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Editorial Introduction

The present volume, entitled “Interpolation, Schur functions and moment prob-
lems”, is the second in the new subseries LOLS (Linear Operators and Linear
Systems of the series Operator Theory: Advances and Applications). The main
part of this volume is a selection of essays on various aspects of what is by some
authors called Schur analysis.

To present the papers and set the volume into perspective, let us recall that a
function analytic and contractive in the open unit disk is called a Schur function. In
1917, Schur associated to such a function a sequence, finite or infinite, of numbers
in the open unit disk D, called Schur coefficients. One can associate such a sequence
also to a function analytic and with a positive real part in D. Such functions are
called Carathéodory functions and the associated coefficients are sometimes called
Verblunsky coefficients. Carathéodory functions appear in the trigonometric mo-
ment problems via the Herglotz representation formula. Carathéodory and Schur
functions have no poles in the open unit disk. Allowing functions with poles in
D was first considered by Takagi in his 1924 paper [7]. Functions of the form
s(z) = p(z)

znp(1/z∗)∗ (where p(z) is a polynomial of degree n) play an important role
in that paper, and are a particular instance of what was later known as generalized
Schur functions. These are functions meromorphic in D and such that the kernel
1−s(z)s(w)∗

1−zw∗ has a finite number of negative squares in the domain of holomorphy of
s. Generalized Schur functions have been introduced independently (and in differ-
ent ways) by M.G. Krĕın and H. Langer [5] (these authors also defined in a similar
way generalized Carathéodory functions) and by C. Chamfy and Dufresnoy [3],
[2]. The theory of Schur and generalized Schur functions also make sense in the
matrix and operator-valued cases, and are a continuous source of new problems, as
is illustrated in the papers presented in this volume. We note that the translation
of the papers of Schur and research papers on the Schur algorithm form the con-
tents of volume 16 of the series OTAA, see [4] and that operator-valued generalized
Schur functions have been studied in the volume 96 of the series OTAA, see [1].

Now we can say that under the word Schur analysis one encounters the vari-
ety of problems related to Schur and Carathéodory functions such as interpolation
problems, moment problems, study of the relationships between the Schur coeffi-
cients and the properties of the function, study of underlying operators,. . . Such
questions are also considered in the setting of generalized Schur and generalized
Carathéodory functions, and in the “line case”, where functions analytic in a half-
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plane rather than in the open unit disk are considered and where Hankel operators
replace Toeplitz operators.

The volume contains seven papers, and we now review their contents:

Boundary interpolation of generalized Schur functions: In the paper “Basic bound-
ary interpolation for generalized Schur functions and factorization of rational J-
unitary matrix functions” by D. Alpay, A. Dijksma, H. Langer and G. Wanjala,
the authors develop the counterpart of the Schur algorithm for a generalized Schur
function at a boundary point. This approach allows to solve the so-called basic in-
terpolation problem introduced in earlier work for an inner point. In the paper
“Boundary Nevanlinna–Pick interpolation problems for generalized Schur func-
tions”, V. Bolotnikov and A. Kheifets solve three different multipoints boundary
interpolation problems. In both papers the problems take into account the partic-
ularities of the nonpositive case and have no direct analog in the positive case.

Discrete first-order systems: In a previous paper (which appeared in the first vol-
ume of the LOLS subseries), D. Alpay and I. Gohberg introduced the characteristic
spectral functions associated to a discrete first order systems. The paper “Discrete
analogs of canonical systems with pseudo-exponential potential. Inverse problems”
continues this study and focuses on inverse problems. An important role is played
by the solutions of an underlying Nehari interpolation problem which take unitary
values on the unit circle and which admit a generalized Wiener–Hopf factorization.

Schur parameters of pseudocontinuable Schur functions: In the paper “Shift op-
erators contained in contractions, Schur parameters and pseudocontinuable Schur
functions”, V.K. Dubovoy studies relationships between the maximal shift and
coshift operator of a completely non unitary contraction. A main result in the
paper is the characterisation of sequence of Schur coefficients for Schur functions
which are not inner but admit a pseudo-analytic continuation of bounded type in
the exterior of the open unit disk. The methods of the paper are an illustration of
the feedback between function theory and operator theory methods.

The matrix-valued case: The matrix-valued case has difficulties of its own, in
particular in the degenerate cases. In the paper “A Truncated Matricial Moment
Problem on a Finite Interval”, A. Choque Rivero, Y. Dyukarev, B. Fritzsche and
B. Kirstein use Potapov’s method of the Fundamental Matrix Inequality (FMI)
to solve a matrix truncated moment problem on an interval. The scalar case had
been considered by M.G. Krĕın and A. Nudelman (see [6]). A complete description
of the set of solutions is given in the strictly positive case. In the paper “The
Matricial Carathéodory Problem in Both Nondegenerate and Degenerate Cases”,
B. Fritzsche, B. Kirstein and A. Lasarow develop a new approach to the matricial
Carathéodory interpolation problem.

Inversion formula: In the paper “A Gohberg-Heinig type inversion formula involv-
ing Hankel operators”, G.J. Groenewald and M.A. Kaashoek prove a formula for
the inverse of an operator of the form I − K1K2 where K1 and K2 are Hankel
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operators between matricial L1 spaces. The proof is given first for kernel functions
of stable exponential type, and then uses an approximation argument. In the first
step the state space method is used.

We note that the fourth and seventh papers are related to the line case, while
the others deal with the disk case. This ends a short review of this volume.
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Basic Boundary Interpolation for
Generalized Schur Functions and Factorization
of Rational J-unitary Matrix Functions

Daniel Alpay, Aad Dijksma, Heinz Langer and Gerald Wanjala

Abstract. We define and solve a boundary interpolation problem for gene-
ralized Schur functions s(z) on the open unit disk D which have preassigned
asymptotics when z from D tends nontangentially to a boundary point z1 ∈ T.
The solutions are characterized via a fractional linear parametrization for-
mula. We also prove that a rational J-unitary 2 × 2-matrix function whose
only pole is at z1 has a unique minimal factorization into elementary factors
and we classify these factors. The parametrization formula is then used in an
algorithm for obtaining this factorization. In the proofs we use reproducing
kernel space methods.
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1. Introduction

Recall that s(z) is a generalized Schur function with κ negative squares (for the
latter we write sq−(s) = κ), if it is holomorphic in a nonempty open subset of the
open unit disk D and if the kernel

Ks(z, w) =
1 − s(z)s(w)∗

1 − zw∗ , z, w ∈ D(s), (1.1)

has κ negative squares on D(s), the domain of holomorphy of s(z). We denote
the class of generalized Schur functions s(z) with sq−(s) = κ by Sκ and set S =

The research for this paper was supported in part by the Center for Advanced Studies in Math-
ematics, Ben–Gurion University of the Negev and by the Netherlands Organization of Scientific
Research NWO (grant B61-524).
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∪κ≥0 Sκ. The function s(z) ∈ S0 has a holomorphic and contractive continuation
to all of D and is called a (classical) Schur function. In fact, the following three
statements are equivalent:

(a) s(z) ∈ S0.
(b) s(z) is holomorphic on D and bounded by 1 there.
(c) s(z) has the form

s(z) = γzn
∏
j

|αj |
αj

z − αj

1 − α∗
jz

exp
(
−

∫ 2π

0

eit + z

eit − z
dµ(t)

)
, (1.2)

where n is a nonnegative integer, the αj ’s are the zeros of s(z) in D \ {0}
repeated according to multiplicity, γ is a number of modulus one, and µ(t)
is a nondecreasing bounded function on [0, 2π]. The Blaschke product on the
right-hand side of the first equality in (1.2) is finite or infinite and converges
on D, because

∑
j(1 − |αj |) < ∞.

By a result of M.G. Krein and H. Langer [24], a function s(z) ∈ Sκ has a
meromorphic extension to D and can be written as

s(z) =

⎛⎝ κ∏
j=1

z − βj

1 − β∗
j z

⎞⎠−1

s0(z), (1.3)

where s0(z) ∈ S0, and the zeros βj of the Blaschke product of order κ belong
to D and satisfy s0(βj) �= 0, j = 1, . . . , κ. Conversely, every function s(z) of the
form (1.3) belongs to Sκ. It follows from (1.3) that any function s(z) ∈ S has
nontangential boundary values from D in almost every point of the unit circle T.
In particular, a rational function s(z) ∈ S of modulus one on T is holomorphic on
T, and it is the quotient of two finite Blaschke products.

A nonconstant function s(z) ∈ S0 has in z1 ∈ T a Carathéodory derivative ,
if the limits

τ0 = lim
z→̂z1

s(z) with |τ0| = 1, τ1 = lim
z→̂z1

s(z) − τ0

z − z1
(1.4)

exist, and then
lim

z→̂z1
s′(z) = τ1.

Here and in the sequel z→̂z1 means that z tends from D non-tangentially to
z1. The relation (1.4) is equivalent to the fact that the limit

lim
z→̂z1

1 − |s(z)|
1 − |z|

exists and is finite and positive; in this case it equals τ∗
0 τ1z1; see [33, p. 48]. The

following basic boundary interpolation problem for Schur functions is a particular
case of a multi-point interpolation problem considered by D. Sarason in [34]: Given
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z1 ∈ T and numbers τ0, τ1, |τ0| = 1, such that τ∗
0 τ1z1 is positive. Find all functions

s(z) ∈ S0 such that the Carathéodory derivative of s(z) in z1 exists and

lim
z→̂z1

s(z) = τ0, lim
z→̂z1

s(z) − τ0

z − z1
= τ1.

The study of the Schur transformation for generalized Schur functions in [14],
[1], and [3] motivates the generalization of this basic interpolation problem for
generalized Schur functions, which we consider in this note.

Problem 1.1. Let z1 ∈ T, an integer k ≥ 1, and complex numbers τ0, τk, τk+1,
. . . , τ2k−1 with |τ0| = 1, τk �= 0 be given. Find all functions s(z) ∈ S such that

s(z) = τ0 +
2k−1∑
i=k

τi(z − z1)i + O((z − z1)2k), z→̂z1. (1.5)

We solve this problem under the assumption that the matrix

P := τ∗
0 TB (1.6)

is Hermitian, where

T =

⎛⎜⎜⎜⎜⎜⎝
τk 0 · · · 0 0

τk+1 τk . . . 0 0
...

...
. . .

...
...

τ2k−2 τ2k−3 · · · τk 0
τ2k−1 τ2k−2 · · · τk+1 τk

⎞⎟⎟⎟⎟⎟⎠ (1.7)

and

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 (−1)k−1
(
k−1
0

)
z2k−1
1

0 0 · · · (−1)k−2
(

k−2
0

)
z2k−3
1 (−1)k−1

(
k−1
1

)
z2k−2
1

...
...

...
...

...

0 −
(
1
0

)
z3
1 · · · (−1)k−2

(
k−2
k−3

)
zk
1 (−1)k−1

(
k−1
k−2

)
zk+1
1

z1 −
(
1
1

)
z2
1 · · · (−1)k−2

(
k−2
k−2

)
zk−1
1 (−1)k−1

(
k−1
k−1

)
zk
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.8)

Evidently, for k = 1 the expression in (1.6) reduces to τ∗
0 τ1z1 from above. In

Theorem 3.2 we describe all solutions of this problem by a parametrization formula
of the form

s(z) = TΘ(z)(s1(z)) =
a(z)s1(z) + b(z)
c(z)s1(z) + d(z)

, Θ(z) =
(

a(z) b(z)
c(z) d(z)

)
, (1.9)

where the parameter s1(z) runs through a subclass of S. The matrix function Θ(z)
is rational with a single pole at z = z1 and J-unitary on T for

J =
(

1 0
0 −1

)
.
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Recall that a rational 2 × 2-matrix function Θ(z) is J-unitary on T if

Θ(z)JΘ(z)∗ = J, z ∈ T \ {poles of Θ(z)}.

We prove the description (1.9) of the solutions of the Problem 1.1 by making
use of the theory of reproducing kernel Pontryagin spaces, see [19], [4], [5], [6] for
the positive definite (Hilbert space) case and [2], [3] for the indefinite case. The
essential tool is a representation theorem for reproducing kernel Pontryagin spaces
which will be formulated at the end of this Introduction.

Boundary interpolation problems for classical Schur functions have been stud-
ied by I.V. Kovalishina in [23], [22], by J.A. Ball, I. Gohberg, and L. Rodman in
[12, Section 21] and by D. Sarason [34], and for generalized Schur functions which
are holomorphic at the interpolation points by J.A. Ball in [11]. In these papers
different methods were used: the fundamental matrix inequality, realization theory
and extension theory of operators.

Problem 1.1 is similar to the basic interpolation problem for generalized Schur
functions at the point z = 0 considered in [3]. There, given an arbitrary complex
number σ0, one looks for generalized Schur functions s(z) which are holomorphic
in z = 0 and satisfy s(0) = σ0. In the case that |σ0| = 1 a certain number of
derivatives has to be preassigned in order to find all solutions. In Problem 1.1 this
additional information comes from the preassigned values τj , j = k, k+1, . . . , 2k−1,
and τ1 = τ2 = · · · = τk−1 = 0.

The Problem 1.1 is equivalent to a basic boundary interpolation problem
for generalized Nevanlinna functions at infinity, where one looks for the set of all
generalized Nevanlinna functions N(ζ) with an asymptotics of the form

N(ζ) = −s0

ζ
− s1

ζ2
− · · · − s2k−2

ζ2k−1
+ O

(
1

ζ2k

)
, ζ = iη, η → ∞.

In fact, these problems can be transformed into each other via Cayley transfor-
mation, and we mention that the cases τ∗

0 τ1z1 > 0, = 0, or < 0 correspond to
the cases s0 > 0, = 0, or < 0, respectively, and the hermiticity of the matrix P

in (1.6) corresponds to the reality of the moments sj . On the other hand, each
of these problems has special features and it seems reasonable to study them also
separately. Moreover, the boundary interpolation problem for generalized Nevan-
linna functions at infinity is equivalent to the indefinite power moment problem as
considered in (see [25], [26], [27], [28] [17], [18]). We shall come back to the basic
versions of these problems in another publication.

Basic interpolation problems are closely related to the problem of decompos-
ing a rational J-unitary 2× 2-matrix function as a minimal product of elementary
factors. For the positive definite case these results go back to V.P. Potapov ([30],
[31] and the joint paper [20] with A.V. Efimov); see also L. de Branges [16, Prob-
lem 110, p 116]. In the indefinite case, for a J-unitary matrix function on the
circle T with poles in D this was done in [2], and for the line case in [7]. Here we
prove a corresponding factorization result for a rational J-unitary 2 × 2-matrix
function Θ(z) with a single pole on the boundary T of D. In fact, with the given
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matrix function Θ(z) a basic boundary interpolation problem can be associated,
such that the matrix function which appears in the description of its solutions is
an elementary factor of Θ(z).

A short outline of the paper is as follows. In Section 2 we study the asymp-
totic behavior of the kernel Ks(z, w) near z1 for a generalized Schur function s(z)
which has an asymptotic behavior (1.5) with not necessarily vanishing coefficients
τ1, . . . , τk−1. It turns out, that an expansion of s(z) up to an order 2k implies
a corresponding expansion of the kernel up to an order 2k − 1 only if a certain
matrix P is Hermitian. This matrix P, in some interpolation problems called the
Pick or Nevanlinna matrix, is the essential ingredient for the solution of the basic
interpolation problem. It satisfies the so-called Stein equation (see (2.17)) which
is a basic tool for the definition of the underlying reproducing kernel spaces.

In Section 3 the main result of the paper (Theorem 3.2) is proved, which
contains the solution of Problem 1.1. In Section 4 we consider a basic boundary
interpolation problem with data given in several points z1, z2, . . . , zN of the circle
T and describe all its solutions via a parametrization formula. In Section 5 the
existence of a minimal factorization of a J-unitary matrix function on T with a
single pole on T is proved. Finally, in Section 6 we show how by means of the Schur
algorithm, based on the parametrization formula of Theorem 3.2, such a minimal
factorization can be obtained.

For the convenience of the reader we formulate here a basic representation
theorem for reproducing kernel Pontryagin spaces, see [9], which will be essentially
used in this paper. Infinite-dimensional versions of this result were proved by
L. de Branges [15] and J. Rovnyak [29] for the line case, and by J.A. Ball [10] for
the circle case. For a rational J-unitary 2×2-matrix function Θ(z) on D we denote
by P(Θ) the reproducing kernel Pontryagin space with reproducing kernel

KΘ(z, w) =
J − Θ(z)JΘ(w)∗

1 − zw∗ , z, w ∈ D(Θ).

Theorem 1.2. . Let M be a finite-dimensional reproducing kernel Pontryagin space.
Then M = P(Θ) for some rational J-unitary 2× 2-matrix function Θ(z) which is
holomorphic at z = 0 if and only if the following three conditions hold:

(1) The elements of M are 2-vector functions holomorphic at z = 0.
(2) M is invariant under the difference quotient operator

(R0f)(z) =
f(z) − f(0)

z
, f ∈ M.

(3) The following identity holds:

〈f, g〉M − 〈R0f, R0g〉M = g(0)∗Jf(0), f, g ∈ M. (1.10)

In this case M is spanned by the elements of the form Rn
0 Θ(z)c, where n runs

through the integers ≥ 1 and c through C2.
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In the sequel, for s(z) ∈ S we denote by P(s) the reproducing kernel Pon-
tryagin space with reproducing kernel Ks(z, w) given by (1.1). The negative index
of this space equals the number of negative squares of s(z).

2. Auxiliary statements

For given numbers τ0, τ1, . . . , τ2k−1 we introduce the following k × k-matrices:

T̂ = (t�r)
k−1
�,r=0 , t�r = τ�+r+1, (2.1)

B̂ = (brs)
k−1
r,s=0 , brs = zk+r−s

1

(
k − 1 − s

r

)
(−1)k−1−s, (2.2)

and
Q = (csm)k−1

s,m=0 , csm = τ∗
s+m−(k−1). (2.3)

Here B̂ is a left upper, Q is a right lower triangular matrix.

Lemma 2.1. Suppose that the function s(z) ∈ S has the asymptotic expansion

s(z) = τ0 +
2k−1∑
�=1

τ�(z − z1)� + O
(
(z − z1)2k

)
, z→̂z1, (2.4)

with |τ0| = 1, and that the matrix P := T̂ B̂Q is Hermitian. Then the kernel
Ks(z, w) has the asymptotic expansion

Ks(z, w) =
∑

0≤�+m≤2k−2

α�m(z − z1)�(w − z1)∗m

+O
(
(max{|z − z1|, |w − z1|})2k−1

)
, z, w→̂z1, (2.5)

where the coefficients α�m for 0 ≤ �, m ≤ k − 1 are the entries of the matrix
P : P = (α�m)k−1

�,m=0.

Proof. The asymptotic expansion (2.5) will follow if we show that the relation

1 − s(z)s(w)∗ −
∑

0≤�+m≤2k−2

α�m(z − z1)�(w − z1)∗m(1 − zw∗)

= O
(
(max{|z − z1|, |w − z1|})2k

)
(2.6)

holds, where the symbol O refers again to the non-tangential limit z, w→̂z1. To
see this we consider only the radial limits of z and w and observe that then for z
and w sufficiently close to z1 the relation

|1 − zw∗| ≥ max{|z − z1|, |w − z1|}
holds. Dividing (2.6) by 1 − zw∗ we obtain

Ks(z, w)−
∑

0≤�+m≤2k−2

α�m(z− z1)�(w− z1)∗m =
O

(
(max{|z − z1|, |w − z1|})2k

)
max{|z − z1|, |w − z1|}

,

and this is (2.5).
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To prove (2.6) we set u = z − z1, v = w∗ − z∗1 . Then the expression on the
left-hand side of (2.6) becomes

1 −
(
τ0 + τ1u + τ2u

2 + · · · + O(u2k)
) (

τ∗
0 + τ∗

1 v + τ∗
2 v2 + · · · + O(v2k)

)
−

∑
0≤�+m≤2k−2 α�mu�vm(−uz∗1 − vz1 − uv).

(2.7)

Comparing coefficients we find that the following relations are equivalent for (2.6)
to hold:

u : τ∗
0 τ1 = α00z

∗
1 , v : τ0τ

∗
1 = α00z1, (2.8)

u2 : τ2τ
∗
0 = α10z

∗
1 , uv : τ∗

1 τ1 = α00+α01z
∗
1 +α10z1, v2 : τ0τ

∗
2 = α01z1, (2.9)

u3: τ3τ
∗
0 = α20z

∗
1 , u2v: τ2τ

∗
1 = α10 + α11z

∗
1 + α20z1,

uv2: τ1τ
∗
2 = α01 + α11z1 + α02z

∗
1 , v3: τ0τ

∗
3 = α02z1,

etc. The general relation is

τ�τ
∗
m = α�−1,mz∗1 + α�,m−1z1 + α�−1,m−1, (2.10)

�, m = 0, 1, . . . , 2k − 2, 1 ≤ � + m ≤ 2k − 2,

where all α′s with one index = −1 are set equal to zero, and we have to find
solutions α�m of this system (2.10). The relation (2.10) can be written as

α�m = −z∗1α�−1,m − z∗21 α�−1,m+1 + z∗1τ�τ
∗
m+1, 0 ≤ � + m ≤ 2k − 2, (2.11)

and also as

α�m = −z1α�,m−1 − z2
1α�+1,m−1 + z1τ�+1τ

∗
m, 0 ≤ � + m ≤ 2k − 2. (2.12)

The numbers α�m, 0 ≤ � + m ≤ 2k − 2 in (2.6) or (2.10) can be considered as the
entries of a left upper triangular matrix P̃, which has the matrix P as its left upper
k × k diagonal block. According to the assumption, P is a Hermitian matrix. The
elements of the last row of P determine according to (2.11) the left lower k × k

block of P̃, which is a left upper triangular matrix, and, similarly, the last column
of P determines by the relations (2.10) the right upper k × k block of P̃. These
relations and the hermiticity of P imply that also the matrix P̃ is Hermitian.

From (2.12) we find successively

α�0 = τ∗
0 z1τ�+1, � = 0, . . . , 2k − 2,

α�1 = τ∗
1 z1τ�+1 − τ∗

0 (z2
1τ�+1 + z3

1τ�+2), � = 0, . . . , 2k − 3,

α�2 = τ∗
2 z1τ�+1 − τ∗

1 (z2
1τ�+1 + z3

1τ�+2) + τ∗
0 (z3

1τ�+1 + 2z4
1τ�+2 + z5

1τ�+3),

� = 0, . . . , 2k − 4,

α�3 = τ∗
3 z1τ�+1 − τ∗

2 (z2
1τ�+1 + z3

1τ�+2) − τ∗
1 (z3

1τ�+1 + 2z4
1τ�+2 + z5

1τ�+3)

−τ∗
0 (z3

1τ�+1 + 3z4
1τ�+2 + 3z5

1τ�+3 + z6
1τ�+4), � = 0, . . . , 2k − 5,

(2.13)
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and so for m = 0, . . . , 2k − 2, we have

α�m =
m∑

s=0

τ∗
m−s

s∑
r=0

(−1)s

(
s

r

)
zs+r+1
1 τ�+r+1, � = 0, . . . , 2k − 2 − m.

With the convention that τ� = 0 for � < 0, observing that
(

s

r

)
= 0 if r > s, and

substituting s by k − 1 − s we find for 0 ≤ �, m ≤ k − 1

α�m =
k−1∑

r,s=0

τ�+r+1(−1)k−1−s

(
k − 1 − s

r

)
zk−s+r
1 τ∗

m+s−(k−1) =
k−1∑

r,s=0

t�rbrscsm

and hence (see (2.1)–(2.3))

(α�m)k−1
�,m=0 = T̂ B̂Q.

These considerations also imply that if a solution of the equations (2.10) exists, it
is unique.

As to the existence of a solution, the first relation in (2.13) determines the
elements of the first column of P̃, and the following columns are successively deter-
mined by the other relations of (2.13) or by (2.12). Because of the symmetry of P̃,
the resulting elements α0� are the complex conjugates of α�0, � = 1, 2, . . . , 2k − 2,
and α00 is real. Thus, these α′s satisfy all the relations of the system (2.10) and
hence are its unique solution. �

The relation (2.10) implies that

α�−1,mz∗1 + α�,m−1z1 + α�−1,m−1 = τ�τ
∗
m, 1 ≤ �, m ≤ k − 1. (2.14)

If we introduce the k × k-matrices

Sk =

⎛⎜⎜⎜⎜⎜⎝
0 1 . . . 0 0
...

...
...

...
0 0 . . . 1 0
0 0 . . . 0 1
0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎠ , A = z∗1Ik + Sk, (2.15)

and the 2 × k-matrix

C =
(

1 0 · · · 0
τ∗
0 τ∗

1 · · · τ∗
k−1

)
, (2.16)

then the relation (2.14) is equivalent to the relation (2.17) below, and hence we
have:

Corollary 2.2. Under the assumptions of Lemma 2.1 the matrix P satisfies the
Stein equation

P − A∗
PA = C∗JC. (2.17)
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Remark 2.3. 1) Formula (2.8) implies a condition on τ0 and τ1: the number τ∗
0 τ1z1

has to be real. As was mentioned in the Introduction, for Schur functions this
number must be nonnegative if it is finite. In (2.9) the first and the last equation
determine α10 and α01, the second equation is an additional condition. Similarly
in the relations following (2.9): the first and last equation determine α20 and α02,
then there are 2 equations left for to determine α11. These additional conditions
are automatically satisfied since the matrix P is Hermitian.

2) If the equations (2.10) have a solution α�m, 0 ≤ � + m ≤ 2k − 2, then these
numbers must be symmetric in the sense that α�m = α∗

m�, 0 ≤ � + m ≤ 2k − 2,
since they are the coefficients of the expansion of the Hermitian kernel Ks(z, w).

3) For a function s(z) ∈ S with an expansion (2.4), such that the correspond-
ing matrix P is not Hermitian, the kernel Ks(z, w) does in general not have an
expansion (2.5). An example is the function

s(z) = 1 +
1
2
(z − 1),

which has at z = 1 an expansion (2.4) with any k ≥ 1 but for the corresponding
kernel we obtain, for example, for real z, w,

Ks(z, w) =
1
2

+
1
4

(z − 1)(w∗ − 1)
1 − zw∗ =

1
2

+ O
(
max{|1 − z|, |1 − w|}

)
,

and the order of the last term cannot be improved. For this example it holds

P =

⎧⎪⎨⎪⎩
1/2 k = 1,(

1/2 −1/4
0 0

)
k = 2.

4) For a function s(z) which is analytic on an arc around z1 and has values of
modulus one on this arc the matrices P are Hermitian for all k and the kernel
Ks(z, w) is analytic in z and w∗ near z = w = z1. To see this we observe that
the function s(z) satisfies in some neighborhood of this arc the relation s(1/z∗) =
1/s(z)∗. Now it follows that in this neighborhood, for each fixed w the function
Ks( · , w) and for each fixed z the function Ks(z, · )∗ is holomorphic. According to
a theorem of Hartogs [32, Theorem 16.3.1] the kernel Ks(z, w) is holomorphic in z
and w and the claim follows. We mention, that a function s(z) ∈ Sκ has the above
properties if and only if in its representation (see (1.2) and (1.3))

s(z) =

⎛⎝ κ∏
j=1

z − βj

1 − β∗
j z

⎞⎠−1

γzn
∏
j

|αj |
αj

z − αj

1 − α∗
jz

exp
(
−

∫ 2π

0

eit + z

eit − z
dµ(t)

)
the nondecreasing function µ(t) is constant at t1 where z1 = exp(it1). In particular,
all rational functions in S, which are of modulus one on T, have these properties.
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Lemma 2.4. Under the assumptions of Lemma 2.1 the functions

f0(z) =
1 − s(z)τ∗

0

1 − zz∗1
and

f�(z) =
zf�−1(z) − s(z)τ∗

�

1 − zz∗1
, � = 1, 2, . . . , k − 1,

are elements of P(s) and 〈f�, fm〉P(s) = αm�.

Proof. First we note that for z ∈ D and � = 0, 1, . . . , k − 1,

f�(z) = lim
w→̂z1

1
�!

∂�

∂w∗�
Ks(z, w).

This implies that for all w′ ∈ D

lim
w→̂z1

〈
1
�!

∂�

∂w∗�
Ks( · , w), Ks( · , w′)

〉
P(s)

= lim
w→̂z1

1
�!

∂�

∂w∗�
Ks(w′, w) = f�(w′),

(2.18)
and for �, m = 0, 1, . . . , k − 1

lim
w→̂z1,w′→̂z1

〈
1
�!

∂�

∂w∗�
Ks( · , w),

1
m!

∂m

∂w′∗m
Ks( · , w′)

〉
P(s)

(2.19)

= lim
w→̂z1,w′→̂z1

1
�!m!

∂�+m

∂w∗�∂w′m Ks(w′, w) = αm�. (2.20)

The claim follows now from [21, Theorem 2.4] and [8, Theorem 1.1.2]. In fact,
(2.18) and (2.19) imply f� ∈ P(s), � = 1, 2, . . . , k − 1, and (2.19) also yields the
formula for the inner product between the f�’s. �

In Section 4 below we also need the following generalization of Lemma 2.1.
To formulate it, we suppose that at two points z1, z2 ∈ T, z1 �= z2, the function
s(z) ∈ S has the asymptotic expansions

s(z) = τ1;0 +
2k1−1∑
�=1

τ1;�(z − z1)� + O
(
(z − z1)2k1

)
, z→̂z1, (2.21)

s(z) = τ2;0 +
2k2−1∑
m=1

τ2;m(z − z2)m + O
(
(z − z2)2k2

)
, z→̂z2, (2.22)

and we introduce for i = 1, 2 the ki × ki-matrices

Ai = z∗i Iki + Ski

and the 2 × ki-matrices

Ci =
(

1 0 · · · 0
τ∗
i;0 τ∗

i;1 · · · τ∗
i;ki−1

)
.
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Lemma 2.5. Suppose that at two points z1, z2 ∈ T, z1 �= z2, the function s(z) ∈ S
has the asymptotic expansions (2.21) and (2.22). Then the kernel Ks(z, w) has the
asymptotic expansion

Ks(z, w) =
∑

0 ≤ � ≤ k1 − 1,
0 ≤ m ≤ k2 − 1

α�m(z − z1)�(w − z2)∗m

+O
(
(max{|z − z1|k1 , |w − z2|k2})

)
, z→̂z1, w→̂z2,

where

α�m = lim
z→̂z1,w→̂z2

1
�! m!

∂�

∂z�

∂m

∂w∗m
Ks(z, w).

Moreover, the k1×k2-matrix P12 = (α�m), 0 ≤ � ≤ k1−1, 0 ≤ m ≤ k2−1, satisfies
the relation

P12 − A∗
1P12A2 = C∗

1JC2. (2.23)

Proof. Similar to the proof of Lemma 2.1 we set now u = z − z1, v = w∗− z∗2 , and
equate the coefficients of their powers in the analog of the expression in (2.7):

1−
(
τ1;0 + τ1;1u + τ1;2u

2 + · · · + O(u2k1)
) (

τ∗
2;0 + τ∗

2;1v + τ∗
2;2v

2 + · · · + O(v2k2)
)

−
∑

0≤�≤k1−1,0≤m≤k2−1 α�mu�vm(−uz∗2 − vz1 − uv + 1 − z1z
∗
2).

This gives
1 − τ1;0τ

∗
2;0 = α0,0(1 − z1z

∗
2),

and for 0 ≤ � ≤ k1 − 1, 0 ≤ m ≤ k2 − 1, and � + m > 0,

τ1;�τ
∗
2;m = α�−1,mz∗2 + α�,m−1z1 + α�−1,m−1 + α�m(1 − z1z

∗
2),

which is easily seen to be equivalent to (2.23). �

3. The basic interpolation problem at one boundary point

With the data of the Problem 1.1 the k × k-matrix T was defined in (1.7), and
we recall the definition of B in (1.8). Then the matrix P from Lemma 2.1 can be
written in the form

P = τ∗
0 TB. (3.1)

Observe that P is a right lower triangular matrix, which is invertible because of
τ0, τk, z1 �= 0. We define the vector function

R(z) =
(

1
1 − zz∗1

z

(1 − zz∗1)2
. . .

zk−1

(1 − zz∗1)k

)
,

fix some z0 ∈ T, z0 �= z1 and introduce the polynomial p(z) by

p(z) = (1 − zz∗1)k R(z)P−1R(z0)∗. (3.2)

It has degree at most k − 1 and p(z1) �= 0.
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Lemma 3.1. With p(z) from (3.2) we have that

τ0
(1 − zz∗1)k

(1 − zz∗0)p(z)
= −

2k−1∑
i=k

τi(z − z1)i + O
(
(z − z1)2k

)
, z→̂z1.

Proof. Since 1 − zz∗1 = −z∗1(z − z1), it suffices to show that if

τ0
(−1)k−1z∗k

1

(1 − zz∗0)p(z)
= σk+σk+1(z−z1)+· · ·+σ2k−1(z−z1)k−1+O

(
(z − z1)k

)
, (3.3)

then σj = τj , j = k, k+1, . . . , 2k−1. An expansion of the form (3.3) exists because
the quotient on the left-hand side is rational and the denominator does not vanish
at z = z1. Write

1 − zz∗0 = −z∗0 [(z − z1) + (z1 − z0)],

p(z) =
k−1∑
j=0

pj(z − z1)j =
(
1 z − z1 · · · (z − z1)k−1

)
⎛⎜⎜⎜⎝

p0

p1

...
pk−1

⎞⎟⎟⎟⎠ ,

and define

T ′ =

⎛⎜⎜⎜⎝
σk 0 · · · 0

σk+1 σk . . . 0
...

...
. . .

...
σ2k−1 σ2k−2 · · · σk

⎞⎟⎟⎟⎠ .

From(
σk + σk+1(z − z1) + · · · + σ2k−1(z − z1)k−1

) (
1 z − z1 · · · (z − z1)k−1

)
=

(
1 z − z1 · · · (z − z1)k−1

)
T ′ + O

(
(z − z1)k

)
,

the definition of the shift matrix Sk from (2.15), and (3.3) we obtain

τ0(−1)k−1z0z
∗k
1

=
(
1 (z − z1) · · · (z − z1)k−1

)
((z1 − z0)Ik + S∗

k) T ′

⎛⎜⎜⎜⎝
p0

p1

...
pk−1

⎞⎟⎟⎟⎠ ,

and it follows that

T ′

⎛⎜⎜⎜⎝
p0

p1

...
pk−1

⎞⎟⎟⎟⎠ = τ0
(−1)k−1z0z

∗k
1

z0 − z1

⎛⎜⎜⎜⎜⎜⎜⎝

1
1

z0 − z1
...
1

(z0 − z1)k−1

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.4)
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On the other hand, from the definition of p(z) it follows that

p(z) = τ0

(
(1 − zz∗1)k−1 z(1 − zz∗1)k−2 · · · zk−1

)

×B−1T−1 z0

z0 − z1

⎛⎜⎜⎜⎜⎜⎜⎝

1
1

z0 − z1
...
1

(z0 − z1)k−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

A straightforward calculation shows that(
(1 − zz∗1)k−1 z(1 − zz∗1)k−2 · · · zk−1

)
=

(
1 z − z1 · · · (z − z1)k−1

)
B(−1)k−1z∗1

k

and hence

T

⎛⎜⎜⎜⎝
p0

p1

...
pk−1

⎞⎟⎟⎟⎠ = τ0
(−1)k−1z0z

∗k
1

z0 − z1

⎛⎜⎜⎜⎜⎜⎜⎝

1
1

z0 − z1
...
1

(z0 − z1)k−1

⎞⎟⎟⎟⎟⎟⎟⎠ .

This equality and (3.4) imply⎛⎜⎜⎜⎝
σk 0 · · · 0

σk+1 σk . . . 0
...

...
. . .

...
σ2k−1 σ2k−2 · · · σk

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

p0

p1

...
pk−1

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
τk 0 · · · 0

τk+1 τk . . . 0
...

...
. . .

...
τ2k−1 τ2k−2 · · · τk

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

p0

p1

...
pk−1

⎞⎟⎟⎟⎠ .

From this relation, because of p0 = p(z1) �= 0, it readily follows that σj = τj ,
j = k, k + 1, . . . , 2k − 1. �

For a Hermitian matrix P, by ev−(P) we denote the number of negative
eigenvalues of P.

Theorem 3.2. Given z1 ∈ T and τ0, τk, . . . , τ2k−1 as in Problem 1.1 such that the
matrix P in (1.6) is Hermitian, and let Θ(z) be the J-unitary rational matrix
function

Θ(z) =
(

a(z) b(z)
c(z) d(z)

)
= I2 −

(1 − zz∗0)p(z)
(1 − zz∗1)k

uu∗J, J =
(

1 0
0 −1

)
, u =

(
1
τ∗
0

)
,

(3.5)
with p(z) from (3.2) and fixed z0 ∈ T, z0 �= z1. Then the fractional linear trans-
formation

s(z) = TΘ(z)(s1(z)) =
a(z)s1(z) + b(z)
c(z)s1(z) + d(z)

, (3.6)
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establishes a bijective correspondence between all solutions s(z) of Problem 1.1 and
all s1(z) ∈ S with the property

lim inf
z→̂z1

|s1(z) − τ0| > 0. (3.7)

Moreover, if s(z) and s1(z) are related by (3.6) then

sq−(s) = sq−(s1) + ev−(P). (3.8)

Proof. With the given numbers τ0, τk, . . . , τ2k−1 we define the space M as the span
of the functions

f�(z) =
z�

(1 − zz∗1)�+1
u, � = 0, 1, . . . , k − 1. (3.9)

Then (
f0(z) f1(z) . . . fk−1(z)

)
= C(Ik − zA)−1, (3.10)

where the matrix C from (2.16) specializes now to

C =
(

1 0 · · · 0
τ∗
0 0 · · · 0

)
, (3.11)

and A = z∗1Ik + Sk as in (2.15) with Sk being the k × k shift matrix. Endowing
the space M with the inner product

〈fm, f�〉M = (P)�,m = α�m (3.12)

we have that M is a reproducing kernel Pontryagin space with reproducing kernel
equal to

C(Ik − zA)−1
P
−1(Ik − wA)−∗C∗. (3.13)

Evidently, the negative index of this space is equal to ev−(P).
On the other hand, according to (2.17) the matrix P satisfies the Stein equa-

tion
P − A∗

PA = C∗JC,

where now the expressions on both sides are equal to zero. Therefore for M all the
conditions of Theorem 1.2 are satisfied, and hence there exists a J-unitary rational
2 × 2-matrix function

Θ(z) =
(

a(z) b(z)
c(z) d(z)

)
such that M = P(Θ), the reproducing kernel Pontryagin space with reproducing

kernel
J − Θ(z)JΘ(w)∗

1 − zw∗ . By the uniqueness of the reproducing kernel it must

coincide with the kernel from (3.13):

C(Ik − zA)−1
P
−1(Ik − wA)−∗C∗ =

J − Θ(z)JΘ(w)∗

1 − zw∗ .

Thus if we normalize Θ(z) by Θ(z0) = I2 we obtain

Θ(z) = I2 − (1 − zz∗0)C(Ik − zA)−1
P
−1(Ik − z0A)−∗C∗J.
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By (3.9) and (3.10) this matrix function can be written as

Θ(z) = I2 − (1 − zz∗0)uR(z) P
−1R(z0)∗ u∗J,

and this coincides with the formula for Θ(z) in the theorem.
Now we consider a solution s(z) of Problem 1.1:

s(z) = τ0 +
2k−1∑
�=k

τ�(z − z1)� + O((z − z1)2k), z→̂z1.

According to Lemma 2.1 the corresponding kernel Ks(z, w) admits the represen-
tation (2.5):

Ks(z, w) =
∑

0≤�+m≤2k−2

α�m(z − z1)�(w − z1)∗m

+O
(
(max{|z − z1|, |w − z1|})2k−1

)
, z, w→̂z1,

with

α�m = lim
z,w→̂z1

1
�!m!

∂�+m

∂w∗m∂z�
Ks(z, w) = α∗

m�. (3.14)

From

Ks(z, w) =
1 − s(z)s(w)∗

1 − zw∗ =
(
1 −s(z)

)
(

1
s(w)∗

)
1 − zw∗

we see that

lim
w→̂z1

1
m!

∂m

∂w∗m
Ks(z, w) =

(
1 −s(z)

)
fm(z), m = 0, . . . , k − 1.

On the other hand, according to Lemma 2.4 the elements

fm(z) = lim
w→̂z1

1
m!

∂m

∂w∗m
Ks(z, w) =

(
1 −s(z)

)
fm(z), m = 0, 1, . . . , k − 1,

belong to the reproducing kernel Pontryagin space P(s) with reproducing kernel
Ks(z, w) and〈(

1 −s
)
fm,

(
1 −s

)
f�
〉
P(s)

= lim
z,w→̂z1

1
�!m!

∂m+�

∂w∗m∂z�
KS(z, w). (3.15)

By (3.15), (3.12), and (3.14) the map T of multiplication by
(
1 −s(z)

)
is an

isometry from M into P(s). Setting

s1(z) =
b(z) − d(z)s(z)
c(z)s(z) − a(z)

we have that s(z) is of the desired form:

s(z) =
a(z)s1(z) + b(z)
c(z)s1(z) + d(z)

. (3.16)
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From

Ks(z, w) =
(
1 −s(z)

) J − Θ(z)JΘ(w)∗

1 − zw∗
(
1 −s(w)

)∗ (3.17)

+ (a(z) − c(z)s(z))Ks1(z, w)(a(w) − c(w)s(w))∗,

and since T is an isometry, it follows that s1(z) is a generalized Schur function
and

P(s) = T M⊕ (a − cs)P(s1).
By the observations at the end of the Introduction and after formula (3.12) this
implies the equality (3.8).

From the definition (3.5) of Θ(z):

Θ(z) =
(

1 − θ(z) τ0θ(z)
−τ∗

0 θ(z) 1 + θ(z)

)
, θ(z) =

(1 − zz∗0)p(z)
(1 − zz∗1)k

= (1−zz∗0)R(z)P−1R(z0)∗,

(3.18)
and (3.16) we obtain

s(z) − τ0

(
1 − (1 − zz∗1)k

(1 − zz∗0)p(z)

)
=

τ0(1 − zz∗1)
2k

(1 − zz∗0)p(z) {(1 − zz∗1)k − τ∗
0 (1 − zz∗0)p(z)(s1(z) − τ0)}

. (3.19)

By Lemma 3.1 the expression on the left is O((z− z1)2k), z→̂z1, and this can only
be the case if (3.7) holds. Thus, every solution of the Problem 1.1 is of the form
given in the theorem.

As to the existence of solutions, the equality (3.19) readily implies that any
function s(z) of the form (3.6) has the desired asymptotics and since Θ(z) is J-
unitary and rational, the formula (3.17) implies that if s1(z) belongs to the class
S then also s(z) belongs to this class. �

Remark 3.3. 1) The J-unitarity of Θ(z) implies that

p(z) = z0(−z∗1)kzk−1p

(
1
z∗

)∗
. (3.20)

2) Note that the matrix function Θ(z) in Theorem 3.2 is normalized such that
Θ(z0) = I2. Replacing z0 by another point ẑ0 ∈ T, ẑ0 �= z1, amounts to multiplying
Θ(z) from the right by a J-unitary constant matrix. This follows from the fact
that the fractional linear transformations with the corresponding matrix function
Θ̂(z) and with Θ(z) have the same range. It can also be shown directly using the
equality (3.22) below.
3) For θ(z) as in (3.18) we have

θ(z) = (1 − zz∗0)R(z)P−1R(z0)∗, R(z) =
(
1 0 · · · 0

)
(I − zA)−1, (3.21)

where A = Sk+z∗1Ik. If the point z0 is replaced by another point ẑ0 ∈ T, ẑ0 �= z0, z1,
then for the corresponding function θ̂(z) the difference θ(z) − θ̂(z) is independent
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of z. In fact, a direct calculation using (3.21) and (2.17) with C∗JC = 0 shows
that

θ(z) − θ̂(z) = −θ̂(z0). (3.22)

4) For rational parameters s1(z) the condition (3.7) is equivalent to the fact that
the denominator in (3.6):

c(z)s1(z) + d(z) = −τ∗
0 (s1(z) − τ0)θ(z) + 1

has a pole of order k (see (3.18)).

5) The matrix P in (1.6) is right lower triangular and the entries on the second
main diagonal are given by

(P)i,k−1−i = (−1)k−1−iz2k−1−2i
1 τ∗

0 τk, i = 0, 1, . . . , k − 1. (3.23)

If P is Hermitian, then by (3.23), zk
1 τ∗

0 τk is purely imaginary if k is even and real
if k is odd, and we have

ev−(P) =

⎧⎪⎨⎪⎩
k/2, k even,

(k − 1)/2, k odd, (−1)(k−1)/2zk
1 τ∗

0 τk > 0,

(k + 1)/2, k odd, (−1)(k−1)/2zk
1 τ∗

0 τk < 0.

Recall that the Schur algorithm is originally defined for a Schur function s(z).
Theorem 3.2 allows us to define an analog for functions s(z) in the class S which
have an asymptotics (1.5) at z1 with a Hermitian matrix Pk and τk �= 0. The
Schur transform of s(z) is the function ŝ(z) := s1(z) = TΘ(z)−1(s(z)) with Θ(z)
as in Theorem 3.2. By this Schur transformation the set of functions in S with
the above mentioned properties is mapped into S. The Schur algorithm consists
in iterating the Schur transformation. It will be considered in Sections 5 and 6.

4. Multipoint boundary interpolation

We generalize Problem 1.1 to an interpolation problem with N distinct points
z1, . . . , zN on the unit circle.

Problem 4.1. Let N ≥ 1 be an integer, let z1, . . . , zN be N distinct points on
T, let k1, . . . , kN be integers ≥ 1, and let τi;0, τi;ki , τi;ki+1, . . . , τi;2ki−1 be complex
numbers such that |τi;0| = 1 and τi;ki �= 0, i = 1, . . . , N . Find all generalized Schur
functions s(z) ∈ S such that

s(z) = τi;0 +
2ki−1∑
�=ki

τi;�(z − zi)� + O((z − zi)2ki), z→̂zi, i = 1, . . . , N.

Let Pi, Ci, Ai, and Θi(z) be related to zi as in Section 3 the matrices P, C,
A, and Θ(z) in formulas (3.1), (3.11), (2.15) and (3.5) are related to z1. Set

C =
(
C1 C2 · · · CN

)
, A = diag (A1, A2, . . . , AN ),
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and denote by P = (Pij)N
i,j=1 the N × N block matrix with Pii = Pi and Pij ∈

Cki×kj being the matrix given by (2.23) for z1 = zi and z2 = zj , i, j = 1, 2, . . . , N .
Then, according to (2.17) and (2.23) the matrix P satisfies the Stein equation

P − A∗
PA = C∗JC. (4.1)

We note that the relation (2.23) in the situation of this section reads as

Pij − A∗
i PijAj = C∗

i JCj =
(

1 − τi;0τ
∗
j;0 0 0 · · · 0

0 0 0 · · · 0

)
.

If no derivatives are involved, Pij is a complex number and equal to
1 − τi;0τ

∗
j;0

1 − z∗i zj
.

Theorem 4.2. Assume that the matrix P is invertible and Hermitian and define
the J-unitary matrix function Θ(z) by

Θ(z) =
(

a(z) b(z)
c(z) d(z)

)
= I2 − (1 − zz∗0)C(I − zA)−1

P
−1(I − z0A)−∗C∗J,

where z0 is any point in T different from the interpolation points. Then the frac-
tional linear transformation

s(z) = TΘ(z)(s1(z)) =
a(z)s1(z) + b(z)
c(z)s1(z) + d(z)

(4.2)

establishes a bijective correspondence between all solutions s(z) of Problem 4.1 and
all s1(z) ∈ S with the properties

lim inf
z→̂z1

∣∣∣∣∣ âi(z)s1(z) + b̂i(z)

ĉi(z)s1(z) + d̂i(z)
− τi,0

∣∣∣∣∣ > 0, i = 1, . . . , N, (4.3)

where (
âi(z) b̂i(z)
ĉi(z) d̂i(z)

)
= Θ̂i(z) := Θ−1

i (z)Θ(z).

In the correspondence (4.2),

sq−(s) = ev−(P) + sq−(s1). (4.4)

Proof. As in the proof of Theorem 3.2, to each of the interpolation points zi is
associated the finite-dimensional resolvent invariant space Mi of C2-valued ra-
tional functions spanned by the columns of the matrix function Ci(I − zAi)−1.
Then the space M = ⊕N

i=1Mi is spanned by the columns of the matrix function
C(I − zA)−1. We endow M with the inner product defined by P. It follows from
Theorem 1.2 that M = P(Θ) with Θ(z) as in the theorem.

Assume that s(z) is a solution of the interpolation problem. We claim that
the map T : f(z) �→

(
1 −s(z)

)
f(z) is an isometry from P(Θ) into P(s). Indeed,
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because of the Stein equation (4.1) and the relations

T Ci(I − zAi)−1 =(
lim

w→̂zi

Ks(z, w) lim
w→̂zi

∂

∂w∗ Ks(z, w) · · · lim
w→̂zi

1
(ki − 1)!

∂ki−1

∂w∗(ki−1)
Ks(z, w)

)
,

where i = 1, 2, . . . , N , the entries of the Gram matrix associated with the basis of
the space M, which is the union of the bases of the spaces Mi, coincides with the
Gram matrix of the images under T . Hence

P(s) = T P(Θ) ⊕ (a − cs)P(s1)

and s(z) = TΘ(z)(s1(z)) for some generalized Schur function s1(z) satisfying (4.4).
Since Mi is a non-degenerate R0-invariant subspace of M, Θ(z) admits the factor-
ization Θ(z) = Θi(z)Θ̂i(z), see [9]. Hence s(z) = TΘ(z)(s1(z)) = TΘi(z)(ŝ1(z)) with

ŝ1(z) = TΘ̂i(z)(s1(z)) =
âi(z)s1(z) + b̂i(z)

ĉi(z)s1(z) + d̂i(z)
.

This shows that s(z) is a solution of the interpolation problem at zi with parameter
ŝ1(z), therefore, according to (3.7), ŝ1(z) satisfies (4.3).

Conversely, let s(z) = TΘ(z)(s1(z)) be given with a function s1(z) as in the
theorem. If we write s(z) = TΘi(z)(ŝ1(z)), then, since Θ̂i(z) = Θ−1

i (z)Θ(z) is J-
unitary, ŝ1(z) is a generalized Schur function and by (3.7) it has all the properties
of the parameters in Theorem 3.2 and hence s(z) is a solution of Problem 4.1 �

Remark 4.3. 1) There exist rational parameters s1(z) satisfying the conditions
(4.3) for i=1,...,N . Indeed for each i there is a unique constant si =TΘ(zi)−1(τi;0)
such that in (4.3) there is equality rather than inequality. It suffices to take for
s1(z) any constant of modulus 1 which is different from these si, i = 1, 2, . . . , N .
2) If ki = 1, i = 1, 2, . . . , N , a description of all rational Schur functions which
satisfy the given interpolation conditions was given by J.A. Ball, I. Gohberg, and
L. Rodman [12, Theorem 21.1.2]: in this case the conditions (4.3) reduce to the fact
that c(z)s1(z) + d(z) has poles of order 1 at z = zi, i = 1, 2, . . . , N . Indeed, with

Θi(z) =
(

ai(z) bi(z)
ci(z) di(z)

)
and the relations in the proof of the theorem we have

c(z)s1(z) + d(z) = (ci(z)ŝ1(z) + di(z))(ĉi(z)s1(z) + d̂i(z)).

