CM! (2.13)
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Let us prove (2.10). According to Lemma 2.1 we have
a1 = M(QZ - By)=—A(QM'P+1)B,
= —A(I—QP) 'By=—Ay(M#)"1By = —AsX.
Using the definition of Az, this yields (2.10).

Interchanging the roles of K7 and K» transforms (2.10) into (2.11). Indeed,
the indicator for I — K1 K> is equal to M#, and hence the associate indicator for
I — K1K5 is M. In a similar way, replacing K; by K; and K5 by K5, and using
the dual representations (2.8) in place of (0.8), we see that

ai(t) = —Biethy*, Y*=((M#*)"Y)*C, (2.14)
ab(t) = —BreMY*, Y*=(MYH)*Cr. (2.15)
Here we used that the indicator for I — Ko K4 corresponding to the representations

(2.8) is equal to M*, and that the associate indicator is equal to (M#)*. Taking
adjoints in (2.14) and (2.15) gives (2.12) and (2.13).

Part 5. In this part we derive the inversion formula (0.6). Thus I — K3 K is assumed
to be invertible. We claim that

a(t) = —Che"Xy, Xy = (M#)7'B,, (2.16)
b(t) = —Vie'B,  Yi=CM (2.17)
co(t) = —Cae'™Xy,  Xp=QM 'By, (2.18)
d(t) = —Yoe'MBi,  Yo=CoQM™. (2.19)
Since a = a1 and b = g, formulas (2.16) and (2.17) follow directly from (2.10)

and (2.13). To compute (2.18), we use that ¢ is given by the first identity in (0.7).
Together with (2.11), this yields

C(t) = — / 026(t+S)A2B20165A1Xd5
0

_ et / 42 By Oy e541 ds) X = —Coe! A2 X.
0

But X = M~'Bj. So cis given by (2.18). In a similar way, using (2.12), the second
identity in (0.7), and (M#)~1Q = QM ~!, one obtains (2.19). Indeed,

d(t) = —/ Yes42 ByCy ettt A1 By ds
0
— _Y(/ 68A2320165A1 dS)etAlB]_ _ _02(M#)_1QetA1B1_
0
Now to get (0.6), recall that (I — K2K1)™" =1 + A,QM~'Ty. Hence

(I = K2K1) 71 f)(#) = f(t) + Coe2QM /0°° e By f(s) ds.

Using formula (1.2) for QM ~1, together with (1.3) and the formulas (2.16)—(2.19),
we obtain (0.6).
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3. Proof of the main theorem (general case)

In this section we prove Theorem 0.1 for arbitrary kernel functions. The proof is
split into two parts. In the first part we assume that I — K5K; is invertible, and
we derive the inversion formula (0.6) by an approximation argument using the
result of the previous section. In the second part we prove the equivalence of the
statements (i), (ii) and (iii).

Part 1. Assume L = I — K5 K is invertible, and let us prove the inversion formula

(0.6). To do this we choose for j = 1,2 a sequence kj 1, kj 2, kj3, ..., consisting of
kernel functions with a stable exponential representation, such that
1kj = Kjnlly =0 (n — 00). (3.1)

Put L, = I — K5, Ky 5, where

(K F)(1) = / Tkt ) f(s)ds, t20 (=1.2)

Then (3.1) implies that ||L — L, || — 0 if n — oo, and hence L, is invertible for n
sufficiently large. By passing to a subsequence we can assume that L, is invertible
for each n, and

Lyt =LY —0 (n— o). (3.2)

Now, let a1, a2.n, a1 n, @2, be the solutions of the equations (0.2) — (0.5) which
one obtains with ki ,, in place of k; and ks ,, in place of ky. Put

an(t) = ain(t), by (t) = ag p(t),
en(t) = /0 ko n(t + 8)azn(s)ds, dn(t):/0 ay ki (t+s)ds.