According to Remark 3.3, 4) the first factor on the right-hand side has a pole of
order 1 at zi and the second factor is rational and nonzero at zi.
3) We give an example where P is not invertible while its diagonal entries are
invertible. For such matrices the assumptions of Theorem 4.2 are not satisfied. Take
N = 2, two distinct points z1 and z2 on T , k1 = k2 = 1, τ1;0 = 1, τ2;0 = −1, and
numbers τ1;1, τ2;1 such that z1τ1;1, z2τ2;1 ∈ R and z1z2τ1;1τ2;1 = 4/|1−z1z

∗
2 |2. Then

P1 and P2 are invertible, P satisfies the Stein equation (4.1) but is not invertible.
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5. J-unitary factorization

In this section z0 and z1 are two distinct points in T. By Uz1 we denote the set of
all rational J-unitary 2× 2-matrix functions Θ(z) with a pole only at z = z1, and
by Uz0

z1
the set of all matrix functions Θ(z) ∈ Uz1 which are normalized such that

Θ(z0) = I2. In particular, the matrix functions of Uz1 are bounded at ∞.

Lemma 5.1. If Θ(z) ∈ Uz1 then detΘ(z) ≡ c for some c ∈ T, and Θ(z)−1 ∈ Uz1 .

Proof. The J-unitarity of Θ(z) on T and the analyticity outside z = z1 imply the
identity

Θ(z)JΘ(1/z∗)∗ = J, z ∈ C \ {0, z1} .

For the rational function f(z) = detΘ(z) it follows that |f(z)| = 1, z ∈ T. There-
fore f cannot have a pole at z1, and since it is also bounded at ∞ it must be
constant. �

By the degree of a rational J-unitary matrix function Θ(z) we mean the
McMillan degree (see [13]) and we write it as deg Θ(z). If Θ(z) ∈ Uz1 and

Θ(z) =
n∑

i=0

Ti(z − z1)−i,

where the Ti’s are constant 2 × 2-matrices and Tn �= 0, then

deg Θ = rank

⎛⎜⎜⎜⎝
Tn 0 · · · 0

Tn−1 Tn · · · 0
...

...
...

T1 T2 · · · Tn

⎞⎟⎟⎟⎠ .

A product Θ1(z)Θ2(z) · · ·Θn(z) = Θ(z) of rational J-unitary matrix func-
tions is called minimal if the degrees add up, that is,

deg Θ1(z) + deg Θ2(z) + · · · + deg Θn(z) = deg Θ(z).

In this case the product on the left-hand side is also called a minimal factor-
ization of Θ(z). An example of a nonminimal product is given by the equality
Θ(z)Θ(z)−1 = I2 for any nonconstant Θ(z) ∈ Uz1 , since, because of Lemma 5.1,
the inverse Θ(z)−1 also belongs to Uz1 .

A matrix function Θ(z) ∈ Uz1 is called elementary if in any minimal factor-
ization Θ(z) = Θ1(z)Θ2(z) at least one of the factors is a J-unitary constant.

Theorem 5.2. Assume z0, z1 ∈ T and z0 �= z1. Then:
(i) The matrix function Θ(z) ∈ Uz0

z1
is elementary if and only if it is of the form

Θ(z) = I2 −
(1 − zz∗0)p(z)
(1 − zz∗1)k

uu∗J, J =
(

1 0
0 −1

)
, u =

(
1
ζ

)
, (5.1)

where k is an integer ≥ 1, ζ ∈ T, p(z) is a polynomial of degree ≤ k − 1
satisfying (3.20) and p(z1) �= 0.
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(ii) Every Θ(z) ∈ Uz0
z1

admits a unique minimal factorization

Θ(z) = Θ1(z) · · ·Θn(z), (5.2)

in which each Θj(z) is an elementary normalized factor of the form (5.1).

The theorem implies that the matrix function Θ(z) in (3.5) belongs to the
class Uz0

z1
and is elementary. The proof of Theorem 5.2 hinges on the fact that

the reproducing kernel space P(Θ) consists of one Jordan chain for the difference
quotient operator R0, which makes the elementary factors unique. In case of higher
dimensions this uniqueness does not hold.

Proof of Theorem 5.2. Let Θ(z) ∈ Uz0
z1

. We claim that P(Θ) is spanned by a single
chain for R0 at the eigenvalue λ = z∗1 . To see this, let λ be an eigenvalue of R0

with eigenelement f0(z): R0f0(z) = λf0(z). Then

f0(z) =
c0

1 − λz
, c0 = f0(0) �= 0,

and since the elements of P(Θ) have a pole only at z = z1, we conclude that
λ = z∗1 . The identity (1.10) and |z1| = 1 imply that c0 is J-neutral:

c∗0Jc0 = 〈f0, f0〉P(Θ) − 〈z∗1f0, z∗1f0〉P(Θ) = 0.

If
g0(z) =

d0

1 − zz∗1
, d0 ∈ C

2,

is another eigenfunction, then also d0 is J-neutral and (1.10) yields c∗0Jd0 = 0.
Since J is invertible, this implies that d0 is a multiple of c0 and hence the geometric
multiplicity of the eigenvalue λ = z∗1 is 1. This proves the claim. It follows that
there are vectors cj ∈ C2, c0 being J-neutral, such that P(Θ) is spanned by

fj(z) =
zfj−1(z) + cj

1 − zz∗1
, j = 0, . . . , N − 1, f−1(z) ≡ 0.

Since c0 is nonzero and J-neutral, its components have the same nonzero abso-
lute value and hence we may suppose without loss of generality that for some
unimodular number ζ0,

c0 =
(

1
ζ0

)
.

Let k be the smallest integer ≥ 1 such that 〈f0, fk−1〉P(Θ) �= 0, hence, if k ≥ 2,

〈f0, fj〉P(Θ) = 0, j = 0, . . . , k − 2.

Then the subspace
M = span {f0, f1, . . . , fk−1}

is the smallest R0-invariant subspace of P(Θ) which is non-degenerate and hence,
by Theorem 1.2, it is a P(Θ1)-space for some rational J-unitary 2 × 2-matrix
function Θ1(z). We prove that Θ1(z) is of the form described by (5.1).

To this end we first show that without loss of generality we may assume that

c1 = · · · = ck−1 = 0. (5.3)
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By the identity (1.10) we have

c∗0Jcj = 〈fj , f0〉P(Θ) − 〈z∗1fj + fj−1, z
∗
1f0〉P(Θ) = 0

and, since c∗0Jc0 = 0 and J is invertible, cj is a multiple of c0. Successively for
j = 1, . . . , k − 1, we may replace cj in fj(z) by zero by subtracting from fj(z) a
suitable multiple of the eigenfunction f0(z). Thus we obtain a chain which satisfies
(5.3) and still spans M. By (5.3), this new chain coincides with the columns of
the matrix C(Ik − zA)−1 with C and A as in (3.11) and τ∗

0 = ζ. Denote by P the
corresponding Gram matrix:

P = (pij)
k−1
i,j=0 , pij = 〈fj , fi〉P(Θ), i, j = 0, 1, . . . , k − 1.

For the reproducing kernel Θ1(z) of the space M we obtain

J − Θ1(z)JΘ1(w)∗

1 − zw∗ = C(Ik − zA)−1
P
−1(Ik − wA)−∗C∗,

and hence

Θ1(z) = I2 − (1 − z∗0z)C(Ik − zA)−1
P
−1(Ik − z0A)−∗C∗J.

As in the proof of Theorem 3.2 one can show that Θ1(z) is of the form (5.1). From
its construction it follows that Θ1(z) is elementary: Assume on the contrary, that
Θ1(z) = Θ′(z)Θ′′(z) is a minimal factorization with nonconstant factors. Then
P(Θ1) = P(Θ′) ⊕ Θ′P(Θ′′) and P(Θ′) is a proper non-degenerate R0-invariant
subspace of P(Θ1) and hence also a subspace of P(Θ). The construction above
and the minimality of k imply that P(Θ′) is spanned by the same chain as P(Θ1),
that is, P(Θ′) = P(Θ1). The normalization implies Θ′(z) = Θ1(z) and Θ′′(z) = I2.

Now we prove (i) and (ii).
(i) The arguments above imply that if Θ(z) is elementary, then Θ(z) = Θ1(z).

We now prove that if Θ(z) is given by (5.1), then it is elementary. The formula
(5.1) implies that Θ(z) is J-unitary, rational with only one pole of order k at
z = z1 and normalized by Θ(z0) = I2. The space P(Θ) is spanned by the elements
Rn

0 Θ(z)c, n = 0, 1, . . . , and these are 2-vector functions of the form x(z)u, where
x(z) is a rational function with at most one pole at z = z1. The chain argument
above shows that the space P(Θ) is spanned by the following chain of R0 at z1

g0(z) =
1

(1 − zz∗1)1
u, g1(z) =

z

(1 − zz∗1)2
u, . . . , gk−1(z) =

zk−1

(1 − zz∗1)k
u.

We claim that the Gram matrix G associated with this chain is right lower tri-
angular. Then, since the space P(Θ) is non-degenerate, the entries on the second
diagonal of G are nonzero. The triangular form of G implies that the span of any
sub-chain of the given chain is degenerate and hence Θ(z) is elementary.

It remains to prove the claim. For this we use the matrix representation of
the operator R0 relative to the basis gj(z): it is the matrix A = z∗1Ik + Sk from
(2.15). From (1.10) and since u is J-neutral, we have that

G − (z∗1Ik + Sk)∗G(z∗1Ik + Sk) = 0,
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and hence
S∗

kG = G
(
−z2

1Sk + z3
1Sk + · · · (−1)k−1zk

1Sk−1
k

)
.

The triangular form of G can be deduced from this equality by comparing the
entries of the matrices on both sides.

(ii) If Θ(z) and Θ1(z) are as in the beginning of this proof, then by Lemma
5.1, Θ2(z) = Θ1(z)−1Θ(z) ∈ Uz0

z1
. From the orthogonal decomposition

P(Θ) = P(Θ1) ⊕ Θ1P(Θ2)

it follows that deg Θ2 = deg Θ − k. The minimal factorization mentioned in part
(ii) of the theorem now follows by repeating the foregoing arguments. �

Since rankuu∗J = 1, the elementary factor Θ(z) in Theorem 5.2 (i) has
McMillan degree k, which, evidently, is the order of the pole of Θ(z) at z = z1.
The function Θ(z) in (5.1) is a generalization of a Brune section in the positive
definite case where it is of the form

(I +
1
γ

z + a

z − a
uu∗J)V,

with a normalizing constant J-unitary factor V , a ∈ T , u ∈ C
2 with u∗Ju = 0,

and γ > 0.

6. A factorization algorithm

In this section we show how the factorization of a matrix function

Θ(z) =
(

a(z) b(z)
c(z) d(z)

)
∈ Uz0

z1

with z1, z0 ∈ T, z0 �= z1, can be derived from the Schur algorithm described at
the end of Section 3. Similar arguments were presented in our previous papers [2]
and [7] for polynomial matrix functions which are J-unitary on the unit circle or
on the real line. We proceed in a number of steps.

Step 1: Choose a number τ ∈ T such that (i)

s(z) = sτ (z) =
a(z)τ + b(z)
c(z)τ + d(z)

(6.1)

is not a constant, (ii) c(0)τ + d(0) �= 0, and (iii)

Oaτ+b = max {Oa, Ob}, Ocτ+d = max {Oc, Od},

where, for example, Oa stands for the order of the pole of the function a(z) at
z = z1. Then s(z) ∈ S, it is a rational function holomorphic and of modulus one
on T and hence the quotient of two Blaschke factors.
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There are at most five distinct points τ ∈ T for which (i)–(iii) do not hold:
Assume that for three distinct points τ1, τ2, τ3 ∈ T the function s(z) is a constant.
Then, since Θ(z0) = I2,

a(z)τj + b(z)
c(z)τj + d(z)

= τj , j = 1, 2, 3, z ∈ C,

and we obtain that c(z) ≡ 0, b(z) ≡ 0, a(z) ≡ d(z). Hence Θ(z) = a(z)I2. Since
detΘ(z) is a constant, we have that a(z) is a constant, and so that Θ(z) is a
constant matrix, which is a contradiction. Hence (i) holds with the exception of at
most two different values of τ ∈ T. The condition in (ii) holds with the exception
of at most one τ ∈ T, since |detΘ(0)| = 1. Finally, the conditions in (iii) hold,
each with the exception at most one point τ ∈ T.

Step 2: Let s1(z) = ŝ(z) be the Schur transform of s(z) (see the end of Section 3).
Then s1(z) = TΘ1(z)−1(s(z)) and Θ1(z) is an elementary factor of Θ(z).

From the proof of Theorem 3.2 we know that the map T : f(z) �→
(
1 −s(z)

)
f(z)

is an isometry from P(Θ1) into P(s). We first show that T is a unitary mapping
from P(Θ) onto P(s). The fact that τ in (6.1) is a constant of modulus one implies
the identity

1 − s(z)s(w)∗

1 − zw∗ =
(
1 −s(z)

) J − Θ(z)JΘ(w)∗

1 − zw∗

(
1

−s(w)∗

)
. (6.2)

This in turn implies that T is a partial isometry from P(Θ) onto P(s), which is
unitary if its kernel kerT is trivial, see [8, Theorem 1.5.7]. Suppose

0 �= f =
(

f
g

)
∈ kerT ,

that is,
(
1 −s

)
f = 0, then

f =
(

s
1

)
g = Θ

(
τ
1

)
x ∈ P(Θ), x =

g

cτ + d
.

Note that since detΘ �= 0, we have that Θ
(

τ
1

)
�= 0. Apply R0 to Θ

(
τ
1

)
x to

obtain

(R0Θ)
(

τ
1

)
x(0) + Θ

(
τ
1

)
R0x ∈ P(Θ).

The first summand belongs to P(Θ) and hence the second summand also belongs
to P(Θ). By repeatedly applying R0, we find that

Θ
(

τ
1

)
Rj

0x ∈ P(Θ), j = 0, 1, 2, . . . .

Since x is a rational function there is an integer n ≥ 0 such that the span of the
functions Rj

0x, j = 0, 1, . . . , n, is finite-dimensional and R0-invariant. It follows
that R0 has an eigenvector v which has one of three possible forms: either v ≡ 1
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or v(z) = 1/(z− z2) with z2 �= z1 or v(z) = 1/(1− zz∗1). All three possibilities lead
to a contradiction:

v ≡ 1: This implies that Θ
(

τ
1

)
∈ P(Θ), and hence, since the elements in P(Θ)

all tend to 0 as z → ∞, we see that Θ(∞)
(

τ
1

)
= 0, but this cannot hold since

detΘ(∞) �= 0.

v(z) = 1/(z − z2): This implies that Θ
(

τ
1

)
1

z − z2
∈ P(Θ), and hence, since the

elements in P(Θ) are all holomorphic at z = z2, we see that Θ(z2)
(

τ
1

)
= 0, and

again this cannot hold since detΘ(z2) �= 0.

v(z) = 1/(1 − zz∗1): This implies that

Θ
(

τ
1

)
1

1 − zz∗1
=

⎛⎜⎜⎝
a(z)τ + b(z)

1 − zz∗1
c(z)τ + d(z)

1 − zz∗1

⎞⎟⎟⎠ ∈ P(Θ),

but this cannot hold because of conditions (iii) in Step 1 and because, according

to the last statement in Theorem 1.2, if
(

f
g

)
∈ P(Θ) then Of ≤ max {Oa, Ob}

and Og ≤ max {Oc, Od}.
These contradictions imply that T has a trivial kernel and hence T is unitary.
We now claim that P(Θ1) ⊂ P(Θ) and that the inclusion map is isometric.

Let N1 = dim P(Θ1) and g0, . . . ,gN1−1 be a basis of P(Θ1) such that R0gj =
z1gj + gj−1. One can choose gj = fj for j = 1, . . . , N1 − 1. Indeed, let

g0(z) =
1

1 − zz∗1

(
1
η

)
,

then the function (
1 −s(z)

)
(f0(z) − g0(z)) = −s(z)(ζ0 − η)

1 − zz∗1
belongs to P(s), and thus ζ0 = η since the elements of P(s) are holomorphic in
z1. Hence f0(z) = g0(z). Moreover,

〈f0, f0〉P(Θ) = 〈T f0, T f0〉P(s) = 〈f0, f0〉P(Θ1).

In the same way it follows that f�(z) = g�(z), � = 1, . . . , N1 − 1, and that for
i, j = 0, . . . , N1 − 1 the inner products satisfy

〈fi, fj〉P(Θ) = 〈T fi, T fj〉P(s) = 〈fi, fj〉P(Θ1).

We conclude that P(Θ1) is isometrically included in P(Θ), and the claim is proved.
According to [9], Θ1(z) is an elementary factor of Θ(z).
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Step 3: If s1(z) is a constant, then Θ(z) = Θ1(z). If s1(z) is not a constant,
let s2(z) = ŝ1(z) be the Schur transform of s1(z) and denote the corresponding
coefficient matrix by Θ2(z). Then Θ2(z) is an elementary factor of Θ1(z)−1Θ(z).
We iterate n times until sn(z) = ŝn−1(z) is a unitary constant and conclude that
Θ(z) = Θ1(z) · · ·Θn(z).

Because of (6.2) and the relation

1 − s(z)s(w)∗

1 − zw∗ =
(
1 −s(z)

) J − Θ(z)JΘ(w)∗

1 − zw∗

(
1

−s(w)∗

)
+(a1(z) − c1(z)s(z))

1 − s1(z)s(w)∗

1 − zw∗ (a1(w) − c1(w)s(w))∗

we have the following equalities:

P(s) =
(
1 −s

)
P(Θ),

P(s) =
(
1 −s

)
P(Θ1) ⊕ (a1 − c1s)P(s1).

(6.3)

In particular, the map
f �→ (a1 − c1s) f (6.4)

is an isometry from P(s1) into P(s).
If s1(z) is a constant then P(s1) = {0} and (6.3) implies that P(Θ) = P(Θ1).

Since Θ(z) and Θ1(z) are normalized they must be equal.
If s1(z) is not a constant, we define Θ2(z) via s1(z) = TΘ2(z)(s2(z)). Then

Θ2(z) ∈ Uz0
z1

and we have the decomposition

P(s1) =
(
1 −s1

)
P(Θ2) ⊕ (a2 − c2s1)P(s2).

Since (6.4) is an isometry and

(a1(z) − c1(z)s(z))
(
1 −s1(z)

)
=

(
1 −s(z)

)
Θ1(z)

we obtain that

(a1 − c1s)P(s1) =
(
1 −s

)
Θ1P(Θ2) ⊕ (a1 − c1s)(a2 − c2s1)P(s2).

Thus
P(s) =

(
1 −s

)
P(Θ1) ⊕

(
1 −s

)
Θ1P(Θ2) ⊕ (a1 − c1s)(a2 − c2s1)P(s2)

=
(
1 −s

)
(P(Θ1) ⊕ Θ1P(Θ2)) ⊕ (a1 − c1s)(a2 − c2s1)P(s2)

=
(
1 −s

)
P(Θ1Θ2) ⊕ (a1 − c1s)(a2 − c2s1)P(s2).

It follows as above that P(Θ1Θ2) is isometrically included in P(Θ), and, if s2(z)
is constant, that Θ(z) = Θ1(z)Θ2(z). If s2(z) is not constant, we observe that

(a1 − c1s)(a2 − c2s1)
(
1 −s2

)
= (a1 − c1s)

(
1 −s1

)
Θ2 =

(
1 −s

)
Θ1Θ2.

and define Θ3(z) via s2(z) = TΘ3(z)(s3(z)). Then we have

(a1 − c1s)(a2 − c2s1)P(s2)
=

(
1 − s

)
Θ1Θ2P(Θ3) ⊕ (a1 − c1s)(a2 − c2s1)(a3 − c3s2)P(s3).

and the factorization (5.2) follows by repeating the arguments.
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[4] D. Alpay, P. Bruinsma, A. Dijksma, and H.S.V. de Snoo, Interpolation problems,
extensions of symmetric operators and reproducing kernel spaces I, Operator Theory:
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vol. 96, Birkhäuser Verlag, Basel, 1997.

[9] D. Alpay and I. Gohberg, Unitary rational matrix functions, Operator Theory: Adv.
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Abstract. We study the inverse problems associated to the characteristic spec-
tral functions of first-order discrete systems. We focus on the case where the
coefficients defining the discrete system are strictly pseudo-exponential. The
arguments use methods from system theory. An important role is played by
the description of the unitary solutions of a related Nehari interpolation prob-
lem and by Hankel operators with unimodular symbols. An application to
inverse problems for Jacobi matrices is also given.
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1. Introduction

In the present work we continue our study of first-order discrete systems. In [4,
Section 3.1] we defined one-sided first-order discrete systems to be expressions of
the form

Xn+1(z) =

(
1 −ρn

−ρ∗n 1

)(
z 0
0 1

)
Xn(z), n = 0, 1, . . . (1.1)

where the ρn are in the open unit disk. Two-sided first-order discrete systems are
given by the formula

Xn+1(z) =
(

1 −ρn

−ρ∗n 1

)(
z 0
0 z−1

)
Xn(z) n = 0, 1, . . . (1.2)

Such systems arise from the discretization of the telegrapher’s equation and in the
theory of orthogonal polynomials; see, e.g., [13].



32 D. Alpay and I. Gohberg

As in [4] we focus on the case where the coefficients ρn are of the form

ρn = −can(Ip − ∆a∗(n+1)Ωan+1)−1b. (1.3)

In this equation (a, b, c) ∈ Cp×p ×Cp×1 ×C1×p is a minimal triple of matrices (see
Section 2.3 for the definition), the spectrum of a is in the open unit disk and ∆
and Ω are the solutions of the Stein equations

∆ − a∆a∗ = bb∗ and Ω − a∗Ωa = c∗c. (1.4)

Furthermore, one requires that:

Ω−1 > ∆. (1.5)

Sequences of the form (1.3) with condition (1.5) are called strictly pseudo-exponen-
tial sequences and have been introduced in [7, Theorem 4.3]. There we studied the
connections between the Carathéodory–Fejér and the Nehari extension problems.
In the process, we proved recursions formulas for analogs of orthogonal polynomials
associated to the Hankel operator

Γ =

⎛⎜⎜⎜⎜⎝
γ0 γ−1 · · ·
γ−1 γ−2 · · ·
...

...
...

...

⎞⎟⎟⎟⎟⎠ , �2 → �2, where γ−j = cajb, j = 0, 1, 2, . . .

(1.6)
The analysis in [7, Section 4] allows to find explicit forms for the solutions of the
systems (1.1) in terms of a, b and c. See Theorem 2.1.

In [4] we associated to such systems a number of functions of z, which we
called the characteristic spectral functions of the system. The main problem in this
paper is to find the sequence ρn when one of the characteristic spectral functions
is given. Classically, when no hypothesis of rationality is made, there are three
approaches to solve such a problem (starting from the spectral function), namely

1. The Gelfand–Levitan approach.
2. Krĕın’s approach.
3. Marchenko’s approach.

The connections between these approaches are explained in [17] and discussed in
the rational case in our previous paper [5].

In the present paper, we present a different approach, based on realization
theory. A key tool in the arguments is the description of all unitary solutions of the
Nehari extension problem which admit a generalized Wiener–Hopf factorization.
First recall that the Wiener algebra W of the unit circle consists of complex-valued
functions f(z) of the form

f(z) =
∑

Z

f�z
� (1.7)
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for which
‖f‖W def.=

∑
Z

|f�| < ∞.

The Nehari extension problem is defined as follows:

Definition 1.1. Given γ−j = cajb, j = 0, 1, 2, . . ., find all elements f ∈ W for
which

f−j = γ−j , j = 0, 1, 2, . . .

and such that sup|z|=1 |f(z)| < 1.

Recall (see for instance [20, p. 956–961]) that a necessary and sufficient con-
dition for the Nehari problem to be solvable is that the Hankel operator Γ defined
by (1.6) has a norm strictly less than 1.

Condition (1.5) insures that the Hankel operator Γ = (ca(�+k)b)�,k=0,..., is a
strict contraction from �2 into itself. Indeed, let

C =

⎛⎜⎜⎜⎝
c
ca
ca2

...

⎞⎟⎟⎟⎠ and B =
(
b ab a2b · · ·

)
.

Then C and B are bounded operators from �2 into C and C into �2 respectively.
We have that C∗C = Ω and BB∗ = ∆. Furthermore, Γ = CB and

‖Γ‖ < 1 ⇐⇒ ΓΓ∗ < I

⇐⇒ CBB∗C∗ < I

⇐⇒ C∗CBB∗C∗C < C∗C

⇐⇒ BB∗ < (C∗C)−1,

which is (1.5).

We note that a different kind of discrete systems has been recently studied
in [25], also using the state space method.

The paper consists of nine sections including the introduction. Section two
is of a preliminary nature. We review the definitions of the characteristic spectral
functions and the description of all unitary solutions to the Nehari interpolation
problem. A new result in this section is Theorem 2.15, which states that the strictly
pseudo-exponential sequence ρn determines uniquely (up to a similarity matrix)
the minimal triple (a, b, c). The inverse scattering problem is considered in Section
3. Inverse problems associated to the other spectral functions are considered in
Section 4. One of the main results of this paper, Theorem 4.1, states that rational
functions strictly contractive in the closed unit disk are exactly the functions with
sequence of Schur coefficients of the form −ρn. Section 5 deals with the inverse
problem associated to the asymptotic equivalence matrix function. In Section 6,
we consider the case of two-sided systems. In Section 7 we present a numerical
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example. In Section 8 we compute explicitly an example of a rational Schur func-
tion which is not the reflection coefficient function of a first-order system with
strictly pseudo-exponential sequence. In the last section we present an application
to Jacobi matrices.

We conclude this introduction with some notation: we denote by f � the func-
tion

f �(z) = f(1/z∗)∗.
We denote by D the open unit disk and by D the closed unit disk. The symbol E

denotes the exterior of the closed unit disk, and we set

E = {z ∈ C : |z| ≥ 1} ∪ {∞} .

We already defined the Wiener algebra W . The subalgebra of functions for which
in (1.7) f� = 0 for � < 0 (resp. for � > 0) will be denoted by W+ (resp. W−).

2. Preliminaries

2.1. The characteristic spectral functions

In this section we review the definitions of the characteristic spectral functions
associated to a one-sided first-order discrete system given in our previous paper
[4]. We begin with a result, which is proved in [4] and uses [7, Theorem 4.5], and
which explains how solutions to the system (1.1) can be expressed explicitly in
terms of a, b and c.

Theorem 2.1. Let ρ0, ρ1, . . . be a strictly pseudo-exponential sequence of the form

ρn = −can(Ip − ∆a∗(n+1)Ωan+1)−1b.

Every solution of the first-order discrete system (1.1) is of the form

Xn(z) =
n−1∏
�=0

(1 − |ρ�|2)
(

1 0
0 z

)
Hn(z)−1

(
zn 0
0 1

)
H0(z)

(
1 0
0 z−1

)
X0(z), (2.1)

where

Hn(z) =
(

αn(z) βn(z)
γn(z) δn(z)

)
and, for n = 0, 1, . . .

αn(z) = 1 + canz(zIp − a)−1(Ip − ∆Ωn)−1∆a∗nc∗ (2.2)

βn(z) = canz(zIp − a)−1(Ip − ∆Ωn)−1b (2.3)

γn(z) = b∗(Ip − za∗)−1(Ip − Ωn∆)−1a∗nc∗ (2.4)

δn(z) = 1 + b∗(Ip − za∗)−1(Ip − Ωn∆)−1Ωnb, (2.5)

with Ωn = a∗nΩan.
The function

Xn(z) =
∏n−1

�=0 (1 − |ρ�|2)∏∞
�=0(1 − |ρ�|2)

(
1 0
0 z

)
Hn(z)−1

(
zn 0
0 z−1

)
,
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is a solution to (1.1). It corresponds to

X0(z) =
1∏∞

�=0(1 − |ρ�|2)

(
1 0
0 z

)
H0(z)−1

(
1 0
0 z−1

)
,

and it has the asymptotic

lim
n→∞

(
z−n 0
0 1

)
Xn(z) = I2.

The function
�

�=n−1∏
�=0

(
1 −ρ�

−ρ∗� 1

)(
z 0
0 1

)
is also a solution to (1.1). It corresponds to X0(z) = I2.

Finally, we have:
�

�=n−1∏
�=0

(
1 −ρ�

−ρ∗� 1

)(
z 0
0 1

)

=
n−1∏
�=0

(1 − |ρ�|2)
(

1 0
0 z

)
Hn(z)−1

(
zn 0
0 1

)
H0(z)

(
1 0
0 z−1

)
,

where we denote
�

�=n−1∏
�=0

A� = An−1 · · ·A0.

The proof of this result is based on the following recurrence formulas, proved
in [7, Theorem 4.5],

αn+1(z) = αn(z) + ρ∗nβn(z) (2.6)
βn+1(z) = z(ρnαn(z) + βn(z)) (2.7)

zγn+1(z) = γn(z) + ρ∗nδn(z) (2.8)
δn+1(z) = δn(z) + ρnγn(z), (2.9)

and which force the recurrence relationship

Hn+1(z) =
(

1 0
0 1

z

)
Hn(z)

(
1 ρn

ρ∗n 1

)(
1 0
0 z

)
,

between Hn(z) and Hn+1(z). Such recursions were developed in a general setting
in [18].

We also recall that it holds that

δn(z) = α�
n(z) and γn(z) = β�

n(z). (2.10)
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The first characteristic spectral function which we introduce is the scattering
function. To define it, we first look for the C2-valued solution of the system (1.1),
with the boundary conditions(

1 −1
)
Y0(z) = 0,(

0 1
)
Yn(z) = 1 + o(n).

(2.11)

In view of (2.1) the first condition implies that the solution is of the form

Yn(z) = (
n−1∏
�=0

(1 − |ρ�|2))
(

1 0
0 z

)
Hn(z)−1

(
zn 0
0 1

)
H0(z)

(
1 0
0 z−1

)(
x(z)
x(z)

)
where x(z) is to be determined via the second boundary condition. We compute

(
0 1

)
Yn(z) = (

n−1∏
�=0

(1 − |ρ�|2))
(
0 z

)
Hn(z)−1

(
zn 0
0 1

)
H0(z)

(
x(z)
x(z)

z

)
.

Taking into account that limn→∞ Hn(z) = I2 we get that

lim
n→∞

(
0 1

)
Yn(z) = (

∞∏
�=0

(1 − |ρ�|2))
(
0 z

)
H0(z)

(
x(z)
x(z)

z

)
and hence 1 = (

∏∞
�=0(1 − |ρ�|2))(zγ0(z) + δ0(z))x(z), that is

x(z) =
1

(
∏∞

�=0(1 − |ρ�|2))(zγ0(z) + δ0(z))
.

Furthermore,

lim
n→∞

(
1 0

)
Yn(z)z−n = (

∞∏
�=0

(1 − |ρ�|2))
(
1 0

)(1 0
0 z

)
H0(z)

(
1 0
0 z−1

)(
x(z)
x(z)

)

= (
∞∏

�=0

(1 − |ρ�|2))
(
1 0

)(α0(z) + β0(z)
z

γ0(z) + δ0(z)
z

)
x(z)

=
α0(z) + β0(z)

z

zγ0(z) + δ0(z)
.

Definition 2.2. Let ρ0, ρ1, . . . be a strictly pseudo-exponential sequence of the form

ρn = −can(Ip − ∆a∗(n+1)Ωan+1)−1b,

and let α0(z), β0(z), γ0(z) and δ0(z) be the functions given by (2.2)–(2.5) with
n = 0. The function

S(z) =
α0(z) + β0(z)

z

zγ0(z) + δ0(z)
=

1
z

α0(z)z + β0(z)
γ0(z)z + δ0(z)

, (2.12)

is called the scattering function associated to the discrete system (1.1) with the
boundary conditions (2.11).
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We note that

(zγ0(z) + δ0(z))� (z) =
1
z
(α0(z)z + β0(z)),(

α0(z) +
β0(z)

z

)�

(z) = δ0(z) + zγ0(z),

and in particular S(z)S(z)� = 1.

From the preceding analysis we obtain the following result (see [4, Theorem 3.14]):

Theorem 2.3. The scattering function is of the form S(z) = S−(z)

S�
−(z)

where S−(z)

and its inverse are analytic in E. Equivalently, the scattering function can be repre-
sented as B1(z)

B2(z) , where B1(z) and B2(z) are two Blaschke products of same degree.

The factor S−(z) is defined up to a multiplicative constant, and we will
normalize it by the condition∫ 2π

0

dt

|S−(e−it)|2 = 2π and S−(∞) > 0. (2.13)

Let

d =

√
1
2π

∫ 2π

0

dt

|α0(e−it) + eitβ0(e−it)|2 .

The choice

S−(z) = d

(
α0(z) +

β0(z)
z

)
(2.14)

satisfies the normalization (2.13) since

lim
z→∞

(
α0(z) +

β0(z)
z

)
= 1 + ca(Ip − ∆Ω)−1∆c∗ > 0.

We remark that we have two factorizations for the scattering function, which

are of different kinds. The first one, S(z) = S−(z)

S�
−(z)

= α0(z)+
β0(z)

z

zγ0(z)+δ0(z) , is a Wiener–

Hopf factorization (recall that the function w ∈ W is said to have a Wiener–Hopf
factorization if it can be written as w = w+w−, where w+ and its inverse are in W+

while w− and its inverse are in W−). The second one, S(z) = B1(z)
B2(z) , is a quotient

of two finite Blaschke products of same degree. In the first case, the spectral factor
S−(z) uniquely determines (up to a unitary constant factor) the function S(z)
since this latter is unitary on the unit circle. In the second case, starting from any
finite Blaschke B1(z), any other Blaschke factor B2(z) of same degree and without
common zero with B1(z) will lead (once more, up to a unitary constant factor) to
a scattering function S(z) = B1(z)

B2(z) . See Theorem 3.2. The second factorization is a
special case of factorizations considered by Krĕın and Langer for generalized Schur
functions. See [26], [12], [1], and see [8] for a discussion of similar factorizations for
scattering functions associated to canonical differential systems.
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We now turn to the definition of the reflection coefficient function. We set

C(ρ) =
(

1 −ρ
−ρ∗ 1

)
and

Mn(z) = C(ρ0)
(

z 0
0 1

)
C(ρ1)

(
z 0
0 1

)
· · ·C(ρn)

(
z 0
0 1

)
. (2.15)

In the statement we use the following notation for linear fractional transformations:

TΘ(x) =
ax + b

cx + d
, where Θ =

(
a b
c d

)
.

Theorem 2.4. Let ρn, n = 1, 2, . . . be a strictly pseudo-exponential sequence of the
form

ρn = −can(Ip − ∆a∗(n+1)Ωan+1)−1b

and let Mn(z) be defined by (2.15). The limit

R(z) = lim
n→∞TMn(z)(0) (2.16)

exists and is equal to

R(z) =
β0

α0
(1/z).

It is a function analytic and contractive in the open unit disk, called the reflection
coefficient function. It takes strictly contractive values on the unit circle.

It follows from Theorem 2.4 that the ρn are in D. Indeed, the proof that R(z)
is analytic and contractive in D depends only on the fact that (1.5) holds and on
the properties of H0(z). By (2.16), the sequence −ρ0,−ρ1, . . . is the sequence of
Schur coefficients of R(z) and hence the ρn are in D.

The proof of Theorem 2.4 (see [4, Theorem 3.9]) is based on the equation

Mn(z) =

(
n∏

�=0

(1 − |ρ�|2)
)

H0(z∗)∗
(

zn+1 0
0 1

)
Hn+1(z∗)∗

which relates Mn and Hn+1, and on the asymptotic property of Hn+1.

We note that a finite Blaschke product is not the reflection coefficient function
of a first-order one-sided discrete system with strictly pseudo-exponential sequence.
We also note that a function such as

R(z) =
z

2 − z

is not appropriate either, since R(1) = 1. The Schur coefficients of this function
are computed in Section 8.

In [4, Theorem 3.10] we proved the following realization result for the reflec-
tion coefficient function.
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Theorem 2.5. Let (a, b, c) ∈ C
p×p × C

p×1 × C
1×p is a minimal triple of matrices

such that (1.5) holds. Then the function

R(z) = c {(I − ∆a∗Ωa) − z(I − ∆Ω)a}−1 b (2.17)

is analytic and strictly contractive in the closed unit disk.

In Section 4.1 we show that every rational function strictly contractive in the
closed unit disk admits a realization of the type (2.17). See Theorem 4.1.

To introduce the Weyl coefficient function we consider the matrix function

Un(z) =
1√
2

(
1 1
1 −1

) �
�=n−1∏

�=0

(
1 −ρ�

−ρ∗� 1

)(
z 0
0 1

)
1√
2

(
1 1
1 −1

)
.

Definition 2.6. The Weyl coefficient function N(z) is defined for z ∈ D by the
following property: The sequence n �→ Un(z)

(
iN(z∗)∗

1

)
belongs to �2

2, that is:

∞∑
n=0

(
−iN(z∗) 1

)
Un(z)∗Un(z)

(
iN(z∗)∗

1

)
< ∞, z ∈ D.

A similar definition appears in [27, Theorem 1, p. 231]. See also [25, equation
(0.6)].

For the next result, see also [31, equation (3.7) p. 416].

Theorem 2.7. The relation between the Weyl coefficient function and the reflection
coefficient function is given by:

N(z) = i
1 − zR(z)
1 + zR(z)

. (2.18)

The following realization result for the Weyl coefficient function was proved in [4].

Theorem 2.8. Let ρn, n = 1, 2, . . . be a strictly pseudo-exponential sequence of the
form

ρn = −can(Ip − ∆a∗(n+1)Ωan+1)−1b.

The Weyl coefficient function associated to the corresponding one-sided first-order
discrete system is given by:

N(z) = i
(
1 + 2zc {I − ∆a∗Ωa + zbc − z(I − ∆Ω)a}−1

b
)

. (2.19)

The function

W (z) =
c0

|α0(1/z) + zβ0(1/z)|2 , c0 =
1∏∞

�=0(1 − |ρ�|2)
, |z| = 1. (2.20)

is called the spectral function, and plays an important role, in particular in the
theory of orthogonal polynomials associated to the system (1.1).
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Theorem 2.9. The Weyl coefficient function N(z) is such that Im N(z) = W (z)
on the unit circle, and it holds that

1
2π

∫ 2π

0

dt

|α0(e−it) + eitβ0(e−it)|2 =
∞∏

�=0

(1 − |ρ�|2). (2.21)

Proof. We have

Im N(z) =
|α0(1/z)|2 − |β0(1/z)|2
|α0(1/z) + zβ0(1/z)|2 =

det H0(1/z)
|α0(1/z) + zβ0(1/z)|2

and

detH0(z) ≡ 1∏∞
�=0(1 − |ρ�|2)

See [7] for the latter. Comparing with (2.14) one obtains (2.21). �

Definition 2.10. The function

V (z) =
(

δ0(z) −β0(z)
z

−zγ0(z) α0(z)

)
=

(
α�

0(z) −β0(z)
z

−zβ�
0(z) α0(z)

)
(2.22)

is called the asymptotic equivalence matrix function of the one-sided first-order
discrete system (1.1).

The second equality stems from (2.10). The terminology is explained in the
next theorem:

Theorem 2.11. Let c1 and c2 be in C
2, and let X

(1)
n and X

(2)
n be the C

2-valued
solutions of (1.1), corresponding to the case of zero potential and to a potential ρn

respectively and with initial conditions X
(1)
0 (z) = c1 and X

(2)
0 (z) = c2. Then, for

every z on the unit circle,

lim
n→∞ ‖X(1)

n (z) − X(2)
n (z)‖ = 0 ⇐⇒ c2 = V (z)c1.

See [4, Theorem 3.2].

2.2. Unitary solutions of the Nehari problem

We follow here [20, p. 956–961] specialized to the scalar case for the solution of
this problem when the γj are of the form

γ−j = cajb, j = 0,−1, . . .

where (a, b, c) is a minimal triple. We already remarked that ‖Γ‖ < 1 is equivalent
to (1.5).

The Nehari extension problem associated with this sequence is then solved as
follows. In the statement, α0, β0, γ0 and δ0 are defined by (2.6)–(2.9) with n = 0.
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Theorem 2.12. All solutions of the Nehari extension problem which are strictly
contractive on the unit circle are given by the linear fractional transformation

α0(z)zε(z) + β0(z)
γ0(z)zε(z) + δ0(z)

, |z| = 1,

where ε(z) varies in W+ and is strictly contractive on the unit circle.

We are interested in solutions of the Nehari interpolation problem which are
unitary rather than strictly contractive on T. We focus on the case where the
solution can be written as w+(z)z�w−(z) where w+ and its inverse are in W+ and
w− and its inverse are in W−, and � ∈ Z. Such factorizations are called generalized
Wiener–Hopf factorizations.

Theorem 2.13. All solutions of the Nehari extension problem which take unitary
values on the unit circle and which admit a generalized Wiener–Hopf factorization.
are given by the linear fractional transformation

α0(z)zε(z) + β0(z)
γ0(z)zε(z) + δ0(z)

, |z| = 1,

where ε(z) varies among finite Blaschke products.

See [9, Theorem 4.3 p. 33]. We refer also to [16] and [15] for more information
on unitary solutions of the Nehari problem.

We note that, in particular, the function zS(z), where S(z) is the scattering
function defined by (2.12), is a solution of the Nehari interpolation problem as-
sociated to γ−j = cajb, j = 0, 1, . . . which is unitary and admits a generalized
Wiener–Hopf factorization.

2.3. Uniqueness theorem

A priori, a pseudo-exponential sequence may have different representations of the
form (1.3). The purpose of this section is to show that in fact the ρn determines
uniquely the minimal triple (a, b, c) (up to a similarity matrix). Recall that mini-
mality means the following:

∩m
�=0 ker ca� = {0} and ∪m

�=0 Im a�b = C
p

for m large enough. The first condition means that the pair (c, a) is observable
while the second means that the pair (a, b) is controllable. When both conditions
are in force, the triple is called minimal. Two minimal triples are unique up to a
uniquely defined similarity matrix, that is, there exists an invertible matrix σ such
that: (

a1 b1

c1 d1

)(
σ 0
0 1

)
=

(
σ 0
0 1

)(
a2 b2

c2 d2

)
. (2.23)

See [10] for more information.

We begin with a preliminary lemma. In the statement the letters N, R, W, S
and S− denote the rational functions previously introduced, i.e., functions with
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the following properties:

1. Im N(z) > 0 in D and N(0) = i.
2. The function W (z) has no pole on the unit circle, at the origin and at infinity

and moreover W (0) and W (∞) are different from 0, W (eit) > 0 for all
t ∈ [0, 2π] and it holds that

1
2π

∫ 2π

0

W (eit)dt = 1. (2.24)

3. R is strictly contractive in D.
4. S− is analytic and invertible in E, with S−(∞) > 0, and

1
2π

∫ 2π

0

dt

|S−(e−it)|2 = 1.

5. S = S−
S�
−

where S− is as in the previous item.

Lemma 2.14. Any of the characteristic spectral functions N, W, R, S and S− de-
termines uniquely the other four via the formulas

W (z) = Im N(z), |z| = 1,

W (z) =
1

|S−(1/z)|2 , |z| = 1,

N(z) = i
1 − zR(z)
1 + zR(z)

S(z) =
S−(z)

S−(1/z∗)∗
.

(2.25)

Proof. We start with a rational function W without poles and strictly positive on
T, and satisfying (2.24). We can write W (z) = q(z)q(1/z∗)∗, where q is rational
and moreover, q and its inverse have no poles in D. The function q is defined up
to a constant of modulus one. To define it in a unique way, we require q(0) > 0. It
suffices then to define S−(z) = 1

q(1/z) .
Since W (z) is analytic in a neighborhood of the closed unit disk, the Herglotz

formula

N(z) =
i

2π

∫ 2π

0

W (eit)
eit + z

eit − z
dt, z ∈ D

defines a rational function with positive real part in D and such that W (z) =
Im N(z) for |z| = 1. The function R(z) is in turn uniquely determined by

R(z) =
1
z

1 + iN(z)
1 − iN(z)

.

The arguments when one starts from one of the other functions are similar. �
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Before proving Theorem 2.15, we recall the following. The Schur algorithm
(see [29], [13]) associates to a function R analytic and contractive in the open unit
disk (that is, a Schur function) a sequence of numbers kn and a sequence of Schur
functions Rn via the formulas R0(z) = R(z), k0 = R(0) and

Rn+1(z) =
Rn(z) − Rn(0)

z(1 − Rn(z)Rn(0)∗)
,

kn = Rn(0).
(2.26)

The recursion stops if at some stage |kn| = 1. Moreover, when the recursion is
infinite (that is, when |kn| < 1 for all n), (2.16) holds with Mn defined as in
(2.15). The numbers kn are called Schur coefficients or reflection coefficients.

Theorem 2.15. A strictly pseudo-exponential sequence ρn determines uniquely (up
to a similarity matrix) the minimal triple (a, b, c) subject to (1.5).

Proof. For the purpose of the proof, let us use the notation ρn = ρn(a, b, c) to de-
note the dependence on (a, b, c). We assume that for two minimal triples (a1, b1, c1)
and (a2, b2, c2) we have

ρn(a1, b1, c1) = ρn(a2, b2, c2), n = 0, 1, . . .

A priori, a1 and a2 may be of different sizes (say, n1×n1 and n2×n2 respectively).
The reflection coefficient function R(z) does not depend on the given representa-
tion ρn(a, b, c). Indeed, by (2.6)–(2.9),

βn+1(z)
αn+1(z)

=
βn(z)
αn(z) + ρn

z(1 + ρ∗n
βn(z)
αn(z) )

, n = 0, 1, . . .

and thus the reflection coefficients of R(z) are the −ρn. Thus the ρn determine
uniquely R(z). Furthermore, from Lemma 2.14 we note that the scattering function
is uniquely determined by R(z). Finally, there exists an invertible matrix σ such
that (2.23) holds. Indeed, let (a, b, c) be a minimal triple subject to (1.5) and
let ρn(a, b, c) the associated strictly pseudo-exponential sequence. The function
zS(z) is a solution to the Nehari interpolation problem associated to the series of
negative Fourier coefficients γ−j = cajb (j = 0, 1, 2, . . . ). Hence, if ρn(a1, b1, c1) =
ρn(a2, b2, c2), we have

γ−j = c1a
j
1b1 = c2a

j
2b2, j = 0, 1, . . . ,

and hence in a neighborhood of the origin we have that:

c1(In1 − za1)−1b1 = c2(In2 − za2)−1b2.

The above equality expresses two different minimal realizations of a common ra-
tional function. The result follows. �
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3. Inverse scattering problem

From the characterization of the scattering function (see Theorem 2.3) there are
two possible starting points for studying inverse problems: the first is a rational
function S− such that both S− and S−1

− are analytic in the exterior of the open unit
disk, including the point at infinity, and the second is a finite Blaschke product.

3.1. Inverse scattering problem associated to the spectral factor

Theorem 3.1. Let S− be a rational function such that both S− and S−1
− are analytic

in the exterior of the open unit disk, including the point at infinity, and S−(∞) > 0.
Then the function

S(z) =
S−(z)

S−(1/z∗)∗

is the scattering matrix of a discrete first-order system with strictly pseudo-expo-
nential sequence.

Proof. The function S(z) is rational and has no pole on the unit circle and its
negative coefficients are of the form

s−j = caj−1b, j = 1, 2, . . . , (3.1)

where the spectrum of a is in the open unit disk. See [21, Corollary 3.2, p. 397], [20,
(11), p. 593] (in particular S(z) belongs to the Wiener algebra). By considering
the function ∞∑

j=0

s−jz
j = c(I − za)−1b

one obtains a minimal triple (which we still call (a, b, c)) such that (3.1) holds. Let

zS(z) =
∑
j∈Z

γjz
j, |z| = 1.

Then,
γ−j = cajb, j = 0, 1, 2, . . . (3.2)

We claim that the corresponding Hankel operator (1.6) is a strict contraction, i.e.,

distL∞(T)(zS(z),H∞(T)) < 1.

It is enough to show that the Hankel operator with symbol S is a strict contraction
since

distL∞(T)(zS(z),H∞(T)) ≤ distL∞(T)(zS(z), zH∞(T))

= distL∞(T)(S(z),H∞(T)).

To that purpose we let p denote the orthogonal projection from the Lebesgue space
L2(T) onto the Hardy space H2(T), and set q = I − p. Viewing Γ as an operator
from H2(T) onto H2(T)⊥ we have Γ = HS = qSp and

T ∗
STS + H∗

SHS = I. (3.3)

Since S admits a Wiener–Hopf factorization it follows from that TS is boundedly
invertible and its inverse is given by pS−1

− pS�
−P (see [20, Theorem 4.1, p. 588] for
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more information in the matrix-valued case). It follows from (3.3) that HS is a
strict contraction.

One can also get to the same conclusion as follows: the function S−(z)
S−(1/z∗)∗ is

unimodular, and S−(1/z∗)∗ is outer (it belongs as well as its inverse to H∞(T)). In
particular the function w(z) = |S−(1/z∗)|2, being bounded from above and below,
satisfies in a trivial way the Muckenhoupt condition

sup
I interval of T

∫
I w(eit)dt∫

I
w−1(eit)dt

< ∞

(or the equivalent Helson–Szëgo condition; [24, Theorem 2 p. 229]). By [23, The-
orem 5 p. 259],

distL∞(T)(S(z),H∞(T)) < 1.

We note that this last argument is valid only in the scalar case, while the first
argument is true in the matrix-valued case as well.

We now build the functions α0(z), β0(z), γ0(z) and δ0(z) as in (2.2)–(2.5)
with n = 0 and a, b, c as in the present proof. From (3.2) we see that the function
zS(z) is a unitary solution to the Nehari interpolation problem (1.1). By Theorem
2.13 we have

zS(z) =
α0(z)zε(z) + β0(z)
γ0(z)zε(z) + δ0(z)

for some finite Blaschke product ε(z). It follows that ε(z) ≡ 1. Indeed, assume
that ε is not a constant: there exist then a constant c = eiθ ∈ T and numbers
a1, . . . , ap ∈ D such that

ε(z) =
p∏
1

z − ai

1 − za∗
i

= zp

∏p
1(1 − ai

z )∏p
1(1 − za∗

i )
.

In particular, the positive factorization index of zε(z) is equal to p + 1. By [9,
Theorem 4. 3 p. 33] the positive factorization index of zS(z) will then be also
equal to p + 1. Hence p = 0 and ε is a constant. We show that ε = 1. Write ε = u

u∗
with u ∈ T. Then,

S(z) =
Y−(z)

Y �
−(z)

, with Y−(z) = u−1

(
α0(z)ε +

β0(z)
z

)
.

The function Y− is analytic and invertible in |z| ≥ 1 and thus there exists a
complex number k such that

S−(z) = kY−(z). (3.4)

Since
Y−
Y �
−

= S =
S−
S�
−

=
k

k∗
Y−
Y �
−

we have that k
k∗ = 1, and so k is real. Let z → ∞ in (3.4) we obtain

S−(∞) = ku−1α0(∞)ε.
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Since k is real, S−(∞) > 0 and α0(∞) > 0 we obtain that u−1ε ∈ R, and so
u−1ε = 1, and hence ε = 1. Thus,

S(z) =
α0(z) + β0(z)

z

zγ0(z) + δ0(z)
,

that is, S is the scattering function of the first-order discrete system (1.1) with
boundary conditions (2.11) and strictly pseudo-exponential sequence ρn, n =
0, 1, 2, . . . This concludes the proof. �

In the proof, one could also use the representation of S as a quotient of
two Blaschke products of same degree, and in the case of simple poles, use [28,
Corollary 1 p. 205].

Note that the triple (a, b, c) in (3.2) is unique up to a similarity matrix. See [10].

3.2. Inverse scattering problem associated to a Blaschke product

In this section the starting point is a Blaschke product B1. We ask the following
question. When is there a Blaschke product B2 such that S = B1

B2
is the scattering

function of a one-sided discrete first-order system?

Theorem 3.2. Let B1(z) =
∏n

1
z−bi

1−zb∗i
be a finite Blaschke product, with b1, . . . , bn

not necessarily distinct points in D. Assume that all the bi �= 0. Then, for every
points a1, . . . , an different from 0 and from the bi, the function S = B1B

−1
2 with

B2(z) =
∏n

1
z−ai

1−za∗
i

is the scattering function of a one-sided discrete first-order
system. The corresponding spectral factor S− is given by

S−(z) =
n∏
1

z − bi

z − ai
, (3.5)

up to the normalization (2.13) and

S(z) =
n∏
1

z − bi

1 − zb∗i

1 − za∗
i

z − ai
.

Indeed, with B2(z) as in the theorem we have:

B1(z)B2(z)−1 =
n∏
1

z − bi

1 − zb∗i

n∏
1

1 − za∗
i

z − ai
=

S−(z)

S�
−(z)

where S−(z) as in (3.5). The function w(z) = |S−(1/z∗)|2 satisfies the Mucken-
houpt condition, and this ends the proof.

We can compute the corresponding sequence of Schur coefficients as follows:
write

S(z) =
n∑
1

ci

z − ai
+

n∑
1

di

1 − zb∗i
+

n∏
1

a∗
i

b∗i
.
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The coefficients ci are equal to

ci =

(
n∏

�=1

ai − b�

1 − aib∗�

) ∏n
�=1(1 − aia

∗
� )∏

�=1,...,n,
� 	=i

(ai − a�)
, (3.6)

and the di need not be computed. We have

zS(z) =
n∑
1

zci

z − ai
+

n∑
1

zdi

1 − zb∗i
+ z

n∏
1

a∗
i

b∗i

=
n∑
1

ci

⎛⎝ ∞∑
j=0

z−jaj
i

⎞⎠ +
n∑
1

zdi

1 − zb∗i
+ z

n∏
1

a∗
i

b∗i
.

Thus

γ−j =
n∑

i=1

cia
j
i = cajb j = 0, 1, 2, . . .

where

a = diag (a1, a2, . . . , an), b =

⎛⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎠ and c =
(
c1 c2 · · · cn

)
.

Finally, the matrices ∆ and Ω solutions of the Stein equations (1.4) are equal to

∆ =

(
1

1 − aia∗
j

)
i,j=1,...,n

and Ω =
(

c∗i cj

1 − a∗
i aj

)
i,j=1,...,n

.

Plugging these various expressions in (1.3) one obtains a formula for the Schur
coefficients in terms of the ai and bi.

We note that when deg B1 �= deg B2, the above theorem of [23] cannot be
used (or more precisely, the theorem insures that the norm of the Hankel operator
will be 1). For instance if B1(z) = 1 and B2(z) = z−a

1−za∗ with a ∈ D,

‖Γ‖ = inf
H∞

‖B−1
2 − h‖∞ = inf

H∞
‖1 − B2h‖∞ = 1

since for every h ∈ H∞,

‖1 − B2h‖∞ = sup
z∈D

|1 − B2(z)h(z)‖ ≥ |1 − B2(a)h(a)| = 1.

4. Other inverse problems

The three inverse problems which we now present are solved via the same principle:
from either of the chosen characteristic spectral functions, compute the spectral
factor S−. Then apply Theorem 3.1. The case of the asymptotic equivalence matrix
function is treated in a separate section.
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4.1. Inverse problem associated to the reflection coefficient function

The Schur algorithm solves the inverse problem associated to the reflection coeffi-
cient function of a first-order one-sided discrete system, but the question which we
ask here is a bit different. Is any rational function with no poles in D and strictly
contractive on the unit circle of the form (2.17)?

Theorem 4.1. Let R(z) be a rational function strictly contractive in the closed
unit disk. Then, R(z) is the reflection coefficient function of a first-order discrete
system of the form (1.1) with strictly pseudo-exponential potential. In particular
it admits a minimal realization of the form (2.17).

Proof. We set N(z) = i 1−zR(z)
1+zR(z) and W (z) = Im N(z), and factorize W (z) as

W (z) =
1

|S−(1/z)|2 , |z| = 1

with S− and its inverse analytic in E and S−(∞) > 0. This last condition insures
that the function S− is uniquely determined by R. Forming S = S−

S�
−

we associate

a unique minimal pair (a, b, c) such that (3.2) holds. At this stage we have the
formulas (2.2)–(2.5) (with n = 0) for the entries of H0(z) and we know from

Section 2.1 (see formula (2.12)) that S(z) = α0(z)+
β0(z)

z

γ0(z)z+δ0(z) .

From the uniqueness of the normalized spectral factor, we see that the func-
tion S−(z) is given by (2.14). Define now the functions N0 and R0 by:

N0(z) = i
α0(1/z)− zβ0(1/z)
α0(1/z) + zβ0(1/z)

R0(z) =
β0(1/z)
α0(1/z)

.

We show that N0(z) = N(z) and R0(z) = R(z). We have the relationships (with
|z| = 1):

Im
1 − zR0(z)
1 + zR0(z)

= Im N0(z)

=
c0

|α0(1/z) + zβ0(1/z)|2 (see (2.20))

=
1

|S−(1/z)|2
= Im N(z)

= Im
1 − zR(z)
1 + zR(z)

.

and so N(z) = N0(z) (because of the common normalization at z = 0) and this
forces R0(z) = R(z). �
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As a corollary we have the following partial realization result:

Theorem 4.2. Let p ∈ N and let ρ0, . . . , ρp be (p+1) numbers in the open unit disk.
Then, there exists a minimal triple (a, b, c) ∈ C(p+1)×(p+1) × C(p+1)×1 × C1×(p+1)

such that
ρn = −can(Ip − ∆a∗(n+1)Ωan+1)−1b, n = 0, . . . , p.

Indeed, let R(z) = TMp(z)(0), where Mp(z) is built from the sequence ρ0, . . . , ρp

as in (2.15). Let J0 =
(

1 0

0 −1

)
. The function Mp(z) is J0-inner:

Mp(z)∗J0Mp(z)

{
≤ J0, z ∈ D

= J0, |z| = 1.
.

Set Mp(z) =
(

ap(z) bp(z)
cp(z) dp(z)

)
. Then

|bp(z)|2 − |dp(z)|2 = −1, |z| = 1

and it follows (see also [14]) that TMp(z)(0) = bp(z)
dp(z) takes strictly contractive values

on the unit circle. Therefore one can apply to it Theorem 4.1. The result follows
since the first p + 1 Schur coefficients of TMp(z) are exactly −ρ0, . . . ,−ρp.

As an example, let us take

ρ0 = · · · = ρp−1 = 0 and ρp ∈ D.

This sequence is of the form (1.3) with c = −
(
ρp 0 0 ·

)
∈ C1×(p+1) and

a =

⎛⎜⎜⎜⎜⎝
0 1 0 ·
0 0 1 0 ·

0 0 · 0 1
0 0 · 0 0

⎞⎟⎟⎟⎟⎠ ∈ C
(p+1)×(p+1), b =

⎛⎜⎜⎜⎜⎝
1
0
0
·
0

⎞⎟⎟⎟⎟⎠ ∈ C
(p+1).

Indeed, the matrices ∆ and Ω are equal to

∆ = bb∗ + abb∗a∗ + · · · = I4 and Ω = c∗c + a∗c∗ca + · · · = |ρp|2I4.

Condition (1.5) is thus in force and to check that (1.3) holds with this choice of a, b
and c is a straightforward computation. Let us find back this result by the method
described above. We have R(z) = −ρpz

p. Computations are easier since R(z) has

constant norm on the unit circle. We have N(z) = i
1+ρpzp+1

1−ρpzp+1 and for |z| = 1,

Im N(z) =
1 − |ρp|2

(1 − ρpzp+1)(1 − ρp
∗

zp+1 )
=

1 − |ρp|2
S−(1/z)S−(1/z)∗

with S−(z) =
1− ρp

zp+1√
1−|ρp|2

, and

zS(z) = z
S−(z)

S−(1/z∗)∗
= −ρp

zp
+ ϕ(z)
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where ϕ(z) ∈ zW+. We thus have to look for a minimal triple (a, b, c) such that

cajb =

{
0, j = 0, . . . , p − 1,

−ρp, j = p.

We are thus back to the direct computation just done above.

4.2. Inverse problem associated to the Weyl coefficient function

The proofs of the next Theorem as well as of Theorem 4.5 are similar to the proof
of Theorem 4.1 and will be outlined for completeness.

Theorem 4.3. Necessary and sufficient conditions for a rational function to be
the Weyl coefficient function of a discrete first-order system (1.1) with pseudo-
exponential sequence ρn are:

(a) N(0) = i,
(b) Im N(z) > 0 for z ∈ D.

When these conditions are in force, the inverse problem associated to N is solved
as follows:

(1) Compute S−(z) invertible and analytic in E such that S−(∞) > 0 and
Im N(z) = 1

|S−(1/z)|2 .

(2) Set S = S−
S�
−
. The function S is in the Wiener algebra and its negative co-

efficients are of the form γ−j = cajb (j = 0, 1, 2, . . .) for a unique (up to
similarity) minimal triple of matrices (a, b, c).

The coefficients ρn are then computed from (a, b, c) as in (1.3).

This problem is solved by reduction to the solution of the associated inverse
scattering problem. Indeed, conditions (a) and (b) are necessary from the analysis
in [4]. See (2.18). To prove that these conditions are also necessary we remark
(Lemma 2.14) that N determines uniquely the normalized spectral factor S−(z).
Steps (1) and (2) solve the inverse scattering problem associated to S−(z) and
gives the series of reflection coefficients ρn in terms of a unique (up to similarity)
minimal triple of matrices (a, b, c). By uniqueness of the Weyl coefficient function,
N is the Weyl coefficient function of the corresponding system.

As a corollary we have:

Corollary 4.4. Let N(z) be a rational function. The following are equivalent:

(1) The function N(z) has no pole, has a strictly positive imaginary part in the
closed unit disk, and N(0) = i.

(2) N(z) can be written as (2.19).
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4.3. Inverse spectral problem

Theorem 4.5. Necessary and sufficient conditions for a rational function W to be
the spectral function of a discrete first-order system (1.1) with pseudo-exponential
sequence ρn are:

(a) W (z) has no pole on the unit circle, at the origin and at infinity and moreover
W (0) and W (∞) are different from 0, W (eit) > 0 for all t ∈ [0, 2π].

(b) We have 1
2π

∫ 2π

0 W (eit)dt = 1.

When these conditions are in force, the inverse spectral problem associated to W
is solved as follows:

(1) Compute S−(z) invertible and analytic in E to be such that S−(∞) > 0 and
W (z) = 1

|S−(1/z)|2 for z ∈ T.

(2) Set S = S−
S�
−
. The function S is in the Wiener algebra and its negative coef-

ficients are of the form γj = ca−jb (j = 0,−1,−2, . . .) for a unique (up to
similarity) minimal triple of matrices (a, b, c).

The coefficients ρn are then computed from (a, b, c) as in (1.3).

As in the previous section, this problem is also solved by reduction to the
solution of the associated inverse scattering problem. Conditions (a) and (b) are
necessary from the analysis in [4]. See (2.20). To prove that these conditions are
also necessary we remark (Lemma 2.14) that W determines uniquely the normal-
ized spectral factor S−(z). Steps (1) and (2) solve the inverse scattering problem
associated to S−(z) and gives the series of reflection coefficients ρn in terms of a
unique (up to similarity) minimal triple of matrices (a, b, c). By uniqueness of the
spectral function, W is the spectral function of the corresponding system.

We mention that another approach to these two inverse problems (when the
coefficients ρn do not necessarily form a strictly pseudo-exponential sequence) uses
the theory of reproducing kernel spaces of the kind introduced by de Branges and
Rovnyak. See [2], [3]. Yet another approach uses a realization

W (z) = D + zC(I − zA)−1B,

for the weight function and formulas for the inverse of the Toeplitz matrix

Tn =

⎛⎜⎜⎜⎝
w0 w∗

1 · · · w∗
n

w1 w0 . . . w∗
n−1

...
...

...
wn wn−1 · · · w0

⎞⎟⎟⎟⎠ , (4.7)

when the entries are of the form

wk =

⎧⎨⎩ CAk−1(I − P )B if k = 1, 2, . . .
D − CPB if k = 0
−CAk−1PB if k = −1,−2, . . .
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where P is the Riesz projection defined by

P = − 1
2πi

∫
T

(λI − A)−1dλ.

Theorem 4.6. Let W be a rational function strictly positive on the unit circle and
without pole at the origin, and let

W (z) = D + zC(I − zA)−1B

be a minimal realization of W (z). Then the associated Schur coefficients are
given by

kn =
D−1CA×V −1

n+1PA−(n+1)A×BD−1

D−1 + D−1CA×V −1
n+1PA−(n+1)(A×)nBD−1

.

In this expression, A× = A−BD−1C and Vn = (I−P +PA)−n(I−P +P (A×)n).

To prove this theorem we first recall the following result (see [17, pp. 235–236]).

Theorem 4.7. Let R(z) be a Schur function and let

φ(z) =
1 − R(z)
1 + R(z)

= w0 + 2
∞∑

�=1

w�z
�,

and assume that the matrix Tn (given by (4.7)) is invertible. Set

T
−1
n =

⎛⎜⎜⎜⎜⎝
γ

(n)
00 γ

(n)
01 · · · γ

(n)
0n

γ
(n)
10 γ

(n)
11 · · · γ

(n)
1n

...
...

...
γ

(n)
n0 γ

(n)
n1 · · · γ

(n)
nn

⎞⎟⎟⎟⎟⎠ .

Then the nth Schur coefficient of R is equal to

kn =
γ

(n)
0n

γ
(n)
00

. (4.8)

Note that in [17] the function 1+R(z)
1−R(z) is considered, and this introduces a

minus sign in the Schur coefficients.

In [22, p. 36] formulas are given for the entries of the inverse of Tn. More
precisely, it is proved that for every n the matrix Vn = (I − P + PA)−n(I − P +
P (A×)n) is invertible, and,

(a) for 0 ≤ j < i ≤ n.

γ
(n)
ij = (D−1C(A×)iV −1

n+1PA−(n+1)(A×)n−jB − D−1C(A×)i−j−1BD−1).

(b) for 0 ≤ i ≤ j ≤ n

γ
(n)
ij = δijD

−1 + D−1C(A×)iV −1
n+1PA−n(A×)n−jBD−1.
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In particular,

kn =
γ

(n)
0n

γ
(n)
00

=
D−1C(A×)V −1

n+1PA−(n+1)(A×)BD−1

D−1 + D−1C(A×)V −1
n+1PA−(n+1)(A×)nBD−1

=
Cπn+1(A×)−n−1BD−1

1 + D−1Cπn+1A×−1B
,

where πn+1 = V −1
n+1PA−n−1(A×)n+1. See [6] for more details.

5. Inverse problem associated to the asymptotic equivalence
matrix function

The asymptotic equivalence matrix can be expressed in the following way (see [4]):

V (z) =
1
2

(
(1 + iN(z∗)∗)S+(z)−1 −(1 + iN(1/z))S−(1/z)
−(1 − iN(z∗)∗)S+(z)−1 (1 − iN(1/z))S−(1/z)

)
.

To tackle inverse problems associated to V it is easier to consider the expres-
sion (2.22) for V (z), that is,

V (z) =

(
α�

0(z) −β0(z)
z

−zβ�
0(z) α0(z)

)
. (5.1)

Theorem 5.1. A C2×2-valued rational matrix function V = (v�,j) is the asymptotic
equivalence matrix function of a one-sided discrete first-order system with strictly
pseudo-exponential potential if and only if the following conditions hold:

1. V is of the form (5.1) with α0 and β0 without poles in |z| ≥ 1, and moreover
α0 does not vanish in |z| ≥ 1.

2. It holds that

1
2π

∫ 2π

0

dt

|v22(e−it) − v12(e−it)|2 ≡ (|v22(z)|2 − |v11(z)|2)−1, |z| = 1. (5.2)

When these conditions are in force, the solution to the inverse problem associated
to V is obtained by solving the inverse scattering problem associated to

S(z) =
(v22 − v12)(z)
(v22 − v12)�(z)

.

Indeed, (5.2) follows from (2.21), and the conditions in the theorem insure
that (v22−v12)(z)

(v22−v12)�(z)
is a scattering function. Solving the corresponding inverse scatter-

ing problem gives us the first-order discrete system with asymptotic equivalence
matrix function v since this function is uniquely determined from either of the
other characteristic spectral functions.
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6. The case of two-sided first-order systems

The relationships between the systems (1.1) and (1.2) has been studied in [4,
Section 4]. There we proved that the solutions of the system (1.2) are of the form

Yn(z) =
n−1∏
�=0

(1 − |ρ�|2)
(

1 0
0 z2

)
Hn(z2)−1

(
zn 0
0 z−n

)
H0(z2)

(
1 0
0 1

z2

)
Y0(z)

= z−n
n−1∏
�=0

(1 − |ρ�|2)
(

1 0
0 z2

)
Hn(z2)−1

(
(z2)n 0

0 1

)
H0(z2)

(
1 0
0 1

z2

)
Y0(z).

In view of formula (2.1), and since the scalar factor z−n does not affect the various
linear transformations, this suggests that the set of characteristic spectral functions
of both systems (for a given sequence ρn) are related by the map z �→ z2. This is
indeed the case, as explained in [4, Section 4].

The following result is proved in [4, Section 4].

Theorem 6.1. Let ρn, n = 0, 1, . . . be a strictly pseudo-exponential sequence. The
system (1.2) has a solution uniquely defined by the conditions(

1 −1
)
Y0(z) = 0,(

0 1
)
Yn(z) = z−n + o(n).

Then the limit
lim

n→∞
(
1 0

)
Yn(z)z−n

exists and is called the scattering function of the system (1.2). It is related to the
scattering function of the system (1.1) by the map z �→ z2.

The counterpart of Theorem 2.3 is now:

Theorem 6.2. A rational function S is the scattering function of a two-sided first-
order discrete system (1.2) if and only if it can be written as S(z) = S−(z2)

S−(1/z∗2)∗

where S− is analytic and invertible in E. When this is the case, the inverse scat-
tering problem is solved by solving the inverse scattering problem for the system
(1.1) associated to the function S−(z)

S−(1/z∗)∗ .

To define the reflection coefficient function we now set

Qn(z) = C(ρ0)
(

z 0
0 z−1

)
C(ρ1)

(
z 0
0 z−1

)
· · ·C(ρn)

(
z 0
0 z−1

)
= z−n−1Mn(z2).

(6.1)

Theorem 6.3. Let ρn, n = 1, 2, . . . be a strictly pseudo-exponential sequence and let
Qn(z) be defined by (6.1). The limit

R(z) = lim
n→∞ TQn(z)(0) (6.2)
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exists and is equal to

R(z) =
β0

α0
(1/z2).

It is a function analytic and contractive in the open unit disk, called the reflection
coefficient function. It takes strictly contractive values on the unit circle, and is
related to the reflection coefficient function of the system (1.1) by the map z �→ z2.

Indeed, in view of (6.1), we note that

TQn(z)(0) = TMn(z2)(0).

The arguments follow then those of the one-sided case.

As in Theorem 6.2 the inverse problem associated to R is solved by consid-
ering the corresponding problem for β0

α0
(1/z).

One can also introduce the Weyl coefficient function

N(z) = i
1 + z2R(z)
1 − z2R(z)

and the spectral function

W (z) = Im N(z).

Theorem 6.4. The characteristic spectral functions of a two-sided first-order dis-
crete system are even functions of z. They can be all expressed in term of a rational
even function σ−(z), which is analytic and invertible in E and normalized by∫ 2π

0

dt

|σ−(e−it)|2 = 2π, and σ−(∞) > 0

via:

S(z) =
σ−(z)

σ�
−(z)

W (z) =
1

|σ−(1/z)|2
W (z) = Im N(z)

N(z) = i
1 + z2R(z)
1 − z2R(z)

.
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7. A numerical example

In this section we consider a numerical example. We take S−(z) = 1−3z
1−2z (that is,

the normalization (2.13) is not taken into account at this stage). Then

z
S−(z)

S�
−(z)

= z
z − 2
1 − 2z

1 − 3z

z − 3

= z

(
− 3

10
1

(1 − 2z)
+

8
5

1
(z − 3)

+
3
2

)
=

3
20

1
(1 − 1

2z )
+

8
5

z

(−3)(1 − z
3 )

+
3
2
z.

Hence, the negative Fourier coefficients of S are

γj =
3
20

1
2|j|

= ca|j|b, j = 0,−1,−2, . . .

with

a =
1
2
, c =

3
20

, and b = 1.

We compute the solutions of the Stein equations in (1.4):

∆ =
4
3
, Ω =

3
100

.

Condition (1.5) is in force and we get

ρn = − 3
20

1
2n

1
(1 − 1

25
1

22n+2 )
= − 15.2n

(5.2n+1 − 1)(5.2n+1 + 1)
. (7.1)

The corresponding Schur function is given by formula (2.17) and we obtain

R(z) =
5

33 − 16z
,

which is strictly contractive in the closed unit disk.

We now check directly that the Schur coefficients of this function are indeed
given by (7.1). We proceed by induction. We first prove that for every positive
integer n, the nth iteration Rn of the Schur algorithm is of the form

Rn(z) =
1

pn − zqn
,

with pn �= 0 (and thus, ρn = − 1
pn

), and that we have the recursion relation

pn+1 =
|pn|2 − 1

qn

qn+1 = p∗n.

(7.2)

We first remark that |pn| �= 1. Indeed, if |pn| = 1 we would have |Rn(0)| = 1,
and by the maximum modulus principle, Rn(z) is a unitary constant. It would
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follow that R is a finite Blaschke product, which it is not. A direct computation
shows that R(0) = −ρ0. Applying twice the Schur algorithm leads to

R1(z) =
10

133 − 66z
and R2(z) =

660
(143.123)− 133.66.z

and to Schur coefficients equal respectively to 10
133 and 20

13.41 , which are in turn
respectively equal to −ρ1 and −ρ2.

Assume now that the hypothesis is true at rank n. Then,

Rn+1(z) =
1

pn−zqn
− 1

pn

1 − 1
pn−zqn

1
p∗

n

=
qn

|pn|2 − 1 − zp∗nqn

=
1

|pn|2−1
qn

− zqn

.

The division by qn = p∗n−1 is legitimate since the induction hypothesis holds at
rank n− 1, and hence pn−1 �= 0. Furthermore, we already remarked that |pn| �= 1,
and so pn+1 = |pn|2−1

qn
�= 0, and hence the induction hypothesis is proved at rank

n + 1.

We now check that 1
pn

= −ρn, where the sequence ρn is given by (7.1). We
also prove this claim by induction. The result is true for n = 0 and n = 1, as
mentioned above. From (7.2) we see that we have to show that for every n:

ρn+1 =
1

ρn−1

(
1

ρ2
n
− 1

) ,

that is,

1 =
(

1
ρ2

n

− 1
)

ρn−1ρn+1.

This amounts to check that

1 =
(

(100 · 22n − 1)2

225 · 22n
− 1

)
· 225 · 22n

(25 · 22n − 1)(400 · 22n − 1)
,

that is,
(25 · 22n − 1)(400 · 22n − 1) = (100 · 22n − 1)2 − 225 · 22n.

This in turn is readily verified.

The Weyl coefficient function is equal to

N(z) = i
1 − zR(z)
1 + zR(z)

= i
3
11

11 − 7z

3 − z
,
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and the spectral function is given by:
W (z) = Im N(z)

=
24
11

(
5 − 4Re z

|3 − z|2

)
=

24
11

1
|S−(1/z)|2 , |z| = 1.

Thus the normalized spectral factor is equal to
√

11
24

1−3z
1−2z . A direct computation

using Cauchy’s theorem shows that∫ 2π

0

dt

|S−(e−it)|2 =
1

2πi

∫
|z|=1

1
S−(z)S−(1/z)

dz

z

=
1

2πi

∫
|z|=1

(1 − 2z)(2 − z)
(1 − 3z)(3 − z)z

dz =
11
24

.

8. An example of a non-strictly pseudo-exponential sequence

As already mentioned, the Schur function R(z) = z
2−z takes value 1 for z = 1 and

in particular is not strictly contractive in the closed unit disk. By Theorem 4.1 we
know that its sequence of Schur coefficients is not strictly pseudo-exponential. We
check this directly here. To that purpose we use a formula for the Schur coefficients
in terms of the Taylor series of the function φ(z) = 1−R(z)

1+R(z) recalled in Theorem
4.7. For R(z) = z

2−z we have that φ(z) = 1 − z and hence

c0 = 1 and c1 = −1
2
.

Since the coefficients are real γ
(n)
0n = γ

(n)
n0 , and we have to compute the entries of

the first column of T−1
n . To ease the notation we denote the entries of this column

by a0, . . . , an. One has to solve⎛⎜⎜⎜⎜⎝
1 − 1

2 0 0 . . . 0
− 1

2 1 1
2 0 . . . 0

0 − 1
2 1 1

2 0 . . .
· · · · · ·
0 0 · − 1

2 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

a0

a1

...
an

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠ ,

that is, the system of equations

a0 −
a1

2
= 1

a0 + a2 = 2a1

...
an−2 + an = 2an−1

an−1 = 2an.
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This system of equations has a unique solution, which is found as follows: we set

aj = (j + 1)a0 − 2j, j = 0, . . . , n.

These aj satisfy the above equations, at the exception of the last one,

na0 − (2n − 2) = 2((n + 1)a0 − 2n)

which gives the value of a0:

a0 =
2n + 2
n + 2

.

Hence we obtain the value of the coefficient kn:

kn =
an

a0
= n + 1 − 2n

a0
=

1
n + 1

for n ≥ 1. This sequence does not decrease exponentially fast to 0 and hence is
not a strictly pseudo-exponential sequence.

Finally, we note that the Schur coefficients can also be computed by proving
by induction that the nth iteration Rn in (2.26) is equal to Rn(z) = 1

(n+1)−nz for
n ≥ 1. Indeed, the claim is true for n = 1. Assume it holds at rank n. Then,

Rn+1(z) =
1

(n+1)−nz − 1
n+1

1 − 1
n+1

1
(n+1)−nz

=
n

(n + 1)2 − 1 − n(n + 1)z

=
1

(n + 2) − (n + 1)z
.

The Schur coefficients of the function z
2−z were already computed in [30, Sec-

tion 14].

9. Jacobi matrices

We now give an application to Jacobi matrices. We begin with a brief review of
these matrices and of the associated inverse problem. We use extensively the papers
[17], [19] and our previous paper [5]. For the general theory of Jacobi matrices we
refer to [11, Chapter VII].

Jacobi matrices are infinite matrices of the form

J =

⎛⎜⎜⎜⎝
b0 a0 0 0 · · ·
a0 b1 a1 0 · · ·
0 a1 b2 a2 0 · · ·
...

⎞⎟⎟⎟⎠ ,

where the numbers an are strictly positive and the bn are real numbers.
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One associates to such an infinite matrix a sequence of polynomials P0, P1, . . .
via P0(λ) ≡ k0 > 0 and the recursion formulas

b0P0(λ) + a0P1(λ) = λP0(λ)

an−1Pn−1(λ) + bnPn(λ) + anPn+1(λ) = λPn(λ).

Favard proved in 1935 that there exist positive measures on R such that∫
R

Pn(λ)dσ(λ)Pm(λ) = δn,m. (9.1)

The inverse problem associated to dσ(λ) consists in recovering the an and bn

from dσ. Of course, these can be obtained directly from dσ(λ) via the formula

an =
κn

κn+1
, κn being the coefficient of λn in Pn(λ),

bn =
∫

R

λPn(λ)2dσ(λ).

This is the analog of computing the coefficients ρn in the discrete system (1.1)
directly via (4.8) (see the discussion at the end of page 236 of [17]), and does not
take into account possible special properties of dσ(λ).

When the sequences an and bn are bounded, J defines a bounded self-adjoint
operator (see [11, Theorem 1.2 p. 504]), and the measure is unique. Under the
assumption that both limits

lim
n→∞ an = a and lim

n→∞ bn = b

exist, the first limit being strictly positive, and that, moreover
∞∑

n=1

n

{∣∣∣∣1 − a2
n

a2

∣∣∣∣ +
∣∣∣∣bn − b

a

∣∣∣∣} < ∞, (9.2)

one can say more on the measure; see [19, Theorem 3, p. 474]; dσ(λ) has then a
simple form and one can relate the inverse problem to the inverse problem for a
related discrete first-order one-sided system. Following [17] we will assume

lim
n→∞ an = 1 and lim

n→∞ bn = 0.

One then has:

Theorem 9.1. Assume that (9.2) holds with a = 1 and b = 0. There exists a
measure dσ with support in [−2, 2], with a finite number of jumps outside [−2, 2]
such that (9.1) holds. Furthermore, dσ(λ) is absolutely continuous with respect to
Lebesgue measure on [−2, 2] and

dσ(λ)
dλ

=
sin θ

|f+(eiθ)|2 , λ = 2 cos θ, (9.3)

where the function zf+(z) belongs to W+.
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See [19, Theorem 1, p. 473] for the above result. We also note that the function
f+ has real Fourier coefficients. Formulas are also available for the jumps of dσ(λ).
We will not recall them here.

We assume that dσ(λ) is of the form

dσ(λ) =

{
2
π

(
sin2 θ

)
W (eiθ)dθ, |λ| ≤ 2

0, |λ| > 2
(9.4)

where W (z) =
∑

Z
wnzn is in W , has real Fourier coefficients and is strictly positive

on the unit circle. In [17] H. Dym and A. Iacob wrote explicitly the relationships
between the Schur coefficients εn of the function

r(z) =
(w0 + 2

∑∞
n=1 wkzk) − 1

(w0 + 2
∑∞

n=1 wkzk) + 1
(9.5)

and the sequences an and bn.

Theorem 9.2. Assume that dσ(λ) is of the form (9.4), and let ε0, ε1, . . . be the
Schur coefficients of the function (9.5). Then,

an =
{
(1 + ε2n+2)(1 − |ε2n+3|2)(1 − ε2n+4)

}1/2

bn = ε2n+1(1 − ε2n+2) − ε2n+3(1 + ε2n+2), n = 0, 1, . . .
(9.6)

In the next theorem we specialize (9.3) to the case where W (z) is moreover
rational. In [5, pp. 165–166] we computed the coefficients an and bn in terms of
a minimal realization of W (z). In the present section we chose a different route.
We remark that W (z) is the spectral function of a first-order one-sided discrete
system with strictly pseudo-exponential potential (see Theorem 4.3), and we can
use the results proved earlier in the paper to compute the sequences an and bn.

Theorem 9.3. Let dσ(λ) be of the form

dσ(λ) =

{
2
π

(
sin2 θ

)
W (eiθ)dθ, |λ| ≤ 2

0, |λ| > 2

where W (z) is a real rational function without poles and positive on the unit circle
and such that

∫ 2π

0 W (eiθ)dθ = 1. Write W (z) = 1
|S−(1/z)|2 where S− and its inverse

are invertible in E. Let

z
S−(z)

S−(1/z)
=

∑
Z

γjz
j, |z| = 1,

and let (a, b, c) be a minimal triple such that

γ−j = cajb, j = 0, 1, 2, . . .

holds. Finally, let ρn be built from (a, b, c) via (1.3) and set ε0 = 0 and εn = ρn−1

for n ≥ 1. Then, the coefficients an and bn are given by (9.2) with this choice of εn.
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Indeed, the function r(z) given by (9.5) vanishes at the origin because of the
normalization

∫ 2π

0
W (eiθ)dθ = 1. Write r(z) = −zR(z) and set

N(z) = i

(
w0 + 2

∞∑
n=1

wnzn

)
.

Then, Im N(z) = W (z), |z| = 1 and

N(z) = i
1 − zR(z)
1 + zR(z)

,

that is, R is the reflection coefficient function associated to the discrete first-order
system with spectral function W (z). Furthermore the sequence of Schur coefficients
of r(z) is

0, ρ0, ρ1, . . .

since the −ρj are the Schur coefficients of R(z).

We conclude with an example:

Example 9.4. Let ε ∈ (−1, 1) and

W (z) =
1 − ε2

(1 + εz)(1 + ε
z )

.

Then, 1
2π

∫ 2π

0
W (eit)dt = 1 and

S−(z) =
√

1 − ε2

1 + ε
z

.

Then, the negative Fourier coefficients of

z
S−(z)

S−(1/z)
= (z + εz2)

{
1 − ε

z
+

ε2

z2
− ε3

z3
+ · · ·

}
are equal to γ−j = cajb (j = 0, 1, . . .) with

c = ε, a = −ε and b = ε2 − 1.

The Stein equations (1.4) have solutions

∆ = 1 − ε2 and Ω =
ε2

1 − ε2
.

In particular, inequality (1.5) holds.

The Schur coefficients of the associated first-order system are thus equal to

kn =
(−ε)n(ε2 − 1)

1 − ε2n+2
,
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and we have:

an =

{(
1 +

ε2n+2(ε2 − 1)
1 − ε4n+6

)(
1 −

(
ε2n+3(ε2 − 1)

1 − ε4n+8

)2
)

×
(

1 − ε2n+4(ε2 − 1)
1 − ε4n+10

)}1/2

bn =
{
− ε2n+1(ε2 − 1)

1 − ε4n+4

(
1 − ε2n+2(ε2 − 1)

1 − ε4n+6

)
+

ε2n+3(ε2 − 1)
1 − ε4n+8

(
1 +

ε2n+2(ε2 − 1)
1 − ε4n+6

)}
.
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Boundary Nevanlinna–Pick Interpolation
Problems for Generalized Schur Functions

Vladimir Bolotnikov and Alexander Kheifets

Abstract. Three boundary multipoint Nevanlinna-Pick interpolation prob-
lems are formulated for generalized Schur functions. For each problem, the
set of all solutions is parametrized in terms of a linear fractional transforma-
tion with a Schur class parameter.
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1. Introduction

The Schur class S of complex-valued analytic functions mapping the unit disk D

into the closed unit disk D can be characterized in terms of positive kernels as
follows: a function w belongs to S if and only if the kernel

Kw(z, ζ) :=
1 − w(ζ)w(z)

1 − ζ̄z
(1.1)

is positive definite on D (in formulas: Kw � 0), i.e., if and only if the Hermitian
matrix

[Kw(zj , zi)]
n
i,j=1 =

[
1 − w(zi)w(zj)

1 − z̄izj

]n

i,j=1

(1.2)

is positive semidefinite for every choice of an integer n and of n points z1, . . . , zn ∈
D. The significance of this characterization for interpolation theory is that it gives
the necessity part in the Nevanlinna-Pick interpolation theorem: given points
z1, . . . , zn ∈ D and w1, . . . , wn ∈ C, there exists w ∈ S with w(zj) = wj for

j = 1, . . . , n if and only if the associated Pick matrix P =
[

1−wiwj

1−zizj

]
is positive

semidefinite.
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There are at least two obstacles to get an immediate boundary analogue of
the latter result just upon sending the points z1, . . . , zn in (1.2) to the unit circle
T. Firstly, the boundary nontangential (equivalently, radial) limits

w(t) := lim
z→t

w(z) (1.3)

exist at almost every (but not every) point t on T. Secondly, although the nontan-
gential limits

dw(t) := lim
z→t

1 − |w(z)|2
1 − |z|2 ≥ 0 (t ∈ T) (1.4)

exist at every t ∈ T, they can be infinite. However, if dw(t) < ∞, then it is readily
seen that the limit (1.3) exists and is unimodular. Then we can pass to limits in
(1.2) to get the necessity part of the following interpolation result:

Given points t1, . . . , tn ∈ T and numbers w1, . . . , wn and γ1, . . . , γn such that

|wi| = 1 and γi ≥ 0 for i = 1, . . . , n, (1.5)

there exists w ∈ S with

w(ti) = wi and dw(ti) ≤ γi for i = 1, . . . , n (1.6)

if and only if the associated Pick matrix

P = [Pij ]ni,j=1 with the entries Pij =

⎧⎨⎩
1 − wiwj

1 − titj
for i �= j

γi for i = j
(1.7)

is positive semidefinite.

This result in turn, suggests the following well-known boundary Nevanlinna–
Pick interpolation problem.

Problem 1.1. Given points t1, . . . , tn ∈ T and numbers w1, . . . , wn, γ1, . . . , γn as
in (1.5) and such that the Pick matrix P defined in (1.7) is positive semidefinite,
find all functions w ∈ S satisfying interpolation conditions (1.6).

Note that assumptions (1.5) and P ≥ 0 are not restrictive since they are
necessary for the problem to have a solution.

The boundary Nevanlinna–Pick interpolation problem was worked out using
quite different approaches: the method of fundamental matrix inequalities [12],
the recursive Schur algorithm [7], the Grassmannian approach [3], via realization
theory [2], and via unitary extensions of partially defined isometries [1, 11]. If
P is singular, then Problem 1.1 has a unique solution which is a finite Blaschke
product of degree r = rankP . If P is positive definite, Problem 1.1 has infinitely
many solutions that can be described in terms of a linear fractional transformation
with a free Schur class parameter.

Note that a similar problem with equality sign in the second series of condi-
tions in (1.6) was considered in [19, 9, 6]:
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Problem 1.2. Given the data as in Problem 1.1, find all functions w ∈ S such that

w(ti) = wi and dw(ti) = γi for i = 1, . . . , n (1.8)

The solvability criteria for this modified problem is also given in terms of the
Pick matrix (1.7) but it is more subtle: condition P ≥ 0 is necessary (not sufficient,
in general) for the Problem 1.2 to have a solution while the condition P > 0 is
sufficient.

The objective of this paper is to study the above problems in the setting of
generalized Schur functions. A function w is called a generalized Schur function if
it is of the form

w(z) =
S(z)
B(z)

, (1.9)

for some Schur function S ∈ S and a finite Blaschke product B. Without loss of
generality we can (and will) assume that S and B in representation (1.9) have no
common zeroes. For a fixed integer κ ≥ 0, we denote by Sκ the class of generalized
Schur functions with κ poles inside D, i.e., the class of functions of the form (1.9)
with a Blaschke product B of degree κ. Thus, Sκ is a class of functions w such that

1. w is meromorphic in D and has κ poles inside D counted with multiplicities.
2. w is bounded on an annulus {z : ρ < |z| < 1} for some ρ ∈ (0, 1).
3. Boundary nontangential limits w(t) := lim

z→t
w(z) exist and satisfy |w(t)| ≤ 1

for almost all t ∈ T.

It is clear that the class S0 coincides with the classical Schur class.

The class Sκ can be characterized alternatively (and sometimes this charac-
terization is taken as the definition of the class) as the set of functions w mero-
morphic on D and such that the kernel Kw(z, ζ) defined in (1.1) has κ negative
squares on D∩ ρ(w) (ρ(w) stands for the domain of analyticity of w); in formulas:
sq−(Kw) = κ. The last equality means that for every choice of an integer n and of
n points z1, . . . , zn ∈ D∩ ρ(w), the Hermitian matrix (1.9) has at most κ negative
eigenvalues:

sq−

[
1 − w(zi)w(zj)

1 − z̄izj

]n

i,j=1

≤ κ, (1.10)

and for at least one such choice it has exactly κ negative eigenvalues counted with
multiplicities. In what follows, we will say “w has κ negative squares” rather than
“the kernel Kw has κ negative squares”.

Due to representation (1.9) and in view of the quite simple structure of fi-
nite Blaschke products, most of the results concerning the boundary behavior of
generalized Schur functions can be derived from the corresponding classical results
for the Schur class functions. For example, the nontangential boundary limit dw(t)
(defined in (1.4)) exists for every t ∈ T and satisfies dw(t) > −∞ (not necessarily
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nonnegative, in contrast to the definite case). Indeed, if w is of the form (1.9), then

1 − |w(z)|2
1 − |z|2 =

1
|B(z)|2

(
1 − |S(z)|2

1 − |z|2 − 1 − |B(z)|2
1 − |z|2

)
. (1.11)

Passing to the limits as z tends to t ∈ T in the latter equality and taking into
account that |B(t)| = 1, we get

dw(t) = dS(t) − dB(t) > −∞,

since dw(t0) ≥ 0 and dB(t) < ∞. Furthermore, as in the definite case, if dw(t) < ∞,
then the nontangential limit (1.3) exists and is unimodular.

Now we formulate indefinite analogues of Problems 1.1 and 1.2. The data set
for these problems will consist of n points t1, . . . , tn on T, n unimodular numbers
w1, . . . , wn and n real numbers γ1, . . . , γn:

ti ∈ T, |wi| = 1, γi ∈ R (i = 1, . . . , n). (1.12)

As in the definite case, we associate to the interpolation data (1.12) the Pick matrix
P via the formula (1.7) which is still Hermitian (since γj ∈ R), but not positive
semidefinite, in general. Let κ be the number of its negative eigenvalues:

κ := sq−P, (1.13)

where

P = [Pij ]ni,j=1 and Pij =

⎧⎨⎩
1 − wiwj

1 − titj
for i �= j,

γj for i = j.
(1.14)

The next problem is an indefinite analogue of Problem 1.2 and it coincides with
Problem 1.2 if κ = 0.

Problem 1.3. Given the data set (1.12), find all functions w ∈ Sκ (with κ defined
in (1.13)) such that

dw(ti) := lim
z→ti

1 − |w(z)|2
1 − |z|2 = γi (i = 1, . . . , n) (1.15)

and
w(ti) := lim

z→ti

w(z) = wi (i = 1, . . . , n). (1.16)

The analogue of Problem 1.1 is:

Problem 1.4. Given the data set (1.12), find all functions w ∈ Sκ (with κ defined
in (1.13)) such that

dw(ti) ≤ γi and w(ti) = wi (i = 1, . . . , n). (1.17)

Interpolation conditions for the two above problems are clear: existence of the
nontangential limits dw(ti)’s implies existence of the nontangential limits w(ti)’s;
upon prescribing the values of these limits (or upon prescribing upper bounds for
dw(ti)’s) we come up with interpolation conditions (1.15)–(1.17). The choice (1.13)
for the index of Sκ should be explained in some more detail.
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Remark 1.5. If a generalized Schur function w satisfies interpolation conditions
(1.17), then it has at least κ = sq−P negative squares.

Indeed, if w is a generalized Schur function of the class Sκ̃ and t1, . . . , tn are
distinct points on T such that

dw(ti) < ∞ for i = 1, . . . , n,

then the nontangential boundary limits w(ti)’s exist (and are unimodular) and
one can pass to the limit in (1.10) (as ti → zi for i = 1, . . . , n) to conclude that
the Hermitian matrix

Pw(t1, . . . , tn) =
[
Pw

ij

]n

i,j=1
, Pw

ij =

⎧⎨⎩ 1 − w(ti)w(tj)
1 − titj

for i �= j

dw(ti) for i = j

(1.18)

satisfies
sq−Pw(t1, . . . , tn) ≤ κ̃. (1.19)

If w meets conditions (1.16), then the nondiagonal entries in the matrices

Pw(t1, . . . , tn) and P

coincide which clearly follows from the definitions (1.14) and (1.18). It follows from
the same definitions that

P − Pw(t1, . . . , tn) =

⎡⎢⎣ γ1 − dw(t1) 0
. . .

0 γn − dw(tn)

⎤⎥⎦
and thus, conditions (1.15) and the first series of conditions in (1.17) can be written
equivalently in the matrix form as

Pw(t1, . . . , tn) = P and Pw(t1, . . . , tn) ≤ P, (1.20)

respectively. Each one of the two last relations implies, in view of (1.19) that

sq−P ≤ κ̃.

Thus, the latter condition is necessary for existence of a function w of the class Sκ̃

satisfying interpolation conditions (1.17) (or (1.15) and (1.16)). The choice (1.13)
means that we are concerned about generalized Schur functions with the minimally
possible negative index.

Problems 1.3 and 1.4 are indefinite analogues of Problems 1.2 and 1.1, re-
spectively. Now we introduce another boundary interpolation problem that does
not appear in the context of classical Schur functions.

Problem 1.6. Given the data set (1.12), find all functions w ∈ Sκ′ for some κ′ ≤
κ = sq−P such that conditions (1.17) are satisfied at all but κ−κ′ points t1, . . . , tn.

In other words, a solution w to the last problem is allowed to have less then κ
negative squares and to omit some of interpolation conditions (but not too many
of them). The significance of Problem 1.6 will be explained in the next section.
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2. Main results

The purpose of the paper is to obtain parametrizations of solution sets S13, S14

and S16 for Problems 1.3, 1.4 and 1.6, respectively. First we note that

S13 ⊆ S14 ⊆ S16 and S14 = S16 ∩ Sκ. (2.1)

Inclusions in (2.1) are self-evident. If w is a solution of Problems 1.6 with κ′ = κ,
then κ − κ′ = 0 which means that conditions (1.17) are satisfied at all points
t1, . . . , tn and thus, w ∈ S14. Thus, S14 ⊆ S16∩Sκ. The reverse inclusion is evident,
since S14 ⊆ Sκ. Note also that if κ = 0, then Problems 1.4 and 1.6 are equivalent:
S14 = S16.

It turns out that in the indefinite setting (i.e., when κ > 0), Problem 1.6
plays the same role as Problem 1.4 does in the classical setting: it always has
a solution and, in the indeterminate case, the solution set S16 admits a linear
fractional parametrization with the free Schur class parameter. The case when P
is singular, is relatively simple:

Theorem 2.1. Let P be singular. Then Problem 1.6 has a unique solution w which
is the ratio of two finite Blaschke products

w(z) =
B1(z)
B2(z)

with no common zeroes and such that

deg B1 + deg B2 = rankP.

Furthermore, if deg B2 = κ, then w is also a solution of Problem 1.4.

The proof will be given in Section 7. Now we turn to a more interesting case
when P is not singular. In this case, we pick an arbitrary point µ ∈ T\{t1, . . . , tn}
and introduce the 2 × 2 matrix-valued function

Θ(z) =
[

Θ11(z) Θ12(z)
Θ21(z) Θ22(z)

]
(2.2)

= I2 + (z − µ)
[

C
E

]
(zIn − T )−1P−1(In − µT ∗)−1

[
C∗ −E∗ ]

where

T =

⎡⎢⎣ t1
. . .

tn

⎤⎥⎦ , E =
[
1 . . . 1

]
, C =

[
w1 . . . wn

]
. (2.3)

Note that the Pick matrix P defined in (1.14) satisfies the following identity

P − T ∗PT = E∗E − C∗C. (2.4)

Indeed, equality of nondiagonal entries in (2.4) follows from the definition (1.18)
of P , whereas diagonal entries in both sides of (2.4) are zeroes. Identity (2.4) and
all its ingredients will play an important role in the subsequent analysis.
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The function Θ defined in (2.2) is rational and has simple poles at t1, . . . , tn.
Note some extra properties of Θ. Let J be a signature matrix defined as

J =
[

1 0
0 −1

]
. (2.5)

It turns out that Θ is J-unitary on the unit circle, i.e., that

Θ(t)JΘ(t)∗ = J for every t ∈ T ∩ ρ(Θ) (2.6)

and the kernel

KΘ,J(z, ζ) :=
J − Θ(z)JΘ(ζ)∗

1 − zζ̄
(2.7)

has κ = sq−P negative squares on D:

sq−KΘ,J = κ. (2.8)

We shall use the symbol Wκ for the class of 2×2 meromorphic functions satisfying
conditions (2.6) and (2.8). It is well known that for every function Θ ∈ Wκ, the
linear fractional transformation

TΘ : E −→ Θ11E + Θ12

Θ21E + Θ22
(2.9)

is well defined for every Schur class function E and maps S0 into
⋃

κ′≤κ Sκ′ . This
map is not onto and the question about its range is of certain interest. If Θ is of
the form (2.2), the range of the transformation (2.9) is S16:

Theorem 2.2. Let P , T , E and C be defined as in (1.14) and (2.3) and let w be
a function meromorphic on D. If P is invertible, then w is a solution of Problem
1.6 if and only if it is of the form

w(z) = TΘ[E ](z) :=
Θ11(z)E(z) + Θ12(z)
Θ21(z)E(z) + Θ22(z)

, (2.10)

for some Schur function E ∈ S0.

It is not difficult to show that every rational function Θ from the class Wκ

with simple poles at t1, . . . , tn ∈ T and normalized to I2 at µ ∈ T, is necessarily
of the form (2.2) for some row vector C ∈ C1×n with unimodular entries, with E
as in (2.3) and with a Hermitian invertible matrix P having κ negative squares
and being subject to the Stein identity (2.4). Thus, Theorem 2.2 clarifies the
interpolation meaning of the range of a linear fractional transformation based on
a rational function Θ of the class Wκ with simple poles on the boundary of the
unit disk.

The necessity part in Theorem 2.2 will be obtained in Section 3 using an
appropriate adaptation of the V.P. Potapov’s method of the Fundamental Matrix
Inequality (FMI) to the context of generalized Schur functions. The proof of the
sufficiency part rests on Theorems 2.3 and 2.5 which are of certain independent
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interest. To formulate these theorems, let us introduce the numbers c̃1, . . . , c̃n and
ẽ1, . . . , ẽn by

c̃∗i := − lim
z→ti

(z − ti)Θ21(z) and ẽ∗i := lim
z→ti

(z − ti)Θ22(z) (i = 1, . . . , n) (2.11)

(for notational convenience we will write sometimes a∗ rather than a for a ∈ C).
It turns out |c̃i| = |ẽi| �= 0 (see Lemma 3.1 below for the proof) and therefore the
following numbers

ηi :=
c̃i

ẽi
=

ẽ∗i
c̃∗i

= − lim
z→ti

Θ22(z)
Θ21(z)

(i = 1, . . . , n) (2.12)

are unimodular:
|ηi| = 1 (i = 1, . . . , n). (2.13)

Furthermore let p̃ii stand for the ith diagonal entry of the matrix P−1, the inverse
of the Pick matrix. It is self-evident that for a fixed i, any function E ∈ S0 satisfies
exactly one of the following six conditions:

C1 : The function E fails to have a nontangential boundary limit ηi at ti.

C2 : E(ti) := lim
z→ti

E(z) = ηi and dE(ti) :=
1 − |E(z)|2

1 − |z|2 = ∞. (2.14)

C3 : E(ti) = ηi and − p̃ii

|ẽi|2
< dE(ti) < ∞. (2.15)

C4 : E(ti) = ηi and 0 ≤ dE (ti) < − p̃ii

|ẽi|2
. (2.16)

C5 : E(ti) = ηi and dE(ti) = − p̃ii

|ẽi|2
> 0. (2.17)

C6 : E(ti) = ηi and dE(ti) = p̃ii = 0. (2.18)

Note that condition C1 means that either the nontangential boundary limit

E(ti) := lim
z→ti

E(z)

fails to exist or it exists and is not equal to ηi. Let us denote by C4−6 the disjunction
of conditions C4, C5 and C6:

C4−6 : E(ti) = ηi and dE(ti) ≤ − p̃ii

|ẽi|2
. (2.19)

The next theorem gives a classification of interpolation conditions that are or are
not satisfied by a function w of the form (2.10) in terms of the corresponding
parameter E .

Theorem 2.3. Let the Pick matrix P be invertible, let E be a Schur class function,
let Θ be given by (2.2), let w = TΘ[E ] and let ti be an interpolation node.

1. The nontangential boundary limits dw(ti) and w(ti) exist and are subject to

dw(ti) = γi and w(ti) = wi

if and only if the parameter E meets either condition C1 or C2.
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2. The nontangential boundary limits dw(ti) and w(ti) exist and are subject to

dw(ti) < γi and w(ti) = wi

if and only if the parameter E meets condition C3.
3. The nontangential boundary limits dw(ti) and w(ti) exist and are subject to

γi < dw(ti) < ∞ and w(ti) = wi.

if and only if the parameter E meets condition C4.
4. If E meets C5, then w is subject to one of the following:

(a) The limit w(ti) fails to exist.
(b) The limit w(ti) exists and w(ti) �= wi.
(c) w(ti) = wi and dw(ti) = ∞.