Then (3.1) implies that
la = anlly + 116 = ballz, +lle = enlley + lld = dnflz, =0 (n—00).  (3.3)

Here a, b, ¢, d are the matrix functions defined in the second part of Theorem 0.1.
Consider the operators

AN = /Oooa(tﬂ)f(S)ds, (B)(K) = /Ooob(tﬂ)f(S)d&
Ch) = /Oooc<t+s>f<s>ds, (DI)(H) = /Oood<t+s>f<s>ds7

and let A,,, By, C,, D, be the operators which one obtains from A, B, C, D when
the role of a is taken over by a,, that of b by b,, that of ¢ by ¢,, and that of d by
dy,. From the result of the previous section we know that

L' =1+ A,B, —C,D,,
and (3.3) implies that
A= An|| + 1B = Bu|| +1IC = Cul| + |ID = Dyl = 0 (n — o0).
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It follows that
L'= lim L' = lim (I + A,B, — C.,D,) =1+ AB —CD,

n—oo n—oo

which proves (0.6).
Part 2. In this part we prove the equivalence of (i), (ii), and (iii). For ko = kF this
proof can be found in Chapter 12 of [3], pages 213-218. The general case requires
some modifications of the arguments given in [3]. In what follows we concentrate
on these modifications. We begin with some preparations.

By W? we denote the linear space of all ¢ € LT(R;) that are absolutely
continuous on compact intervals of Ry and such that ¢’ again belongs to L} (R.).
Notice that for each ¢ € WP we have

o) =— /too ¢ (s)ds, t>0. (3.4)

The space WP endowed with the norm ||¢|lw = ||¢]|, + |¢’]|L, is a Banach space.
As a set WP is dense in L (R4 ).

Now, let k € LT"P(R,), and let K be the corresponding Hankel operator
from LY(Ry) into L7*(R4). In [3], page 214, it is proved that K maps W? into
W™ and

(Ko) = K¢/ —k()$(0), € WP. (3.5)
From (3.4) and (3.5) it follows that K induces a bounded linear operator from W7?
into W9 which we shall denote by Ky . The operator Ky is compact ([3], page
215).

From (3.4) it follows that W? C L2_(R,.). Hence for ¢ € W? and f € LE_(R;)
we can define

w.h= [ rea.
0
Using Fubini’s theorem it is straightforward to check that
(Kwo, f) = (6, Kf), ¢€WP, feLl'Ry) (3.6)

where K is the Hankel operator from L7*(R,) into L?(R,) corresponding to k*
(cf., (2.6), (2.7)).

Now, let K; and Ko be the Hankel operators defined by (0.1), and consider
the corresponding operators Ky and Kap. From (3.5) it follows that

KoK1D — DKow K1w = ko Eo Kqw + Kok1 4. (3.7)
Here D and E are the operators defined by
D: WP — IX(Ry), D=4,
E : WP = CP, E1¢p=¢0), Ey: W™ —=C™, Exp=¢(0).

Since Ko K1 and Kow Ky are compact, I — Ko K7 and I — Koy K1 are Fredholm
operators of index zero. Furthermore, because W? is dense in L} (R4 ), we have

Ker (I — K2WK1W) = Ker (I - KQKl). (38)

To prove this one can use the same arguments as in [3], pages 215, 216.
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Now, assume that (iii) is satisfied. We have to prove that I — K3 K is invert-
ible. Since I — K5 K is a Fredholm operator of index zero, it suffices to show that
Ker (I — KgKl) = {0}

Using (3.8) it suffices to show that Ker (I — Kow K1w) = {0}.

So, take ¢ € WP and assume Koy K1yt = . Using (3.6) and taking adjoints
we see that

0 = (- KwKiw),a3) = (¥, (I - K1K>)as) = (i, —k7)
- /O B (09 () dt = —(Kawib)(0) = — Ea K.

Thus EQKlwl/) =0.
Next, put ¢ = Kiw. Then Kow¢ =, and

(I — KywKow)p = ¢ — Kaw) = 0.

Repeating the arguments given in the previous paragraph with the roles of K;
and K5 interchanged, it follows that Fy Kow ¢ = 0. But Kow¢ = 1, and hence
Ei¢ =0.

Using that the vectors Ex K1yt and E11) are both zero in (3.7), we see that
KoKy =4/, that is, ¢ € Ker (I — K2K1). Now, use again (3.8). So we can use
the same arguments with )’ in place of 1. This yields

ExKywi' =0, Ey)' =0, KyK" =",

Proceeding by induction we conclude that for each n = 0,1,2,... the function
Y™ € Ker (I-K»K;) and 1™ (0) = 0. Since Ker (I — K5 K1) is finite-dimensional,
this implies (see [3], page 218) that ¢» = 0. Hence Ker (I — K2K;) = {0}, and
I — K5 K is invertible.

In a similar way one shows that (ii) implies that I — KoK is invertible. Here
K, and K, are given by (2.6) and (2.7), respectively. Using (3.6) and (3.8), it then
follows that (ii) implies that I — K1 K> is invertible, which is equivalent to (ii)
implies (i).
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