5. If E meets C6, then w is the ratio of two finite Blaschke products,

dw(ti) < ∞ and w(ti) �= wi.

We note an immediate consequence of the last theorem.

Corollary 2.4. A function w = TΘ[E ] meets the ith interpolation conditions for
Problem 1.4:

dw(ti) ≤ γi and w(ti) = wi

if and only if the corresponding parameter E ∈ S0 meets the condition C1−3 :=
C1 ∨C2 ∨ C3 at ti.

Note that Problem 1.3 was considered in [2] for rational generalized Schur
functions. It was shown ([2, Theorem 21.1.2]) that all rational solutions of Problem
1.3 are parametrized by the formula (2.10) when E varies over the set of all rational
Schur functions such that (in the current terminology)

E(ti) �= ηi for i = 1, . . . , n.

Note that if E is a rational Schur function admitting a unimodular value E(t0)
at a boundary point t0 ∈ T, then the limit dw(t0) always exists and equals
t0E ′(t0)E(t0)∗. The latter follows from the converse Carathéodory-Julia theorem
(see, e.g., [18, 20]):

dw(t0) := lim
z→t0

1 − |E(z)|2
1 − |z|2 = lim

z→t0

1 − E(z)E(t0)∗

1 − zt̄0

= lim
z→t0

E(t0) − E(z)
t0 − z

· E(t0)∗

t̄0
= t0E ′(t0)E(t0)∗ < ∞.

Thus, a Schur function E cannot satisfy condition C2 at a boundary point ti
therefore, Statement (1) in Theorem 2.3 recovers Theorem 21.1.2 in [2]. The same
conclusion can be done when E is not rational but still analytic at ti. In the case
when E is not rational and admits the nontangential boundary limit E(ti) = ηi,
the situation is more subtle: Statement (1) shows that even in this case (if the
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convergence of E(z) to E(ti) is not too fast), the function w = T[E ] may satisfy
interpolation conditions (1.15), (1.16).

The next theorem concerns the number of negative squares of the function
w = TΘ[E ].

Theorem 2.5. If the Pick matrix P is invertible and has κ negative eigenvalues,
then a Schur function E ∈ S0 may satisfy conditions C4−6 at at most κ interpola-
tion nodes. Furthermore, if E meets conditions C4−6 at exactly � (≤ κ) interpola-
tion nodes, then the function w = TΘ[E ] belongs to the class Sκ−�.

Corollary 2.4 and Theorem 2.5 imply the sufficiency part in Theorem 2.2.
Indeed, any Schur function E satisfies either conditions C4−6 or C1−3 at every
interpolation node ti (i = 1, . . . , n). Let E meet conditions C4−6 at ti1 , . . . , ti�

and
C1−3 at other n− � interpolation nodes tj1 , . . . , tjn−�

. Then, by Corollary 2.4, the
function w = TΘ[E ] satisfies interpolation conditions (1.17) for i ∈ {j1, . . . , jn−�}
and fails to satisfy at least one of these conditions at the remaining � interpolation
nodes. On the other hand, w has exactly κ − � negative squares, by Theorem 2.5.
Thus, for every E ∈ S0, the function w = TΘ[E ] solves Problem 1.6.

Note also that Theorems 2.2 and 2.5 lead to parametrizations of solution sets
for Problems 1.3 and 1.4. Indeed, by inclusions (2.1), every solution w to Problem
1.3 (or to Problem 1.4) is also of the form (2.10) for some E ∈ S0. Thus, there
is a chance to describe the solution sets S13 and S14 by appropriate selections of
the parameter E in (2.10). Theorem 2.5 indicates how these selections have to be
made.

Theorem 2.6. A function w of the form (2.10) is a solution to Problem 1.3 if and
only if the corresponding parameter E ∈ S0 satisfies either condition C1 or C2 for
every i ∈ {1, . . . , n}.

Theorem 2.7. A function w of the form (2.10) is a solution to Problem 1.4 if and
only if the corresponding parameter E ∈ S0 either fails to have a nontangential
boundary limit ηi at ti or

E(ti) = ηi and dE(ti) > − p̃ii

|ẽi|2

for every i = 1, . . . , n (in other words, E meets one of conditions C1, C2, C3 at
each interpolation node ti).

As a consequence of Theorems 2.2 and 2.7 we get curious necessary and
sufficient conditions (in terms of the interpolation data (1.12)) for Problems 1.4
and 1.6 to be equivalent (that is, to have the same solution sets).

Corollary 2.8. Problems 1.4 and 1.6 are equivalent if and only if all the diagonal
entries of the inverse P−1 of the Pick matrix are positive.
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Indeed, in this case, all the conditions in Theorem 2.7 are fulfilled for every
E ∈ S0 and every i ∈ {1, . . . , n} and formula (2.6) gives a free Schur class parameter
description of all solutions w of Problem 1.4.

In the course of the proof of Theorem 2.5 we will discuss the following related
question: given indices i1, . . . , i� ∈ {1, . . . , n}, does there exist a parameter E ∈
S0 satisfying conditions C4−6 at ti1 , . . . , ti�

? Due to Theorems 2.2 and 2.3, this
question can be posed equivalently: does there exist a solution w to Problem 1.6
that misses interpolation conditions at ti1 , . . . , ti�

(Theorem 2.5 claims that if such
a function exists, it belongs to the class Sκ−�). The question admits a simple
answer in terms of a certain submatrix of P−1 = [p̃ij ]

n
i,j=1, the inverse of the Pick

matrix.

Theorem 2.9. There exists a parameter E satisfying conditions C4−6 at ti1 , . . . , ti�

if and only if the � × � matrix

P :=
[
p̃iα,iβ

]�

α,β=1

is negative semidefinite. Moreover, if P is negative definite, then there are infinitely
many such parameters. If P is negative semidefinite (singular), then there is only
one such parameter, which is a Blaschke product of degree r = rankP.

Note that all the results announced above have their counterparts in the
context of the regular Nevanlinna-Pick problem with all the interpolation nodes
inside the unit disk [5]

The paper is organized as follows: Section 3 contains some needed auxiliary
results which can be found (probably in a different form) in many sources and are
included for the sake of completeness. In Section 4 we prove the necessity part in
Theorem 2.2 (see Remark 4.4). In Section 5 we prove Theorem 2.3. In Section 6
we present the proofs of Theorems 2.9 and 2.5 and complete the proof of Theorem
2.2 (see Remark 6.2). The proof of Theorem 2.1 is contained in Section 7; some
illustrative numerical examples are presented in Section 8.

3. Some preliminaries

In this section we present some auxiliary results needed in the sequel. We have
already mentioned the Stein identity

P − T ∗PT = E∗E − C∗C (3.1)

satisfied by the Pick matrix P constructed in (1.14) from the interpolation data.
Most of the facts recalled in this section rely on this identity rather than on the
special form (2.3) of matrices T , E and C.

Lemma 3.1. Let T , E and C be defined as in (2.3), let P defined in (1.14) be
invertible and let µ be a point on T \ {t1, . . . , tn}. Then
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1. The row vectors

Ẽ =
[
ẽ1 . . . ẽn

]
and C̃ =

[
c̃1 . . . c̃n

]
(3.2)

defined by [
C̃

Ẽ

]
=

[
C
E

]
(µI − T )−1P−1(I − µT ∗) (3.3)

satisfy the Stein identity

P−1 − TP−1T ∗ = Ẽ∗Ẽ − C̃∗C̃. (3.4)

2. The numbers c̃i and ẽi are subject to

|ẽi| = |c̃i| �= 0 for i = 1, . . . , n. (3.5)

3. The nondiagonal entries p̃ij of P−1 are given by

p̃ij =
ẽ∗i ẽj − c̃∗i c̃j

1 − ti t̄j
(i �= j). (3.6)

Proof. Under the assumption that P is invertible, identity (3.4) turns out to be
equivalent to (3.1). Indeed, by (3.3) and (3.1),

Ẽ∗Ẽ − C̃∗C̃
= (I − µ̄T )P−1(µ̄I − T ∗)−1 [E∗E − C∗C] (µI − T )−1P−1(I − µT ∗)
= (I − µ̄T )P−1(µ̄I − T ∗)−1 [P − T ∗PT ] (µI − T )−1P−1(I − µT ∗)
= (I − µ̄T )P−1

[
(I − µT ∗)−1P + PT (µI − T )−1

]
P−1(I − µT ∗)

= (I − µ̄T )P−1 + µ̄TP−1(I − µT ∗)
= P−1 − TP−1T ∗.

Let P−1 = [p̃ij ]
n
i,j=1. Due to (3.2) and (2.3), equality of the ijth entries in (3.4)

can be displayed as
p̃ij − ti t̄j p̃ij = ẽ∗i ẽj − c̃∗i c̃j (3.7)

and implies (3.6) if i �= j. Letting i = j in (3.7) and taking into account that
|ti| = 1, we get |ẽi| = |c̃i| for i = 1, . . . , n. It remains to show that ẽi and c̃i do not
vanish. To this end let us assume that

ẽi = c̃i = 0. (3.8)

Let ei be the ith column of the identity matrix In. Multiplying (3.4) by ei on the
right we get

P−1ei − TP−1T ∗ei = Ẽ∗ẽi − C̃∗c̃i = 0

or equivalently, since T ∗ei = t̄iei,

(I − t̄iT )P−1ei = 0.
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Since the points t1, . . . , tn are distinct, all the diagonal entries but the ith in the
diagonal matrix I − t̄iT are not zeroes; therefore, it follows from the last equality
that all the entries in the vector P−1ei but the ith entry are zeroes. Thus,

P−1ei = αei (3.9)

for some α ∈ C and, since P is not singular, it follows that α �= 0. Now we compare
the ith columns in the equality (3.3) (i.e., we multiply both parts in (3.3) by ei

on the right). For the left-hand side we have, due to assumption (3.8),[
C̃

Ẽ

]
ei =

[
c̃i

ẽi

]
=

[
0
0

]
.

For the right-hand side, we have, due to (3.9) and (2.3),[
C
E

]
(µI − T )−1P−1(I − µT ∗)ei = α

1 − µti
µ − ti

[
C
E

]
ei = −αti

[
wi

1

]
.

By (3.3), the right-hand side expressions in the two last equalities must be the
same, which is not the case. The obtained contradiction completes the proof of
(3.5). �

Remark 3.2. The numbers ẽi and c̃i introduced in (3.2), (3.3) coincide with those
in (2.11).

For the proof we first note that the formula (2.2) for Θ can be written, on
account of (3.3), as

Θ(z) = I2 + (z − µ)
[

C
E

]
(zIn − T )−1(µIn − T )−1

[
C̃∗ −Ẽ∗

]
(3.10)

and then, since

lim
z→ti

(z − ti)(zI − T )−1 = eie∗i and e∗i (µI − T )−1 = (µ − ti)−1e∗i

(recall that ei is the ith column of the identity matrix In), we have

lim
z→ti

(z − ti)Θ(z) = lim
z→ti

(z − µ)
[

C
E

]
eie∗i (µI − T )−1

[
C̃∗ −Ẽ∗

]
= −

[
C
E

]
eie∗i

[
C̃∗ −Ẽ∗

]
= −

[
wi

1

] [
c̃∗i −ẽ∗i

]
. (3.11)

Comparing the bottom entries in the latter equality we get (2.11). �

In the rest of the section we recall some needed results concerning the function
Θ introduced in (2.2). These results are well known in a more general situation
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when T , C and E are matrices such that the pair (
[
C
E

]
, T ) is observable:

⋂
j≥0

Ker
[
C
E

]
T j = {0}, (3.12)

and P is an invertible Hermitian matrix satisfying the Stein identity (3.1) (see,
e.g., [2]). Note that the matrices defined in (2.3) satisfy a stronger condition:⋂

j≥0

KerCT j =
⋂
j≥0

KerET j = {0}. (3.13)

Remark 3.3. Under the above assumptions, the function Θ defined via formula
(2.2) belongs to the class Wκ with κ = sq−P .

Proof. The desired membership follows from the formula

KΘ,J(z, ζ) =
[

C
E

]
(zI − T )−1P−1(ζ̄I − T ∗)−1

[
C∗ E∗ ]

(3.14)

for the kernel KΘ,J defined in (2.7). The calculation is straightforward and relies
on the Stein identity (3.1) only (see, e.g., [2]). It follows from (3.14) that Θ is
J-unitary on T (that is, satisfies condition (2.6)) and that

sq−KΘ,J ≤ sq−P = κ.

Condition (3.12) guarantees that in fact sq−KΘ,J = κ (see [2]). �

Remark 3.4. Since Θ is J-unitary on T it holds, by the symmetry principle, that
Θ(z)−1 = JΘ(1/z̄)∗J , which together with formula (2.2) leads us to

Θ(z)−1 = I2 − (z − µ)
[

C
E

]
(µI − T )−1P−1(I − zT ∗)−1

[
C∗ −E∗] . (3.15)

Besides (3.14) we will need realization formulas for two related kernels. Veri-
fication of these formulas (3.16) and (3.17) is also straightforward and is based on
the Stein identities (3.1) and (3.4), respectively.

Remark 3.5. Let Θ be defined as in (2.2). The following identities hold for every
choice of z, ζ �∈ {t1, . . . , tn}:

Θ(ζ)−∗JΘ(z)−1 − J

1 − zζ̄
=

[
C

−E

]
(I − ζ̄T )−1P−1(I − zT ∗)−1

[
C∗ −E∗] ,

(3.16)

J − Θ(ζ)∗JΘ(z)
1 − zζ̄

=

[
C̃

−Ẽ

]
(ζ̄I − T ∗)−1P (zI − T )−1

[
C̃∗ −Ẽ∗

]
.

(3.17)
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Let us consider conformal partitioning

P =
[
P11 P12

P21 P22

]
, P−1 =

[
P̃11 P̃12

P̃21 P̃22

]
, T =

[
T1 0
0 T2

]
, (3.18)

E =
[
E1 E2

]
, C =

[
C1 C2

]
, Ẽ =

[
Ẽ1 Ẽ2

]
, C̃ =

[
C̃1 C̃2

]
(3.19)

where P22, P̃22, T2 ∈ C�×� and E2, C2, Ẽ2, C̃2 ∈ C1×�. Note that these decompo-
sitions contain one restrictive assumption: it is assumed that the matrix T is block
diagonal.

Lemma 3.6. Let us assume that P11 is invertible and let sq−P11 = κ1 ≤ κ. Then
P̃22 is invertible, sq−P̃22 = κ − κ1 and the functions

Θ(1)(z) = I2 + (z − µ)
[

C1

E1

]
(zI − T1)−1P−1

11 (I − µT ∗
1 )−1

[
C∗

1 −E∗
1

]
(3.20)

and

Θ̃(2)(z) = I2 + (z − µ)

[
C̃2

Ẽ2

]
(I − µT ∗

2 )−1P̃−1
22 (zI − T2)−1

[
C̃∗

2 −Ẽ∗
2

]
(3.21)

belong to Wκ1 and Wκ−κ1 , respectively. Furthermore, the function Θ defined in
(2.2) admits a factorization

Θ(z) = Θ(1)(z)Θ̃(2)(z). (3.22)

Proof. The first statement follows by standard Schur complement arguments: since
P and P11 are invertible, the matrix P22−P21P

−1
11 P12 (the Schur complement of P11

in P ) is invertible and has κ−κ1 negative eigenvalues. Since the block P̃22 in P−1

equals (P22 − P21P
−1
11 P12)−1, it also has κ − κ1 negative eigenvalues. Realization

formulas

KΘ(1),J(z, ζ) = R(z)P−1
11 R(ζ)∗ and KΘ̃(2),J(z, ζ) = R̃(z)P̃22R̃(ζ)∗, (3.23)

where we have set for short

R(z) =
[

C1

E1

]
(zI − T1)−1, R̃(z) =

[
C̃2

Ẽ2

]
(I − µT ∗

2 )−1P̃−1
22 (zI − T2)−1,

are established exactly as in Remark 3.3 and rely on the Stein identities

P11 − T ∗
1 P11T1 = E∗

1E1 − C∗
1C1 and P̃−1

22 − T2P̃22T
∗
2 = Ẽ∗

2 Ẽ2 − C̃∗
2 C̃2 (3.24)

which hold true, being parts of identities (3.1) and (3.4). Formulas (3.23) guarantee
that the rational functions Θ(1) and Θ̃(2) are J-unitary on T and moreover, that

sq−KΘ(1),J ≤ sq−P11 = κ1 and sq−KΘ̃(2),J ≤ sq−P̃22 = κ − κ1. (3.25)

Assuming that the factorization formula (3.22) is already proved, we have

KΘ,J(z, ζ) = KΘ(1),J(z, ζ) + Θ(1)(z)KΘ̃(2),J(z, ζ)Θ(1)(ζ)∗
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and thus,
κ = sq−KΘ,J ≤ sq−KΘ(1),J + sq−KΘ̃(2),J

which together with inequalities (3.25) imply

sq−KΘ(1),J = κ1 and sq−KΘ̃(2),J = κ − κ1.

It remains to prove (3.22). Making use of the well-known equality

P−1 =
[

P−1
11 0
0 0

]
+

[
−P−1

11 P12

1

]
P̃22

[
−P21P

−1
11 1

]
(3.26)

we conclude from (3.3) that[
C̃2

Ẽ2

]
=

[
C
E

]
(µIn − T )−1P−1(In − µT ∗)

[
0
I�

]
=

[
C
E

]
(µIn − T )−1

[
−P−1

11 P12

1

]
P̃22(I� − µT ∗

2 ). (3.27)

This last relation allows us to rewrite (3.21) as

Θ̃(2)(z) = I2 +(z−µ)
[

C
E

]
(µI −T )−1

[
−P−1

11 P12

1

]
(zI−T2)−1

[
C̃∗

2 −Ẽ∗
2

]
.

(3.28)
Now we substitute (3.26) into the formula (2.2) defining Θ and take into account
(3.20) and (3.27) to get

Θ(z) = Θ(1)(z) + (z − µ)
[

C
E

]
(zIn − T )−1

[
−P−1

11 P12

1

]
P̃22

×
[
−P21P

−1
11 1

]
(In − µT ∗)−1

[
C∗ −E∗ ]

= Θ(1)(z) + (z − µ)
[

C
E

]
(zIn − T )−1

[
−P−1

11 P12

1

]
×(µI − T2)−1

[
C̃∗

2 −Ẽ∗
2

]
.

Thus, (3.22) is equivalent to

Θ̃(2)(z) = I2 + (z − µ)Θ(1)(z)−1

[
C
E

]
(zIn − T )−1

[
−P−1

11 P12

1

]
×(µI − T2)−1

[
C̃∗

2 −Ẽ∗
2

]
.

Comparing the last relation with (3.28) we conclude that to complete the proof it
suffices to show that

Θ(1)(z)−1

[
C
E

]
(zIn − T )−1

[
−P−1

11 P12

1

]
(µI − T2)−1

=
[

C
E

]
(µI − T )−1

[
−P−1

11 P12

1

]
(zI − T2)−1. (3.29)
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The explicit formula for Θ(1)(z)−1 can be obtained similarly to (3.15):

Θ(1)(z)−1 = I2 − (z −µ)
[

C1

E1

]
(µI −T1)−1P−1

11 (I − zT ∗
1 )−1

[
C∗

1 −E∗
1

]
. (3.30)

Next, comparing the top block entries in the Stein identity (3.1) we get, due to
decompositions (3.18) and (3.19),[

P11 P12

]
− T ∗

1

[
P11 P12

]
T = E∗

1E − C∗
1C

which, being multiplied by (I − zT ∗
1 )−1 on the left and by (zI −T )−1 on the right,

leads us to

(I − zT ∗
1 )−1 (E∗

1E − C∗
1C) (zI − T )−1

= (I − zT ∗
1 )−1T ∗

1

[
P11 P12

]
+

[
P11 P12

]
(zI − T )−1. (3.31)

Upon making use of (3.29) and (3.31) we have

Θ(1)(z)−1

[
C
E

]
(zIn − T )−1

[
−P−1

11 P12

1

]
=

[
C
E

]
(zI − T )−1

[
−P−1

11 P12

1

]
+(z − µ)

[
C1

E1

]
(µI − T1)−1

[
I P−1

11 P12

]
(zI − T )−1

[
−P−1

11 P12

1

]
= −

[
C1

E1

]
(zI − T1)−1P−1

11 P12 +
[

C2

E2

]
(zI − T2)−1

+(z − µ)
[

C1

E1

]
(µI − T1)−1

(
P−1

11 P12(zI − T2)−1 − (zI − T1)−1P−1
11 P12

)
= −

[
C1

E1

]
(µI − T1)−1P−1

11 P12(µI − T2) +
[

C2

E2

]
(zI − T2)−1

=
[

C
E

]
(µI − T )−1

[
−P−1

11 P12

1

]
(zI − T2)−1

which proves (3.29) and therefore, completes the proof of the lemma. �

Remark 3.7. The case when � = 1 in Lemma 3.6 will be of special interest. In this
case,

P22 = γn, P̃22 = p̃nn, T2 = tn, C2 = wn, E2 = 1, C̃2 = c̃n, Ẽ2 = ẽn.

Then the formula (3.21) for Θ̃(2) simplifies to

Θ̃(2)(z) = I2 +
z − µ

(1 − µt̄n)(z − tn)

[
c̃n

ẽn

]
p̃−1

nn

[
c̃∗n −ẽ∗n

]
. (3.32)
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4. Fundamental Matrix Inequality

In this section we characterize the solution set S16 of Problem 1.6 in terms of
certain Hermitian kernel. We start with some simple observations.

Proposition 4.1. Let K(z, ζ) be a Hermitian kernel defined on Ω ⊆ C and with
sq−K = κ. Then

1. For every choice of an integer p, of a Hermitian p × p matrix A and of a
p × 1 vector-valued function B,

sq−

[
A B(z)

B(ζ)∗ K(z, ζ)

]
≤ κ + p.

2. If λ1, . . . , λp are points in Ω and if

A = [K(λj , λi)]
p
i,j=1 and B(z) =

⎡⎢⎣K(z, λ1)
...

K(z, λp)

⎤⎥⎦ , (4.1)

then

sq−

[
A B(z)

B(ζ)∗ K(z, ζ)

]
= κ. (4.2)

Proof. For the proof of the first statement we have to show that for every integer
m and every choice of points z1, . . . , zm ∈ Ω, the block matrix

M =
[[

A B(zj)
B(zi)∗ K(zj, zi)

]]m

i,j=1

(4.3)

has at most κ + p negative eigenvalues. It is easily seen that M contains m block
identical rows of the form[

A B(z1) A B(z2) . . . A B(zn)
]
.

Deleting all these rows but one and deleting also the corresponding columns, we
come up with the (m + p) × (m + p) matrix

M̃ =

⎡⎢⎢⎢⎣
A B(z1) . . . B(zm)

B(z1)∗ K(z1, z1) . . . K(z1, zm)
...

...
...

B(zm)∗ K(zm, z1) . . . K(zm, zm)

⎤⎥⎥⎥⎦
having the same number of positive and negative eigenvalues as M . The bottom
m×m principal submatrix of M̃ has at most κ negative eigenvalues since sq−K =
κ. Since M̃ is Hermitian, we have by the Cauchy’s interlacing theorem (see, e.g.,
[4, p. 59]), that sq−M̃ ≤ κ + p. Thus, sq−M ≤ κ + p which completes the proof of
Statement 1.

If A and B are of the form (4.1), then the matrix M in (4.3) is of the form
[K(ζj , ζi)]

m+pm
i,j=1 where all the points ζi live in Ω. Since sq−K = κ, it follows

that sq−M ≤ κ for every choice of z1, . . . , zm in Ω which means that the kernel
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A B(z)

B(ζ)∗ K(z, ζ)

]
has at most κ negative squares on Ω. But it has at least κ

negative squares since it contains the kernel K(z, ζ) as a principal block. Thus,
(4.2) follows. �
Theorem 4.2. Let P , T , E and C be defined as in (1.14) and (2.3), let w be a
function meromorphic on D and let the kernel Kw be defined as in (1.1). Then w
is a solution of Problem 1.6 if and only if the kernel

Kw(z, ζ) :=
[

P (I − zT ∗)−1(E∗ − C∗w(z))
(E − w(ζ)∗C)(I − ζ̄T )−1 Kw(z, ζ)

]
(4.4)

has κ negative squares on D ∩ ρ(w):

sq−Kw(z, ζ) = κ. (4.5)

Proof of the necessity part. Let w be a solution of Problem 1.6, i.e., let w belong
to the class Sκ′ for some κ′ ≤ κ and satisfy conditions (1.17) at all but κ − κ′

interpolation nodes.
First we consider the case when w ∈ Sκ. Then w satisfies all the conditions

(1.17) (i.e., w is also a solution to Problem 1.4). Furthermore, sq−Kw = κ and by
the second statement in Proposition 4.1, the kernel

K(1)(z, ζ) :=

⎡⎢⎢⎢⎣
Kw(z1, z1) . . . Kw(zn, z1) Kw(z, z1)

...
...

...
Kw(z1, zn) . . . Kw(zn, zn) Kw(z, zn)
Kw(z1, ζ) . . . Kw(zn, ζ) Kw(z, ζ)

⎤⎥⎥⎥⎦ (4.6)

has κ negative squares on D∩ρ(w) for every choice of points z1, . . . , zn ∈ D∩ρ(w).
Since the limits dw(ti) and w(ti) = wi exist for i = 1, . . . , n, it follows that

[Kw(zj , zi)]
n
i,j=1 =

[
1 − w(zi)∗w(zj)

1 − z̄izj

]n

i,j=1

−→ Pw(t1, . . . , tn) (4.7)

(by definition (1.18) of the matrix Pw(t1, . . . , tn)) and also

Kw(zi, ζ) =
1 − w(ζ)∗w(zi)

1 − ζ̄zi
−→ 1 − w(ζ)∗wi

1 − ζ̄ti
(i = 1, . . . , n).

Note that by the structure (2.3) of the matrices T , E and C,

(E − w(ζ)∗C)(I − ζ̄T )−1 =
[
1 − w(ζ)∗w1

1 − ζ̄t1
. . .

1 − w(ζ)∗wn

1 − ζ̄tn

]
which, being combined with the previous relation, gives[

Kw(z1, ζ) . . . Kw(zn, ζ)
]
−→ (E − w(ζ)∗C)(I − ζ̄T )−1. (4.8)

Now we take the limit in (4.6) as zi → ti for i = 1, . . . , n; on account of (4.7) and
(4.8), the limit kernel has the form

K(2)(z, ζ) :=
[

Pw(t1, . . . , tn) (I − zT ∗)−1(E∗ − C∗w(z))
(E − w(ζ)∗C)(I − ζ̄T )−1 Kw(z, ζ)

]
.
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Since K(2) is the limit of a family of kernels each of which has κ negative squares,
sq−K(2) ≤ κ. It remains to note that the kernel Kw defined in (4.4) is expressed
in terms of K(2) as

Kw(z, ζ) = K(2)(z, ζ) +
[
P − Pw(t1, . . . , tn) 0

0 0

]
and since the second term on the right-hand side is positive semidefinite (due to
the first series of conditions in (1.17); see also (1.20)),

sq−Kw ≤ sq−K(2) ≤ κ.

On the other hand, since Kw contains the kernel Kw as a principal submatrix,
sq−Kw ≥ sq−Kw = κ which eventually leads us to (4.5). Note that in this part of
the proof we have not used the fact that sq−P = κ.

Now we turn to the general case: let w ∈ Sκ′ for some κ′ ≤ κ and let
conditions (1.17) be fulfilled at all but � := κ − κ′ interpolation nodes ti’s. We
may assume without loss of generality that conditions (1.17) are satisfied at ti for
i = 1, . . . , n − �:

dw(ti) ≤ γi and w(ti) = wi (i = 1, . . . , n − �). (4.9)

Let us consider conformal partitioning (3.18), (3.19) for matrices P , T , C and E
and let us set for short

Fi(z) = (I − zT ∗
i )−1 (E∗

i − C∗
i w(z)) (i = 1, 2) (4.10)

so that [
F1(z)
F2(z)

]
= (I − zT ∗)−1 (E∗ − C∗w(z)) . (4.11)

The matrix P11 is the Pick matrix of the truncated interpolation problem with the
data ti, wi, γi (i = 1, . . . , n − �) and with interpolation conditions (4.9). By the
first part of the proof, the kernel

K̃w(z, ζ) :=
[

P11 F1(z)
F1(ζ)∗ Kw(z, ζ)

]
(4.12)

has κ′ negative squares on D ∩ ρ(w). Now we apply the first statement in Propo-
sition 4.1 to

K(z, ζ) = K̃w(z, ζ), B(z) =
[
P21 F2(z)

]
and A = P22 (4.13)

to conclude that

sq−

[
P22 B(z)

B(ζ)∗ K̃w(z, ζ)

]
≤ sq−K̃w + � = κ′ + (κ − κ′) = κ. (4.14)

By (4.13) and (4.12), the latter kernel equals[
P22 B(z)

B(ζ)∗ K̃w(z, ζ)

]
=

⎡⎣ P22 P21 F2(z)
P12 P11 F1(z)

F2(ζ)∗ F1(ζ)∗ Kw(z, ζ)

⎤⎦ .
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Now it follows from (4.4) and (4.12) that

Kw(z, ζ) = U

[
P22 B(z)

B(ζ)∗ K̃w(z, ζ)

]
U∗, where U =

⎡⎣ 0 In−� 0
I� 0 0
0 0 1

⎤⎦
which, on account of (4.14), implies that sq−Kw ≤ κ. Finally, since Kw contains
P as a principal submatrix, sq−Kw ≥ sq−P = κ which now implies (4.5) and com-
pletes the proof of the necessity part of the theorem. The proof of the sufficiency
part will be given in Sections 6 and 7 (see Remarks 6.3 and 7.3 there). �

In the case when P is invertible, all the functions satisfying (4.5) can be
described in terms of a linear fractional transformation.

Theorem 4.3. Let the Pick matrix P be invertible and let Θ = [Θij ] be the 2 × 2
matrix-valued function defined in (2.2). A function w meromorphic on D is subject
to FMI (4.5) if and only if it is of the form

w(z) = TΘ[E ] :=
Θ11(z)E(z) + Θ12(z)
Θ21(z)E(z) + Θ22(z)

(4.15)

for some Schur function E ∈ S0.

Proof. The proof is about the same as in the definite case. Let S be the Schur
complement of P in the kernel Kw defined in (4.4):

S(z, ζ) := Kw(z, ζ) − (E − w(ζ)∗C)(I − ζ̄T )−1P−1(I − zT ∗)−1(E∗ − C∗w(z)).

Obvious equalities

Kw(z, ζ) :=
1 − w(ζ)∗w(z)

1 − ζ̄z
= −

[
w(ζ)∗ 1

]
J

[
w(z)

1

]
where J is the matrix introduced in (2.5), and

E − w(ζ)∗C = −
[
w(ζ)∗ 1

]
J

[
C

−E

]
allows us to represent S in the form

S(z, ζ) = −
[
w(ζ)∗ 1

]{ J

1 − zζ̄
+

[
C

−E

]
(I − ζ̄T )−1P−1

× (I − zT ∗)−1
[

C∗ −E∗ ]} [
w(z)

1

]
or, on account of identity (3.16), as

S(z, ζ) = −
[
w(ζ)∗ 1

] Θ(ζ)−∗JΘ(z)−1

1 − zζ̄

[
w(z)

1

]
.

By the standard Schur complement argument,

sq−Kw = sq−P + sq−S
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which implies, since sq−P = κ, that (4.5) holds if and only if the kernel S is
positive definite on ρ(w) ∩ D:

−
[
w(ζ)∗ 1

] Θ(ζ)−∗JΘ(z)−1

1 − zζ̄

[
w(z)

1

]
� 0. (4.16)

It remains to show that (4.16) holds if and only if w is of the form (4.15). To show
the “only if” part, let us consider meromorphic functions u and v defined by[

u(z)
v(z)

]
:= Θ(z)−1

[
w(z)

1

]
. (4.17)

Then inequality (4.16) can be written in terms of these functions as

−
[
u(ζ)∗ v(ζ)∗

] J

1 − ζ̄z

[
u(z)
v(z)

]
=

v(ζ)∗v(z) − u(ζ)∗u(z)
1 − ζ̄z

� 0. (4.18)

As it follows from definition (4.17), u and v are analytic on ρ(w) ∩ D. Moreover,

v(z) �= 0 for every z ∈ ρ(w) ∩ D. (4.19)

Indeed, assuming that v(ξ) = 0 at some point ξ ∈ D, we conclude from (4.18) that
u(ξ) = 0 and then (4.17) implies that det Θ(ξ)−1 = 0 which is a contradiction.
Due to (4.19), we can introduce the meromorphic function

E(z) =
u(z)
v(z)

(4.20)

which is analytic on ρ(w) ∩ D. Writing (4.18) in terms of E as

v(ζ)∗ · 1 − E(ζ)∗E(z)
1 − ζ̄z

· v(z) � 0 (z, ζ ∈ ρ(w) ∩ D),

we then take advantage of (4.19) to conclude that

1 − E(ζ)∗E(z)
1 − ζ̄z

� 0 (z, ζ ∈ ρ(w) ∩ D).

The latter means that E is (after an analytic continuation to the all of D) a Schur
function. Finally, it follows from (4.17) that[

w
1

]
= Θ

[
u
v

]
=

[
Θ11u + Θ12v
Θ21u + Θ22v

]
which in turn implies

w =
Θ11u + Θ12v

Θ21u + Θ22v
=

Θ11E + Θ12

Θ21E + Θ22
= TΘ[E ].

Now let E be a Schur function. Then the function

V (z) = Θ21(z)E(z) + Θ22(z)
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does not vanish identically. Indeed, since Θ is rational and Θ(µ) = I2, it follows
that Θ22(z) ≈ 1 and Θ21(z) ≈ 0 if z is close enough to µ. Since |E(z)| ≤ 1 every-
where in D, the function V does not vanish on Uδ = {z ∈ D : |z − µ| < δ} if δ is
small enough. Thus, formula (4.15) makes sense and can be written equivalently as[

w(z)
1

]
= Θ(z)

[
E(z)

1

]
· 1
V (z)

Then it is readily seen that

1 − E(ζ)∗E(z)
1 − ζ̄z

= −
[
E(ζ)∗ 1

] J

1 − ζ̄z

[
E(z)

1

]
= − 1

V (ζ)∗V (z)
·
[
w(ζ)∗ 1

] Θ(ζ)−∗JΘ(z)−1

1 − zζ̄

[
w(z)

1

]
for z, ζ ∈ ρ(w) ∩ D. Since E is a Schur function, the latter kernel is positive on
ρ(w) ∩ D and since V �≡ 0, (4.16) follows. �

Remark 4.4. Combining Theorems 4.2 and 4.3 we get the necessity part in Theorem
2.2.

Indeed, by the necessity part in Theorem 4.2, any solution w of Problem 1.6
satisfies (4.5); then by Theorem 4.3, w = TΘ[E ] for some E ∈ S0.

In the case when κ = 0, Theorem 4.2 was established in [12].

Theorem 4.5. Let the Pick matrix P be positive semidefinite. Then a function w
defined on D is a solution to Problem 1.1 (i.e., belongs to the Schur class S0 and
meets conditions (1.6)) if and only if

Kw(z, ζ) � 0 (z, w ∈ D) (4.21)

where Kw(z, ζ) is the kernel defined in (4.4).

Under the a priori assumption that w is a Schur function, condition (4.21)
can be replaced by a seemingly weaker matrix inequality

Kw(z, z) ≥ 0 for every z ∈ D

which is known in interpolation theory as a Fundamental Matrix Inequality (FMI)
of V.P. Potapov. We will follow this terminology and will consider relation (4.5)
as an indefinite analogue of V.P. Potapov’s FMI. It is appropriate to note that a
variation of the Potapov’s method was first applied to the Nevanlinna-Pick problem
(with finitely many interpolation nodes inside the unit disk) for generalized Schur
functions in [10]. We conclude this section with another theorem concerning the
classical case which will be useful for the subsequent analysis.

Theorem 4.6.
(1) If the Pick matrix P is positive definite then all the solutions w to Problem 1.1

are parametrized by the formula (2.10) with the coefficient matrix Θ defined
as in (2.2) with E being a free Schur class parameter.
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(2) If P is positive semidefinite and singular, then Problem 1.1 has a unique
solution w which is a Blaschke product of degree r = rankP . Furthermore,
this unique solution can be represented as

w(z) =
x∗(I − zT ∗

2 )−1E∗

x∗(I − zT ∗
2 )−1C∗ (4.22)

where T , C and E are defined as in (2.3) and where x is any nonzero vector
such that Px = 0.

These results are well known and have been established using different meth-
ods in [1, 12, 3, 2, 11]. In regard to methods used in the present paper, note that
the first statement follows immediately from Theorems 4.5 and 4.3. This demon-
strates how the Potapov’s method works in the definite case (and this is exactly
how the result was established in [12]). The second statement also can be derived
from Theorem 4.5: if w solves Problem 1.1, then the kernel Kw(z, ζ) defined in

(4.4) is positive definite. Multiplying it by the vector
[
x
1

]
on the right and by its

adjoint on the left we come to the positive definite kernel[
x∗Px x∗(I − zT ∗)−1(E∗ − C∗w(z))

(E − w(ζ)∗C)(I − ζ̄T )−1x Kw(z, ζ)

]
� 0.

Thus, for every x �= 0 such that Px = 0, we also have

x∗(I − zT ∗)−1(E∗ − C∗w(z)) ≡ 0.

Solving the latter identity for w we arrive at formula (4.22). The numerator and
the denominator in (4.22) do not vanish identically due to conditions (3.13). Since
x can be chosen so that n − rankP − 1 its coordinates are zeros, the rational
function w is of McMillan degree r = rankP . Due to the Stein identity (3.1), w is
inner and therefore, it is a finite Blachke product of degree r.

5. Parameters and interpolation conditions

In this section we prove Theorem 2.3. It will be done in several steps formulated
as separate theorems. In what follows, UE and VE will stand for the functions

UE(z) = Θ11(z)E(z) + Θ12(z), VE(z) = Θ21(z)E(z) + Θ22(z) (5.1)

for a fixed Schur function E , so that[
UE(z)
VE (z)

]
= Θ(z)

[
E(z)

1

]
(5.2)

and (2.10) takes the form

w(z) := TΘ[E ] =
UE(z)
VE(z)

. (5.3)
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Substituting (3.10) into (5.2) and setting

Ψ(z) = (zI − T )−1
(
Ẽ∗ − C̃∗E(z)

)
(5.4)

for short, we get

UE(z) = E(z) − (z − µ)C(µI − T )−1Ψ(z), (5.5)
VE (z) = 1 − (z − µ)E(µI − T )−1Ψ(z). (5.6)

Furthermore, for w of the form (5.3), we have

1 − w(ζ)∗w(z)
1 − ζ̄z

=
1

VE (ζ)∗VE(z)
· VE(ζ)∗VE (z) − UE(ζ)∗UE(z)

1 − ζz
. (5.7)

Note that

VE (ζ)∗VE(z) − UE(ζ)∗UE(z) = −
[

UE(ζ)∗ VE (ζ)∗
]
J

[
UE(z)
VE (z)

]
=

[
E(ζ)∗ 1

]
Θ(ζ)∗JΘ(z)

[
E(z)

1

]
= 1 − E(ζ)∗E(z) + (1 − ζ̄z)Ψ(ζ)∗PΨ(z),

where the second equality follows from (5.2), and the third equality is a conse-
quence of (3.17) and definition (5.4) of Ψ. Now (5.7) takes the form

1 − w(ζ)∗w(z)
1 − ζ̄z

=
1

VE (ζ)∗VE(z)

(
1 − E(ζ)∗E(z)

1 − ζ̄z
+ Ψ(ζ)∗PΨ(z)

)
. (5.8)

Remark 5.1. Equality (5.8) implies that for every E ∈ S0 and Θ ∈ Wκ, the function
w = TΘ[E ] belongs to the generalized Schur class Sκ′ for some κ′ ≤ κ.

Indeed, it follows from (5.8) that sq−Kw ≤ sq−KE + sq−P = 0 + κ.

Upon evaluating (5.8) at ζ = z we get

1 − |w(z)|2
1 − |z|2 =

1
|VE(z)|2

(
1 − |E(z)|2

1 − |z|2 + Ψ(z)∗PΨ(z)
)

(5.9)

and realize that boundary values of w(ti) and dw(ti) can be calculated from as-
ymptotic formulas for Ψ, UE , VE and E as z tends to one of the interpolation nodes
ti. These asymptotic relations are presented in the next lemma.

Lemma 5.2. Let E be a Schur function, let Ψ, UE and VE be defined as in (5.4),
(5.5) and (5.6), respectively , and let ti be an interpolation node. Then the following
asymptotic relations hold as z tends to ti nontangentially:

(z − ti)Ψ(z) = ei (ẽ∗i − c̃∗i E(z)) + O(|z − ti|), (5.10)
(z − ti)UE(z) = wi (ẽ∗i − c̃∗i E(z)) + O(|z − ti|), (5.11)
(z − ti)VE(z) = (ẽ∗i − c̃∗i E(z)) + O(|z − ti|). (5.12)
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Proof. Recall that ei be the ith column in the identity matrix In. Since

(z − ti)(zI − T )−1 = eie∗i + O(|z − ti|) as z → ti,

and since E(z) is uniformly bounded on D, we have by (5.4),

(z − ti)Ψ(z) = (z − ti)(zI − T )−1
(
Ẽ∗ − C̃∗E(z)

)
= eie∗i

(
Ẽ∗ − C̃∗E(z)

)
+ O(|z − ti|)

which proves (5.10), since e∗i C̃
∗ = c̃∗i and e∗i Ẽ

∗ = ẽ∗i by (3.2).
Now we plug in the asymptotic relation (5.10) into the formulas (5.5) and

(5.10) for UE and VE and make use of evident equalities

C(µI − T )−1ei =
wi

µ − ti
and E(µI − T )−1ei =

1
µ − ti

(5.13)

to get (5.11) and (5.12):

(z − ti)UE(z) = (z − ti)E(z) − (z − ti)(z − µ)C(µI − T )−1Ψ(z)
= (µ − z)C(µI − T )−1ei (ẽ∗i − c̃∗i E(z)) + O(|z − ti|)

=
µ − z

µ − ti
wi (ẽ∗i − c̃∗i E(z)) + O(|z − ti|)

= wi (ẽ∗i − c̃∗i E(z)) + O(|z − ti|),
(z − ti)VE(z) = (z − ti) − (z − ti)(z − µ)E(µI − T )−1Ψ(z)

= (µ − z)E(µI − T )−1ei (ẽ∗i − c̃∗i E(z)) + O(|z − ti|)
= (ẽ∗i − c̃∗i E(z)) + O(|z − ti|).

Lemma 5.3. Let w ∈ Sκ, let t0 ∈ T, and let us assume that the limit

d := lim
j→∞

1 − |w(rj t0)|2
1 − r2

j

< ∞ (5.14)

exists and is finite for some sequence of numbers rj ∈ (0, 1) such that limj→∞ rj =
1. Then the nontangential limits dw(t0) and w(t0) (defined as in (1.3) and (1.4))
exist and moreover

dw(t0) = d and |w(t0)| = 1. (5.15)

Proof. Since w is a generalized Schur function, it admits the Krein-Langer repre-
sentation (1.9) and identity (1.11) holds at every point z ∈ D. In particular,

1 − |w(rjt0)|2
1 − r2

j

=
1

|B(rjt0)|2

(
1 − |S(rjt0)|2

1 − r2
j

− 1 − |B(rjt0)|2
1 − r2

j

)
. (5.16)

Since B is a finite Blaschke product, it is analytic at t0 and the limit dB(t0) :=

lim
z→t0

1 − |B(z)|2
1 − |z|2 exists and is finite. Assumption (5.14) implies therefore that the

limit

lim
j→∞

1 − |S(rjt0)|2
1 − r2

j

= d + dB(t0)
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exists and is finite. Since S ∈ S0, we then conclude by the Carathéodory-Julia
theorem (see, e.g., [17, 18, 20]) that the nontangential limits dS(t0) and S(t0)
exist and moreover,

dS(t0) = d + dB(t0) and |S(t0)| = 1. (5.17)

Now we pass to limits in (1.9) and (1.11) as z tends to t0 nontangentially to get

w(t0) := lim
z→t0

w(z) =
S(t0)
B(t0)

and dw(t0) := lim
z→t0

1 − |w(z)|2
1 − |z|2 = dS(t0) − dB(t0)

and relations (5.17) imply now (5.15) and complete the proof. �
Theorem 5.4. If E ∈ S0 meets condition C1 at ti (i.e., the nontangential boundary

limit lim
z→ti

E(z) is not equal to ηi =
ẽ∗i
c̃∗i

or fails to exist), then the function w =

TΘ[E ] is subject to

lim
z→ti

w(z) = wi and lim
z→ti

1 − |w(z)|2
1 − |z|2 = γi. (5.18)

Proof. By the assumption of the theorem, there exists ε > 0 and a sequence of
points {rαti}∞α=1 tending to ti radially (0 < rα < 1 and rα → 1) such that

|ẽ∗i − c̃∗i E(rαti)| ≥ ε for every α. (5.19)

Since e∗i Pei = γi by the definition (1.14) of P , it follows from (5.10) that

|z − ti|2Ψ(z)∗PΨ(z) = |ẽ∗i − c̃∗i E(z)|2γi + O(|z − ti|).
Furthermore, relation

|z − ti|2 · |VE(z)|2 = |ẽ∗i − c̃∗i E(z)|2 + O(|z − ti|)
is a consequence of (5.12) and, since E is uniformly bounded on D, it is clear that

lim
z→ti

|z − ti|2 ·
1 − |E(z)|2

1 − |z|2 = 0.

Now we substitute the three last relations into (5.9) and let z = rαti → ti; due to
(5.19) we have

lim
z=rαti→ti

1 − |w(z)|2
1 − |z|2 = lim

z=rαti→ti

|z − ti|2 ·
1 − |E(z)|2

1 − |z|2 + |z − ti|2Ψ(z)∗PΨ(z)

|z − ti|2 · |VE (z)|2

=
0 + γi

1
= γi.

Since w is a generalized Schur function (by Remark 5.1), we can apply Lemma 5.3
to conclude that the nontangential limit dw(ti) exists and equals γi. This proves
the second relation in (5.18). Furthermore, by (5.11) and (5.12) and in view of
(5.19),

lim
z=rαti→ti

w(z) = lim
z→ti

(z − ti)UE(z)
(z − ti)VE (z)

= wi. (5.20)
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Again by Lemma 5.3, the nontangential limit w(ti) exists; therefore, it is equal to
the subsequential limit (5.20), that is, to wi. This proves the first relation in (5.18)
and completes the proof of the theorem. �

The next step will be to handle condition C2 (see (2.14)). We need an aux-
iliary result.

Lemma 5.5. Let t0 ∈ T and let E be a Schur function such that

lim
z→t0

E(z) = E0 (|E0| = 1) and lim
z→t0

1 − |E(z)|2
1 − |z|2 = ∞. (5.21)

Then

lim
z→t0

1 − |E(z)|2
1 − |z|2 ·

∣∣∣∣ z − t0
E(z) − E0

∣∣∣∣2 = 0 and lim
z→t0

z − t0
E(z) − E0

= 0. (5.22)

Proof. Since |E0| = 1, we have

2Re (1 − E(z)E0) = (1 − E(z)E0) + (1 − E0E(z))

= |1 − E(z)E0|2 + 1 − |E0|2 · |E(z)|2

≥ 1 − |E(z)|2

and thus,

|E(z) − E0| = |1 − E(z)E0| ≥ Re (1 − E(z)E0) ≥
1
2
(
1 − |E(z)|2

)
. (5.23)

Furthermore, for every z in the Stoltz domain

Γa(t0) = {z ∈ D : |z − t0| < a(1 − |z|)}, a > 1,

it holds that
1 − |z|2
|z − t0|

≥ 1 − |z|
|z − t0|

>
1
a
,

which together with (5.23) leads us to∣∣∣∣E(z) − E0

z − t0

∣∣∣∣ ≥ 1
2
· 1 − |E(z)|2

|z − t0|
=

1
2
· 1 − |E(z)|2

1 − |z|2 · 1 − |z|2
|z − t0|

>
1
2a

· 1 − |E(z)|2
1 − |z|2

which is equivalent to

1 − |E(z)|2
1 − |z|2 ·

∣∣∣∣ z − t0
E(z) − E0

∣∣∣∣ ≤ 2a. (5.24)

Note that the denominator E(z) − E0 in the latter inequality does not vanish:
assuming that E(z0) = E0 at some point z0 ∈ D, we would have by the maximum
modulus principle (since |E0| = 1) that E(z) ≡ E0 which would contradict the
second assumption in (5.21). Finally, by this latter assumption, dE(t0) = ∞ and
relations (5.22) follow immediately from (5.24). �
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Theorem 5.6. Let E ∈ S0 meet condition C2 at ti:

lim
z→ti

E(z) = ηi =
ẽ∗i
c̃∗i

and lim
z→ti

1 − |E(z)|2
1 − |z|2 = ∞. (5.25)

Then the function w = TΘ[E ] is subject to relations (5.18).

Proof. Let for short

∆i(z) :=
ẽ∗i − c̃∗i E(z)

ti − z

and note that
∆i(z) �= 0 (z ∈ D). (5.26)

To see this we argue as in the proof of the previous lemma: assuming that E(z0) =
ηi at some point z0 ∈ D, we would have by the maximum modulus principle (since
|ηi| = 1) that E(z) ≡ ηi which would contradict the second assumption in (5.25).
Furthermore, since |ηi| = 1 and due to assumptions (5.25), we can apply Lemma
5.5 (with E0 = ηi and t0 = ti) to conclude that

lim
z→t0

1 − |E(z)|2
1 − |z|2 · 1

|∆i(z)|2 = 0 (5.27)

and
lim

z→t0
∆i(z)−1 = 0. (5.28)

Now we divide both parts in asymptotic relations (5.10)–(5.12) by (ẽ∗i − c̃∗i E(z))
and write the obtained equalities in terms of ∆i as

∆i(z)−1Ψ(z) = ei + ∆i(z)−1 · O(1),
∆i(z)−1UE(z) = wi + ∆i(z)−1 · O(1),
∆i(z)−1VE(z) = 1 + ∆i(z)−1 · O(1).

By (5.28), the following nontangential limits exist

lim
z→ti

∆i(z)−1Ψ(z) = ei, lim
z→ti

∆i(z)−1UE(z) = wi, lim
z→ti

∆i(z)−1VE (z) = 1

and we use these limits along with (5.27) to pass to limits in (5.9):

lim
z→ti

1 − |w(z)|2
1 − |z|2 = lim

z→ti

|∆i(z)|−2 1 − |E(z)|2
1 − |z|2 + |∆i(z)|−2Ψ(z)∗PΨ(z)

|∆i(z)|−2|VE (z)|2

=
0 + e∗i Pei

1
= γi.

Finally,

lim
z→ti

w(z) = lim
z→ti

∆i(z)−1UE(z)
∆i(z)−1VE (z)

=
wi

1
= wi,

which completes the proof. �
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Theorem 5.7. Let p̃ii be the ith diagonal entry of P−1 = [p̃ij ]
n
i,j=1, let E ∈ S0 be

subject to

lim
z→ti

E(z) = ηi and lim
z→ti

1 − |E(z)|2
1 − |z|2 = dE(ti) < ∞. (5.29)

Let us assume that

dE(ti) �=
p̃ii

|ẽi|2
. (5.30)

Then the function w := TΘ[E ] satisfies

lim
z→ti

w(z) = wi (5.31)

and the nontangential limit dw(ti) := lim
z→ti

1 − |w(z)|2
1 − |z|2 is finite. Moreover,

dw(ti) < γi if dE(ti) > − p̃ii

|ẽi|2
(5.32)

and

dw(ti) > γi if dE(ti) < − p̃ii

|ẽi|2
. (5.33)

In other words, dw(ti) < γi if E meets condition C3 and dw(ti) > γi if E meets
condition C4 at ti.

Proof. By the Carathéodory-Julia theorem (for Schur functions), conditions (5.29)
imply that the following nontangential limits exist

lim
z→ti

E ′(z) = lim
z→ti

E(z) − ηi

z − ti
= t̄iηidE(ti)

and the following asymptotic equality holds

E(z) = ηi + (z − ti)tiηidE(ti) + o(|z − ti|) as z → ti. (5.34)

We shall show that the functions Ψ, UE and VE defined in (5.4), (5.5), (5.6) admit
the nontangential boundary limits at every interpolation node ti:

Ψ(ti) =
t̄i
ẽi

(
P−1ei − ei(p̃ii + |ẽi|2dE(ti))

)
, (5.35)

UE(ti) = − t̄iwi

ẽi
(p̃ii + |ẽi|2dE(ti)) and VE(ti) = − t̄i

ẽi
(p̃ii + |ẽi|2dE(ti)). (5.36)

To prove (5.35) we first multiply both parts in the Stein identity (3.4), by ei on
the right and obtain

P−1ei − TP−1T ∗ei = Ẽ∗ẽi − C̃∗c̃i

which can be written equivalently, since T ∗ei = t̄iei and c̃i = ẽiηi, as

Ẽ∗ − C̃∗ηi =
t̄i
ẽi

(tiI − T )P−1ei. (5.37)
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Substituting (5.34) into (5.4) and making use of (5.37) we get

Ψ(z) = (zI − T )−1
(
Ẽ∗ − C̃∗ηi

)
− (z − ti)(zI − T )−1C̃∗ηidE(ti)t̄i + o(1)

=
t̄i
ẽi

(zI − T )−1(tiI − T )P−1ei

−(z − ti)(zI − T )−1C̃∗ηidE(ti)t̄i + o(1). (5.38)

Since the following limits exist

lim
z→ti

(zI − T )−1(tiI − T ) = I − eie∗i , lim
z→ti

(z − ti)(zI − T )−1 = eie∗i ,

we can pass to the limit in (5.38) as z → ti nontangentially to get

Ψ(ti) =
t̄i
ẽi

(I − eie∗i )P
−1ei − eie∗i C̃

∗ηidE(ti)t̄i. (5.39)

Since e∗i P
−1ei = p̃ii and e∗i C̃

∗ηi = c̃∗i ηi = ẽ∗i , the right-hand side expression in
(5.39) coincides with that in (5.35).

Making use of (5.34) and (5.35) we pass to the limits in (5.5) and (5.6) as
z → ti nontangentially:

UE(ti) = E(ti) − (ti − µ)C(µI − T )−1Ψ(ti)

= ηi −
1 − µt̄i

ẽi
C(µI − T )−1

(
P−1ei − ei(p̃ii + |ẽi|2dE(ti))

)
, (5.40)

VE (ti) = 1 − (ti − µ)E(µI − T )−1Ψ(ti)

= 1 − 1 − µt̄i
ẽi

E(µI − T )−1
(
P−1ei − ei(p̃ii + |ẽi|2dE(ti))

)
. (5.41)

Note that by (3.2),

1 − µt̄i
ẽi

C(µI − T )−1P−1ei =
1 − µt̄i

ẽi
C̃(I − µT ∗)−1ei =

c̃i

ẽi
= ηi, (5.42)

1 − µt̄i
ẽi

E(µI − T )−1P−1ei =
1 − µt̄i

ẽi
Ẽ(I − µT ∗)−1ei =

ẽi

ẽi
= 1. (5.43)

Making use of these two equalities we simplify (5.40) and (5.41) to

UE(ti) =
1 − µt̄i

ẽi
C(µI − T )−1ei(p̃ii + |ẽi|2dE(ti))

and

VE(ti) =
1 − µt̄i

ẽi
E(µI − T )−1ei(p̃ii + |ẽi|2dE(ti)),

respectively, and it is readily seen from (5.13) that the two latter equalities coincide
with those in (5.36).

Now we conclude from (5.3) and (5.36) that the nontangential boundary
limits w(ti) exist for i = 1, . . . , n and

w(ti) = lim
z→ti

w(z) = lim
z→ti

UE(z)
VE(z)

=
UE(ti)
VE(ti)

= wi
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which proves (5.31). Furthermore, since the nontangential boundary limits dE (ti)
and

|VE(ti)|2 =
(p̃ii + |ẽi|2dE(ti))2

|ẽi|2
(5.44)

exist (by the second assumption in (5.29) and the second relation in (5.36)), we
can pass to the limit in (5.9) as z tends to ti nontangentially:

dw(ti) =
dE(ti) + Ψ(ti)∗PΨ(ti)

|VE (ti)|2
.

By (5.44) and (5.35) we write dw(ti) as follows

|ẽi|2dE(ti) +
(
e∗i P

−1 − (p̃ii + |ẽi|2dE(ti))e∗i
)
P

(
P−1ei − ei(p̃ii + |ẽi|2dE (ti))

)
(p̃ii + |ẽi|2dE(ti))2

and elementary algebraic transformations based on equalities e∗i P
−1ei = p̃ii,

e∗i Pei = γi and e∗i ei = 1 lead us to

dw(ti) = γi −
1

p̃ii + |ẽi|2dE(ti)
. (5.45)

Statements (5.32) and (5.33) follow immediately from (5.45). �
As we have already mentioned in Introduction, Theorem 2.1 is known for the

case κ = 0 (see [19]) At this point we already can recover this result.

Theorem 5.8. Let the Pick matrix P be positive definite and let T , E, C, Θ(z)
and ηi be defined as in (2.3), (2.2) and (2.12). Then all solutions w of Problem
1.2 are parametrized by the formula (2.10) when the parameter E belongs to the
Schur class S0 and satisfies condition C1 ∨ C2 at each interpolation node: either
E fails to admit the nontangential boundary limit ηi at ti or

E(ti) = ηi and dE(ti) = ∞.

Proof. Any solution w of Problem 1.2 is a solution of Problem 1.1 and then by
Statement 1 in Theorem 4.6, it is of the form w = TΘ[E ] for some Schur class
function E . Since P > 0, the diagonal entries p̃ii of P−1 are positive. Therefore, the
cases specified in (2.16)–(2.18) (conditions C4−C6 cannot occur in this situation,
whereas condition C3 simplifies to

C3 : E(ti) = ηi and dE (ti) < ∞.

In other words, any function E ∈ S0 satisfies exactly one of the conditions C1, C2

or C3 at each one of interpolation nodes. Therefore, once E does not meet condition
C1 or condition C2 at at least one interpolation node ti, it meets condition C3 at
ti. Therefore, it holds for the function w = TΘ[E ] that dw(ti) < γi (by Theorem
5.7) and therefore w is not a solution of Problem 1.2. On the other hand, if E
meets condition C1 ∨ C2 at every interpolation node, then w = TΘ[E ] satisfies
interpolation conditions (5.18) (by Theorems 5.4 and 5.6) that means that w is a
solution of Problem 1.2. �
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Remark 5.9. It is useful to note that for the one-point interpolation problem (i.e.,
when n = 1), definition (3.3) takes the form[

c̃1

ẽ1

]
=

[
w1

1

]
(µ − t1)−1γ−1

1 (I − µt̄1) = −t̄1

[
w1

1

]
γ−1
1

and therefore the number η1 := c̃1
ẽ1

in this case is equal to w1.

Now we turn back to the indefinite case. Theorems 5.10 and 5.11 below treat
the case when condition (5.30) is dropped. For notational convenience we let i = n
and

T1 =

⎡⎢⎣ t1
. . .

tn−1

⎤⎥⎦ , E1 =
[
1 . . . 1

]
, C1 =

[
w1 . . . wn−1

]
so that decompositions

T =
[

T1 0
0 tn

]
, E =

[
E1 1

]
, C =

[
C1 wn

]
(5.46)

are conformal with partitioning

P =
[
P11 P12

P21 γn

]
and P−1 =

[
P̃11 P̃12

P̃21 p̃nn

]
. (5.47)

Theorem 5.10. Let p̃nn < 0 and let E be a Schur function such that

lim
z→tn

E(z) = ηn and dE(tn) = − p̃nn

|ẽn|2
. (5.48)

Then the function
w := TΘ[E ] (5.49)

is subject to one of the following:
1. The nontangential boundary limit w(tn) does not exist.
2. The latter limit exists and w(tn) �= wn.
3. The latter limit exists, is equal to wn and dw(tn) = ∞.

Proof. Since E is a Schur function, conditions (5.48) form a well-posed one-point
interpolation problem (similar to Problem 1.2). By Theorem 5.8, E admits a rep-
resentation

E = TΘ̂[Ê ] (5.50)

with the coefficient matrix Θ̂ defined via formula (2.2), but with P , T , E and C

replaced by − p̃nn

|ẽn|2 , tn, 1 and ηn, respectively:

Θ̂(z) = I2 −
z − µ

(z − tn)(1 − µtn)

[
ηn

1

]
|ẽn|2
p̃nn

[
η∗

n −1
]

(5.51)

and a parameter Ê ∈ S0 satisfying one of the following three conditions:
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(a) The limit Ê(tn) does not exist.
(b) The limit Ê(tn) exists and is not equal to ηn.
(c) It holds that

Ê(tn) = ηn and dÊ(tn) = ∞. (5.52)

We shall show that conditions (a), (b) and (c) for the parameter Ê are equivalent
to statements (1), (2) and (3), respectively, in the formulation of the theorem. This
will complete the proof.

Note that ηn appearing in (a) and (b) is the same as in (5.48), due to Remark

5.9. Since ηn =
c̃n

ẽn
, we can write (5.51) as

Θ̂(z) = I2 −
z − µ

(z − tn)(1 − µtn)

[
c̃n

ẽn

]
1

p̃nn

[
c̃∗n −ẽ∗n

]
The inverse of Θ̂ equals

Θ̂(z)−1 = I2 +
z − µ

(z − tn)(1 − µtn)

[
c̃n

ẽn

]
1

p̃nn

[
c̃∗n −ẽ∗n

]
(5.53)

and coincides with the function Θ̂(2) in (3.32). Therefore, by Lemma 3.6 and by
Remark 3.7,

Θ(z) = Θ(1)(z)Θ̂(z)−1 (5.54)

where Θ(1) is given in (3.20). Substituting (5.51) into (5.49) (that is, representing
w as a result of composition of two linear fractional transformations) and taking
into account (5.54) we get

w := TΘ[E ] = TΘ[TΘ̂[Ê ]] = TΘΘ̂[Ê ] = TΘ(1) [Ê ].

Thus, upon setting

UÊ(z) = Θ(1)
11 (z)Ê(z) + Θ(1)

12 (z), VÊ (z) = Θ(1)
21 (z)Ê(z) + Θ(1)

22 (z), (5.55)

we have

w = TΘ(1) [Ê ] =
Θ(1)

11 Ê + Θ(1)
12

Θ(1)
21 Ê + Θ(1)

22

=
UÊ
VÊ

. (5.56)

Note that Θ(1) is a rational function analytic and invertible at tn. It follows im-
mediately from (5.56) that if the boundary limit Ê(tn) does not exist, then the
boundary w(tn) does not exist either. Thus, (a) ⇒ (1). The rest is broken into two
steps.

Step 1: Let the nontangential boundary limit Ê(tn) exists. Then so do the limits
UÊ(tn), VÊ (tn) and w(tn), and moreover,

VÊ(tn) := lim
z→tn

VÊ(z) �= 0 (5.57)

and
w(tn) = wn if and only if Ê(tn) = ηn. (5.58)



Boundary Nevanlinna–Pick Problem 101

Proof of Step 1. Existence of the limits UÊ(tn) and VÊ (tn) is clear since Θ(1) is
analytic at tn. Assume that VÊ(tn) = 0. Then UÊ(tn) = 0, since otherwise, the
function w of the form (5.56) would not be bounded in a neighborhood of tn ∈ T

which cannot occur since w is a generalized Schur function. If VÊ (tn) = UÊ(tn) = 0,
then it follows from (5.55) that

Θ(1)(tn)
[
Ê(tn)

1

]
=

[
UÊ(tn)
VÊ(tn)

]
= 0

and thus, the matrix Θ(1)(tn) is singular which is a contradiction. Now it follows
from (5.56) and (5.57) that the limit w(tn) exists. This completes the proof of
(a) ⇔ (1). The proof of (5.58) rests on the equality[

w∗
n −1

]
Θ(1)(tn) =

t̄n
p̃nn

[
c̃∗n −ẽ∗n

]
. (5.59)

Indeed, it follows from (5.56) and (5.59) that

w(tn) − wn =
UÊ(tn) − wnVÊ(tn)

VÊ (tn)

=
wn

VÊ(tn)
·
[
w∗

n −1
]
Θ(1)(tn)

[
Ê(tn)

1

]
=

t̄nwn

p̃nnVÊ(tn)
[
c̃∗n −ẽ∗n

] [Ê(tn)
1

]
=

t̄nwn

p̃nnc̃∗nVÊ(tn)

(
Ê(tn) − ηn

)
which clearly implies (5.58). It remains to prove (5.59). To this end, note that by
(3.11),

Resz=tnΘ(z) = −
[

wn

1

] [
c̃∗n −ẽ∗n

]
and it is readily seen from (5.53) that

Resz=tnΘ̂(z)−1 = tn

[
c̃n

ẽn

]
1

p̃nn

[
c̃∗n −ẽ∗n

]
.

Taking into account that Θ(1) is analytic at tn and that Θ and Θ̂−1 have simple
poles at tn, we compare the residues of both parts in (5.54) at tn to arrive at

−
[

wn

1

] [
c̃∗n −ẽ∗n

]
=

tn
p̃nn

Θ(1)(tn)
[

c̃n

ẽn

] [
c̃∗n −ẽ∗n

]
,

which implies (since ẽn �= 0)[
wn

1

]
= Θ(1)(tn)

[
c̃n

ẽn

]
tn
p̃nn

.
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Equality of adjoints in the latter equality gives[
w∗

n −1
]

=
[
w∗

n 1
]
J =

t̄n
p̃nn

[
c̃∗n −ẽ∗n

]
JΘ(1)(tn)∗J

which is equivalent to (5.59), since Θ(1)(tn) is J-unitary and thus, JΘ(1)(tn)∗J =
Θ(1)(tn)−1. This completes the proof of (5.58) which implies in particular, that
(b) ⇔ (2).

Step 2: (c) ⇔ (3).

Proof of Step 2. Equality w(tn) = wn is equivalent to the first condition in (5.52)
by (5.58). To complete the proof, it suffices to show that if Ê(tn) = ηn, then

dw(tn) = ∞ if and only if dÊ(tn) = ∞. (5.60)

To this end, we write a virtue of relation (5.9) in terms of the parameter Ê :

1 − |w(z)|2
1 − |z|2 =

1
|VÊ(z)|2

(
1 − |Ê(z)|2

1 − |z|2 + Ψ̂(z)∗P Ψ̂(z)

)
(5.61)

where

Ψ̂(z) = (zI − T1)−1(µI − T1)P−1
11 (I − µT ∗

1 )−1
(
E∗

1 − C∗
1 Ê(z)

)
. (5.62)

Note that to get (5.62) we represent the right-hand side expression in (5.4) in
terms of C and E (rather than C̃ and Ẽ; this can be achieved with help of (3.3))
and then replace P , T , E, C and E in the obtained formula by P11, T1, E1, C1

and Ê , respectively. Since the nontangential boundary limit

Ψ̂(tn) = (tnI − T1)−1(µI − T1)P−1
11 (I − µT ∗

1 )−1 (E∗
1 − C∗

1ηn)

exists and is finite, equivalence (5.60) follows from (5.61). �

Theorem 5.11. Let p̃nn = 0 and let E be a Schur function such that

E(tn) = ηn and dE(tn) = 0. (5.63)

Then the function w := TΘ[E ] admits finite nontangential boundary limits dw(tn)
and w(tn) �= wn.

Proof. Conditions (5.63) state a one-point boundary interpolation problem for
Schur functions E with the Pick matrix equals dE(tn) = 0. Then by Statement 2
in Theorem 4.6, the only function E satisfying conditions (5.63) is the constant
function E(z) ≡ ηn (the Blaschke product of degree zero). Since |ηn| = 1, the
function w = TΘ[E ] is rational and unimodular on T. Therefore, it is equal to
the ratio of two finite Blaschke products and therefore, the limits w(t) and dw(t)
exist at every point t ∈ T. We shall use decompositions (5.46) and (5.47) with
understanding that p̃nn = 0, so that

P̃21P12 = 1 and P−1en =
[
P̃12

0

]
. (5.64)
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We shall also make use the formula

P21(I − t̄nT1)−1 = (E1 − w∗
nC1) (5.65)

that follows from the Stein identity (3.1) upon substituting partitioning (5.46),
(5.47) and comparison the (1, 2) block entries.

In the current context, the formula (5.4) for Ψ simplifies, on account of (5.37), to

Ψ(z) = (zI − T )−1
(
Ẽ∗ − C̃∗ηn

)
=

t̄n
ẽn

(zI − T )−1(tnI − T )P−1en

Now we substitute the latter equality into (5.5) and (5.6) and use formulas (5.42)
and (5.43) (for i = n) to get

UE(z) =
1 − zt̄n

ẽn
C(zI − T )−1P−1en, VE(z) =

1 − zt̄n
ẽn

E(zI − T )−1P−1en.

Taking into account the second equality in (5.64), rewrite the latter two formulas
in terms of partitioning (5.46) and (5.47) as

UE(z) =
1 − zt̄n

ẽn
C1(zI − T1)−1P̃12, VE(z) =

1 − zt̄n
ẽn

E1(zI − T1)−1P̃12. (5.66)

Thus,

w(z) :=
UE(z)
VE (z)

=
C1(zI − T1)−1P̃12

E1(zI − T1)−1P̃12

.

We shall show that the denominator on the right-hand side in the latter formula
does not vanish at z = tn, so that

w(tn) := lim
z→tn

C1(zI − T1)−1P̃12

E1(zI − T1)−1P̃12

=
C1(tnI − T1)−1P̃12

E1(tnI − T1)−1P̃12

. (5.67)

Then we will have, on account of (5.65) and the first equality in (5.64),

wn − w(tn) = wn − C1(tnI − T1)−1P̃12

E1(tnI − T1)−1P̃12

=
(wnE1 − C1)(tnI − T1)−1P̃12

E1(tnI − T1)−1P̃12

=
wntn(E1 − w∗

nC1)(I − t̄nT1)−1P̃12

E1(tnI − T1)−1P̃12

=
wntnP̃21P12

E1(tnI − T1)−1P̃12

=
wntn

E1(tnI − T1)−1P̃12

�= 0 (5.68)

and thus w(tn) �= wn. Thus, it remains to show that the denominator in (5.67)
is not zero. Assume that E1(tnI − T1)−1P̃12 = 0. Since the limit in (5.67) exists
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(recall that w is the ratio of two finite Blaschke products), the latter assumption
forces C1(tnI − T1)−1P̃12 = 0 and therefore, equality

(wnE1 − C1)(tnI − T1)−1P̃12 = 0.

But it was already shown in calculation (5.68) that

(wnE1 − C1)(tnI − T1)−1P̃12 = wntn �= 0

and the obtained contradiction completes the proof. �
Recall that the interpolation node tn in Theorems 5.10 and 5.11 was chosen

just for notational convenience and can be replaced by any interpolation node ti.
It means that Theorems 5.10 and 5.11 prove Statements (4) and (5) in Theorem
2.3. Furthermore, Theorem 5.7 proves the “if” parts in Statements (4) and (5) in
Theorem 2.3, whereas Theorems 5.4 and 5.6 prove the “if” part in Statement (1)
in Theorem 2.3. Finally since conditions C1-C6 are disjoint, the “only if” parts in
Statements (1), (2) and (3) are obvious. This completes the proof of Theorem 2.3.

6. Negative squares of the function w = TΘ[E ]

In this section we prove Theorems 2.9 and 2.5. We assume without loss of generality
that (maybe after an appropriate rearrangement of the interpolation nodes) a fixed
parameter E ∈ S0 satisfies condition C1−3 at interpolation nodes t1, . . . , tn−� and
conditions C4−6 at the remaining � points. Thus, we assume that

lim
z→ti

E(z) = ηi and lim
z→ti

1 − |E(z)|2
1 − |z|2 ≤ − p̃ii

|ẽi|2
(i = n − � + 1, . . . , n). (6.1)

Let

P−1 =

[
P̃11 P̃12

P̃21 P̃22

]
with P̃22 ∈ C

�×�. (6.2)

Note that under the above assumption, the matrix P in the formulation of Theorem
2.9 coincides with P̃22 in the decomposition (6.2). Thus, to prove Theorem 2.9, it
suffices to show that there exists a Schur function E satisfying conditions (6.1) if
and only if the matrix P̃22 is negative semidefinite.

Proof of Theorem 2.9. Since |ηi| = 1, conditions (6.1) form a well-posed boundary
Nevanlinna-Pick problem (similar to Problem 1.1) in the Schur class S0. This
problem has a solution E if and only if the corresponding Pick matrix

P = [Pij ]ni,j=n−�+1 with the entries Pij =

⎧⎪⎪⎨⎪⎪⎩
1 − η∗

i ηj

1 − t̄itj
for i �= j,

− p̃ii

|ẽi|2
for i = j,

(6.3)

is positive semidefinite. Furthermore, there exist infinitely many functions E sat-
isfying (6.1) if P is positive definite and there is a unique such function (which is
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a Blaschke product of degree equals rankP) if P is singular. Thus, to complete the
proof, it suffices to show that

P > 0 ⇐⇒ P̃22 < 0, P ≥ 0 ⇐⇒ P̃22 ≤ 0 and rankP = rank P̃22. (6.4)

To this end, note that

t̄iẽ
∗
i · Pij · tj ẽj = −p̃ij (i, j = n − � + 1, . . . , n) (6.5)

where p̃ij is the ijth entry in P−1. Indeed, if i �= j, then (6.5) follows from (6.3),
(3.6) and definition (2.12) of ηi. If i = j, then (6.5) follows directly from (6.3). By
(6.2), [p̃ij ]

n
i,j=�+1 = P̃22, which allows us to rewrite equalities (6.5) in the matrix

form as

C∗
P C = −P̃22 where C = diag (t�+1ẽ�+1, t�+2ẽ�+2, . . . , tnẽn) . (6.6)

Since the matrix C is invertible, all the statements in (6.4) follow from (6.6). This
completes the proof of Theorem 2.9. �

To prove Theorem 2.5 we shall use the following result (see [5, Lemma 2.4]
for the proof).

Lemma 6.1. Let P ∈ Cn×n be an invertible Hermitian matrix and let

P =
[

P11 P12

P21 P22

]
and P−1 =

[
P̃11 P̃12

P̃21 P̃22

]
(6.7)

be two conformal decompositions of P and of P−1 with P22, P̃22 ∈ C�×�. Further-
more, let P̃22 be negative semidefinite. Then

sq−P11 = sq−P − �.

Proof of Theorem 2.5. We start with several remarks. We again assume (without
loss of generality) that a picked parameter E ∈ S0 satisfies condition C1−3 at
t1, . . . , tn−� and conditions (6.1) at the remaining � interpolation nodes. Under
these non-restrictive assumptions we will show that the function w = TΘ[E ] be-
longs to the class Sκ−�. Throughout the proof, we shall be using partitioning (3.18),
(3.19). Note that by Theorem 2.9, the block P̃22 is necessarily negative semidefi-
nite. Then by Lemma 6.1, sq−P11 = κ − �. Furthermore, since E meets condition
C1−3 at t1, . . . , tn−�, the function w = TΘ[E ] satisfies interpolation conditions
(1.17) at each of these points. Then by Remark 1.5, w has at least sq−P11 = κ− �
negative squares.

It remains to show that it has at most κ − � negative squares. This will be
done separately for the cases when P̃22 is negative definite and when P̃22 is negative
semidefinite and singular.

Conditions (6.1) mean that E is a solution of a boundary Nevanlinna–Pick
interpolation problem with the data set consisting of � interpolation nodes ti,

unimodular numbers ηi and nonnegative numbers Pii = − p̃ii

|ẽi|2
for i = n − � +

1, . . . , n. The Pick matrix P of the problem is defined in (6.3).
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Case 1: P̃22 < 0: In this case P > 0 (by (6.6)) and by the first statement in Theorem
4.6, E admits a representation

E = TΘ̂[Ê ] (6.8)

for some Ê ∈ S0 where, according to (2.2), the coefficient matrix Θ̂ in (6.8) is of
the form

Θ̂(z) = I2 + (z − µ)
[

M
E2

]
(zI − T2)−1

P
−1(I − µT ∗

2 )−1
[

M∗ −E∗
2

]
(6.9)

where the matrices

T2 = diag (tn−�+1, . . . , tn), E2 =
[
1 . . . 1

]
(6.10)

are exactly the same as in (3.18), (3.19)) and

M =
[
ηn−�+1 ηn−�+2 . . . ηn

]
(6.11)

Self-evident equalities[
ηi

1

]
· 1
z − ti

· tiẽi = −
[
c̃i

ẽi

]
· 1
1 − zt̄i

(i = n − � + 1, . . . , n)

can be written in the matrix form as[
M
E2

]
(zI − T2)−1C = −

[
C̃2

Ẽ2

]
(I − zT ∗

2 )−1 (6.12)

where C is defined in (6.6), whereas

Ẽ2 =
[
ẽn−�+1 . . . ẽn

]
and C̃2 =

[
c̃n−�+1 . . . c̃n

]
are the matrices from the two last partitionings in (3.19). On account of (6.12)
and (6.6), we rewrite the formula (6.9) as

Θ̂(z) = I2 − (z − µ)

[
C̃2

Ẽ2

]
(I − zT ∗

2 )−1P̃−1
22 (µI − T2)−1

[
C̃∗

2 −Ẽ∗
2

]
.

Then its inverse can be represented as

Θ̂(z)−1 = I2 + (z − µ)

[
C̃2

Ẽ2

]
(I − µT ∗

2 )−1P̃−1
22 (zI − T2)−1

[
C̃∗

2 −Ẽ∗
2

]
and coincides with the function Θ̃(2) from (3.21). Therefore, by Lemma 3.6,

Θ(z) = Θ(1)(z)Θ̂(z)−1 (6.13)

where Θ(1) is given in (3.20). Note that

Θ(1) ∈ Wκ1 where κ1 = sq−P11 = κ − �. (6.14)

Substituting (6.8) into (2.10) (that is, representing w as a result of composition of
two linear fractional transformations) and taking into account (6.13) we get

w := TΘ[E ] = TΘ[TΘ̂[Ê ]] = TΘΘ̂[Ê ] = TΘ(1) [Ê ].
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Since E ∈ S0 and due to (6.13), the last equality guarantees (by Remark 5.1) that
w has at most κ1 = κ − � negative squares which completes the proof of Case 1.

Case 2: P̃22 ≤ 0 is singular: In this case P is positive semidefinite and singular
(again, by (6.6)) and by the second statement in Theorem 4.6, E admits a repre-
sentation

E(z) =
x∗(I − zT ∗

2 )−1E∗
2

x∗(I − zT ∗
2 )−1M∗ (6.15)

where x is any nonzero vector such that Px = 0. Letting y := C−1x we have (due
to (6.6))

P̃22y = 0 (6.16)

and, on account of (6.12), we can rewrite (6.15) as

E(z) =
y∗C∗(I − zT ∗

2 )−1E∗
2

y∗C∗(I − zT ∗
2 )−1M∗ =

y∗(zI − T2)−1Ẽ∗
2

y∗(zI − T2)−1C̃∗
2

. (6.17)

Since E is a finite Blaschke product (again by the second statement in Theorem
4.6) it satisfies the symmetry relation E(z) = (E(1/z̄))−1 which together with
(6.17) gives another representation for E :

E(z) =
C̃2(I − zT ∗

2 )−1y

Ẽ2(I − zT ∗
2 )−1y

. (6.18)

We will use the latter formula and (5.8) to get an explicit expression for the kernel
Kw(z, w). Setting

u(z) = C̃2(I − zT ∗
2 )−1y and v(z) = Ẽ2(I − zT ∗

2 )−1y

for short and making use of the second Stein identity in (3.4) we have

v(ζ)∗v(z) − u(ζ)∗u(z) = y∗(I − ζ̄T2)−1
[
Ẽ∗

2 Ẽ2 − C̃∗
2 C̃2

]
(I − zT ∗

2 )−1y

= y∗(I − ζ̄T2)−1
[
P̃22 − T2P̃22T

∗
2

]
(I − zT ∗

2 )−1y

which reduces, due to (6.16), to

v(ζ)∗v(z) − u(ζ)∗u(z) = −(1 − zζ̄)y∗(I − ζ̄T2)−1T2P̃22T
∗
2 (I − zT ∗

2 )−1y.

Upon dividing both parts in the latter equality by (1 − zζ̄)v(z)v(ζ)∗ we arrive at

1 − E(ζ)∗E(z)
1 − ζ̄z

= − y∗

v(ζ)∗
(I − ζ̄T2)−1T2P̃22T

∗
2 (I − zT ∗

2 )−1 y

v(z)
. (6.19)

Next, we substitute the explicit formula (6.18) for E into (5.4) to get

Ψ(z) = (zI − T )−1
(
Ẽ∗ − C̃∗E(z)

)
= (zI − T )−1(Ẽ∗Ẽ2 − C̃∗C̃2)(I − zT ∗

2 )−1 · y

v(z)
. (6.20)
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Substituting partitionings (3.18), (3.19) into the Stein identity (3.4) and comparing
the right block entries we get[

P̃12

P̃22

]
− T

[
P̃12

P̃22

]
T ∗

2 = ẼẼ∗
2 − C̃C̃∗

2

which implies

(zI − T )−1
{
ẼẼ∗

2 − C̃C̃∗
2

}
(I − zT ∗

2 )−1

= (zI − T )−1

[
P̃12

P̃22

]
+

[
P̃12

P̃22

]
T ∗

2 (I − zT ∗
2 )−1.

Now we substitute the last equality into (5.4) and take into account (6.16) to get

Ψ(z) = (zI − T )−1

[
P̃12

0

]
· y

v(z)
+

[
P̃12

P̃22

]
T ∗

2 (I − zT ∗
2 )−1 · y

v(z)

On account of partitionings (3.18), the latter equality leads us to

Ψ(ζ)∗PΨ(z) =
y∗

v(ζ)∗
(
P̃ ∗

12(ζ̄I − T ∗
1 )−1P11(zI − T1)−1P̃12

+(I − ζ̄T2)−1T2P̃22T
∗
2 (I − zT ∗

2 )−1
) y

v(z)
. (6.21)

Upon substituting (6.19) and (6.21) into (5.8) we get

1 − w(ζ)∗w(z)
1 − ζ̄z

=
y∗

VE(ζ)∗v(ζ)∗
· P̃ ∗

12(ζ̄I − T ∗
1 )−1P11(zI − T1)−1P̃12 ·

y

VE(z)v(z)
.

Thus, the kernel Kw(z, ζ) admits a representation

Kw(z, ζ) = R(ζ)∗P11R(z) where R(z) =
yP̃21T

∗
1 (I − zT ∗

1 )−1

v(z)VE (z)

and thus,
sq−Kw ≤ sq−P11 = κ − �

which completes the proof of the theorem. �

Remark 6.2. At this point Theorem 2.2 is completely proved: the necessity part
follows from Theorem 4.3 and from the necessity part in Theorem 4.2; the suf-
ficiency part follows (as was explained in Introduction) from Corollary 2.4 and
Theorem 2.5 which have been already proved.

Remark 6.3. We also proved the sufficiency part in Theorem 4.2 when the Pick
matrix P is invertible.

Indeed, in this case, every solution w to the FMI (4.5) is of the form (4.15), by
Theorem 4.3. But every function of this form solves Problem 1.6, by Theorem 2.2.
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7. The degenerate case

In this section we study Problem 1.6 in the case when the Pick matrix P of the
problem (defined in (1.14)) is singular. In the course of the study we will prove
Theorem 2.1 and will complete the proof of Theorem 4.2.

Theorem 7.1. Let the Pick matrix P defined in (1.14) be singular with rankP =
� < n. Then there is a unique generalized Schur function w such that

sq−Kw(z, ζ) = κ (7.1)

where Kw(z, ζ) is the kernel defined in (4.4). Furthermore,
1. This unique function w is the ratio of two finite Blaschke products

w(z) =
B1(z)
B2(z)

(7.2)

with no common zeroes and such that

deg B1 + deg B2 = rankP. (7.3)

2. This unique function w belongs to the generalized Schur class Sκ′ where κ′ =
deg B2 ≤ κ and satisfies conditions

dw(ti) ≤ γi and w(ti) = wi (i = 1, . . . , n) (7.4)

at all but κ− κ′ interpolation nodes (that is, w is a solution to Problem 1.6).
3. The function w satisfies conditions

dw(ti) = γi and w(ti) = wi

at at least n − rankP interpolation nodes.

Proof. Without loss of generality we can assume that the top �×� principal subma-
trix P11 of P is invertible and has κ negative eigenvalues. We consider conformal
partitionings

T =
[
T1 0
0 T2

]
, E =

[
E1 E2

]
, C =

[
C1 C2

]
(7.5)

and

P =
[
P11 P12

P21 P22

]
, det P11 �= 0, sq−P11 = κ = sqP. (7.6)

Since rankP11 = rankP , it follows that P22 − P21P
−1
11 P12 the Schur complement

of P11 in P , is the zero matrix, i.e.,

P22 = P21P
−1
11 P12. (7.7)

Furthermore, it is readily seen that the ith row of the block P21 in (7.6) can be
written in the form

e∗i P21 =
[
1 − w∗

�+iw1

1 − t̄�+it1
. . .

1 − w∗
�+iw�

1 − t̄�+it�

]
=

(
E1 − w∗

�+iC1

)
(I − t̄�+iT1)

−1
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and similarly, the jth column in P12 is equal to

P12ej = (I − t�+jT
∗
1 )−1 (E∗

1 − C∗
1w�+j) (7.8)

(recall that ej stands for the jth column of the identity matrix of an appropriate

size). Taking into account that the ijth entry in P22 is equal to
1 − w∗

�+iw�+j

1 − t̄�+it�+j

(if i �= j) or to γ�+i (if i = j) we write the equality (7.7) entrywise and get the
equalities

1 − w∗
i wj

1 − t̄itj
= (E1 − w∗

i C1) (I − t̄iT1)
−1

P−1
11 (I − tjT

∗
1 )−1 (E∗

1 − wjC
∗
1 ) (7.9)

for i �= j ∈ {� + 1, . . . , n} and the equalities

γi = (E1 − w∗
i C1) (I − t̄iT1)

−1
P−1

11 (I − tiT
∗
1 )−1 (E∗

1 − wiC
∗
1 ) (7.10)

for i = � + 1, . . . , n. The rest of the proof is broken into a number of steps.

Step 1: If w is a meromorphic function such that (7.1) holds, then it is necessarily
of the form

w = TΘ(1) [E ] :=
Θ(1)

11 E + Θ(1)
12

Θ(1)
21 E + Θ(1)

22

(7.11)

for some Schur function E ∈ S0, where Θ(1) is given in (3.20).

Proof of Step 1. Write the kernel Kw(z, ζ) in the block form as

Kw(z, ζ) =

⎡⎣ P11 P12 F1(z)
P21 P22 F2(z)

F1(ζ)∗ F2(ζ)∗ Kw(z, ζ)

⎤⎦ (7.12)

where F1 and F2 are given in (4.10). The kernel

K1
w(z, ζ) :=

[
P11 F1(z)

F1(ζ)∗ Kw(z, ζ)

]
=

[
P11 (I − zT ∗

1 )−1(E∗
1 − C∗

1w(z))
(E1 − w(ζ)∗C1)(I − ζ̄T1)−1 Kw(z, ζ)

]
is contained in Kw(z, ζ) as a principal submatrix and therefore, sq−K1

w ≤ κ. On
the other hand, K1

w contains P11 as a principal submatrix and therefore sq−K1
w ≥

sq−P11 = κ. Thus,

sq−K1
w = κ. (7.13)

Recall that P11 is an invertible Hermitian matrix with κ negative eigenvalues and
satisfies the first Stein identity in (3.4). Then we can apply Theorem 4.3 (which is
already proved for the case when the Pick matrix is invertible) to the FMI (7.13).
Upon this application we conclude that w is of the form (7.11) with some E ∈ S0

and Θ(1) of the form (3.20).
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Step 2: Every function of the form (7.11) solves the following truncated Problem
1.6: it belongs to the generalized Schur class Sκ′ for some κ′ ≤ κ and satisfies
conditions

dw(ti) ≤ γi and w(ti) = wi (i = 1, . . . , �)
at all but κ − κ′ interpolation nodes.

Proof of Step 2. The Pick matrix for the indicated truncated interpolation problem
is P11 which is invertible and has κ negative eigenvalues. Thus, we can apply
Theorem 2.2 (which is already proved for the nondegenerate case) to get the desired
statement.

The rational function Θ(1) is analytic and J-unitary at ti for every i = � +
1, . . . , n. Then we can consider the numbers ai and bi defined by[

ai

bi

]
= Θ(1)(ti)−1

[
wi

1

]
for i = � + 1, . . . , n. (7.14)

It is clear from (7.14) that |ai| + |bi| > 0. Furthermore,

Step 3: It holds that

|ai| = |bi| �= 0 and
ai

bi
=

aj

bj
for i, j = � + 1, . . . , n. (7.15)

Proof of Step 3. Let i ∈ {� + 1, . . . , n}. Since the matrix Θ(1)(ti)−1 is J-unitary
and since |wi| = 1, we conclude from (7.14) that

|ai|2 − |bi|2 =
[
a∗

i b∗i
]
J

[
ai

bi

]
=

[
w∗

i 1
]
Θ(1)(ti)−∗JΘ(1)(ti)−1

[
wi

1

]
=

[
w∗

i 1
]
J

[
wi

1

]
= |wi|2 − 1 = 0. (7.16)

Thus, |ai| = |bi| and, since |ai| + |bi| > 0, the first statement in (7.15) follows.
Similarly to (7.16), we have

a∗
i aj − b∗i bj =

[
w∗

i 1
]
Θ(1)(ti)−∗JΘ(1)(tj)−1

[
wj

1

]
(7.17)

for every choice of i, j ∈ {� + 1, . . . , n}. By a virtue of formula (3.16),

Θ(1)(ζ)−∗JΘ(1)(z)−1 − J

1 − zζ̄
=

[
C1

−E1

]
(I − ζ̄T1)−1P−1

11 (I − zT ∗
1 )−1

[
C∗

1 −E∗
1

]
.

(7.18)
Substituting the latter formula (evaluated at ζ = ti and z = tj) into the right-hand

side expression in (7.17) and taking into account that
[
w∗

i 1
]
J

[
wj

1

]
= w∗

i wj −1,

we get

a∗
i aj − b∗i bj = w∗

i wj − 1 + (1 − t̄itj) (E1 − w∗
i C1) (I − t̄iT1)

−1 P−1
11

× (I − tjT
∗
1 )−1 (E∗

1 − wjC
∗
1 ) .
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The latter expression is equal to zero, by (7.9). Therefore, a∗
i aj = b∗i bj and conse-

quently,
aj

bj
=

b∗i
a∗

i

=
ai

bi

where the second equality holds since |ai| = |bi|.

Step 4: Let ai and bi be defined as in (7.14). Then the row vectors

A =
[
a�+1 . . . an

]
, B =

[
b�+1 . . . bn

]
(7.19)

can be represented as follows:[
A
B

]
=

[
C
E

]
(µI − T )−1

[
−P−1

11 P12

I

]
(µI − T2) . (7.20)

Proof of Step 4. First we substitute the formula (3.30) for the inverse of Θ(1) into
(7.14) to get[

ai

bi

]
=

[
wi

1

]
+ (ti − µ)

[
C1

E1

]
(µI − T1)−1P−1

11 (I − tiT
∗
1 )−1 (E∗

1 − C∗
1wi)

for i = � + 1, . . . , n and then we make use of (7.8) and of the vector ei to write
the latter equalities in the form[

A
B

]
ei =

[
w�+i

1

]
−

[
C1

E1

]
(µI − T1)−1P−1

11 P12ei(µ − t�+i)

for i = 1, . . . , n− �. Now we transform the right-hand side expression in the latter
equality as follows[

A
B

]
ei =

[
C2

E2

]
ei −

[
C1

E1

]
(µI − T1)−1P−1

11 P12 (µI − T2) ei

=
([

C2

E2

]
(µI − T2)

−1 −
[
C1

E1

]
(µI − T1)−1P−1

11 P12

)
(µI − T2) ei

=
[
C
E

]
(µI − T )−1

[
−P−1

11 P12

I

]
(µI − T2) ei

and since the latter equality holds for every i ∈ {1, . . . , n − �}, (7.20) follows.

Remark 7.2. Comparing (7.20) and (3.29) we conclude that[
A
B

]
= Θ(1)(z)−1

[
C
E

]
(zI − T )−1

[
−P−1

11 P12

1

]
(zI − T2).

By the symmetry principle, Θ(1)(z)−1 = JΘ(1)(1/z̄)∗J and thus, the latter identity
can be written equivalently as[

A
−B

]
(zI − T2)−1 = Θ(1)(/z̄)∗

[
C

−E

]
(zI − T )−1

[
−P−1

11 P12

1

]
.
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Taking adjoints and replacing z by 1/z̄ in the resulting identity we obtain eventu-
ally

(I − zT ∗
2 )−1

[
A∗ −B∗] =

[
−P21P

−1
11 1

]
(I − zT ∗)−1

[
C∗ −E∗]Θ(1)(z).

(7.21)

Step 5: A function w of the form (7.11) satisfies the FMI (7.1) only if the corre-
sponding parameter E is the unimodular constant

E(z) ≡ E0 :=
a�+1

b�+1
= · · · =

an

bn
. (7.22)

Proof of Step 5. Let us consider the Schur complement S of the block P11 in (7.12):

S(z, ζ) =
[

P22 F2(z)
F2(ζ)∗ Kw(z, ζ)

]
−

[
P21

F1(ζ)∗

]
P−1

11

[
P12 F1(z)

]
Since

sq−Kw = sq−P11 + sq−S = κ + sq−S,

it follows that the FMI (7.1) is equivalent to positivity of S on ρ(w) ∩ D:

S(z, ζ) � 0. (7.23)

Since the “11′′ block in S(z, ζ) equals P22 − P21P
−1
11 P12 which is the zero matrix

(by (7.7)), the positivity condition (7.23) guarantees the the nondiagonal entries
in S vanish everywhere in D:

F2(z) − P21P
−1
11 F1(z) ≡ 0. (7.24)

By (4.11), the latter identity can be written as[
−P21P

−1
11 I

]
(I − zT ∗)−1(E∗ − C∗w(z)) ≡ 0. (7.25)

We already know from Step 1, that w is of the form (7.11) for some E ∈ S0. Now we
will show that (7.25) holds for w of the form (7.11) if and only if the corresponding
parameter E is subject to

A∗E(z) ≡ B∗ (7.26)

where A and B are given in (7.19). Indeed, it is easily seen that for w of the form
(7.11), it holds that

E∗ − C∗w =
(
Θ(1)

21 E + Θ(1)
22

)−1 [
−C∗ E∗] [Θ(1)

11 Θ(1)
12

Θ(1)
21 Θ(1)

22

] [
E
1

]
and therefore, identity (7.25) can be written equivalently in terms of the parameter
E as [

−P21P
−1
11 I

]
(I − zT ∗)−1

[
C∗ −E∗]Θ(1)(z)

[
E(z)

1

]
≡ 0

which is, due to (7.21), the same as

(I − zT ∗
2 )−1

[
A∗ B∗]J

[
E(z)

I

]
≡ 0.
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The latter identity is clearly equivalent to (7.26). Writing (7.26) entrywise we get
the system of equalities

a∗
i E(z) ≡ b∗i (i = � + 1, . . . , n).

This system is consistent, by (7.15), and it clearly admits a unique solution E0

defined as in (7.22). Combining Step 1 and Step 5, we can already conclude that
the FMI (7.1) has at most one solution: the only candidate is the function

w = TΘ(1) [E0] (7.27)

where E0 is the unimodular constant defined in (7.22). The next step will show
that this function indeed is a solution to the FMI (7.1).

Step 6: The function (7.27) satisfies the FMI (7.1) and interpolation conditions

dw(ti) = γi and w(ti) = wi for i = � + 1, . . . , n. (7.28)

Proof of Step 6. First we note that since Θ(1) is a rational J-inner function of
McMillan degree � and since E0 is a unimodular constant, the function w of the
form (7.27) is a rational function of degree � which is unimodular on T. Therefore,
w is the ratio of two finite Blachke products satisfying (7.3). Since w belongs to
Sκ′ (by Step 2), it has κ′ poles inside D and thus, the denominator B2 in (7.2) is
a finite Blachke product of order κ′.

It was shown in the proof of Step 5 that equation (7.26) is equivalent to
(7.24)) and thus, for the function w of the form (7.27), it holds that

F2(z) ≡ P21P
−1
11 F1(z) (7.29)

which is the same, due to definitions (4.10), as

(I − zT ∗
2 )−1(E∗

2 − C∗
2w(z)) ≡ P21P

−1
11 (I − zT ∗

1 )−1(E∗
1 − C∗

1w(z)). (7.30)

Next we show that for w of the form (7.27) it holds that

Kw(z, ζ) ≡ F1(ζ)∗P−1
11 F1(z) (7.31)

or, which is the same,
1 − w(ζ)∗w(z)

1 − ζ̄z
≡ (E1−w(ζ)∗C1)(I−ζ̄T1)−1P−1

11 (I−zT ∗
1 )−1(E∗

1−C∗
1w(z)). (7.32)

Indeed, on account of (7.18),

(E1 − w(ζ)∗C1)(I − ζ̄T1)−1P−1
11 (I − zT ∗

1 )−1(E∗
1 − C∗

1w(z))

=
[
w(ζ)∗ 1

] Θ(1)(ζ)−∗JΘ(1)(z)−1 − J

1 − zζ̄

[
w(z)

1

]
=

1 − w(z)w(ζ)∗

1 − zζ̄
+

[
w(ζ)∗ 1

] Θ(1)(ζ)−∗JΘ(1)(z)−1

1 − zζ̄

[
w(z)

1

]
. (7.33)

Representation (7.27) is equivalent to[
w(z)

1

]
= Θ(1)(z)

[
E0

1

]
1

v(z)
, where v(z) = Θ(1)

21 (z)E0 + Θ(1)
22 (z),
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and therefore,[
w(ζ)∗ 1

]
Θ(1)(ζ)−∗JΘ(1)(z)−1

[
w(z)

1

]
=

|E0|2 − 1
v(z)v(ζ)∗

≡ 0,

since |E0| = 1. On account of this latter equality, (7.33) implies (7.31). By (7.7),
(7.29) and (7.31), the kernel Kw(z, ζ) defined in (4.4) and partitioned as in (7.12),
can be represented also in the form

Kw(z, ζ) =

⎡⎣ P11

P21

F1(ζ)∗

⎤⎦P−1
11

[
P11 P12 F1(z)

]
and the latter representation implies that sq−Kw = sq−P11 = κ, i.e., that w
of the form (7.27) satisfies the FMI (7.1). It remains to check that w satisfies
interpolation conditions (7.28). Since w is a ratio of two finite Blaschke products,
it is analytic on T. Let ti (� < i ≤ n) be an interpolation node. Comparing the
residues at z = ti of both parts in the identity (7.30) we get

−tieie∗i (E∗
2 − C∗

2w(ti)) = 0

which is equivalent to
1 − w∗

i w(ti) = 0
or, since |wi| = 1, to the second condition in (7.28). On the other hand, letting
z, ζ → ti in (7.32) and taking into account that w(ti) = wi, we get

dw(ti) = (E1 − w(ti)∗C1)(I − t̄iT1)−1P−1
11 (I − tiT

∗
1 )−1(E∗

1 − C∗
1w(ti))

= (E1 − w∗
i C1)(I − t̄iT1)−1P−1

11 (I − tiT
∗
1 )−1(E∗

1 − C∗
1wi)

which together with (7.10) implies the first condition in (7.28).

The first statement of the Theorem is proved. Statement 2 follows by Step 2
and (7.28): the function w meets interpolation conditions (7.4) at all but κ − κ′

interpolation nodes (and all the exceptional nodes are in {t1, . . . , t�}). Statement
3 follows from (7.28). �

Remark 7.3. Statement 2 in Theorem 7.1 completes the proof of sufficiency part
in Theorem 4.2: if P is singular, then a (unique) solution of the FMI (4.5) solves
Problem 1.6.

8. An example

In this section we present a numerical example illustrating the preceding analysis.
The data set of the problem is as follows:

t1 = 1, t2 = −1, w1 = 1, w2 = −1, γ1 = 1, γ2 = 0. (8.1)

Then the matrices (2.3) take the form

T =
[

1 0
0 −1

]
and

[
C
E

]
=

[
1 −1
1 1

]
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and since
1 − w∗

1w2

1 − t̄1t2
= 1 we have also

P =
[
1 1
1 0

]
and P−1 =

[
0 1
1 −1

]
.

It is readily seen that P is invertible and has one negative eigenvalue. Thus, Prob-
lems 1.3, 1.4 and 1.6 take the following form.

Problem 1.4: Find all functions w ∈ S1 such that

w(1) = 1, dw(1) ≤ 1, w(−1) = −1, dw(−1) ≤ 0. (8.2)

Problem 1.3: Find all functions w ∈ S1 that satisfy conditions (8.2) with equalities
in the second and in the fourth conditions.

Problem 1.6: Find all functions w such that either
1. w ∈ S1 and satisfies all the conditions in (8.2) or
2. w ∈ S0 and satisfies the two first conditions in (8.2) or
3. w ∈ S0 and satisfies the two last conditions in (8.2).

Letting µ = i, we get by (2.2) the following formula for Θ(z)

I2 + (z − i)
[

1 −1
1 1

] [ 1
z−1 0
0 1

z+1

] [
0 1
1 −1

] [ 1
1−i 0
0 1

1+i

] [
1 −1

−1 −1

]
=

1
2(z2 − 1)

[
(i − 1)z2 + 2(1 + 2i)z − 1 − i (3i − 1)z2 + 2z + i − 1

(i + 1)z2 − 2z + 1 + 3i (1 − i)z2 + 2(2i − 1)z + 1 + i

]
and thus, by Theorem 2.2, all the solutions w to Problem 1.6 are parametrized by
the linear fractional formula

w(z) =

[
(i − 1)z2 + 2(1 + 2i)z − 1 − i

]
E(z) + (3i − 1)z2 + 2z + i − 1

[(i + 1)z2 − 2z + 1 + 3i]E(z) + (1 − i)z2 + 2(2i − 1)z + 1 + i
(8.3)

when the parameter E runs through the Schur class S0. Furthermore, formula (3.3)
in the present setting gives[

c̃1 c̃2

ẽ1 ẽ2

]
=

[
1 −1
1 1

] [ 1
i−1 0
0 1

i+1

] [
0 1
1 −1

] [
1 − i 0

0 1 + i

]
=

[
1 1 − i

−1 −1 − i

]
(8.4)

and since the diagonal entries of P−1 are p̃11 = 0 and p̃11 = −1, we also have

η1 :=
c̃1

ẽ1
= −1, η2 :=

c̃2

ẽ2
= i,

p̃11

|ẽ1|2
= 0,

p̃22

|ẽ2|2
= −1

2
.

By Theorem 2.7, every function w of the form (8.3) also solves Problem 1.4, unless
the parameter E is subject to

E(1) = −1 and dE(1) = 0 (8.5)

or to
E(−1) = i and dE(−1) ≤ 1

2
. (8.6)
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On the other hand, Theorem 2.6 tells us that every function w of the form (8.3)
solves Problem 1.3, unless the parameter E is subject to

E(1) = −1 and dE(1) < ∞

or to
E(−1) = i and dE(−1) < ∞.

Thus, every parameter E ∈ S0 satisfying conditions (8.5) or (8.6) leads to a solution
w of Problem 1.6 which is not a solution to Problem 1.4. For these special solutions,
it looks curious to track which conditions in (8.2) are satisfied and which are not.
This will also illustrate propositions 4 and 5 in Theorem 2.3.

First we note that there is only one Schur function E ≡ −1 satisfying con-
ditions (8.5) (this is the case indicated in the fifth part in Theorem 2.3). The
corresponding function w obtained via (8.3), equals

w(z) =
2iz2 − 4iz + 2i

−2iz2 + 4iz − 2i
≡ −1.

It satisfies all the conditions in (8.2) but the first one.

All other “special” solutions of Problem 1.6 are exactly all Schur functions
satisfying the two first conditions in (8.2). Every such function does not satisfy at
least one of the two last conditions in (8.2). We present several examples omitting
straightforward computations:

Example 1: The function

E(z) =
2iz + 2

(1 − i)z − 1 − 3i

belongs to S0 and satisfies E(−1) = i and dE(−1) = 1
2 (i.e., it meets condition

(2.17) at t2). Substituting this parameter into (8.3) we get the function

w(z) =
z − i

iz + 1 − 2i

which belongs to S0 and satisfies (compare with (8.2))

w(1) = 1, dw(1) = 1, w(−1) =
1 + i

3i − 1
, dw(−1) = ∞.

Example 2: The function

E(z) =
(3 − i)z − (1 + i)
−(1 + i)z + 3i − 1

belongs to S0 and satisfies (as in Example 1) E(−1) = i and dE(−1) = 1
2 . Substi-

tuting this parameter into (8.3) we get the function w(z) ≡ 1 which belongs to S0

and satisfies (compare with (8.2))

w(1) = 1, dw(1) = 0, w(−1) = 1, dw(−1) = 0.
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Example 3: The function

E(z) =
[(3 + i)z + 1 − i] e

z−1
z+1 − 2iz − 2

−2(1 + iz)e
z−1
z+1 + (i − 1)z + 3i + 1

belongs to S0 and satisfies E(−1) = i and dE(−1) = 1
2 . Substituting this parameter

into (8.3) we get the function

w(z) =
[(2 − i)z − 1] e

z−1
z+1 − z + i

(z − i)e
z−1
z+1 − iz + 2i − 1

which belongs to S0 and fails to have a boundary nontangential limit at t2 = −1.
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[16] M.G. Krĕın and H. Langer, Über einige Fortsetzungsprobleme, die eng mit der The-
orie hermitescher Operatoren im Raume Πκ zusammenhängen. I. Einige Funktio-
nenklassen und ihre Darstellungen Math. Nachr. 77 (1977), 187–236.

[17] D. Sarason, Angular derivatives via Hilbert space, Complex Variables Theory Appl.,
10(1) (1988), 1–10.

[18] D. Sarason, Sub-Hardy Hilbert Spaces in the Unit Disk, Wiley, New York, 1994.

[19] D. Sarason, Nevanlinna–Pick interpolation with boundary data, Integral Equations
Operator Theory, 30 (1998), 231–250.

[20] J.H. Shapiro, Composition operators and classical function theory, Springer-Verlag,
New York, 1993.

Vladimir Bolotnikov
Department of Mathematics
The College of William and Mary
Williamsburg, VA 23187-8795
USA
e-mail: vladi@math.wm.edu

Alexander Kheifets
Department of Mathematics
University of Massachusetts Lowell
Lowell, MA 01854
USA
e-mail: Alexander Kheifets@uml.edu



Operator Theory:
Advances and Applications, Vol. 165, 121–173
c© 2006 Birkhäuser Verlag Basel/Switzerland

A Truncated Matricial Moment Problem
on a Finite Interval
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Abstract. The main goal of this paper is to study the truncated matricial
moment problem on a finite closed interval by using the FMI method of V.P.
Potapov. The solvability of the problem is characterized by the fact that two
block Hankel matrices built from the data of the problem are nonnegative
Hermitian. An essential step to solve the problem under consideration is to
derive an effective coupling identity between both block Hankel matrices (see
Proposition 2.2). In the case that these block Hankel matrices are both pos-
itive Hermitian we parametrize the set of solutions via a linear fractional
transformation the generating matrix-valued function of which is a matrix
polynomial whereas the set of parameters consists of distinguished pairs of
meromorphic matrix-valued functions.
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Keywords. Matricial moment problem, system of fundamental matrix inequal-
ities of Potapov-type, Stieltjes transform, Stieltjes’ inversion formula.

0. Introduction and preliminaries

In the 1970’s V.P. Potapov developed a particular approach to handle matrix
versions of classical interpolation and moment problems. His method is based
on transforming the original problems into equivalent matrix inequalities. Using
this strategy several matricial interpolation problems could be successfully treated
by V.P. Potapov’s associates (see, e.g., Dubovoj [Du]; Dyukarev/Katsnelson [DK];
Dyukarev [Dy1]; Golinskii [G1], [G2]; Katsnelson [Ka1] - [Ka3]; Kovalishina [Ko1] -
[Ko2]). V.P. Potapov’s approach was enriched by L.A. Sakhnovich who introduced
a method of operator identities which serves to unify the particular instances
of V.P. Potapov’s procedure under one framework (see [IS], [S2], [BS]). These
operator identities have the form

AS − SA∗ = iΠJΠ∗
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and are also called Sylvester identities or Ljapunov identities. In this connection
it should be mentioned that the problem of reducing a nonselfadjoint operator
to a diagonal form has already lead L.A. Sakhnovich to a relation of the above-
described Sylvester-Ljapunov type (see formula (3) in [S1]).

In this paper, we apply V.P. Potapov’s approach in combination with L.A.
Sakhnovich’s method of operator identities to the truncated matrix moment prob-
lem on a finite closed interval. Hereby, we assume that an even number of moment
matrices is prescribed. (The odd case will be treated somewhere else.) The scalar
version of this problem was studied by M.G. Krein [Kr2] (see also [KN, Ch. 4]) us-
ing different methods. An important feature of scalar moment problems connected
with certain subintervals of the real axis is that their solvability is characterized
by the fact that several matrices built from the set of prescribed moments have to
be simultaneously nonnegative Hermitian (see, e.g., Chapters 4,5, and 8 in [KN]).

What concerns the matrix case there can be observed an intensive treatment
of the matricial version of the classical Stieltjes moment problem and somehow
related interpolation problems in various classes of holomorphic matrix functions
(see, e.g., [DK], [Dy1]-[Dy6], [BS], [B]). A closer look at this work shows that the
solvability of the problem under consideration is guaranteed if and only if two
distinguished block matrices built from the data are simultaneously nonnegative
Hermitian. In the case that both block matrices are even positive Hermitian the set
of solutions can be described via an appropriate linear fractional transformation
which is constructed via a clever coupling of the two above mentioned positive
Hermitian block matrices.

According to the matrix moment problem studied in this paper we will again
meet the situation that there are solutions if and only if two block Hankel matrix
built from the data are nonnegative Hermitian. Each of these block Hankel matrices
satisfies a certain Ljapunov type identity (see Proposition 2.1). An essential point
in the paper is to find an effective algebraic coupling between both block Hankel
matrices. The desired coupling will be realized in Proposition 2.2.

A first main result (see Theorem 1.2) indicates that (after Stieltjes transform)
the original matrix moment problem is equivalent to a system of two fundamental
matrix inequalities (FMI) of Potapov type. Our proof of this uses the theory of
the matricial Nevanlinna class of holomorphic functions in the upper half-plane
which have a nonnegative Hermitian imaginary part. (Essential statements on this
class of matrix-valued functions are summarized in an appendix.) In particular,
the generalized inversion formula of Stieltjes-Perron type stated in Theorem 8.6
occupies a key position in our strategy.

Assuming positive Hermitian block Pick matrices we will parametrize the set
of all solutions of the system of FMI’s of Potapov type. (It should be mentioned
that these block Pick matrices are called information blocks by V.P. Potapov and
his associates.) In the first step, we will treat the two inequalities of the system
by the factorization method of V.P. Potapov. The main difficulty is hidden in
the second step. One has to find a suitable coupling between the solutions of
the two single inequalities (see Proposition 6.10). Hereby, we will essentially use
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the algebraic coupling identity obtained in Proposition 2.2. In Section 7, we will
characterize the case that the considered truncated matrix moment problem on a
finite closed interval has a solution (see Theorem 1.3).

1. The moment problem

Throughout this paper, let p, q, and r be positive integers. We will use C, R, N0,
and N to denote the set of all complex numbers, the set of all real numbers, the
set of all nonnegative integers, and the set of all positive integers, respectively. For
every nonnegative integers m and n, let Nm,n designate the set of all integers k
which satisfy m ≤ k ≤ n. The notation C

p×q stands for the set of all complex
p× q matrices. If A ∈ Cq×q, then let Re A and Im A be the real part of A and the
imaginary part of A, respectively: Re A := 1

2 (A + A∗) and Im A := 1
2i (A − A∗).

For all A ∈ Cp×q, we will use A+ to denote the Moore-Penrose inverse of A.
Further, for each A ∈ C

p×q, let ‖A‖E (respectively, ‖A‖) be the Euclidean norm
(respectively, operator norm) of A. The notation C

q×q
H stands for the set of all

Hermitian complex q × q matrices. If A and B are complex q × q matrices and if
we write A ≥ B or B ≤ A, then we mean that A and B are Hermitian complex
matrices for which the matrix A−B is nonnegative Hermitian. Further, let Π+ :=
{w ∈ C : Im w ∈ (0, +∞)}, let Π− := {w ∈ C : Im w ∈ (−∞, 0)}, and we will write
B for the Borel σ-algebra on R (respectively, B̃ for the Borel σ-algebra on C). The
Borel σ-algebra on Cp×q will be denoted by B̃p×q. If X and Y are nonemtpy sets,
if Z is a nonempty subset of X , and if f : X → Y is a mapping, then Rstr.Z f
stands for the restriction of f onto Z. Further, if Z is a nonempty subset of C and
if f is a matrix-valued function defined on Z, then for each z ∈ Z the notation
f∗(z) is short for (f(z))∗.

The matricial generalization of M.G. Krein’s classical moment problem con-
sidered in this paper is formulated using the notion of nonnegative Hermitian q×q
measure. Let Λ be a nonempty set and let A be a σ-algebra on Λ. A matrix-valued
function µ whose domain is the σ-algebra A and whose values belong to the set
C

q×q
≥ of all nonnegative Hermitian complex matrices is called nonnegative Hermit-

ian q × q measure on (Λ, A) if it is countably additive, i.e., if µ satisfies

µ

⎛⎝ ∞⋃
j=1

Aj

⎞⎠ =
∞∑

j=1

µ(Aj)

for each infinite sequence (Aj)∞j=1 of pairwise disjoint sets that belong to A. We
will use Mq

≥(Λ, A) to denote the set of all nonnegative Hermitian q × q measures
on (Λ, A). Let µ = (µjk)q

j,k=1 belong to Mq
≥(Λ, A). Then every entry function µjk

of µ is a complex-valued measure on (Λ, A). For each complex-valued function f
defined on Λ which is, for all j ∈ N1,q and all k ∈ N1,q, integrable with respect to
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the variation |µjk| of µjk, the integral∫
Λ

fdµ :=
(∫

Λ

fdµjk

)q

j,k=1

(1.1)

is defined. We will also write
∫
Λ f(λ)µ(dλ) for this integral.

Now let us formulate the matricial version of M.G. Krein’s moment problem.

Let a and b be real numbers with a < b, let l be a nonnegative inte-
ger, and let (sj)l

j=0 be a sequence of complex q × q matrices. Describe the set
Mq

≥
[
[a, b], B ∩ [a, b]; (sj)l

j=0

]
of all nonnegative Hermitian q×q measures σ which

are defined on the Borel σ-algebra B∩ [a, b] on the interval [a, b] and which satisfy∫
[a,b]

tjσ(dt) = sj

for each integer j with 0 ≤ j ≤ l.

In this paper, we turn our attention to the case of an even number of given
moments, i.e., to the situation that l = 2n+1 holds with some nonnegative integer
n. (The case of an odd number of given moments will be discussed somewhere else.)
According to the idea which was used by M.G. Krein and A.A. Nudelman in the
scalar case q = 1 (see [KN, IV, §7]), by Stieltjes transformation we will translate the
moment problem into the language of the class Rq[a, b] of matrix-valued functions
S : C \ [a, b] → Cq×q which satisfy the following four conditions:

(i) S is holomorphic in C \ [a, b].
(ii) For each w ∈ Π+, the matrix Im S(w) is nonnegative Hermitian.
(iii) For each t ∈ (−∞, a), the matrix S(t) is nonnegative Hermitian.
(iv) For each t ∈ (b, +∞), the matrix −S(t) is nonnegative Hermitian.

Let us observe that, according to the investigations of M.G. Krein and A.A.
Nudelman, one can show that the class R̃q[a, b] of all matrix-valued functions
S : Π+ ∪ (R \ [a, b]) → Cq×q which satisfy (ii), (iii), (iv), and
(i′) : S is holomorphic in Π+ and continuous in H := Π+ ∪ (R \ [a, b]).

admits the representation R̃q[a, b] = {Rstr.HS : S ∈ Rq[a, b]}.
The following theorem describes the interrelation between the set

Mq
≥([a, b], B ∩ [a, b])

of all nonnegative Hermitian q × q measures defined on B ∩ [a, b] and the set
Rq[a, b].

Theorem 1.1.

(a) For each σ ∈ Mq
≥ ([a, b], B ∩ [a, b]), the matrix-valued function S[σ] : C \

[a, b] → Cq×q defined by

S[σ](z) :=
∫

[a,b]

1
t − z

σ(dt) (1.2)

belongs to Rq[a, b].
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(b) For each S ∈ Rq[a, b], there exists a unique nonnegative Hermitian measure
σ ∈ Mq

≥ ([a, b], B ∩ [a, b]) such that

S(z) =
∫

[a,b]

1
t − z

σ(dt) (1.3)

is satisfied for all z ∈ C \ [a, b].

Theorem 1.1 can be proved by modifying the proof in the case q = 1. This
scalar case is considered in [KN, Appendix, Ch. 3]. According to Theorem 1.1, the
mapping f : Mq

≥ ([a, b], B ∩ [a, b]) → Rq[a, b] given by f(σ) := S[σ] is bijective.
For every nonnegative Hermitian measure σ ∈ Mq

≥ ([a, b], B ∩ [a, b]) , the matrix-
valued function S[σ] : C \ [a, b] → Cq×q defined by (1.2) is called the Stieltjes
transform of σ. Conversely, if a matrix-valued function S ∈ Rq[a, b] is given, then
the unique σ ∈ Mq

≥ ([a, b], B ∩ [a, b]) which satisfies (1.3) for all z ∈ C \ [a, b] is
said to be the Stieltjes measure of S.

With these notations the matricial version of M.G. Krein’s moment problem
can be reformulated:

Let a and b be real numbers with a < b, let l be a nonnegative integer,
and let (sj)l

j=0 be a sequence of complex q × q matrices. Describe then the set
Rq

[
[a, b]; (sj)l

j=0

]
of the Stieltjes transforms of all nonnegative Hermitian mea-

sures which belong to Mq
≥
[
[a, b], B ∩ [a, b]; (sj)l

j=0

]
.

The consideration of this reformulated version of the moment problem has
the advantage that one can apply function-theoretic methods. Because of

Rq

[
[a, b]; (sj)l

j=0

]
⊆ Rq[a, b]

it is an interpolation problem in the class Rq[a, b]. Note that

Mq
≥
[
[a, b], B ∩ [a, b]; (sj)l

j=0

]
�= ∅

if and only if Rq

[
[a, b]; (sj)l

j=0

]
�= ∅. As already mentioned in this paper we will

consider the case that an even number of moments is given. We will show that, for
every nonnegative integer n, the set Rq

[
[a, b]; (sj)2n+1

j=0

]
can be characterized as the

set of solutions of an appropriately constructed system of two fundamental matrix
inequalities of Potapov-type. To state this result we give some further notation. We
will use Iq to designate the identity matrix which belongs to C

q×q. The notation
0p×q stands for the null matrix which belongs to Cp×q. If the size of an identity
matrix or a null matrix is obvious, we will omit the indexes. For all j ∈ N0 and all
k ∈ N0, let δjk be the Kronecker symbol, i.e., let δjk := 1 if j = k and δjk := 0 if
j �= k. For each n ∈ N0, let

Tn := (δj,k+1Iq)n
j,k=0 (1.4)

and let RTn : C → C(n+1)q×(n+1)q be defined by

RTn(z) := (I − zTn)−1. (1.5)
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Observe that, for each n ∈ N0, the matrix-valued function RTn can be represented
via

RTn(z) =

⎛⎜⎜⎜⎜⎜⎝
Iq 0 0 . . . 0 0
zIq Iq 0 . . . 0 0
z2Iq zI Iq . . . 0 0

...
...

...
. . .

...
...

znIq zn−1Iq zn−2Iq . . . zIq Iq

⎞⎟⎟⎟⎟⎟⎠ (1.6)

for each z ∈ C. Let v0 := Iq and, for each n ∈ N, let

vn :=
(

Iq

0nq×q

)
. (1.7)

For each n ∈ N0 and each sequence (sj)2n+1
j=0 of complex q×q matrices, we will call

H̃1,n :=

⎛⎜⎜⎜⎜⎜⎝
s0 s1 s2 . . . sn

s1 s2 s3 . . . sn+1

s2 s3 s4 . . . sn+2

...
...

...
...

sn sn+1 sn+2 . . . s2n

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝respectively, H̃2,n :=

⎛⎜⎜⎜⎜⎜⎝
s1 s2 s3 . . . sn+1

s2 s3 s4 . . . sn+2

s3 s4 s5 . . . sn+3

...
...

...
...

sn+1 sn+2 sn+3 . . . s2n+1

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
the first (respectively, second) block Hankel matrix associated with (sj)2n+1

j=0 . More-
over, for all real numbers a and b which satisfy a < b, for each nonnegative integer
n, and for each sequence (sj)2n+1

j=0 of complex q × q matrices, we will call

H1,n := −aH̃1,n + H̃2,n (respectively, H2,n := bH̃1,n − H̃2,n) (1.8)

the first (respectively, second) block Hankel matrix associated with the interval [a, b]
and the sequence (sj)2n+1

j=0 . For each n ∈ N0 and each sequence (sj)2n+1
j=0 of complex

q × q matrices, one can easily see that the matrices

ũn := −

⎛⎜⎜⎜⎝
s0

s1

...
sn

⎞⎟⎟⎟⎠ , u1,n := ũn − aTnũn, and u2,n := −ũn + bTnũn (1.9)

satisfy the identities ũn = −H̃1,nvn, u1,n = [RTn(a)]−1ũn, u2,n = −[RTn(b)]−1ũn,
and RTn(a)u1,n = −RTn(b)u2,n.

Now we formulate the first main result of this paper.
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Theorem 1.2. Let a and b be real numbers which satisfy a < b, let n be a non-
negative integer, and let (sj)2n+1

j=0 be a sequence of complex q × q matrices. Let
S : C\[a, b] → Cq×q be a q×q matrix-valued function, and let S̃1 : C\[a, b] → Cq×q

and S̃2 : C \ [a, b] → Cq×q be defined by

S̃1(z) := (z − a)S(z) and S̃2(z) := (b − z)S(z). (1.10)

Then S belongs to Rq

[
[a, b]; (sj)2n+1

j=0

]
if and only if the following conditions are

satisfied:
(i) S is holomorphic in C \ [a, b].
(ii) For each z ∈ C \ R, the matrices

K
[S]
1,n(z) :=

⎛⎜⎝ H1,n RTn(z)(vnS̃1(z) − u1,n)(
RTn(z)(vnS̃1(z) − u1,n)

)∗
S̃1(z)−S̃∗

1 (z)
z−z

⎞⎟⎠ (1.11)

and

K
[S]
2,n(z) :=

⎛⎜⎝ H2,n RTn(z)(vnS̃2(z) − u2,n)(
RTn(z)(vnS̃2(z) − u2,n)

)∗
S̃2(z)−S̃∗

2 (z)
z−z

⎞⎟⎠ (1.12)

are both nonnegative Hermitian.

We will use Theorem 1.2 in order to describe the case that Mq
≥
[
[a, b]; (sj)2n+1

j=0

]
�= ∅.

More precisely, in Section 7, we will prove the following result which in the scalar
case q = 1 is due to M.G. Krein (see [Kr2, Theorem A2r+1, p. 30], [KN, Theorem
2.1, p. 91]).

Theorem 1.3. Let a and b be real numbers with a < b, let n be a nonnega-
tive integer, and let (sj)2n+1

j=0 be a sequence of complex q × q matrices. Then
Mq

≥
[
[a, b], B ∩ [a, b]; (sj)2n+1

j=0

]
is nonempty if and only if the block Hankel ma-

trices H1,n and H2,n are both nonnegative Hermitian.

Let the assumptions of Theorem 1.2 be satisfied. Then we will say that the
matrix-valued function S : C \ [a, b] → Cq×q is a solution of the system of the
fundamental matrix inequalities of Potapov-type associated with [a, b] and (sj)2n+1

j=0

if S is holomorphic in C \ [a, b] and if the matrix inequalities K
[S]
1,n(z) ≥ 0 and

K
[S]
2,n(z) ≥ 0 are satisfied for every choice of z in C \R. Further, if a complex q× q

matrix-valued function S defined on C \ [a, b] is given, we will then continue to
use the notations S̃1 and S̃2 to denote the matrix-valued functions which are also
defined on C \ [a, b] and which are given by (1.10). We call S̃1 (respectively, S̃2)
the first (respectively, second) matrix-valued function associated canonically with
S. Note that M.G. Krein and A.A. Nudelman [KN, Appendix, Ch. 3] stated that,
in the case q = 1, the functions S̃1 and S̃2 can be used to characterize the class
R1[a, b]. This result will be proved below for the class Rq[a, b] (see Lemma 3.6).
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At the end of this section, let us note that in an appendix (Section 8) we will
summarize some results on the class Rq of all matrix-valued functions F : Π+ →
Cq×q which are holomorphic in Π+ and which satisfy Im F (w) ≥ 0 for all w ∈ Π+.
Every function F which belongs to Rq admits a unique integral representation
which in the scalar case is due to R. Nevanlinna (see Theorem 8.1). In view of this
integral representation, the subclasses R′

q and R0,q of Rq are of particular interest
(see Section 8).

2. Main algebraic identities

In this section we will single out essential identities connecting the block matrices
introduced in Section 1 (see formulas (1.4)–(1.9)).

Observe that if n ∈ N0 and if (sj)2n+1
j=0 is a sequence of complex q×q matrices

such that H1,n ≥ 0 and H2,n ≥ 0, then the equation

H̃1,n =
1

b − a
(H1,n + H2,n) (2.1)

shows that H̃1,n is nonnegative Hermitian as well. Moreover, from H∗
1,n = H1,n,

H∗
2,n = H2,n, and H̃∗

1,n = H̃1,n it follows H̃∗
2,n = H̃2,n and s∗j = sj for each

j ∈ N0,2n+1.

Proposition 2.1. (Ljapunov type identities) Let n ∈ N0 and let (sj)2n+1
j=0 be a

sequence of Hermitian complex q × q matrices. For each k ∈ {1, 2}, then

Hk,nT ∗
n − TnHk,n = uk,nv∗n − vnu∗

k,n. (2.2)

Proof. Since H1,n and H2,n are Hermitian block Hankel matrices which satisfy

TnH1,nvn = −u1,n − vns0 and TnH2,nvn = −u2,n + vns0

equation (2.2) follows by a straightforward calculation. �

Now we state an essential coupling formula between the block Hankel matrices
H1,n and H2,n.

Proposition 2.2. (Coupling Identity) Let (sj)2n+1
j=0 be a sequence of Hermitian com-

plex q × q matrices. Then

H2,n + [RTn(b)]−1RTn(a)H1,n = (a − b)RTn(a)vnu∗
1,n[RTn(a)]∗. (2.3)

Proof. For every choice of w and ζ in C, the identities [RTn(w)]−1 = I −wTn and

(I − ζTn)RTn(w) = RTn(w) · (I − ζTn) (2.4)

hold obviously. Therefore we can conclude

H2,n + [RTn(b)]−1RTn(a)H1,n = RTn(a) [(I − aTn)H2,n + (I − bTn)H1,n] . (2.5)
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From (1.8) we obtain

(I − aTn)H2,n + (I − bTn)H1,n = (b − a)(H̃1,n − TnH̃2,n)

= (b − a)(H̃1,n − TnH̃2,n)(I − aT ∗
n)[RTn(a)]∗

= (b − a)
[
H̃1,n − aH̃1,nT ∗

n − TnH̃2,n + aTnH̃2,nT ∗
n

]
[RTn(a)]∗. (2.6)

Since sj = s∗j holds for each integer j with 0 ≤ j ≤ 2n + 1, a straightforward
calculation yields

H̃1,n − aH̃1,nT ∗
n − TnH̃2,n + aTnH̃2,nT ∗

n = −vnu∗
1,n. (2.7)

From (2.5), (2.6), and (2.7) we get finally (2.3). �

In the paper [DC] the first two authors studied the problem of Nevanlinna-
Pick interpolation in the class Rq[a, b] by using V.P. Potapov’s method. A closer
look at the paper [DC] shows that there are direct analogues of Propositions 2.1
and 2.2, respectively. More precisely, Proposition 2.1 corresponds to an unnum-
bered formula at the top of p. 1271 in [DC]. Moreover, formula (11) at p. 1271 in
[DC] is the direct analogue of Proposition 2.2. It should be observed that in the
context of interpolation problems in the Stieltjes class a similar situation already
occurred. What concerns analogues of Proposition 2.1 we refer to formulas (4) and
(5) in [Dy2] and formula (2.8) in [Dy3], whereas coupling identities of fundamental
importance are stated in equation formula (1) of [Dy2] and formula (2.1) of [Dy3].

3. From the moment problem to the system of fundamental matrix
inequalities of Potapov-type

In this section, we will show that every matrix-valued function which belongs to
Rq

[
[a, b]; (sj)2n+1

j=0

]
is a solution of the system of the fundamental matrix inequali-

ties associated with [a, b] and (sj)2n+1
j=0 . First we recall some results of the integra-

tion theory of nonnegative Hermitian measures (for details, see [Kt] and [R]).
Let (Λ, A) be a measurable space. For each subset A of Λ, we will write 1A for

the indicator function of the set A (defined on Λ). If ν is a nonnegative real-valued
measure on (Λ, A), then let p× q−L1(Λ, A, ν; C) denote the class of all A−Bp×q-
measurable complex p× q matrix-valued functions Φ = (ϕjk) j=1,...,p

k=1,...,q
defined on Λ

for which every entry function ϕjk is integrable with respect to ν.
Now let µ ∈ Mq

≥(Λ, A). Then every entry function µjk of µ = (µjk)n
j,k=1

is a complex-valued measure on (Λ, A). In particular, µ11, µ22, . . . , µqq are finite
nonnegative real-valued measures on (Λ, A). Moreover, µ is absolutely continuous
with respect to the so-called trace measure τ :=

∑q
j=1 µjj of µ, i.e., for each
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A ∈ A which satisfies τ(A) = 0 it follows µ(A) = 0q×q. The corresponding Radon-
Nikodym derivatives dµjk

dτ are thus well defined up to sets of zero τ -measure. Setting

µ′
τ :=

(
dµjk

dτ

)q

j,k=1
we have then

µ(A) =
(∫

A

dµjk

dτ
dτ

)q

j,k=1

=
∫

A

µ′
τdτ

for each A ∈ A. An ordered pair [Φ, Ψ] consisting of an A − B̃p×q-measurable
complex p × q matrix-valued function Φ = (ϕjk) j=1,...,p

k=1,...,q
defined on Λ and an

A − B̃p×q-measurable complex r × q matrix-valued function Ψ = (ψlk) l=1,...,r
k=1,...,q

defined on Λ is said to be left-integrable with respect to µ if Φµ′
τΨ∗ belongs to

p× q −L1(Λ, A, µ; C). In this case, for each A ∈ A, the ordered pair [1AΦ, 1AΨ] is
also left-integrable with respect to µ and the integral of [Φ, Ψ] over A is defined by∫

A

ΦdµΨ∗ :=
∫

Λ

(1AΦ)µ′
τ (1AΨ)∗dτ.

We will also write
∫

A Φ(λ)µ(dλ)Ψ∗(λ) for this integral. Let us consider an arbitrary
σ-finite nonnegative real-valued measure ν on (Λ, A) such that µ is absolutely

continuous with respect to ν and let µ′
ν :=

(
dµjk

dν

)q

j,k=1
be a version of the matrix-

valued function of the corresponding Radon-Nikodym derivatives. For each ordered
pair [Φ, Ψ] of an A − B̃p×q-measurable matrix-valued function Φ : Λ → Cp×q and
an A − B̃r×q-measurable matrix-valued function Ψ : Λ → Cr×q which is left-
integrable with respect to µ and each A ∈ A, then∫

A

ΦdµΨ∗ =
∫

A

(1AΦ)µ′
ν(1AΨ)∗dν

holds. We will use p× q−L2(Λ, A, µ) to denote the set of all A− B̃p×q-measurable
mappings Φ : Λ → Cp×q for which the pair [Φ, Φ] is left-integrable with respect to
µ. Note that if Φ ∈ p × q − L2(Λ, A, µ) and if Ψ ∈ r × q − L2(Λ, A, µ), then the
pair [Φ, Ψ] is left-integrable with respect to µ. If Φ : Λ → Cp×q is an A − B̃p×q-
measurable mapping for which a set N ∈ A with µ(N) = 0 and a nonnegative real
number C exist such that ‖Φ(λ)‖ ≤ C holds for each λ ∈ Λ \ N , then Φ belongs
to p× q −L2(Λ, A, µ). For all complex-valued functions f and g which are defined
on Λ and for which the function h := fg is integrable with respect to |µjk| for
every choice of j and k in N1,q, the pair [fIq, gIq] is left-integrable with respect to
µ and, in view of (1.1), ∫

A

(fIq)dµ(gIq)∗ =
∫

A

(fg)dµ

holds for all A ∈ A.
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Remark 3.1. Let µ ∈ Mq
≥(Λ, A) and let Φ ∈ p× q − L2(Λ, A, µ). Then µ[Φ] : A →

Cp×p given by

µ[Φ](A) :=
∫

A

ΦdµΦ∗

belongs to Mp
≥(Λ, A). If Ψ : Λ → Cr×p is A − B̃r×p-measurable and if Θ : Λ →

Ct×p is A − B̃t×p-measurable, then [Ψ, Θ] is left-integrable with respect to µ[Φ] if
and only if [ΨΦ, ΘΦ] is left-integrable with respect to µ. Moreover, in this case,∫

Λ

Ψdµ[Φ]Θ∗ =
∫

Λ

ΨΦdµ(ΘΦ)∗.

Remark 3.2. Let µ ∈ Mq
≥(Λ, A) and let C := {λ ∈ Λ : {λ} ∈ A}. Then one can

easily see that Cµ := {λ ∈ C : µ({λ}) �= 0} is a countable subset of Λ.

Throughout this paper, we assume now that a and b are real numbers which
satisfy a < b. Let us turn our attention to nonnegative Hermitian q × q measures
on the Borel σ-algebra B ∩ [a, b] on the closed finite interval [a, b]. For each σ ∈
Mq

≥ ([a, b], B ∩ [a, b]) and each j ∈ N0, let

s
[σ]
j :=

∫
[a,b]

tjσ(dt). (3.1)

Further, for all σ ∈ Mq
≥ ([a, b], B ∩ [a, b]) and all m ∈ N0, let H̃

[σ]
1,m (respectively,

H̃
[σ]
2,m) denote the first (respectively, second) block Hankel matrix associated with

(s[σ]
j )2m+1

j=0 and let H
[σ]
1,m (respectively, H [σ]

2,m) be the first (respectively, second) block

Hankel matrix associated with the interval [a, b] and the sequence (s[σ]
j )2m+1

j=0 , i.e.,

the matrices H̃
[σ]
1,m, H̃

[σ]
2,m, H

[σ]
1,m, and H

[σ]
2,m are given by

H̃
[σ]
1,m := (s[σ]

j+k)m
j,k=0, H̃

[σ]
2,m := (s[σ]

j+k+1)
m
j,k=0, (3.2)

H
[σ]
1,m := −aH̃

[σ]
1,m + H̃

[σ]
2,m, and H

[σ]
2,m := bH̃

[σ]
1,m − H̃

[σ]
2,m. (3.3)

For each m ∈ N0, let the (m + 1)q × q matrix polynomial Em be defined by

Em(z) :=

⎛⎜⎜⎜⎜⎝
Iq

zIq

z2Iq

. . .
zmIq

⎞⎟⎟⎟⎟⎠ . (3.4)

Obviously, Em(0) = vm for each m ∈ N0. Further, for each m ∈ N0 and each
z ∈ C, from (1.6) and (1.7) it follows immediately

Em(z) = RTm(z)vm. (3.5)

Now we state important integral representations for the block Hankel matri-
ces introduced in (3.2) and (3.3).
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Lemma 3.3. Let σ ∈ Mq
≥ ([a, b], B ∩ [a, b]). For each m ∈ N0, then∫

[a,b]

Em(t)σ(dt)E∗
m(t) = H̃

[σ]
1,m,

∫
[a,b]

tEm(t)σ(dt)E∗
m(t) = H̃

[σ]
2,m,

∫
[a,b]

√
t − aEm(t)σ(dt)

(√
t − aEm(t)

)∗
= H

[σ]
1,m,

and ∫
[a,b]

√
b − tEm(t)σ(dt)

(√
b − tEm(t)

)∗
= H

[σ]
2,m.

In particular, for each m ∈ N0, the matrices H̃
[σ]
1,m, H

[σ]
1,m, and H

[σ]
2,m are nonnega-

tive Hermitian, and the matrix H̃
[σ]
2,m is Hermitian.

Lemma 3.3 can be proved by straightforward calculation. We omit the details.

From Lemma 3.3 we get immediately a necessary condition for the existence
of a solution of the matricial version of M.G. Krein’s moment problem.

Remark 3.4. Let n ∈ N0 and let (sj)2n+1
j=0 be a sequence of complex q × q matrices

such that Mq
≥
[
[a, b], B ∩ [a, b]; (sj)2n+1

j=0

]
�= ∅. From Lemma 3.3 one can easily see

then that all the matrices H̃1,n, H1,n, and H2,n are nonnegative Hermitian and
that the matrix H̃2,n is Hermitian. In particular, s∗j = sj for all j ∈ N0,2n+1.

Lemma 3.5. Let S ∈ Rq[a, b], and let σ be the Stieltjes measure of S.

(a) For z ∈ C \ R,

S̃1(z) − S̃∗
1 (z)

z − z
=

∫
[a,b]

(√
t − a

t − z
Iq

)
σ(dt)

(√
t − a

t − z
Iq

)∗
(3.6)

and

S̃2(z) − S̃∗
2(z)

z − z
=

∫
[a,b]

(√
b − t

t − z
Iq

)
σ(dt)

(√
b − t

t − z
Iq

)∗
. (3.7)

(b) The matrix-valued functions S̃1 and S̃2 are both holomorphic in C\ [a, b] and,
for each w ∈ Π+, the matrices Im S̃1(w) and Im S̃2(w) are both nonnegative
Hermitian.

Proof. (a) Let z ∈ C \ R. In view of (1.3) and (1.10) we obtain

S̃1(z) − S̃∗
1 (z)

z − z
=

1
z − z

∫
[a,b]

(
z − a

t − z
− z − a

t − z

)
σ(dt).

Since
z − a

t − z
− z − a

t − z
=

(z − z)(t − a)
(t − z)(t − z)

is valid for each t ∈ [a, b], it follows (3.6). Analogously, (3.7) can be verified.
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(b) Obviously, the right-hand sides of (3.6) and (3.7) are both nonnegative
Hermitian for each z ∈ C \ R. For each k ∈ {1, 2} and each z ∈ C \ R, we have

Im S̃k(z) =
S̃k(z) − S̃∗

k(z)
z − z

· Im z. (3.8)

Thus the assertion stated in part (b) follows immediately. �

If S : C\[a, b] → Cq×q is given, then, as already mentioned in [KN, Appendix,
Ch. 3] for the case q = 1, the first matrix-valued function S̃1 and the second matrix-
valued function S̃2 associated canonically with S can be used to characterize the
case that S belongs to the class Rq[a, b].

Lemma 3.6. Let S be a complex q × q matrix-valued function defined on C \ [a, b].
Then the following statements are equivalent:

(i) S belongs to Rq[a, b].
(ii) The matrix-valued functions S̃1 and S̃2 are both holomorphic in C \ [a, b] and

the inequalities Im S̃1(w) ≥ 0 and Im S̃2(w) ≥ 0 hold for all w ∈ Π+.

Proof. Lemma 3.5 shows that (ii) is necessary for (i). Now suppose (ii). Since

S(z) =
1

b − a

(
S̃1(z) + S̃2(z)

)
is satisfied for all z ∈ C \ [a, b], the function S is holomorphic in C \ [a, b] and
satisfies Im S(w) ≥ 0 for all w ∈ Π+. Now let t ∈ (−∞, a). Then we get

Im S(t) = lim
ε→0+0

Im S(t + iε) ≥ 0 (3.9)

and
(t − a) Im S(t) = Im S̃1(t) = lim

ε→0+0
Im S̃1(t + iε) ≥ 0. (3.10)

Since t − a < 0 holds, from (3.9) and (3.10) we obtain Im S(t) = 0. Further, for
each ε ∈ (0, +∞) we have then

0 ≤ Im S̃1(t + iε) = (t − a) Im S(t + iε) + ε ReS(t + iε) ≤ ε ReS(t + iε)

and consequently

S(t) = Re S(t) = lim
ε→0+0

Re S(t + iε) ≥ 0.

Similarly, it follows −S(x) ≥ 0 for all x ∈ (b, +∞). Hence, (i) is verified. �

Let S : C \ [a, b] → Cq×q be holomorphic in C \ [a, b]. Then Lemma 3.6 and
(3.8) show that if the right lower q × q blocks of the matrices K

[S]
1,n and K

[S]
2,n,

given by (1.11) and (1.12), are nonnegative Hermitian for each z ∈ Π+, then the
function S necessarily belongs to Rq[a, b]. Thus the inequalities K

[S]
1,n(z) ≥ 0 and

K
[S]
2,n(z) ≥ 0 holding for each z ∈ Π+ ensure that S belongs to Rq[a, b].

Now we are going to discuss the right upper (n+1)q×q blocks of the matrices
K

[S]
1,n(z) and K

[S]
2,n(z). Before doing this let us observe that, in view of (1.4) and
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(1.6), for each n ∈ N0 the matrix-valued function RTn : C → C
(n+1)q×(n+1)q given

by (1.5) can be represented via

RTn(z) =
n∑

j=0

zjT j
n (3.11)

for all z ∈ C and that the identities

RTn(w)RTn(z) = RTn(z)RTn(w), (I − wTn)RTn(z) = RTn(z)(I − wTn),

and

RTn(w) − RTn(z) = RTn(z)
(
(I − zTn) − (I − wTn)

)
RTn(w)

= RTn(z)(wTn − zTn)RTn(w) = (w − z)RTn(z)TnRTn(w) (3.12)

are satisfied for every choice of w and z in C.

Lemma 3.7. Let n ∈ N0 and let (sj)2n+1
j=0 be a sequence of complex q × q matrices

such that Mq
≥
[
[a, b], B∩[a, b]; (sj)2n+1

j=0

]
is nonempty. Let S ∈ Rq

[
[a, b]; (sj)2n+1

j=0

]
and let σ be the Stieltjes measure of S. For each z ∈ C \ R, then

K
[S]
1,n(z) =

∫
[a,b]

√
t − a

(
En(t)

1
t−z

Iq

)
σ(dt)

[√
t − a

(
En(t)

1
t−z

Iq

)]∗
and

K
[S]
2,n(z) =

∫
[a,b]

√
b − t

(
En(t)

1
t−z

Iq

)
σ(dt)

[√
b − t

(
En(t)

1
t−z

Iq

)]∗
.

Proof. From S ∈ Rq

[
[a, b]; (sj)2n+1

j=0

]
we get σ ∈ Mq

≥
[
[a, b], B ∩ [a, b]; (sj)2n+1

j=0

]
.

In view of Lemma 3.3 and Lemma 3.5 it is sufficient to verify that

RTn(z)[vnS̃1(z) − u1,n] =
∫

[a,b]

(√
t − aEn(t)

)
σ(dt)

(√
t − a

t − z
Iq

)∗
(3.13)

and

RTn(z)[vnS̃2(z) − u2,n] =
∫

[a,b]

(√
b − tEn(t)

)
σ(dt)

(√
b − t

t − z
Iq

)∗
(3.14)

are satisfied for all z ∈ C\R. Let z ∈ C\R. Using (1.10) and (1.9) we can conclude

RTn(z)[vnS̃1(z) − u1,n] = (z − a)RTn(z)vnS(z) − RTn(z)(I − aTn)un. (3.15)

In view of (1.3) we have

S(z) =
∫

[a,b]

(
1

t − z
Iq

)
σ(dt)I∗q . (3.16)

From Lemma 3.3, (1.5), and (1.7) we see immediately that

un = −H̃1,nvn = −
∫

[a,b]

En(t)σ(dt)I∗q = −
∫

[a,b]

RTn(t)vnσ(dt)I∗q (3.17)
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holds. Because of (3.15), (3.16), and (3.17) we infer then

RTn(z)[vnS̃1(z) − u1,n]

=
∫

[a,b]

z − a

t − z
RTn(z)vnσ(dt)I∗q +

∫
[a,b]

RTn(z)(I − aTn)RTn(t)vnσ(dt)I∗q . (3.18)

For each real number t, from (3.12) we obtain

RTn(z)(I − aTn)RTn(t) = RTn(z)RTn(t) − a

t − z

(
RTn(t) − RTn(z)

)
. (3.19)

Consequently, equations (3.18) and (3.19) provide us

RTn(z)
(
vnS̃1(z) − u1,n

)
=

∫
[a,b]

(
1

t − z
[zRTn(z) + (t − z)RTn(z)RTn(t) − aRTn(t)] vn

)
σ(dt)I∗q . (3.20)

Using (1.5), for every choice of t in R, we obtain

zRTn(z) + (t − z)RTn(z)RTn(t) = RTn(z)
(
z(I − tTn) + (t − z)I

)
RTn(t)

= RTn(z)t(I − zTn)RTn(t) = tRTn(t). (3.21)

From (3.20) and (3.21) it follows

RTn(z)
(
vnS̃1(z) − u1,n

)
=

∫
[a,b]

t − a

t − z
RTn(t)vnσ(dt)I∗q

=
∫

[a,b]

√
t − aRTn(t)vnσ(dt)

(√
t − a

t − z
Iq

)∗
. (3.22)

The equations (3.22) and RTnvn = En imply (3.13). Analogously, (3.14) can be
proved. �

If n ∈ N0 and if (sj)2n+1
j=0 is a sequence of complex q×q matrices, then we will

use the notation Pq

[
[a, b]; (sj)2n+1

j=0

]
to denote the set of all solutions of the system

of the fundamental matrix inequalities of Potapov-type associated with [a, b] and
(sj)2n+1

j=0 , i.e., the set of all matrix-valued functions S : C \ [a, b] → Cq×q which are

holomorphic in C \ [a, b] and for which the matrices K
[S]
1,n(z) and K

[S]
2,n(z) are both

nonnegative Hermitian for every choice of z in C \ R.

Proposition 3.8. Let n ∈ N0 and let (sj)2n+1
j=0 be a sequence of complex q × q

matrices. Then Rq

[
[a, b]; (sj)2n+1

j=0

]
is a subset of the set Pq

[
[a, b]; (sj)2n+1

j=0

]
of

all solutions of the system of the fundamental matrix inequalities of Potapov-type
associated with [a, b] and (sj)2n+1

j=0 .

Proof. Apply Lemma 3.7. �
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4. From the system of fundamental matrix inequalities to the
moment problem

Throughout this section, we again assume that a and b are real numbers which
satisfy a < b. Further, let n be a nonnegative integer and let (sj)2n+1

j=0 be a se-
quence of complex q × q matrices. We will continue to work with the notations
given above. In particular, if a matrix-valued function S : C \ [a, b] → Cq×q is
given, then let S̃1 (respectively, S̃2) be the first (respectively, second) matrix-
valued function which is associated canonically with S (see (1.10)). We will again
use the notation Pq

[
[a, b]; (sj)2n+1

j=0

]
to denote the set of all solutions of the system

of the fundamental matrix inequalities of Potapov-type associated with [a, b] and
(sj)2n+1

j=0 .

Remark 4.1. If Pq

[
[a, b]; (sj)2n+1

j=0

]
is nonempty, then H1,n ≥0, H2,n ≥0, H̃1,n≥0,

H̃∗
2,n = H̃2,n, and in particular s∗j = sj for each j ∈ N0,2n+1.

Remark 4.2. Suppose Pq

[
[a, b]; (sj)2n+1

j=0

]
�= ∅. Let S ∈ Pq

[
[a, b]; (sj)2n+1

j=0

]
. Then

S̃1 and S̃2 are both holomorphic in C \ [a, b]. Moreover, for each k ∈ {1, 2} and
each w ∈ Π+, from K

[S]
k,n(w) ≥ 0 and (3.8) it follows immediately Im S̃k(w) ≥ 0.

Lemma 4.3. Pq

[
[a, b]; (sj)2n+1

j=0

]
⊆ Rq[a, b] .

Proof. Use Remark 4.2 and Lemma 3.6. �

Lemma 4.4. Suppose that s∗j = sj holds for each j ∈ N0,2n+1. Let S : C \ [a, b] →
Cq×q be a matrix-valued function. For each k ∈ {1, 2}, let Fk,n : C \ [a, b] →
C(n+1)q×(n+1)q be defined by

Fk,n(w) := Hk,nT ∗
nR∗

Tn
(w) + RTn(w)

(
vnS̃k(w) − uk,n

)
v∗nR∗

Tn
(w). (4.1)

For each k ∈ {1, 2} and for every choice of z in C \ R, then

�n(z)K [S]
k,n(z) �∗

n (z) = Q
[S]
k,n(z) (4.2)

and
Γn(z)Q[S]

k,n(z)Γ∗
n(z) = K

[S]
k,n(z) (4.3)

where K
[S]
k,n(z), Q[S]

k,n(z),�n(z), and Γn(z) are given by (1.11), (1.12),

Q
[S]
k,n(z) :=

(
Hk,n Fk,n(z)

F ∗
k,n(z) Fk,n(z)−F∗

k,n(z)

z−z

)
, (4.4)

�n(z) :=
(

I(n+1)q 0
RTn(z)Tn RTn(z)vn

)
, (4.5)

and

Γn(z) :=
(

I(n+1)q 0
−v∗nRTn(z)Tn v∗n

)
.
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Proof. Let k ∈ {1, 2} and let z ∈ C \ R. First we verify (4.2). Let Q̂
[S]
k,n(z) :=

�n(z)K [S]
k,n(z) �∗

n (z) and let Q̂
[S]
k,n be partitioned into (n + 1)q × (n + 1)q blocks

via

Q̂
[S]
k,n(z) =

(
A(z) B(z)
C(z) D(z)

)
.

Obviously, A(z) = Hk,n, B(z) = Fk,n(z), and C(z) = F ∗
k,n(z). Moreover, from

(1.11), (1.12), and (4.5) we see easily that

D(z) = (RTn(z) · Tn, RTn(z)vn)

·

⎛⎝ Hk,n RTn(z)
(
vnS̃k(z) − uk,n

)
(
RTn(z)

(
vnS̃k(z) − uk,n

))∗
S̃k(z)−S̃∗

k(z)
z−z

⎞⎠(
T ∗

nR∗
Tn

(z)
v∗nR∗

Tn
(z)

)

= RTn(z)TnHk,nT ∗
nR∗

Tn
(z) + RTn(z)vn

S̃k(z) − S̃∗
k(z)

z − z
v∗nR∗

Tn
(z)

+RTn(z)TnRTn(z)
(
vnS̃k(z) − uk,n

)
v∗nR∗

Tn
(z)

+
(
RTn(z)TnRTn(z)

(
vnS̃k(z) − uk,n

)
v∗nR∗

Tn
(z)

)∗
.

Using (3.12) we can conclude

RTn(z)TnRTn(z)
(
vnS̃k(z) − uk,n

)
v∗nR∗

Tn
(z)

=
RTn(z) − RTn(z)

z − z

(
vnS̃k(z) − uk,n

)
v∗nR∗

Tn
(z)

=
1

z − z

(
RTn(z)

(
vnS̃k(z) − uk,n

)
v∗nR∗

Tn
(z)

−RTn(z)vnS̃k(z)v∗nR∗
Tn

(z) + RTn(z)uk,nv∗nR∗
Tn

(z)
)

and therefore

D(z) =
1

z − z

(
(z − z)RTn(z)TnHk,nT ∗

nR∗
Tn

(z)

+RTn(z)
(
vnS̃k(z) − uk,n

)
v∗nR∗

Tn
(z)

+RTn(z)uk,nv∗nR∗
Tn

(z) − RTn(z)vn

(
vnS̃k(z) − uk,n

)∗
R∗

Tn
(z)

−RTn(z)vnu∗
k,nR∗

Tn
(z)

)
. (4.6)

Proposition 2.1 provides us

RTn(z)uk,nv∗nR∗
Tn

(z) − RTn(z)vnu∗
k,nR∗

Tn
(z)

= RTn(z)(uk,nv∗n − vnu∗
k,n)R∗

Tn
(z)

= RTn(z)(Hk,nT ∗
n − TnHk,n)R∗

Tn
(z). (4.7)
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Hence from (4.6) and (4.7) we infer

D(z) =
1

z − z

(
RTn(z)(I − zTn)Hk,nT ∗

nR∗
Tn

(z)

−RTn(z)TnHk,n(I − zT ∗
n)R∗

Tn
(z) + RTn(z)

(
vnS̃k(z) − uk,n

)
v∗nR∗

Tn
(z)

−RTn(z)vn

(
vnS̃k(z) − uk,n

)∗
R∗

Tn
(z)

)
.

In view of RTn(z)(I − zTn) = I and (I − zT ∗
n)R∗

Tn
(z) = I, we get

D(z) =
1

z − z

(
Hk,nT ∗

nR∗
Tn

(z) − RTn(z)TnHk,n

+RTn(z)
(
vnS̃k(z) − uk,n

)
v∗nR∗

Tn
(z) − RTn(z)vn

(
vnS̃k(z) − uk,n

)∗
R∗

Tn
(z)

)
=

Fk,n(z) − F ∗
k,n(z)

z − z
.

Consequently, (4.2) is verified. In view of (1.6) and (1.7), we have v∗nRTn(z)vn = Iq

and therefore Γn(z) �n (z) = I. Thus from (4.2) it follows finally (4.3). �

Proposition 4.5. Let S : C \ [a, b] → Cq×q be a matrix-valued function which is
holomorphic in C \ [a, b]. For k ∈ {1, 2}, let Fk,n : C \ [a, b] → C(n+1)q×(n+1)q for
each w ∈ C \ [a, b] be defined by (4.1). Then S is a solution of the system of the
fundamental matrix-inequalities of Potapov-type associated with [a, b] and (sj)2n+1

j=0

if and only if for each z ∈ C \ R the matrix Q
[S]
k,n(z) given by (4.4) is nonnegative

Hermitian.

Proof. Apply Remark 4.1 and Lemma 4.4. �

Lemma 4.6. Suppose Pq

[
[a, b]; (sj)2n+1

j=0

]
�= ∅. Let S ∈ Pq

[
[a, b]; (sj)2n+1

j=0

]
and

let F1,n and F2,n be the matrix-valued functions which are defined on C \ [a, b]
and which are given by (4.1). For each k ∈ {1, 2}, then F�

k,n := Rstr.Π+Fk,n

belongs to R0,(n+1)q and the spectral measure µk,n of F�
k,n satisfies the inequality

µk,n(R) ≤ Hk,n.

Proof. Apply Proposition 4.5 and Lemma 8.9. �

In the following we will use results stated in the appendix (Section 8). In particular,
we will consider matrix-valued functions which belong to the classes Rq,R′

q, and
R0,q which are described there.

Lemma 4.7. Suppose Pq

[
[a, b]; (sj)2n+1

j=0

]
�= ∅. Let S belong to Pq

[
[a, b]; (sj)2n+1

j=0

]
and let σ denote the Stieltjes measure of S. Then H

[σ]
1,n ≤ H1,n, H

[σ]
2,n ≤ H2,n,

and H̃
[σ]
1,n ≤ H̃1,n.



A Matricial Moment Problem 139

Proof. First we observe that from Lemma 4.3 we know that S belongs to Rq[a, b].
Let k ∈ {1, 2}. In view of (3.5), the function Fk,n : C \ [a, b] → C(n+1)q×(n+1)q

given by (4.1) admits the representation

Fk,n(z) = Ψk,n(z) + En(z)S̃k(z)E∗
n(z) (4.8)

where En : C → C(n+1)q×q and Ψk,n : C → C(n+1)q×(n+1)q are given by (3.4) and

Ψk,n(w) := H1,nT ∗
nR∗

Tn
(w) − RTn(w)uk,nv∗nR∗

Tn
(w).

From (1.6), (3.4), and (3.5) we see easily that Ψk,n and En are matrix polynomials.
In particular, Ψk,n and En are both holomorphic in C. For every real number x,
Remark 4.1 and Proposition 2.1 yield

Ψk,n(x) − Ψ∗
k,n(x)

= RTn(x)
(
(I − xTn)Hk,nT ∗

n − uk,nv∗n − TnHk,n(I − xT ∗
n) + vnu∗

k,n

)
R∗

Tn
(x)

= RTn(x)
(
Hk,nT ∗

n − TnHk,n − (uk,nv∗n − vnu∗
k,n)

)
R∗

Tn
(x) = 0.

According to Lemma 8.13, the function S�
k := Rstr.Πk

S̃k belongs to R′
q. Let ρk

denote the spectral measure of S�
k . For all real numbers α and β which satisfy

α < β, ρk({α}) = 0, and ρk({β}) = 0, (4.8) and Theorem 8.6 provide us then∫
R

1(α,β)EndρkE∗
n =

1
π

lim
ε→0+0

∫
[α,β]

Im Fk,n(x + iε)λ(dx). (4.9)

According to Lemma 4.6, the matrix-valued function F�
k,n := Rstr.Π+Fk,n belongs

to R0,(n+1)q and the spectral measure µk,n of F�
k,n fulfills

µk,n(R) ≤ Hk,n. (4.10)

For all real numbers α and β which satisfy α < β, µk,n({α}) = 0, and µk,n({β}) =
0, from Theorem 8.2 and (4.9) we infer

µk,n((α, β)) =
1
π

lim
ε→0+0

∫
[α,β]

Im Fk,n(x + iε)λ(dx) =
∫

R

1(α,β)EndρkE∗
n. (4.11)

In view of Remark 3.2, there are sequences (αm)∞n=1 and (βm)∞m=1 of real numbers
which satisfy the following conditions:

(i) For all m ∈ N, the inequalities αm+1 < αm < 0 < βm < βm+1 hold.
(ii) limm→∞ αm = −∞ and limm→∞ βm = +∞.
(iii) For all m ∈ N,

µk,n({αm}) = 0, µk,n({βm}) = 0, ρk({αm}) = 0, and ρk({βm}) = 0.

Because of (ii) there is an m0 ∈ N such that

αm < a < b < βm (4.12)

for all integers m with m ≥ m0. In view of (4.11) it follows

µk,n(R) = lim
m→∞µk,n((αm, βm)) = lim

m→∞

∫
R

1(αm,βm)EndρkE∗
n. (4.13)
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Let σ1 : B∩ [a, b] → C
q×q and σ2 : B∩ [a, b] → C

q×q be given by (8.24) and (8.25).
Further, let θ1 : B → Cq×q and θ2 : B → Cq×q be defined by (8.27). By virtue of
Lemma 8.13 we have then ρ1 = θ1 and ρ2 = θ2. In view of (4.12) and Remarks 3.3
and 8.12, for each integer m with m ≥ m0, we have then∫

R

1(αm,βm)(t)En(t)ρ1(dt)E∗
n(t) =

∫
R

1[a,b](t)En(t)θ1(dt)E∗
n(t)

=
∫

[a,b]

En(t)σ1(dt)E∗
n(t) =

∫
[a,b]

(
RTn(t)vn

)
σ1(dt)

(
RTn(t)vn

)∗
=

∫
[a,b]

En(t)σ1(dt)E∗
n(t) = H̃

[σ1]
1,n = H

[σ]
1,n (4.14)

and similarly ∫
R

1(αm,βm)(t)En(t)ρ2(dt)E∗
n(t) = H̃

[σ2]
1,n = H

[σ]
2,n.

Hence, for each k ∈ {1, 2}, from (4.14), (4.13), and (4.10) we see

H
[σ]
k,n = lim

m→∞

∫
R

1(αm,βm)(t)En(t)ρk(dt)E∗
n(t) = µk,n(R) ≤ Hk,n.

Finally, taking into account (2.1), we obtain then

H̃
[σ]
1,n =

1
b − a

(
H

[σ]
1,n + H

[σ]
2,n

)
≤ 1

b − a
(H1,n + H2,n) = H̃1,n.

�

Remark 4.8. Let m ∈ N and let u ∈ C(n+1)q×m. Then Pu : R → Cq×q defined by

Pu(y) :=
n∑

j=0

iju∗T j
nuyj

is the restriction of a matrix polynomial onto R. In view of (3.11) it admits the
representation Pu(y) = u∗RTn(iy)u for each y ∈ R. Hence if

lim
y→+∞u∗RTn(iy)u = 0 or lim

y→−∞u∗RTn(iy)u = 0,

then Pu(y) = 0 for all y ∈ R and consequently u∗u = Pu(0) = 0, i.e., u = 0.

Lemma 4.9. Suppose Pq

[
[a, b]; (sj)2n+1

j=0

]
�= ∅. Let S belong to Pq

[
[a, b]; (sj)2n+1

j=0

]
.

For each k ∈ {1, 2}, then

lim
y→+∞RTn(iy) ·

(
vnS̃k(iy) − uk,n

)
= 0. (4.15)
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Proof. Let k ∈ {1, 2}. For each y ∈ (0, +∞), we have then K
[S]
k,n(iy) ≥ 0 and

therefore, in view of Remark 8.8,

0 ≤
∥∥∥RTn(iy)

(
vnS̃k(iy) − uk,n

)∥∥∥2

≤ ‖Hk,n‖ ·
∥∥∥∥∥ S̃k(iy) − S̃∗

k(iy)
2iy

∥∥∥∥∥
≤ ‖Hk,n‖

‖S̃k(iy)‖
y

. (4.16)

From Lemma 4.3 we know that S belongs to Rq[a, b]. Thus from Remark 8.11 we
see that letting y → +∞ the right-hand side of (4.16) converges to 0. The proof
is complete. �

In the following, for each σ ∈ Mq
≥ ([a, b], B ∩ [a, b]) and each m ∈ N0, let

u[σ]
m := −

⎛⎜⎜⎜⎜⎝
s
[σ]
0

s
[σ]
1
...

s
[σ]
m

⎞⎟⎟⎟⎟⎠ , u
[σ]
1,m := u[σ]

m − aTmu[σ]
m , and u

[σ]
2,m := −u[σ]

m + bTmu[σ]
m

where s
[σ]
j , j ∈ N0, are given (3.1).

Lemma 4.10. Suppose Pq

[
[a, b]; (sj)2n+1

j=0

]
�= ∅. Let S belong to Pq

[
[a, b]; (sj)2n+1

j=0

]
and let σ denote the Stieltjes measure of S. Then s

[σ]
0 = s0, u

[σ]
1,n = u1,n, and

u
[σ]
2,n = u2,n.

Proof. Let k ∈ {1, 2}. Using Lemma 4.9 we get (4.15). Obviously, σ belongs to
Mq

≥
[
[a, b], B ∩ [a, b]; (s[σ]

j )2n+1
j=0

]
. Hence S belongs to Rq

[
[a, b]; (s[σ]

j )2n+1
j=0

]
. Ap-

plying Proposition 3.8 we obtain then that S belongs to Pq

[
[a, b]; (s[σ]

j )2n+1
j=0

]
.

Thus Lemma 4.9 also yields

lim
y→+∞RTn(iy) ·

(
vnS̃k(iy) − u

[σ]
k,n

)
= 0. (4.17)

From (4.15) and (4.17) it follows then

lim
y→+∞RTn(iy) ·

(
u

[σ]
k,n − uk,n

)
= 0

and therefore

lim
y→∞

(
(u[σ]

k,n − uk,n)∗ · RTn(iy) · (u[σ]
k,n − uk,n)

)
= 0.

In view of Remark 4.8 this implies u
[σ]
k,n = uk,n and in particular s

[σ]
0 = s0. �

Remark 4.11. Let m ∈ N and let (cj)2m
j=0 be a sequence of complex q × q matrices

which satisfies the following two conditions:
(i) c0 = 0.
(ii) The block Hankel matrix Cm := (cj+k)2m

j,k=0 is nonnegative Hermitian.
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Then Remark 8.8 shows that the matrix c2m is nonnegative Hermitian and that
cj = 0 holds for each j ∈ N0,2m−1.

Proposition 4.12. Pq

[
[a, b]; (sj)2n+1

j=0

]
⊆ Rq

[
[a, b]; (sj)2n+1

j=0

]
.

Proof. Assume that S belongs to Pq

[
[a, b]; (sj)2n+1

j=0

]
. By virtue of Lemma 4.3,

the matrix-valued function S belongs then to Rq[a, b]. Let σ denote the Stieltjes
measure of S. From Lemma 4.10 we see that

s
[σ]
0 = s0 (4.18)

holds. Lemma 4.7 shows that

H
[σ]
1,n ≤ H1,n, H

[σ]
2,n ≤ H2,n, (4.19)

and
H̃1,n − H̃

[σ]
1,n ≥ 0 (4.20)

hold. The inequalities stated in (4.19) imply in particular

−as
[σ]
2n + s

[σ]
2n+1 ≤ −as2n + s2n+1 (4.21)

and
bs

[σ]
2n − s

[σ]
2n+1 ≤ bs2n − s2n+1. (4.22)

In the case n = 0, from (4.18), (4.21), and (4.22) we obtain then s
[σ]
1 = s1 and

consequently S ∈ Rq

[
[a, b]; (sj)2n+1

j=0

]
. Now suppose n ≥ 1. In view of (4.18) and

(4.20), application of Remark 4.11 to the block Hankel matrix C
[σ]
n := H̃1,n− H̃

[σ]
1,n

provides us
s
[σ]
j = sj for all j ∈ N0,2n−1. (4.23)

In particular, it follows

−as
[σ]
0 + s

[σ]
1 = −as0 + s1. (4.24)

Hence using the first inequality in (4.19), (4.24), and Remark 4.11, for every integer
j with 0 ≤ j ≤ 2n− 1, we obtain

−as
[σ]
j + s

[σ]
j+1 = −asj + sj+1. (4.25)

Combining (4.23) and (4.25) for j = 2n − 1 we infer

s
[σ]
2n = s2n. (4.26)

From (4.21), (4.22), and (4.26) we can conclude then

s
[σ]
2n+1 = s2n+1. (4.27)

Since S belongs to Rq[a, b] the equalities (4.23), (4.26), and (4.27) imply finally
that S belongs to Rq

[
[a, b]; (sj)2n+1

j=0

]
. �

Now we obtain a proof of our first main result of this paper (see Theorem 1.2),
which shows that the sets Rq

[
[a, b]; (sj)2n+1

j=0

]
and Pq

[
[a, b]; (sj)2n+1

j=0

]
coincide.

Proof of Theorem 1.2. Apply Propositions 3.8 and 4.12. �
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5. Nonnegative column pairs

Let J be a p× p signature matrix, i.e., J is a complex p× p matrix which satisfies
J∗ = J and J2 = I. A complex p × p matrix A is said to be J-contractive
(respectively, J-expansive) if J−A∗JA ≥ 0 (respectively, A∗JA−J ≥ 0). If A is a
complex p×p matrix, then A is J-contractive (respectively, J-expansive) if and only
if A∗ is J-contractive (respectively, J-expansive) (see, e.g., [DFK, Theorem 1.3.3]).
Moreover, if A is a nonsingular complex p × p matrix, then A is J-contractive if
and only if A−1 is J-expansive (see, e.g., [DFK, Lemma 1.3.15]). A complex p× p
matrix is said to be J-unitary if J −A∗JA = 0. If A is a J-unitary complex p× p
matrix, then A is nonsingular and the matrices A∗ and A−1 are J-unitary as well.

A matrix-valued entire function W : C → Cp×p is said to belong to the
Potapov class PJ(Π+) if

J − W ∗(z)JW (z) ≥ 0 (5.1)

is satisfied for all z ∈ Π+. A matrix-valued function W that belongs to PJ(Π+) is
called a J-inner function of PJ(Π+) if

J − W ∗(x)JW (x) = 0

holds for all x ∈ R.

Lemma 5.1. Let J be a p× p signature matrix and let W be a J-inner function of
PJ(Π+).
(a) For each z ∈ C, the matrix W (z) is nonsingular and

[W (z)]−1 = JW ∗(z)J (5.2)

and
J − [W (z)]−∗J [W (z)]−1 = J(J − W (z)JW ∗(z))J. (5.3)

(b) For each z ∈ Π− := {ζ ∈ C : Im ζ ∈ (−∞, 0)},
W ∗(z)JW (z) − J ≥ 0. (5.4)

(c) For each z ∈ C \ R,

W ∗(z)JW (z) − J

i(z − z)
≥ 0. (5.5)

Proof. Let W � : C → Cp×p be given by W �(z) := W ∗(z). Obviously, W � and
V := J − W �JW are entire matrix-valued functions. For each x ∈ R, we have
V (x) = 0. The Identity Theorem for holomorphic functions yields V (z) = 0 and
hence

JW ∗(z)JW (z) = J2 = I

for all z ∈ C. Thus (5.2) and (5.3) follow. Let z ∈ Π−. Then z ∈ Π+ and we
get that W (z) is J-contractive. Consequently, (5.3) shows that [W (z)]−1 is J-
contractive. This implies (5.4) and (5.5). For each z ∈ Π+, inequality (5.5) follows
from (5.1). �



144 A.E. Choque Rivero, Y.M. Dyukarev, B. Fritzsche and B. Kirstein

For our further considerations, the 2q × 2q signature matrix

J̃q :=
(

0 −iIq

iIq 0

)
(5.6)

is of particular interest. Indeed, on the one hand, we work with the class Rq[a, b]
and, on the other hand, for all complex q × q matrices C we have(

C

Iq

)∗
(−J̃q)

(
C

Iq

)
= 2 ImC. (5.7)

For each Hermitian complex (p + q) × (p + q) matrix J in [FKK, Definition 51]
the notion of a J-nonnegative pair is introduced. We are going to modify this
definition for our purpose in this paper. In the following, we continue to suppose
that a and b are real numbers which satisfy a < b.

Definition 5.2. Let P and Q be q × q complex matrix-valued functions which are
meromorphic in C \ [a, b]. Then

(
P
Q

)
is called a column pair which is nonnegative

with respect to −J̃q and [a, b] if there exists a discrete subset D of C \ [a, b] such
that the following four conditions are satisfied:

(i) The matrix-valued functions P and Q are holomorphic in C \ ([a, b] ∪ D).
(ii) For all z ∈ C \ ([a, b] ∪ D), rank

(
P (z)
Q(z)

)
= q.

(iii) For all z ∈ C \ (R ∪D),

1
2 Im z

(
(z − a)P (z)

Q(z)

)∗
(−J̃q)

(
(z − a)P (z)

Q(z)

)
≥ 0.

(iv) For all z ∈ C \ (R ∪D),

1
2 Im z

(
(b − z)P (z)

Q(z)

)∗
(−J̃q)

(
(b − z)P (z)

Q(z)

)
≥ 0.

In the following, let P(−J̃q, [a, b]) denote the set of all column pairs which
are nonnegative with respect to −J̃q and [a, b].

Remark 5.3. Let S : C \ [a, b] → Cq×q be a matrix-valued function, and let S̃1

(respectively, S̃2) be the first (respectively, second) matrix-valued function associ-
ated canonically with S, i.e., S̃1 : C \ [a, b] → Cq×q and S̃2 : C \ [a, b] → Cq×q

are given by (1.10). For each k ∈ {1, 2} and each z ∈ C \ R from (5.7) one gets
immediately

1
2 Im z

(
S̃k(z)

I

)∗
(−J̃q)

(
S̃k(z)

I

)
=

S̃k(z) − [S̃k(z)]∗

z − z
. (5.8)

If
(

P
Q

)
belongs to P(−J̃q, [a, b]) and if F is a q × q complex matrix-valued

function which is meromorphic in C \ [a, b] and for which the complex-valued
function det F does not vanish identically, then it is readily checked that

(
PF
QF

)
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also belongs to P(−J̃q, [a, b]). Pairs
(

P1
Q1

)
and

(
P2
Q2

)
which belong to P(−J̃q, [a, b])

are said to be equivalent if there exists a q × q complex matrix-valued function F
which is meromorphic in C \ [a, b] such that the following conditions are satisfied:

(i) The function det F does not vanish identically.
(ii) The identities P2 = P1F and Q2 = Q1F hold.

One can easily see that this relation is really an equivalence relation on
P(−J̃q, [a, b]). If

(
P
Q

)
∈ P(−J̃q, [a, b]), then we will write

〈(
P
Q

)〉
for the equiva-

lence class of all column pairs
(

R
S

)
∈ P(−J̃q, [a, b]) which are equivalent to

(
P
Q

)
.

Remark 5.4. From Remark 5.3 and Lemma 3.5 it is obvious that, for each S ∈
Rq[a, b], the matrix-valued function

(
S
Iq

)
belongs to P(−J̃q, [a, b]).

If f is a meromorphic matrix-valued function, then let Hf be the set of all
points at which f is holomorphic.

The following two lemmas can be proved similarly as the implication “(ii) ⇒ (i)”
in the proof of Lemma 3.6. That’s why we omit the details of the proofs.

Lemma 5.5. Let ϕ be a q × q matrix-valued function which is meromorphic in
C \ [a, +∞) and which fulfills Im ϕ(z) ≥ 0 for all z ∈ Π+ ∩ Hϕ. Suppose that the
function ϕ1 : Hϕ → Cq×q defined by ϕ1(w) := (w − a)ϕ(w) satisfies Im ϕ1(z) ≥
0 for all z ∈ Π+ ∩ Hϕ. Then, for each x ∈ (−∞, a) ∩ Hϕ, the matrix ϕ(x) is
nonnegative Hermitian.

Lemma 5.6. Let ϕ be a q × q matrix-valued function which is meromorphic in
C \ (−∞, b] and which fulfills Im ϕ(z) ≥ 0 for all z ∈ Π+ ∩ Hϕ. Suppose that the
function ϕ2 : Hϕ → Cq×q defined by ϕ2(w) := (b − w)ϕ(w) satisfies Im ϕ2(z) ≥ 0
for all z ∈ Π+ ∩ Hϕ. Then, for each x ∈ (b, +∞) ∩ Hϕ, the matrix −ϕ(x) is
nonnegative Hermitian.

Proposition 5.7. Let P and Q be q × q matrix-valued functions which are mero-
morphic in C\ [a, b]. Suppose that

(
P
Q

)
is a column pair which is nonnegative with

respect to −J̃q and [a, b] and that the function detQ does not vanish identically in
C \ [a, b]. Then S := PQ−1 belongs to Rq[a, b].

Proof. Obviously,
(

S
Iq

)
belongs to P(−J̃q, [a, b]). Hence there is a discrete subset

D of C \ [a, b] such that S is holomorphic in C \ ([a, b] ∪ D) and that

1
2 Im z

(
(z − a)S(z)

I

)∗
(−J̃q)

(
(z − a)S(z)

I

)
≥ 0 (5.9)

and
1

2 Im z

(
(b − z)S(z)

I

)∗
(−J̃q)

(
(b − z)S(z)

I

)
≥ 0 (5.10)
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are satisfied for all z ∈ C \ (R ∪ D). Let ϕ1 : HS → C
q×q and ϕ2 : HS → C

q×q be
given by ϕ1(z) := (z − a)S(z) and ϕ2(z) := (b − z)S(z) for all z ∈ HS. For each
z ∈ Π+ \ D, from (5.9) and (5.10) we obtain

1
Im z

Im ϕ1(z) =
1

2Imz

(
(z − a)S(z)

I

)∗
(−J̃q)

(
(z − a)S(z)

I

)
≥ 0

and
1

Im z
Im ϕ2(z) =

1
2 Im z

(
(b − z)S(z)

I

)∗
(−J̃q)

(
(b − z)S(z)

I

)
≥ 0.

Thus we have
Im ϕ1(z) ≥ 0 and Im ϕ2(z) ≥ 0 (5.11)

for all z ∈ Π+ \ D. Hence, in view of S = 1
b−a (ϕ1 + ϕ2), it follows

Im S(z) ≥ 0 (5.12)

for all z ∈ Π+ \ D. Applying Lemma 5.5 and Lemma 5.6, from (5.11) we can
conclude

S(x) ∈ C
q×q
≥ for all x ∈ (−∞, a) \ D (5.13)

and
−S(x) ∈ C

q×q
≥ for all x ∈ (b, +∞) \ D. (5.14)

Because of (5.12) one can easily see that S is holomorphic in Π+ (compare, e.g.,
[DFK, Lemma 2.1.9]). In other words,

Rstr.Π+S ∈ Rq. (5.15)

Let x0 ∈ (−∞, a) \ D. Then there is a positive real number η such that
(x0 − η, x0 + η) ⊆ (−∞, a) \ D. In view of (5.13) and the symmetry princi-
ple, we see then that S is holomorphic in Π− and satisfies S(z) = S∗(z) for
all z ∈ Π−. It remains to show that S is holomorphic at each point which belongs
to R \ [a, b]. Let x0 ∈ R \ [a, b]. Then there exists a positive real number η such
that (x0 − η, x0 + η) ⊆ R \ [a, b], (x0 − η, x0) ∩ D = ∅ and (x0, x0 + η) ∩ D = ∅.
In view of (5.15), let (α, β, ν) be the Nevanlinna parametrization of Rstr.Π+S (see
Section 8). Using Proposition 8.3 we obtain

S(z) = α + βz +
∫

R\E

1 + tz

t − z
ν(dt)

for all z ∈ Π+ ∪E ∪Π− where E := (x0 − η, x0)∪ (x0, x0 + η). The matrix-valued
function ψ : Π+ ∪ (x0 − η, x0 + η) ∪ Π− → C

q×q defined by

ψ(z) := α + βz +
∫

R\(x0−η,x0+η)

1 + tz

t − z
ν(dt) (5.16)

is holomorphic in Π+ ∪ (x0 − η, x0 + η) ∪ Π−. Then

S(z) = ψ(z) +
1 + x0z

x0 − z
ν({x0}) (5.17)
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for all z ∈ Π+ ∪ E ∪ Π−. Let u ∈ C
p. From equation (5.17) we see that

u∗S(x)u = u∗ψ(x)u +
1 + x0x

x0 − x
u∗ν({x0})u

holds for each x ∈ E. If u∗ν({x0})u > 0, then this would imply

lim
x→x0+0

u∗S(x)u = −∞

and
lim

x→x0−0
u∗ (−S(x))u = −∞

in contradiction to (5.13) and (5.14), respectively. Hence we get u∗ν({x0})u = 0
and consequently ν({x0}) = 0. Thus S(z) = ψ(z) is satisfied for every choice of z
in Π+ ∪ E ∪ Π−. Since x0 was arbitrarily chosen from R \ [a, b] we see that S has
no poles in R \ [a, b] as well. Hence S belongs to Rq[a, b]. �

6. Description of the solution set in the positive definite case

In this section, we suppose again that a and b are real numbers which satisfy
a < b. Further, let n be a nonnegative integer. Let Mq

≥ ([a, b], B ∩ [a, b]) denote
the set of all nonnegative Hermitian q × q measures defined on B ∩ [a, b]. For
all σ ∈ Mq

≥ ([a, b], B ∩ [a, b]) and all nonnegative integers j, let s
[σ]
j be given by

(3.1). From Lemma 3.3 we know that, for each σ ∈ Mq
≥ ([a, b], B ∩ [a, b]) and for

every nonnegative integer m, the matrices H
[σ]
1,m and H

[σ]
2,m given by (3.2) and (3.3)

are both nonnegative Hermitian. Hence, in view of the considerations in Section
1, if (sj)2n+1

j=0 is a sequence of complex q × q matrices such that the solution set
Rq

[
[a, b]; (sj)2n+1

j=0

]
of the (reformulated) matricial version of M.G. Krein’s moment

problem is nonempty, then the first block Hankel matrix H1,n and the second block
Hankel matrix H2,n associated with the interval [a, b] and the sequence (sj)2n+1

j=0

are both nonnegative Hermitian. In this section, we will give a parametrization of
the set Rq

[
[a, b]; (sj)2n+1

j=0

]
under the assumption that the block Hankel matrices

H1,n and H2,n are both positive Hermitian.

For our following considerations we will apply the description of the set
Rq

[
[a, b]; (sj)2n+1

j=0

]
given in Theorem 1.2 where the matrix-valued functions K

[S]
1,n

and K
[S]
2,n given by (1.11) and (1.12) are used. However, first we are going now

to present a class of measures σ∈Mq
≥ ([a, b], B ∩ [a, b]) for which the block Han-

kel matrices H
[σ]
1,m and H

[σ]
2,m are positive Hermitian for every nonnegative integer

m. Let λ denote the Lebesgue measure defined on B ∩ [a, b] and let L1 ([a, b],
B ∩ [a, b], λ; C) designate the set of all (B∩ [a, b])−B̃-measurable complex-valued
functions which are defined on [a, b] and which are integrable with respect to λ.

Lemma 6.1. Let X = (Xjk)q
j,k=1 : [a, b] → Cq×q be a q × q matrix-valued function

every entry function Xjk of which belongs to L1 ([a, b], B ∩ [a, b], λ; C) and which
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satisfies λ
(
{t ∈ [a, b] : X(t) ∈ C

q×q \ C
q×q
> }

)
= 0. Then µ : B ∩ [a, b] → C

q×q

defined by

µ(B) :=
∫

B

Xdλ

belongs to Mq
≥ ([a, b], B ∩ [a, b]) and, for every nonnegative integer m, the block

Hankel matrices H
[µ]
1,m and H

[µ]
2,m are both positive Hermitian.

Proof. Let m be a nonnegative integer. From Lemma 3.3 we see that the repre-
sentations

H
[µ]
1,m=

∫
[a,b]

√
t − aEm(t)µ(dt)

[√
t − aEm(t)

]∗
=
∫

[a,b]

(t − a)Em(t)X(t)E∗
m(t)λ(dt)

and

H
[µ]
2,m =

∫
[a,b]

(t − b)Em(t)X(t)E∗
m(t)λ(dt)

hold where Em is the matrix polynomial which is for each z ∈ C given by
(3.4). Let x ∈ C(m+1)q×1 \ {0}. Then one can easily see that the set Mx :=
{t ∈ [a, b] : E∗

m(t)x = 0} is finite. In particular, λ(Mx ∪ {a, b}) = 0. Hence we ob-
tain

λ ({t ∈ [a, b] : (t − a)x∗Em(t)X(t)E∗
m(t)x ∈ (−∞, 0]}) = 0

and consequently

x∗H [µ]
1,mx =

∫
[a,b]

(t − a)
(
E∗

m(t)x
)∗

X(t)E∗
m(t)xλ(dt) ∈ (0, +∞).

Analogously, one can see that x∗H [µ]
2,mx ∈ (0, +∞) holds. �

Observe that the constant matrix-valued function X : [a, b] → Cq×q with
value 1

b−aIq is a simple example for a matrix-valued function which satisfies the
assumptions of Lemma 6.1. In particular, there exists a sequence (rj)2n+1

j=0 of com-
plex q × q matrices such that the block Hankel matrices (−arj+k + rj+k+1)n

j,k=0

and (brj+k − rj+k+1)n
j,k=0 are both positive Hermitian.

Recall that Theorem 1.2 shows that a given matrix-valued function S : C\ [a, b] →
Cq×q belongs to Rq

[
[a, b]; (sj)2n+1

j=0

]
if and only if S is a solution of the system of

the fundamental matrix inequalities of Potapov-type associated with the interval
[a, b] and the sequence (sj)2n+1

j=0 of complex q× q matrices, i.e., if and only if S is a

holomorphic function for which the matrices K
[S]
1,n(z) and K

[S]
2,n(z) given by (1.11)

and (1.12) are both nonnegative Hermitian for all z ∈ C \ R.

Remark 6.2. Suppose that (sj)2n+1
j=0 is a sequence of complex q×q matrices such that

the matrices H1,n and H2,n are both positive Hermitian. Let S : C \ [a, b] → Cq×q

be a matrix-valued function. In view of Remark 8.8, one can easily see that the
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matrices K
[S]
1,n(z) and K

[S]
2,n(z) are both nonnegative Hermitian for all z ∈ C \ R if

and only if for each k ∈ {1, 2} and each z ∈ C \ R the matrix

C̃
[S]
k,n(z) :=

S̃k(z) − [S̃k(z)]∗

z − z

−
(
vnS̃k(z) − uk,n

)∗
[RTn(z)]∗H−1

k,nRTn(z)
(
vnS̃k(z) − uk,n

)
(6.1)

is nonnegative Hermitian.

In the following, we again use the notation J̃q for the signature matrix given
by (5.6).

Lemma 6.3. Let (sj)2n+1
j=0 be a sequence of complex q×q matrices and let k ∈ {1, 2}.

Suppose that the block Hankel matrix Hk,n is positive Hermitian. Then Ũk,n : C →
C2q×2q defined by

Ũk,n(z) := I2q + i(z − a)(uk,n, vn)∗[RTn(z)]∗H−1
k,nRTn(a) · (uk,n, vn)J̃q (6.2)

is a 2q × 2q matrix polynomial of degree not greater than n + 1. Furthermore, the
following statements hold:

(a) For all z ∈ C,

J̃q − Ũk,n(z) · J̃q · [Ũk,n(z)]∗

= −i(z − z)(uk,n, vn)∗[RTn(z)]∗H−1
k,nRTn(z) · (uk,n, vn). (6.3)

In particular, for each w ∈ Π+,

J̃q − Ũk,n(w) · J̃q · [Ũk,n(w)]∗ ≥ 0. (6.4)

Moreover, for each real number x,

J̃q − Ũk,n(x) · J̃q · [Ũk,n(x)]∗ = 0. (6.5)

(b) For all z ∈ C, the matrix Ũk,n(z) is nonsingular and the identities

[Ũk,n(z)]−1

= I2q − i(z − a)(uk,n, vn)∗[RTn(a)]∗H−1
k,nRTn(z) · (uk,n, vn)J̃q

and

J̃q − [Ũk,n(z)]−∗J̃q[Ũk,n(z)]−1

= i(z − z) · J̃q(uk,n, vn)∗[RTn(z)]∗H−1
k,nRTn(z) · (uk,n, vn)J̃q (6.6)

hold.

Proof. For all z ∈ C we have RTn(z) =
∑n

j=0 zjT j
n. Hence one can easily see that

Ũk,n is a matrix polynomial of degree not greater than n + 1. Obviously, for each
w ∈ C, the identities

RTn(w) · (I − wTn) = I and (I − wTn)RTn(w) = I (6.7)
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are satisfied. From Proposition 2.1 we obtain

Hk,nT ∗
n − TnHk,n = i(uk,n, vn)J̃q(uk,n, vn)∗. (6.8)

Let z ∈ C. Using (6.7) and (6.8) a straightforward calculation provides us

J̃q − Ũk,n(z)J̃q[Ũk,n(z)]∗ = i(uk,n, vn)∗[RTn(z)]∗H−1
k,nRTn(a)

·Ωk,n(z, a) · [RTn(a)]∗H−1
k,nRTn(z) · (uk,n, vn) (6.9)

where

Ωk,n(z, a) := −(z − a)(I − zTn)Hk,n(I − aT ∗
n)

+(z − a)(I − aTn)Hk,n(I − zT ∗
n) + |z − a|2(Hk,nT ∗

n − TnHk,n).

A further straightforward calculation shows that Ωk,n(z, a) can be represented via

Ωk,n(z, a) = (z − z)(I − aTn)Hk,n(I − aT ∗
n). (6.10)

In view of (6.7), (6.9), and (6.10) it follows (6.3) and hence (6.4) and (6.5). Part (a)
is proved. Application of Lemma 5.1 and part (a) yield the proof of part (b). �

Lemma 6.4. Let (sj)2n+1
j=0 be a sequence of complex q×q matrices such that matrices

H1,n and H2,n are both positive Hermitian. For each k ∈ {1, 2}, then Ũk,n : C →
C

2q×2q defined by (6.2) is a J̃q-inner function of the Potapov class PJ̃q
(Π+).

Proof. If A is a complex 2q × 2q matrix, then A∗ is J̃q-contractive (respectively,
J̃q-unitary) if and only if A is J̃q-contractive (respectively, J̃q-unitary). Hence from
Lemma 6.3 the assertion follows immediately. �

Lemma 6.5. Let (sj)2n+1
j=0 be a sequence of complex q × q matrices such that the

matrices H1,n and H2,n are both positive Hermitian. Let k ∈ {1, 2} and let Ũk,n :
C → C

2q×2q be defined by (6.2). Let S : C \ [a, b] → C
q×q be a matrix-valued

function. Further, let S̃k : C \ [a, b] → Cq×q and C̃
[S]
k,n : C \ [a, b] → Cq×q be

given by (1.10) and (6.1). For all z ∈ C \ R, then the matrix C̃
[S]
k,n(z) admits the

representation

C̃
[S]
k,n(z) =

1
i(z − z)

(
S̃k(z)

I

)∗
[Ũk,n(z)]−∗J̃q[Ũk,n(z)]−1

(
S̃k(z)

I

)
. (6.11)

Proof. Let z ∈ C \R. From Remark 5.3 we see that (5.8) is true. Further, we have

vnS̃k(z) − uk,n =
1
i
(uk,n, vn)J̃q

(
S̃k(z)

I

)
. (6.12)

Because of Lemma 6.3, equation (6.6) is valid. Using (6.1), (5.8), (6.12), and (6.6),
we obtain finally (6.11). �
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Remark 6.6. Let M be a complex q × q matrix, let

A1 :=
(

I 0
M I

)
and let A2 :=

(
I M
0 I

)
.

Then
A∗

1J̃qA1 = J̃q + diag
(
i(M∗ − M), 0

)
and

A∗
2J̃qA2 = J̃q + diag

(
0, i(M − M∗)

)
.

In particular, A1 is J̃q-unitary if and only if M∗ = M . Moreover, A2 is J̃q-unitary
if and only if M∗ = M .

Lemma 6.7. Let (sj)2n+1
j=0 be a sequence of complex q × q matrices such that the

matrices H1,n and H2,n are both positive Hermitian. Let

M1,n := (a − b)v∗n[RTn(a)]∗H−1
2,nRTn(a)vn, (6.13)

M2,n := (a − b)u∗
1,n[RTn(a)]∗H−1

1,nRTn(a)u1,n, (6.14)

A1,n :=
(

I 0
M1,n I

)
, and A2,n :=

(
I −M2,n

0 I

)
. (6.15)

Let k ∈ {1, 2} and let Ũk,n : C → C2q×2q be given by (6.2). Then

Uk,n := Ũk,nAk,n (6.16)

is a 2q × 2q matrix polynomial of degree not greater than n + 1. Moreover, Uk,n is
a J̃q-inner function of the class PJ̃q

(Π+). For each z ∈ C, the matrix Uk,n(z) is
nonsingular. Moreover, for each z ∈ C, the identities

Uk,n(z)J̃q[Uk,n(z)]∗ = Ũk,n(z)J̃q[Ũk,n(z)]∗ (6.17)

and
[Uk,n(z)]−∗J̃q[Uk,n(z)]−1 = [Ũk,n(z)]−∗J̃q[Ũk,n(z)]−1 (6.18)

are satisfied.

Proof. Obviously, the matrices M1,n and −M2,n are both Hermitian. Remark 6.6
shows then that A1,n and A2,n are J̃q-unitary. Consequently, all the matrices
A∗

1,n, A∗
2,n, A−1

1,n, and A−1
2,n are also J̃q-unitary. Thus (6.17) and (6.18) follow

for each z ∈ C. In view of Lemma 6.3 the proof is finished. �
Proposition 6.8. Let (sj)2n+1

j=0 be a sequence of complex q × q matrices such that
the matrices H1,n and H2,n are both positive Hermitian. Let S : C \ [a, b] → Cq×q

be a matrix-valued function. Then S belongs to Rq

[
[a, b]; (sj)2n+1

j=0

]
if and only if

S is holomorphic in C \ [a, b] and the matrix inequality

1
i(z − z)

(
S̃k(z)

I

)∗
[Uk,n(z)]−∗J̃q[Uk,n(z)]−1

(
S̃k(z)

I

)
≥ 0 (6.19)

is satisfied for each k ∈ {1, 2} and each z ∈ C \ R.

Proof. Use Theorem 1.2, Remark 6.2, Lemma 6.5, and Lemma 6.7. �
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Remark 6.9. Let (sj)2n+1
j=0 be a sequence of complex q × q matrices such that the

matrices H1,n and H2,n are both positive Hermitian. Straightforward calculations
show that the matrix-valued functions U1,n and U2,n admit for each z ∈ C the block
representations

U1,n(z) =

⎛⎜⎝U
(1)
11;n(z) U

(1)
12;n(z)

U
(1)
21;n(z) U

(1)
22;n(z)

⎞⎟⎠ and U2,n(z) =

⎛⎜⎝U
(2)
11;n(z) U

(2)
12;n(z)

U
(2)
21;n(z) U

(2)
22;n(z)

⎞⎟⎠
where

U
(1)
11;n(z) := I + (z − a)u∗

1,n[RTn(z)]∗H−1
1,nRTn(a)(u1,nM1,n − vn),

U
(1)
12;n(z) := (z − a)u∗

1,n[RTn(z)]∗H−1
1,nRTn(a)u1,n,

U
(1)
21;n(z) := M1,n + (z − a)v∗n[RTn(z)]∗H−1

1,nRTn(a)(u1,nM1,n − vn),

U
(1)
22;n(z) := I + (z − a)v∗n[RTn(z)]∗H−1

1,nRTn(a)u1,n,

U
(2)
11;n(z) := I − (z − a)u∗

2,n[RTn(z)]∗H−1
2,nRTn(a)vn,

U
(2)
12;n(z) := −M2,n + (z − a)u∗

2,n[RTn(z)]∗H−1
2,nRTn(a)(vnM2,n + u2,n),

U
(2)
21;n(z) := −(z − a)v∗n[RTn(z)]∗H−1

2,nRTn(a)vn,

and
U

(2)
22;n(z) := I + (z − a)v∗n[RTn(z)]∗H−1

2,nRTn(a) · (vnM2,n + u2,n).

Proposition 6.10. Let (sj)2n+1
j=0 be a sequence of complex q × q matrices such that

the matrices H1,n and H2,n are both positive Hermitian. Then Vn : C → C2q×2q

defined for all z ∈ C by

Vn(z) :=
(

V11;n(z) V12;n(z)
V21;n(z) V22;n(z)

)
(6.20)

and
V11;n(z) := Iq − (z − a)u∗

2,n[RTn(z)]∗H−1
2,nRTn(a)vn, (6.21)

V12;n(z) := u∗
1,n[RTn(z)]∗H−1

1,nRTn(a)u1,n, (6.22)

V21;n(z) := −(b − z)(z − a)v∗n[RTn(z)]∗H−1
2,nRTn(a)vn, (6.23)

V22;n(z) := Iq + (z − a)v∗n[RTn(z)]∗H−1
1,nRTn(a)u1,n (6.24)

is a 2q × 2q matrix polynomial of degree not greater than n + 2. Moreover, the
following statements hold:
(a) For each z ∈ C \ {a}, the identity

Vn(z) =
(

1
z−aIq 0

0 Iq

)
· U1,n(z) ·

(
(z − a)Iq 0

0 Iq

)
(6.25)

is satisfied where U1,n is given by (6.2), (6.15), and (6.16).
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(b) For each z ∈ C \ {b}, the identity

Vn(z) =
(

1
b−z Iq 0

0 Iq

)
· U2,n(z) ·

(
(b − z)Iq 0

0 Iq

)
(6.26)

is satisfied where U2,n is given by (6.2), (6.15), and (6.16).
(c) For all z ∈ C, the matrix Vn(z) is nonsingular.

Proof. We use the notations given above. For each z ∈ C \ {a}, we see then that

V12;n(z) =
1

z − a
U

(1)
12;n(z) and V22;n(z) = U

(1)
22;n(z)

are satisfied. Hence to prove part (a) it is sufficient to verify that

V11;n(z) = U
(1)
11;n(z) and V21;n(z) = (z − a)U (1)

21;n(z) (6.27)

hold for each z ∈ C \ {a}. For every choice of w and ζ in C, we have

RTn(w)RTn(ζ) = RTn(ζ)RTn(w). (6.28)

From (6.28), (2.4), and (1.9), we obtain then

[RTn(b)]−1RTn(a)RTn(z)u1,n = RTn(z)[RTn(b)]−1RTn(a)u1,n

= RTn(z)[RTn(b)]−1ũn = −RTn(z)u2,n (6.29)

for each z ∈ C. This implies

U
(1)
11,n(z) − V11,n(z) = (z − a)

(
u∗

1,n[RTn(z)]∗H−1
1,nRTn(a)(u1,nM1,n − vn)

+u∗
2,n[RTn(z)]∗H−1

2,nRTn(a)vn

)
= (z − a)u∗

1,n[RTn(z)]∗
(
H−1

1,nRTn(a)(u1,nM1,n − vn)

− [RTn(a)]∗[RTn(b)]−∗H−1
2,nRTn(a)vn

)
(6.30)

for each z ∈ C. Since H1,n and H2,n are Hermitian matrices from (6.13) and
Lemma 2.2 we can conclude

RTn(a)(u1,nM1,n − vn)

= ((a − b)RTn(a)u1,nv∗n[RTn(a)]∗ − H2,n)H−1
2,nRTn(a)vn

=
[
(H2,n + [RTn(b)]−1RTn(a)H1,n)∗ − H2,n

]
H−1

2,nRTn(a)vn

= H1,n[RTn(a)]∗[RTn(b)]−∗H−1
2,nRTn(a)vn. (6.31)

Thus from (6.30) and (6.31) we see that the first equation in (6.27) holds for all
z ∈ C. Using (2.4) we get

(b − z)Iq + (z − a)[RTn(a)]∗[RTn(b)]−∗

= [(b − z)(I − aT ∗
n) + (z − a)(I − bT ∗

n)] [RTn(a)]∗

= (b − a)(I − zT ∗
n)[RTn(a)]∗ = (b − a)[RTn(z)]−∗[RTn(a)]∗

and consequently

(z − a)[RTn(z)]∗[RTn(a)]∗[RTn(b)]−∗ = (b− a)[RTn(a)]∗ − (b− z)[RTn(z)]∗ (6.32)
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for each z ∈ C. Hence, for every complex number z, from (6.13), (6.31), and (6.32)
it follows

(z − a)U (1)
21,n(z) − V21,n(z)

= (z − a)
[
M1,n + (z − a)v∗n[RTn(z)]∗H−1

1,nRTn(a)(u1,nM1,n − vn)

+(b − z)v∗n[RTn(z)]∗H−1
2,nRTn(a)vn

]
= (z − a)v∗n

(
(a − b)[RTn(a)]∗ + (z − a)[RTn(z)]∗[RTn(a)]∗[RTn(b)]−∗

+(b − z)[RTn(z)]∗
)
H−1

2,nRTn(a)vn = 0

and therefore the second equation in (6.27). Thus part (a) is proved. Obviously,

V11;n(z) = U
(2)
11;n(z) and V21;n(z) = (b − z)U (2)

21;n(z)

are valid for all z ∈ C. Hence, to check part (b) it remains to show that

V12;n(z) =
1

b − z
U

(2)
12;n(z) and V22;n(z) = U

(2)
22;n(z) (6.33)

hold for all z ∈ C \ {b}. For each z ∈ C, from (6.14) and (6.22) we see that

U
(2)
12;n(z) − (b − z)V12,n(z) = (b − a)u∗

1,n[RTn(a)]∗H−1
1,nRTn(a)u1,n

+(z − a)u∗
2,n[RTn(z)]∗H−1

2,nRTn(a)(vnM2,n + u2,n)

−(b − z)u∗
1,n[RTn(z)]∗H−1

1,nRTn(a)u1,n (6.34)

is valid. Because of (6.29) we have

[RTn(b)]−1RTn(a)RTn(a)u1,n = −RTn(a)u2,n. (6.35)

Using (6.14), Lemma 2.2, and (6.35) we infer

RTn(a)(vnM2,n + u2,n)

= (a − b)RTn(a)vnu∗
1,n[RTn(a)]∗H−1

1,nRTn(a)u1,n + RTn(a)u2,n

=
(
H2,n + [RTn(b)]−1RTn(a)H1,n

)
H−1

1,nRTn(a)u1,n + RTn(a)u2,n

= H2,nH−1
1,nRTn(a)u1,n. (6.36)

In view of (6.29) it follows

u∗
2,n[RTn(z)]∗H−1

2,nRTn(a)(vnMn,2 + u2,n)

= −u∗
1,n[RTn(z)]∗[RTn(a)]∗[RTn(b)]−∗H−1

1,nRTn(a)u1,n (6.37)
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for each z ∈ C. From (6.34), (6.37), and (6.32) we see then that

U
(2)
12;n − (b − z)V12;n(z)

= u∗
1,n

(
(b − a)[RTn(a)]∗ − (z − a)[RTn(z)]∗[RTn(a)]∗[RTn(b)]−∗

−(b − z)[RTn(z)]∗
)
H−1

1,nRTn(a)u1,n = 0

holds for all z ∈ C. Hence the first identity in (6.33) is verified for each z ∈ C\{b}.
The second one follows immediately as well. Indeed, for each z ∈ C, identity (6.36)
implies

U
(2)
22;n − V22;n(z)

= (z − a)v∗n[RTn(z)]∗
[
H−1

2,nRTn(a)(vnM2,n + u2,n) − H−1
1,nRTn(a)u1,n

]
= 0.

Thus part (b) is proved. Lemma 6.7 shows that U1,n(z) and U2,n(z) are
nonsingular for each z ∈ C. In view of (6.25) and (6.26), part (c) is also verified. �

In the following, let Vn, V11;n, V12;n, V21;n, and V22;n be the matrix polynomi-
als given in (6.20) - (6.24), let Wjk;n := Rstr.C\[a,b]Vjk;n for j, k ∈ {1, 2} and let
Wn := Rstr.C\[a,b]Vn.

Lemma 6.11. Let (sj)2n+1
j=0 be a sequence of complex q × q matrices such that the

matrices H1,n and H2,n are both positive Hermitian. Let
(

P
Q

)
∈ P(−J̃q, [a, b]), let

P1 := W11;nP + W12;nQ and let Q1 := W21;nP + W22;nQ. Then detP1 and detQ1

are complex-valued functions which are meromorphic in C\ [a, b] and which do not
vanish identically. Moreover, the column pair

(
P1
Q1

)
belongs to P(−J̃q, [a, b]).

Proof. According to Definition 5.2, P and Q are q × q complex matrix-valued
functions for which there exists a discrete subset D of C \ [a, b] such that the
conditions (i), (ii), (iii), and (iv) in Definition 5.2 are satisfied. First we are going
to show that

(
P1
Q1

)
also belongs to P(−J̃q, [a, b]). In view of Proposition 6.10 and

(i), P1 and Q1 are meromorphic in C \ [a, b] and holomorphic in C \ ([a, b] ∪ D).
By virtue of part (c) of Proposition 6.10 and (ii), we get

rank
(

P1(z)
Q1(z)

)
= rank

[
Wn(z)

(
P (z)
Q(z)

)]
= rank

(
P (z)
Q(z)

)
= q (6.38)

for each z ∈ C \ ([a, b] ∪ D). According to Lemma 6.7, for each k ∈ {1, 2}, the
matrix-valued function Uk,n given by (6.2) and (6.16) is a J̃q-inner function of the
class PJ̃q

(Π+), and hence from Lemma 5.1 we obtain

[Uk,n(z)]∗J̃qUk,n(z)
i(z − z)

≥ J̃q

i(z − z)
(6.39)
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for each z ∈ C \ R. Using Proposition 6.10 we can see that(
(z − a)P1(z)

Q1(z)

)
=

(
(z − a)Iq 0

0 Iq

)
Vn(z)

(
P (z)
Q(z)

)
= U1,n(z)

(
(z − a)Iq 0

0 Iq

)(
P (z)
Q(z)

)
= U1,n(z)

(
(z − a)P (z)

Q(z)

)
(6.40)

and (
(b − z)P1(z)

Q1(z)

)
= U2,n(z)

(
(b − z)P (z)

Q(z)

)
(6.41)

are satisfied for all z ∈ C \ (R ∪ D). From (6.40), (6.39), and (iii) it follows

1
2 Im z

(
(z − a)P1(z)

Q1(z)

)∗
(−J̃q)

(
(z − a)P1(z)

Q1(z)

)
≥ 0

for each z ∈ C \ (R ∪D). Similarly, using (6.41), (6.39), and (iv) we get

1
2 Im z

(
(b − z)P1(z)

Q1(z)

)∗
(−J̃q)

(
(b − z)P1(z)

Q1(z)

)
≥ 0

for all z ∈ C\(R∪D). Hence
(

P1
Q1

)
belongs to P(−J̃q, [a, b]). Now let z ∈ C\(R∪D).

From Lemma 6.7 we know that det U1,n does not vanish in C. Therefore, in view
of (6.40) we have(

(z − a)P (z)
Q(z)

)
= [U1,n(z)]−1

(
(z − a)P1(z)

Q1(z)

)
. (6.42)

From (iii) and (6.42) we can conclude

1
i(z − z)

(
(z − a)P1(z)

Q1(z)

)∗
[U1,n(z)]−∗J̃q[U1,n(z)]−1

(
(z − a)P1(z)

Q1(z)

)
≥ 0.

For each g ∈ N [P1(z)] := {h ∈ Cq : P1(z)h = 0}, this implies

1
i(z − z)

(
0

Q1(z)g

)∗
[U1,n(z)]−∗J̃q[U1,n(z)]−1

(
0

Q1(z)g

)
≥ 0.

Since
1

i(z − z)

(
0

Q1(z)g

)∗
J̃q

(
0

Q1(z)g

)
= 0

holds for all g ∈ Cq, we see then that(
0

Q1(z)g

)∗
J̃q − [U1,n(z)]−∗J̃q[U1,n(z)]−1

i(z − z)

(
0

Q1(z)g

)
≤ 0 (6.43)

is true for each g ∈ N [P1(z)]. On the other hand, Lemma 6.7 and part (b) of
Lemma 6.3 provide us

J̃q − [U1,n(z)]−∗J̃q[U1,n(z)]−1

i(z − z)

= J̃q(u1,n, vn)∗[RTn(z)]∗H−1
1,nRTn(z)(u1,n, vn)J̃q. (6.44)
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Since the matrix H1,n is positive Hermitian, the right-hand side of (6.44) is non-
negative Hermitian. In view of (6.43), for each g ∈ N [P1(z)], thus we get(

0
Q1(z)g

)∗
J̃q(u1,n, vn)∗[RTn(z)]∗H−1

1,nRTn(z)(u1,n, vn)J̃q

(
0

Q1(z)g

)
= 0

and, in view of det RTn(z) �= 0, then

0 = (u1,n, vn)J̃q

(
0

Q1(z)g

)
= −iu1,nQ1(z)g.

According to (1.9) this implies s0Q1(z)g = 0 for all g ∈ N [P1(z)]. Since H1,n is
positive Hermitian, the matrix s0 is nonsingular. Hence(

P1(z)
Q1(z)

)
g = 0

for all g ∈ N [P1(z)]. Thus (6.38) shows N [P1(z)] = {0}. Hence the matrix P1(z)
is nonsingular. Analogously, one can check that the matrix Q1(z) is nonsingular.
The proof is complete. �

Now we are able to prove the main result of this section.

Theorem 6.12. Let (sj)2n+1
j=0 be a sequence of complex q × q matrices such that the

matrices H1,n and H2,n are both positive Hermitian.

(a) For each
(

P
Q

)
∈ P(−J̃q, [a, b]), the matrix-valued function

S := (W11;nP + W12;nQ)(W21;nP + W22;nQ)−1

belongs to R
[
[a, b]; (sj)2n+1

j=1

]
.

(b) For each S ∈ Rq

[
[a, b]; (sj)2n+1

j=0

]
, there is a column pair

(
P
Q

)
∈ P(−J̃q, [a, b])

of matrix-valued functions P and Q which are holomorphic in C \ [a, b] such
that S admits the representation

S = (W11;nP + W12;nQ)(W21;nP + W22;nQ)−1.

(c) If
(

P1
Q1

)
and

(
P2
Q2

)
belong to P(−J̃q, [a, b]), then

(W11;nP1 + W12;nQ1)(W21;nP1 + W22;nQ1)−1

= (W11;nP2 + W12;nQ2)(W21;nP2 + W22;nQ2)−1 (6.45)

if and only if 〈(
P1

Q1

)〉
=

〈(
P2

Q2

)〉
. (6.46)

Proof. (a) Let
(

P
Q

)
∈ P(−J̃q, [a, b]). By virtue of Lemma 6.11, then

(
P1
Q1

)
de-

fined by P1 := W11;nP + W12;nQ and Q1 := W21;nP + W22;nQ also belongs to
P(−J̃q, [a, b]) and, moreover, the function det Q1 does not vanish identically in
C \ [a, b]. From Lemma 5.7 it follows that S := P1Q

−1
1 belongs to Rq[a, b]. One
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can easily see that the column pair
(

P̃
Q̃

)
given by P̃ := PQ−1

1 and Q̃ := QQ−1
1

also belongs to P(−J̃q, [a, b]). Obviously,(
S

Iq

)
=

(
P1

Q1

)
Q−1

1 = Wn

(
P

Q

)
Q−1

1 = Wn

(
P̃

Q̃

)
holds. In view of part (c) of Proposition 6.10, it follows(

P̃

Q̃

)
= W−1

n

(
S

Iq

)
. (6.47)

Proposition 6.10 yields that
(

P̃
Q̃

)
is holomorphic in C \ [a, b]. Since

(
P̃
Q̃

)
belongs

to P(−J̃q, [a, b]), we have then

1
2 Im z

(
(z − a)P̃ (z)

Q̃(z)

)∗
(−J̃q)

(
(z − a)P̃ (z)

Q̃(z)

)
≥ 0 (6.48)

and
1

2 Im z

(
(b − z)P̃ (z)

Q̃(z)

)∗
(−J̃q)

(
(b − z)P̃ (z)

Q̃(z)

)
≥ 0 (6.49)

for each z ∈ C \ R. From (6.47), (1.10), Lemma 6.7, and Proposition 6.10 we get(
(z − a)P̃ (z)

Q̃(z)

)
= [U1,n(z)]−1

(
S̃1(z)

I

)
(6.50)

and (
(b − z)P̃ (z)

Q̃(z)

)
= [U2,n(z)]−1

(
S̃2(z)

I

)
(6.51)

for each z ∈ C \ [a, b]. Thus from (6.48), (6.49), (6.50), and (6.51) we see that
inequality (6.19) is satisfied for each k ∈ {1, 2} and each z ∈ C \ R. Applying
Proposition 6.8 it follows that S belongs to Rq

[
[a, b]; (sj)2n+1

j=0

]
.

(b) Now we consider an arbitrary matrix-valued function S which belongs to
Rq

[
[a, b]; (sj)2n+1

j=0

]
. Let

P̃ := (Iq, 0)W−1
n

(
S

I

)
and Q̃ := (0, Iq)W−1

n

(
S

I

)
. (6.52)

From Proposition 6.10 we see that the matrix-valued function W−1
n is holomorphic

in C \ [a, b]. Hence P̃ and Q̃ are also holomorphic in C \ [a, b] and we obtain

rank

(
P̃ (z)
Q̃(z)

)
= rank

(
S(z)

I

)
= q (6.53)

for each z ∈ C \ [a, b]. Using (6.52), Lemma 6.7, and Proposition 6.10 it is readily
checked that the identities (6.50) and (6.51) are fulfilled for all z ∈ C \ [a, b]. Since
from Proposition 6.8 we know that inequality (6.19) holds for each k ∈ {1, 2} and
each z ∈ C \ R it follows then that the inequalities (6.48) and (6.49) are satisfied
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for all z ∈ C \R. In view of (6.53) thus we see that
(

P̃
Q̃

)
belongs to P(−J̃q, [a, b]).

From (6.52) we obtain(
S

I

)
= Wn

(
P̃

Q̃

)
=

(
W11;nP̃ + W12;nQ̃

W21;nP̃ + W22;nQ̃

)
and therefore

S = S · I−1
q = (W11;nP̃ + W12;nQ̃)(W21;nP̃ + W22;nQ̃)−1.

(c) Let
(

P1
Q1

)
and

(
P2
Q2

)
belong to P(−J̃q, [a, b]). Obviously,(

W11;nPk + W12;nQk

W21;nPk + W22;nQk

)
= Wn

(
Pk

Qk

)
for each k ∈ {1, 2}. In view of part (c) of Proposition 6.10 and Lemma 6.11 this
implies(

Pk

Qk

)
= W−1

n

(
W11;nPk + W12;nQk

W21;nPk + W22;nQk

)
= W−1

n

(
(W11;nPk+W12;nQk)(W21;nPk+W22;nQk)−1

I

)
(W21;nPk+W22;nQk) (6.54)

for each k ∈ {1, 2}. Now suppose that (6.45) holds. From (6.54) we get then(
P2

Q2

)
= W−1

n

(
(W11;nP1+W12,nQ1)(W21;nP1+W22;nQ1)−1

I

)
(W21;nP2 + W22;nQ2)

=
(

P1

Q1

)
(W21;nP1 + W22;nQ1)−1(W21;nP2 + W22;nQ2) =

(
P1F

Q1F

)
where F := (W21;nP1 + W22;nQ1)−1(W21,nP2 + W22,nQ2) is a matrix-valued func-
tion which is meromorphic in C \ [a, b]. Moreover, from Lemma 6.11 we know that
det F does not vanish identically. Hence (6.46) holds.
Conversely, now assume that (6.46) is satisfied. Then there is a matrix-valued
function F which is meromorphic in C \ [a, b] such that det F does not vanish
identically and that P2 = P1F and Q2 = Q1F hold. Then (6.45) immediately
follows. �

Corollary 6.13. If (sj)2n+1
j=0 is a sequence of complex q × q matrices such that the

matrices H1,n and H2,n are both positive Hermitian, then

Mq
≥
[
[a, b], B ∩ [a, b]; (sj)2n+1

j=0

]
�= ∅.

Proof. In view of Remark 5.4, apply Theorem 6.12. �
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7. A necessary and sufficient condition for the existence of a
solution of the moment problem

In this section, we turn our attention to a characterization of the case that the
matricial moment problem on a finite interval considered in this paper has a solu-
tion.

Remark 7.1. Let (s(1)
j )2n+1

j=0 and (s(2)
j )2n+1

j=0 be sequences of complex q× q matrices,

let α be a positive real number, and let rj := s
(1)
j + αs

(2)
j for each integer j with

0 ≤ j ≤ 2n + 1. For m ∈ {1, 2}, let

H̃
(m)
1,n := (s(m)

j+k)n
j,k=0, H̃

(m)
2,n := (s(m)

j+k+1)
n
j,k=0,

H
(m)
1,n := −aH̃

(m)
1,n + H̃

(m)
2,n , and H

(m)
2,n := bH̃

(m)
1,n − H̃

(m)
2,n .

Suppose that the block Hankel matrices H
(1)
1,n and H

(1)
2,n are both nonnegative Hermit-

ian and that the block Hankel matrices H
(2)
1,n and H

(2)
2,n are both positive Hermitian.

Then the block Hankel matrices (−arj+k + rj+k+1)n
j,k=0 and (brj+k − rj+k+1)n

j,k=0

are positive Hermitian as well.

Now we verify a further main result which was already formulated in Theorem
1.3 (see Section 1).

Proof of Theorem 1.3 If Mq
≥
[
[a, b], B ∩ [a, b]; (sj)2n+1

j=0

]
is nonempty, then Re-

mark 3.4 shows that the block Hankel matrices H1,n and H2,n are both nec-
essarily nonnegative Hermitian. Conversely, we suppose now that the matrices
H1,n and H2,n are nonnegative Hermitian. In view of Lemma 6.1, let (rj)2n+1

j=0

be a sequence of complex q × q matrices such that the block Hankel matrices
(−arj+k + rj+k+1)n

j,k=0 and (brj+k − rj+k+1)n
j,k=0 are both positive Hermitian.

For each real number ε which satisfies 0 < ε ≤ 1 and each integer j which satisfies
0 ≤ j ≤ 2n+1, let sj,ε := sj +εrj. According to Remark 7.1, for each ε ∈ (0, 1], the
block Hankel matrices (asj+k,ε + sj+k+1,ε)n

j,k=0 and (bsj+k,ε − sj+k+1,ε)n
j,k=0 are

both positive Hermitian. From Corollary 6.13 we see then that for each ε ∈ (0, 1]
the set Mq

≥
[
[a, b], B ∩ [a, b]; (sj,ε)2n+1

j=0

]
is nonempty. Now let (εm)∞m=1 be a se-

quence of real numbers belonging to the interval (0, 1] which satisfies

lim
m→∞ εm = 0.

For each positive integer m, we can choose then a nonnegative Hermitian q × q
measure σm which belongs to Mq

≥
[
[a, b], B ∩ [a, b]; (sj,εm)2n+1

j=0

]
. Using the nota-

tion given in (3.1), we have s
[σm]
j = sj,εm for all positive integers m and all integers

j which satisfy 0 ≤ j ≤ 2n + 1. Obviously, it follows

σm([a, b]) = s
[σm]
0 = s0,εm = s0 + εmr0 ≤ s0 + r0 (7.1)

for all positive integers m. In view of (7.1), application of the matricial version
of the Helly-Prohorov theorem (see [FK, Satz 9]) provides us that there are a
subsequence (σmk

)∞k=1 of the sequence (σm)∞m=1 and a nonnegative Hermitian q×q
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measure σ ∈ Mq
≥[[a, b], B ∩ [a, b]] such that (σmk

)∞k=1 converges weakly to σ, i.e.,
such that

lim
k→∞

∫
[a,b]

fdσmk
=

∫
[a,b]

fdσ

is satisfied for all continuous complex-valued functions defined on [a, b]. Therefore
we can conclude then

s
[σ]
j = lim

k→∞
s
[σmk

]

j = lim
k→∞

(sj + εmk
rj) = sj

for every integer j which satisfies 0 ≤ j ≤ 2n + 1. Hence σ belongs to
Mq

≥
[
[a, b], B ∩ [a, b]; (sj)2n+1

j=0

]
. In particular, Mq

≥
[
[a, b], B ∩ [a, b]; (sj)2n+1

j=0

]
�= ∅.

�
Finally, let us give a remark concerning the scalar case q = 1. M.G. Krein

[Kr2, Theorem 4.2, p. 48] (see also [KN, Theorem 4.1, p. 110–111]) showed that
the set M1

≥
[
[a, b], B ∩ [a, b]; (sj)2n+1

j=0

]
contains exactly one measure if and only if

H1,n and H2,n are both nonnegative Hermitian matrices and at least one of them
is nonsingular.

8. Appendix: Certain subclasses of holomorphic matrix-valued
functions and a generalization of Stieltjes’ inversion formula

Our investigations in this paper heavily lean on various classes of holomorphic ma-
trix-valued functions. Therefore, we summarize now some material on this topic.
For a comprehensive treatment of this subject we refer the reader to the paper [GT]
and the references cited therein. Let Rq be the set of all matrix-valued functions
F : Π+ → C

q×q which are holomorphic in Π+ and which satisfy Im F (w) ≥ 0 for
each w ∈ Π+. Obviously, if a and b are real numbers with a < b, then for each
S ∈ Rq[a, b] the matrix-valued function S� := Rstr.Π+S belongs to Rq . Every
function F which belongs to Rq admits a unique integral representation which in
the scalar case is due to R. Nevanlinna.

Theorem 8.1.

(a) For every matrix-valued function F which belongs to the class Rq, there are
a unique Hermitian complex q× q matrix α, a unique nonnegative Hermitian
complex matrix β, and a unique nonnegative Hermitian q × q measure ν ∈
Mq

≥(R, B ∩ R) such that

F (z) = α + βz +
∫

R

1 + tz

t − z
ν(dt) (8.1)

is satisfied for each z ∈ Π+.
(b) Every matrix-valued function F : Π+ → C

q×q for which there exist a Hermit-
ian complex q × q matrix α, a nonnegative Hermitian complex q × q matrix
β, and a nonnegative Hermitian q × q measure ν ∈ Mq

≥(R, B∩ R) such that
(8.1) is satisfied for all z ∈ Π+ belongs to the class Rq.
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This matricial version of Nevanlinna’s famous theorem can be proved using
the classical version of the theorem in the case q = 1 and the fact that, for each
F ∈ Rq and each u ∈ Cq, the function fu := u∗Fu belongs to R1. We omit
the details. For each F ∈ Rq, we will call (α, β, ν) given in (8.1) the Nevanlinna
parametrization of F and in particular the unique nonnegative Hermitian q×q mea-
sure ν on B∩R described in part (a) of Theorem 8.1 the Nevanlinna measure of F .

Let λ denote the Lebesgue measure which is defined on B∩R. Further, let B0

designate the system of all bounded sets which belong to B∩R. Observe that for
each B ∈ B0 and each ν ∈ Mq

≥(R, B ∩ R), it is readily checked that the function
fB : R → C

q×q defined for each t ∈ R by

fB(t) := 1B(t)
√

1 + t2Iq

belongs to q × q − L2(R, B ∩ R, ν). Now we formulate a matricial version of the
Stieltjes-Perron inversion formula.

Theorem 8.2. Let F belong to Rq. Let ν be the Nevanlinna measure of F and let
µ : B0 → Cq×q be for all B ∈ B0 be defined by

µ(B) :=
∫

B

(√
1 + t2Iq

)
ν(dt)

(√
1 + t2Iq

)∗
. (8.2)

Further, let a and b be real numbers such that a < b. Then
1
π

lim
ε→0+0

∫
[a,b]

Im F (x + iε)λ(dx) = µ((a, b)) +
1
2

(µ({a}) + µ({b})) .

Since for each u ∈ Cp and each F ∈ Rq the function fu := u∗Fu belongs to
R1, Theorem 8.2 can be easily verified using the scalar version of Theorem 8.2,
which is proved, e.g., in [KN, Appendix, Chapter 1]. We again omit the details.

Proposition 8.3. Let M be a finite union of open intervals of R and let
ϕ : Π+ ∪M ∪Π− → Cq×q be a matrix-valued function which satisfies the following
conditions:

(i) ϕ is holomorphic in Π+ ∪ M ∪ Π−.
(ii) Rstr.Π+ϕ ∈ Rq.
(iii) For all x ∈ M , the matrix ϕ(x) is Hermitian.
Denote (α, β, ν) the Nevanlinna parametrization of Rstr.Π+ϕ. Then

ϕ(z) = α + βz +
∫

R\M

1 + tz

t − z
ν(dt)

for all z ∈ Π+ ∪ M ∪ Π−.

Proof. Let c and d be real numbers such that c < d and (c, d) ⊆ M hold. We
show that ν((c, d)) = 0. We consider an arbitrary vector u ∈ Cq. Let ϕu := u∗ϕu.
Then ϕ̃u := Rstr.Π+ϕu belongs to R1 and νu := u∗νu is the Nevanlinna measure
of ϕ̃u. Let ρ := d−c

4 . Denoting cm := c + ρ
m and dm := d − ρ

m for all m ∈ N

we obtain [cm, dm] ⊆ (c, d) and
∞⋃

m=1

[cm, dm] = (c, d). Then ϕu is bounded on the



A Matricial Moment Problem 163

set Dm := {z ∈ C : Re z ∈ [cm, dm], Im z ∈ [0, 1]}. Let (εk)∞k=1 be a decreasing
sequence of real numbers belonging to the interval (0, 1] and satisfying lim

k→∞
εk = 0.

Using Theorem 8.2, Lebesgue’s dominated convergence theorem and (iii) we can
conclude then∫

(cm,dm)

(1 + t2)νu(dt) +
1
2
(
(1 + c2

m)νu({cm}) + (1 + d2
m)νu({dm})

)
=

1
π

lim
k→∞

∫
[cm,dm]

Im ϕu(x + iεk)λ(dx) =
1
π

∫
[cm,dm]

lim
k→∞

Im ϕu(x + iεk)λ(dx)

= 0

and consequently νu([cm, dm]) = 0. Hence νu((c, d)) = 0 follows. Since u was
chosen arbitrarily in Cq, we have then ν((c, d)) = 0. Applying Theorem 8.1 the
proof is finished. �
Remark 8.4. Let S ∈ Rq[a, b]. Using the Stieltjes-Perron inversion formula one
can show similarly to the proof of Proposition 8.3 that the Nevanlinna measure ν
of S satisfies ν(R \ [a, b]) = 0.

Let R′
q be the set of all F ∈ Rq for which, if ν denotes the Nevanlinna

measure associated with F , the matrix-valued function f : R → C
q×q given by

f(t) :=
√

1 + t2 belongs to q × q − L2(R, B ∩ R, ν). In view of Remark 3.1, for
each F ∈ R′

q, then µ : B ∩ R → Cq×q defined for all B ∈ B ∩ R by (8.2) belongs
to Mq

≥(R, B∩R) and this nonnegative Hermitian measure µ is called the spectral
measure of F . In order to prove a generalized version of Stieltjes’ inversion formula
we will use a result on integrals (with respect to nonnegative Hermitian measures),
which depend on a parameter.

Proposition 8.5. Let K be a metric space, let (Ω, A) be a measurable space, let µ ∈
Mq

≥(Ω, A) and let ζ0 ∈ K. Further, let Γ : K × Ω → C
p×q and � : K × Ω → C

r×q

be mappings which satisfy the following three conditions:
(i) For every choice of ζ in K, the pair [Γζ•,�ζ•] consisting of the matrix-valued

functions Γζ• : Ω → Cp×q and �ζ• : Ω → Cr×q defined by Γζ•(ω) := Γ(ζ, ω)
and �ζ•(ω) := �(ζ, ω) are both left-integrable with respect to µ.

(ii) For every choice of ω in Ω, the matrix-valued functions Γ•ω : K → Cp×q

and �•ω : K → Cr×q given by Γ•ω(ζ) := Γ(ζ, ω) and �•ω(ζ) := �(ζ, ω) are
continuous in the point ζ0.

(iii) There are real numbers C and D such that

‖Γ(ζ, ω)‖E ≤ C and ‖ � (ζ, ω)‖E ≤ D

hold for all ζ ∈ K and all ω ∈ Ω.
Then the matrix-valued function H : K → Cp×r defined by

H(ζ) :=
∫

Λ

Γ(ζ, ω)µ(dω) (�(ζ, ω))∗

is continuous in ζ0.
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Proposition 8.5 follows from the corresponding result in the scalar case p =
q = r = 1 (see, e.g., [E, 5.6]) by using standard techniques.

Now we turn our attention to the announced generalized inversion formula.

Theorem 8.6. Let F ∈ Rq and let ν be the Nevanlinna measure of F . Let Φ : C →
Cp×q be a matrix-valued function which is holomorphic in C and let Ψ : C → Cp×p

be a matrix-valued function which is continuous in C and which satisfies Ψ∗(t) =
Ψ(t) for all t ∈ R. Let G : Π+ → Cp×p be for each w ∈ Π+ be defined by

G(w) := Ψ(w) + Φ(w)F (w)Φ∗(w), (8.3)

and let a and b be real numbers which satisfy a < b. Then
1
π

lim
ε→0+0

∫
[a,b]

Im G(x + iε)λ(dx) =
∫

(a,b)

√
1 + t2Φ(t)ν(dt)

(√
1 + t2Φ(t)

)∗

+
1
2
[
(1 + a2)Φ(a)ν({a})Φ∗(a) + (1 + b2)Φ(b)ν({b})Φ∗(b)

]
. (8.4)

If F moreover belongs to the subclass R′
q of Rq the right-hand side of (8.4) is equal

to ∫
(a,b)

ΦdµΦ∗ +
1
2
(
Φ(a)µ({a})Φ∗(a) + Φ(b)µ({b})Φ∗(b)

)
where µ denotes the spectral measure of F .

Proof. Let c := a−1 and d := b+1. Since Φ is continuous on C the matrix-valued
Φ1 : R → C

p×q given by Φ1(t) := 1[c,d](t)Φ(t) is Borel measurable and bounded.
Hence Φ1 belongs to p × q − L2(R, B ∩ R, ν). Thus ρ : B ∩ R → Cp×p defined by

ρ(B) :=
∫

B

1[c,d]Φdν
(
1[c,d]Φ

)∗ (8.5)

belongs to Mp
≥(R, B ∩ R). For each z ∈ C \ R and each t ∈ R we have∣∣∣∣1 + tz

t − z

∣∣∣∣ ≤ |1 + z2|
|t − z| + |z| (8.6)

and |t − z| ≥ |Im z| > 0. Consequently, for each ζ ∈ Π+, the integral

g(ζ) :=
∫

R

1 + tζ

t − ζ
ρ(dt) (8.7)

exists. In other words, g : Π+ → Cp×p given by (8.7) is a well-defined matrix-valued
function. Let

K := {z ∈ C : a ≤ Re z ≤ b and − 1 ≤ Im z ≤ 1}
and let w ∈ K. Since Φ is holomorphic in C there is a matrix-valued function
Φ̂w : C → Cp×q which is continuous on C such that

Φ(z) = Φ(w) + (z − w)Φ̂w(z) (8.8)

holds for all z ∈ C. Obviously, the function ϕ1,w : R → Cp×q defined by

ϕ1,w(t) := (1 + tw)1[c,d](t)Φ̂w(t)
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is Borel measurable and bounded. Hence ϕ1,w belongs to p× q −L2(R, B∩ R, ν).
Similarly, we can see that ϕ2,w : R → Cq×q given by

ϕ2,w(t) := 1[c,d](t)Φ(w)

belongs to p × q − L2(R, B ∩ R, ν). For all t ∈ R \ [a, b] we have |t − w| ≥ 1 and
hence, in view of (8.6), the Borel measurable mapping χ1,w : R → Cq×q given by

χ1,w(t) :=
{

1+tw
t−w Iq , t ∈ R \ [a, b]
0q×q , t ∈ [a, b]

satisfies ‖χ1,w(t)‖E ≤
√

q(|1 + w2| + |w|) for all t ∈ R. Therefore χ1,w belongs to
q × q −L2(R, B ∩ R, ν). Clearly, we also have 1R\[a,b]Iq ∈ q × q −L2(R, B ∩ R, ν).
Thus we can conclude that all the pairs [ϕ1,w, ϕ2,w], [Φ, ϕ1,w], and [χ1,w, 1R\[a,b]Iq]
are left-integrable with respect to ν. Therefore all the mappings ϕ : K → Cp×p,
Θ : K → Cp×p, and χ : K → Cq×q given by

ϕ(ζ) :=
∫

[c,d]

(1 + tζ)Φ̂ζ(t)ν(dt)Φ∗(ζ), (8.9)

Θ(ζ) :=
∫

[c,d]

Φ(t)ν(dt)[(1 + tζ)Φ̂ζ(t)]
∗, (8.10)

and

χ(ζ) :=
∫

R\[a,b]

1 + tζ

t − ζ
Iqν(dt)I∗q (8.11)

are well defined. The functions Γ : K × [c, d] → Cp×p and � : K × [c, d] → Cp×p

given by
Γ(ζ, t) := (1 + tζ)Φ̂ζ(t) and � (ζ, t) := Φ∗(ζ)

are continuous. Since K × [c, d] is a compact subset of C × R, the matrix-valued
functions Γ and � are both bounded. Moreover, we get that, for all t ∈ [a, b],
the functions Γ•t : K → Cp×p and �•t : K → Cp×p given by Γ•t(ζ) := Γ(ζ, t)
and �•t(ζ) := �(ζ, t) are continuous. Applying Proposition 8.5 we obtain then
that ϕ given by (8.9) is continuous on K. Similarly, we see that the matrix-valued
functions Θ and χ given by (8.10) and (8.11) are also continuous on K. In view
of the assumption that ν is the Nevanlinna measure of F , let α be the unique
Hermitian complex q× q matrix and β the unique nonnegative Hermitian complex
q × q matrix such that (8.1) is satisfied for all z ∈ Π+. Then let h : K → Cp×p be
defined by

h(ζ) := ψ(ζ) + Φ(ζ)
(
α + βζ + χ(ζ)

)
Φ∗ (ζ)− ϕ (ζ) − Θ(ζ). (8.12)

Since all the matrix-valued functions ψ, Φ, ϕ, Θ, and χ are continuous on K, the
matrix-valued function h is also continuous on K. Now we verify that G(z) =
h(z) + g(z) is satisfied for all z ∈ K ∩ Π+. From (8.7), (8.5), and Remark 3.1 we
get

g(ζ) =
∫

R

(
1 + tζ

t − ζ
Iq

)
ρ(dt)Iq =

∫
R

1 + tζ

t − ζ
Φ(t)ν(dt)Φ∗(t) (8.13)
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for all ζ ∈ Π+. From (8.9) and (8.8) we can conclude

ϕ(ζ) =
∫

[c,d]

1 + tζ

t − ζ

(
Φ(t) + Φ(ζ)

)
ν(dt)Φ∗ (ζ) (8.14)

for all ζ ∈ Π+ ∩ K. Using (8.10) and (8.8) we infer

Θ(ζ) =
∫

[c,d]

1 + tζ

t − ζ
Φ(t)ν(dt)

(
Φ(t) − Φ

(
ζ
))∗ (8.15)

for all ζ ∈ Π+ ∩ K. From (8.13), (8.14), (8.15), and (8.11) we obtain then

g(ζ) − ϕ(ζ) − Θ(ζ) = Φ(ζ)

(∫
[c,d]

(
1 + tζ

t − ζ
Iq

)
ν(dt)I∗q

)
Φ∗ (ζ) (8.16)

for all ζ ∈ Π+ ∩ K. In view of (8.12), (8.16), (8.1), and (8.3), it follows

h(ζ) + g(ζ) = Ψ(ζ) + Φ(ζ) ·
(

α + βζ +
∫

R

(
1 + tζ

t − ζ
Iq

)
ν(dt)I∗q

)
Φ∗ (ζ)

= Ψ(ζ) + Φ(ζ)F (ζ)Φ∗ (ζ) = G(ζ) (8.17)

for all ζ ∈ Π+ ∩ K. Because of (8.7) and part (b) of Theorem 8.1 the function
g belongs to Rp and ρ is the Nevanlinna measure of g. Applying Theorem 8.2
provides us

1
π

lim
ε→0+0

∫
[a,b]

Im g(x + iε)λ(dx)

=
∫

(a,b)

(√
1 + t2Ip

)
ρ(dt)

(√
1 + t2Ip

)∗
+

1
2
[
(1 + a2)ρ({a}) + (1 + b2)ρ({b})

]
.

From (8.5) and Remark 3.1 it follows then

1
2

lim
ε→0+0

∫
[a,b]

Im g(x + iε)λ(dx) =
∫

(a,b)

(√
1 + t2Φ(t)

)
ν(dt)

(√
1 + t2Φ(t)

)∗

+
1
2
[
(1 + a2)Φ(a)ν({a})Φ∗(a) + (1 + b2)Φ(b)ν({b})Φ∗(b)

]
. (8.18)

A straightforward calculation yields χ∗(t) = χ(t) and (ϕ(t)+Θ(t))∗ = ϕ(t)+Θ(t)
for every choice of t in [a, b]. By assumption we also have Ψ∗(t) = Ψ(t) for each
t ∈ [a, b]. Thus from (8.12) we can conclude that Im h(t) = 0 holds for all t ∈ [a, b].
Since the matrix-valued function h is continuous on the compact subset K of C,
applying Lebesgue’s dominated convergence theorem provides us then

lim
ε→0+0

∫
[a,b]

Im h(x + iε)λ(dx) =
∫

[a,b]

lim
ε→0+0

Im h(x + iε)λ(dx)

=
∫

[a,b]

Im h(x)λ(dx) = 0. (8.19)

From (8.17), (8.18), and (8.19) it finally (8.4). The rest follows easily. �
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We thank the referee for providing us the following historical information. In
the scalar case, a slightly different version of Theorem 8.6 was obtained by M.S.
Livsic in his candidate dissertation [L]. The result of M.S. Livsic also appears as
Lemma 2.1 in [Kr1]. An operator-valued version of the inversion formula in M.S.
Livsic’s form was obtained by Yu. L. Shmulyan in his second doctorate thesis
(Kiev, Institute of Mathematics of the Ukrainian Academy of Sciences, 1970).

Now let us consider the class R0,q of all matrix-valued functions F which
belong to Rq and which satisfy

sup
y∈[1,+∞)

y‖F (iy)‖ < +∞.

Using standard arguments one can check the inclusion R0,q ⊆ R′
q. Every matrix-

valued function F which belongs to R0,q fulfills obviously

lim
y→+∞F (iy) = 0 (8.20)

and admits a particular integral representation.

Theorem 8.7.

(a) For each F ∈ R0,q, there is a unique nonnegative Hermitian measure µ ∈
Mq

≥(R, B ∩ R) such that F admits the representation

F (w) =
∫

R

1
t − w

µ(dt) (8.21)

for all w ∈ Π+, namely the spectral measure of F , and

µ(R) = lim
y→+∞ y Im F (iy) = −i lim

y→+∞ yF (iy) = i lim
y→+∞ yF ∗(iy).

(b) If F : Π+ → Cq×q is a matrix-valued function for which there exists a µ ∈
Mq

≥(R, B∩R) such that (8.21) holds for all w ∈ Π+, then F belongs to R0,q.

Using the classical scalar version of Theorem 8.7 and the fact that, for each
F ∈ R0,q and each u ∈ Cq, the function fu := u∗Fu belongs to R0,1 one gets
easily a proof of Theorem 8.7. We omit the details.

In our considerations we encounter several situations in which we have to
check that certain block matrices are nonnegative Hermitian. Hereby, the following
well-known criterion is useful.

Remark 8.8. Let A ∈ Cp×p, let B ∈ Cp×q, let D ∈ Cq×q, and let

E :=
(

A B
C D

)
.

Albert [A] proved that the block matrix E is nonnegative Hermitian if and only if
the following four conditions are satisfied:

(i) A ≥ 0.
(ii) AA+B = B.
(iii) C = B∗.
(iv) D − CA+B ≥ 0.
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(For a slightly different but related version of a characterization of nonnegative
Hermitian block matrices, we refer to a paper of Efimov and Potapov [EP]). More-
over, it is readily checked that if E is nonnegative Hermitian, then the inequality
‖B‖2 ≤ ‖A‖ · ‖D‖ holds.

Lemma 8.9. Let M be a complex q × q matrix and F : Π+ → Cq×q be a matrix-
valued function which is holomorphic in Π+ and which satisfies the inequality(

M F (w)
F ∗(w) F (w)−F∗(w)

w−w

)
≥ 0 (8.22)

for each w ∈ Π+. Then F belongs to the class R0,q and fulfills

sup
y∈(0,+∞)

y‖F (iy)‖ ≤ ‖M‖. (8.23)

Moreover, the spectral measure µ of F satisfies µ(R) ≤ M .

Proof. Inequality (8.22) and Remark 8.8 provide us

‖F (iy)‖2 ≤ ‖M‖
∥∥∥∥F (iy) − F ∗(iy)

2iy

∥∥∥∥ ≤ 1
y
‖M‖ · ‖F (iy)‖

for all y ∈ (0, +∞). Thus (8.23) follows. Because of (8.22) we also have

Im F (w) =
F (w) − F ∗(w)

w − w∗ · Im w ≥ 0

for each w ∈ Π+. Hence F belongs to R0,q. From (8.22) we obtain(
M −iyF (iy)

iyF ∗(iy) 1
2 iy

(
F (iy) − F ∗(iy)

)) ≥ 0

for all y ∈ (0, +∞). Using part (a) of Theorem 8.7 we can conclude then(
M µ(R)

µ(R) µ(R)

)
≥ 0.

From Remark 8.8 it follows finally

0 ≤ M − µ(R)(µ(R))+µ(R) = M − µ(R).

�
Remark 8.10. Let S ∈ Rq[a, b]. Using part (a) of Theorem 1.1 one can verify that
F := Rstr.Π+S belongs to R0,q. In particular, from (8.20) it follows immediately

lim
y→∞S(iy) = 0.

Moreover, in view of Remark 8.4, one can check that if σ denotes the Stieltjes
measure of S, then the spectral measure µ of F satisfies µ(B) = σ(B ∩ [a, b]) for
all B ∈ B ∩ R.

Remark 8.11. Let S ∈ Rq[a, b]. From Remark 8.10 one can easily see that

lim
y→+∞

S̃1(iy)
y

= 0 and lim
y→+∞

S̃1(iy)
y

= 0.
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We again work with the notations stated in (1.2) and (1.10).

If S : C \ [a, b] → C
q×q is a matrix-valued function we have associated to it the

matrix-valued functions S̃1 and S̃2 given by (1.10). Now we will introduce the
corresponding construction for matrix measures. If σ ∈ Mq

≥ ([a, b], B ∩ [a, b])
we will associate with it two particular measures σ1 and σ2 which belong to
M≥

q ([a, b], B ∩ [a, b]) and which are absolutely continuous with respect to σ.

Remark 8.12. Let σ ∈ Mq
≥ ([a, b], B ∩ [a, b]). From Remark 3.1 one can immedi-

ately see that σ1 : B ∩ [a, b] → Cq×q and σ2 : B ∩ [a, b] → Cq×q given by

σ1(B) :=
∫

[a,b]

(
1B(t)

√
t − aIq

)
σ(dt)

(
1B(t)

√
t − aIq

)∗
(8.24)

and
σ2(B) :=

∫
[a,b]

(
1B(t)

√
b − tIq

)
σ(dt)

(
1B(t)

√
b − tIq

)∗
(8.25)

belong to Mq
≥ ([a, b], B ∩ [a, b]) as well and satisfy σ1 + σ2 = (b − a)σ. Moreover,

in view of Lemma 3.3, it is readily checked that H̃
[σ1]
1,m = H

[σ]
1,m and H̃

[σ2]
2,m = H

[σ]
2,m

hold for all m ∈ N0.

Lemma 8.13. Let S ∈ Rq[a, b], let σ be the Stieltjes measure associated with S,
and let σ1 : B ∩ [a, b] → Cq×q and σ2 : B ∩ [a, b] → Cq×q be given by (8.24) and
(8.25). Then

S̃1 = S[σ1] − σ([a, b]) and S̃2 = S[σ2] + σ([a, b]). (8.26)

Moreover, for each k ∈ {1, 2}, the matrix-valued function S�
k := Rstr.Π+ S̃k belongs

to R′
q and θk : B → Cq×q given by

θk(B) := σk(B ∩ [a, b]) (8.27)

is the spectral measure of S�
k .

Proof. For each z ∈ C \ [a, b], we obtain z−a
t−z = t−a

t−z − 1 and hence, in view of
Remark 3.1,

S̃1(z) = (z − a)
∫

[a,b]

1
t − z

σ(dt) =
∫

[a,b]

z − a

t − z
Iqσ(dt)I∗q

=
∫

[a,b]

√
t − a

t − z
Iqσ(dt)(

√
t − aIq)∗ −

∫
[a,b]

Iqσ(dt)I∗q

=
∫

[a,b]

1
t − z

σ1(dt) − σ([a, b]) = S[σ1](z) − σ([a, b]).

Therefore the first identity in (8.26) is verified. The second one follows analogously.
Let k ∈ {1, 2}. Theorem 1.1 yields that S[σk] belongs to Rq[a, b]. From Remark
8.10 we get then that Fk := Rstr.Π+S[σk] belongs to R0,q and that θk is the spectral
measure of Fk. Every constant q × q matrix-valued function defined on Π+ and
having a nonnegative Hermitian value belongs to R′

q and the spectral measure of
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which is exactly the zero measure belonging to Mq
≥(R, B∩R). In view of (8.26) we

see then that the matrix-valued function S�
k belongs to R′

q and that the spectral
measure of which is θk. �
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Shift Operators Contained in Contractions,
Schur Parameters and
Pseudocontinuable Schur Functions

V.K. Dubovoy

Abstract. The main goal of the paper is to study the properties of the Schur
parameters of the noninner functions of the Schur class S which admit a
pseudocontinuation. To realize this aim we construct a model of completely
nonunitary contraction in terms of Schur parameters of its characteristic func-
tion (see Chapters 2 and 3). By means of the constructed model a quantitative
criterion of pseudocontinuability is established (see Chapter 4 and Sections
5.1 and 5.2). The properties of the Schur parameter sequences of pseudocon-
tinuable noninner Schur functions are studied (see Sections 5.3 and 5.4).

Mathematics Subject Classification (2000). 30D50; 47A48; 47A45.

Keywords. Shift, coshift, contraction, unitary colligation, characteristic opera-
tor function, Schur function, Schur parameters, pseudocontinuability of Schur
functions.

0. Introduction

Let T be a completely nonunitary contraction in a separable Hilbert space H over
C. Then it is known (see, e.g., Arov [4]) that T can be considered as a fundamental
operator of an appropriately chosen scattering system. Such system can be con-
structed with the aid of the Sz.-Nagy dilation of T . The procedure of constructing
this dilation (see Sz.-Nagy/Foias [33], Foias/Frazho [25]) can be roughly described
as follows. There are orthogonally supplemented two other Hilbert spaces to the
originally given Hilbert space H and in this spaces the shift and coshift associ-
ated with T act. These shift and coshift operators generate of outer channels. The
scattering along these channels is described by the characteristic operator function
(c.o.f.) of the contraction T . It is known (see Brodskii [12], Sz.-Nagy/Foias [33],
Foias/Frazho [25]) that every holomorphic operator function in the unit disk the
values of which are contractive operators can be represented as the c.o.f. of some
completely nonunitary contraction.
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In the study of contractions and their characteristic operator functions an
important role is played not only by the outer channels of the scattering system
but also by the inner ones. These channels are generated by the maximal shift and
maximal coshift which are contained in T or more precisely these channels are sub-
spaces in which these shift and coshift act. According to the role of these channels
in the theory of scattering systems with loss we refer the reader to Arov [4], and
[8], [9]. We mention that other problems are linked with these shifts and coshifts,
too. For example in the cycle of papers [19] their connection with the asymp-
totical behavior of the semiradii of the Weyl matrix balls in the “infinite” Schur
interpolation problem associated with the c.o.f. of the contraction T is shown. At
the same time, in the papers [20], [10] their relations to the problem of extension
of holomorphic contractive operator functions are discussed. There are close con-
nections between these extensions and constructing Darlington representations of
Schur functions (Arov [3]–[5]). In [10] it is shown that the pseudocontinuability of
the c.o.f. of the contraction T is completely characterized by the mutual position
of the maximal shift and maximal coshift contained in T . These maximal shift and
maximal coshift have close contact with the theory of orthogonal polynomials on
the unit circle (see Chapter 2, Comments).

We note that the holomorphy of the c.o.f. of a contraction is a consequence
of the orthogonality of outer channels of a scattering system. In contrast to the
outer ones the inner channels of a scattering system are not orthogonal in the
general case. Therefore the scattering function which describes scattering through
the inner channels is not holomorphic in the general case (see [8]).

The main goal of this paper is to describe interrelations between the maxi-
mal shift and the maximal coshift which are contained in a completely nonunitary
contraction and to study the properties of the Schur parameters of the noninner
functions of the Schur class S which admit a pseudocontinuation. The choice of
Schur parameters is caused by profound interrelations between the Schur interpo-
lation problem and the maximal shift and the maximal coshift contained in T .

In Chapter 1 we present a short survey of the basic facts from the theory
of unitary colligations which are necessary for the later considerations. Hereby,
in contrast to other approaches, particular attention will be drawn to the shifts
and coshifts contained in T . We note that a detailed presentation of the theory of
unitary colligations was given, for example, by Brodskii [12].

In Chapter 2 a model of a unitary colligation will be constructed in the lan-
guage of Schur parameters of its c.o.f. The construction of this model is connected
with the orthogonalization of a special vector system. This leads us to the con-
struction of a (canonical) orthonormal basis in H which is closely related to the
contraction T . One of the basic technical difficulties on the way of constructing
of the model will be mastered in Lemma 2.7 which is obviously of own interest.
In this paper the model will be constructed for complex-valued characteristic op-
erator functions. Exactly in this case one can succeed in the best possible way
to trace the interrelations between the procedure of constructing the model, the
procedure of orthogonalization and the Schur algorithm which was worked out by
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I. Schur in his classical paper [31]. The operator case requires different methods. It
will be treated in a separate paper. Section 2 ends with the description of connec-
tions between unitary colligations and Naimark dilations of operator-valued Borel
measures on the unit circle. Actually, this connection permits us to associate our
results with the approaches proposed by Geronimus [26], Gragg [27], Teplyaev [34],
Constantinescu [14].

In Chapter 3, we present a model representation for the maximal shift VT

which is contained in a completely nonunitary contraction T (see Theorem 3.6).
In Chapter 4, we indicate the connections between the mutual position of the
subspaces in which the maximal shifts VT and VT∗ are acting and the pseudo-
continuability of the corresponding characteristic operator function (c.o.f.) of the
contraction T .

We list the reasons why, in our opinion, the constructed model turns out to
be a sufficiently effective tool to study the mutual interpendence between shifts
and coshifts in a completely nonunitary contraction:

1) The model space is the space l2 with the usual scalar product.
2) The model has a layered character which expresses the layered character of

the stepwise Schur algorithm.
3) The coshift contained in T can be easily picked out from the model.

On the other side, the proposed model seems less useful at the investigation of
questions which are not related to the construction of a canonical basis in H.
What concerns other models for contractive operators in Hilbert space we refer
the reader to Sz.-Nagy/Foias [33], Brodskii [12], Foias/Frazho [25] and Nikolski
[29, v. 2].

The main part of this paper is Chapter 5. Using the constructed model, in
Section 5.1, a quantitative description of the interrelation between the mutual po-
sition of VT and VT∗ and the pseudocontinuability of the c.o.f. of the contraction T
will be obtained. This quantitative characteristics are expressed in terms of prop-
erties of a particular sequence (σn(γ))∞n=0 of Gram determinants (see Theorem
5.5). In this way, rational Schur functions are characterized in terms of their Schur
parameters (see Theorem 5.9), a quantitative criterion of pseudocontinuability is
established (see Theorem 5.10) and, moreover, a connection between pseudocon-
tinuability and the nonnegative definiteness of a special matrix is indicated (see
Theorem 5.13). In Section 5.3, the properties of the Schur parameter sequences
of pseudocontinuable Schur functions are studied. In particular, if γ = (γj)∞j=0 is
the sequence of Schur parameters of a pseudocontinuable noninner Schur function
then there exists a nonnegative integer m0(γ) such that for all m ≥ m0(γ) +1 the
Schur parameter γm is uniquely determined by the subsequent Schur parameters
γm+1, γm+2, . . . (see Theorem 5.19). The character of this dependence is investi-
gated. Examples are adduced.

The main results of the paper were announced without proofs in [21]–[23].
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1. Shifts contained in contractions, unitary colligations and
characteristic operator functions

1.1. Shifts contained in contractions and unitary colligations

Let T be a contraction acting in some Hilbert space H, i.e., ‖T ‖ ≤ 1 (in this
paper all Hilbert spaces are assumed to be complex and separable, all operators
are assumed to be linear). The operators

DT :=
√

IH − T ∗T and DT∗ :=
√

IH − TT ∗

are called the defect operators of T . The closures of their ranges

DT := DT (H) and DT∗ := DT∗(H)

are called the defect spaces of T . The dimensions of these spaces

δT := dimDT and δT∗ := dimDT∗

are called the defect numbers of the contraction T . In this way, the condition δT = 0
(resp. δT∗ = 0) characterizes isometric (resp. coisometric) operators, whereas the
conditions δT = δT∗ = 0 characterize unitary operators. Note that an operator
is called coisometric if its adjoint is isometric. Clearly, TD2

T = D2
T∗T . From here

(see, e.g., Sz.-Nagy/Foias [33, Chapter I]) it follows that TDT = DT∗T . Passing
the adjoint operators we obtain

T ∗DT∗ = DT T ∗ . (1.1)

Starting from the contraction T we can always find Hilbert spaces F and G
and operators F : F → H, G : H → G and S : F → G such that the operator
matrix

U =
(

T F
G S

)
: H ⊕ F → H ⊕ G (1.2)

is unitary, i.e., the conditions U∗U = IH⊕F, UU∗ = IH⊕G are satisfied. Obviously,
these identities can be rewritten in the form

T ∗T + G∗G = IH, F ∗F + S∗S = IF, T ∗F + G∗S = 0 ,
TT ∗ + FF ∗ = IH, GG∗ + SS∗ = IG, TG∗ + FS∗ = 0 .

(1.3)

As an example of such a construction one can consider the spaces F := DT∗ ,
G := DT and the operators

F := Rstr.DT∗ DT∗ : F → H, G := DT : H → G, S := Rstr.DT∗ (−T ∗) : F → G .

Using (1.1) it is easily checked that the conditions (1.3) are fulfilled in this case.
Note that in the general situation from (1.3) it follows G∗G = D2

T , FF ∗ = D2
T∗ .

Hence,

G∗(G) = DT , F (F) = DT∗ (1.4)
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Definition 1.1. The ordered tuple

∆ = (H, F, G; T, F, G, S) (1.5)

consisting of three Hilbert spaces H, F, G and four operators T, F, G, S where

T : H → H, F : F → H, G : H → G, S : F → G

is called a unitary colligation (or more short colligation) if the operator matrix U
given via (1.2) is unitary.

The operator T is called the fundamental operator of the colligation ∆.
Clearly, the fundamental operator of a colligation is a contraction. The operation
of representing a contraction T as fundamental operator of a unitary colligation
is called embedding T in a colligation. The space H of the colligation ∆ is called
inner and the spaces F and G are called outer. This embedding permits to use
the spectral theory of unitary operators for the study of contractions (see, e.g.,
Sz.-Nagy/Foias [33])

The spaces HF :=
∞∨

n=0
T nF (F), HG :=

∞∨
n=0

T ∗nG∗(G) and their orthogonal

complements H⊥
F := H � HF, H⊥

G := H � HG play an important role in the theory
of colligations. Clearly,

H = HF ⊕ H⊥
F , H = H⊥

G ⊕ HG. (1.6)

The spaces HF and HG are called the spaces of controllability and observability,
respectively. From (1.4) it follows that these spaces can also be defined in an
alternate way, namely

HF :=
∞∨

n=0

T nDT∗ , HG :=
∞∨

n=0

T ∗nDT . (1.7)

Consequently, the spaces HF and HG do not depend on the concrete way of em-
bedding T in a colligation. Note that HF is invariant with respect to T whereas
HG is invariant with respect to T ∗. This means that H⊥

F and H⊥
G are invariant

with respect to T ∗ and T , respectively. Switching over to the kernel of the adjoint
operators in the identities (1.7) we obtain

H⊥
F =

∞⋂
n=0

ker(DT∗T ∗n), H⊥
G =

∞⋂
n=0

ker(DT T n) . (1.8)

Theorem 1.2. The identities H⊥
G={h ∈ H : ‖T nh‖ = ‖h‖, n = 1, 2, 3, . . .} and

H⊥
F ={h ∈ H : ‖T ∗nh‖ = ‖h‖, n = 1, 2, 3, . . .} hold true.

Proof. For n = 1, 2, 3, . . . , clearly ‖T nh‖2=(T ∗nT nh, h) = (T ∗n−1T n−1h, h) −
(T ∗n−1D2

T T n−1h, h). Now the first assertion follows from (1.8) and the identity
‖T n−1h‖2-‖T nh‖2=‖DT T n−1h‖2, n = 1, 2, 3, . . . . Analogously, the second asser-
tion can be proved. �
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Corollary 1.3. The space H⊥
G (resp. H⊥

F ) is characterized by the following properties:

(a) H⊥
G (resp. H⊥

F ) is invariant with respect to T (resp. T ∗).
(b) Rstr. H⊥

G
T (resp. Rstr. H⊥

F
T ∗) is an isometric operator.

(c) H⊥
G (resp. H⊥

F ) is the maximal subspace of H having the properties (a), (b).

From the foregoing consideration we immediately obtain the following result.

Theorem 1.4. The identity H⊥
G ∩ H⊥

F ={h ∈ H : ‖T ∗nh‖ = ‖h‖ = ‖T nh‖, n =
1, 2, 3, . . .} holds true.

Corollary 1.5. The subspace H⊥
G ∩ H⊥

F is maximal among all subspaces H′ of H

having the following properties: H′ reduces T and Rstr. H′T is a unitary operator.

A contraction T on H is called completely nonunitary if there is no nontrivial
reducing subspace L of H for which the operator Rstr. LT is unitary. Consequently,
a contraction is completely nonunitary if and only if H⊥

G∩H⊥
F = {0}. The colligation

∆ given in (1.5) is called simple if H = HF ∨HG Hence, the colligation ∆ is simple
if and only if its fundamental operator T is a completely nonunitary contraction.

Taking into account the Wold decomposition for isometric operators (see, e.g.,
Sz.-Nagy/Foias [33, Chapter I]) from Corollary 1.3 we infer the following result:

Theorem 1.6. Let T be a completely nonunitary contraction in H. Then the sub-
space H⊥

G (resp. H⊥
F ) is characterized by the following properties:

(a) The subspace H⊥
G (resp. H⊥

F ) is invariant with respect to T (resp. T ∗).
(b) The operator Rstr. H⊥

G
T (resp. Rstr. H⊥

F
T ∗) is a unilateral shift.

(c) H⊥
G (resp. H⊥

F ) is the maximal subspace of H having the properties (a), (b).

We say that a unilateral shift V : L → L is contained in the contraction T
if L is a subspace of H which is invariant with respect to T and Rstr. LT = V is
satisfied.

Definition 1.7. Let T be a completely nonunitary contraction in H. Then the shift
VT := Rstr. H⊥

G
T is called the maximal shift contained in T .

By a coshift we mean an operator the adjoint of which is a unilateral shift. We
say that a coshift Ṽ : L̃ → L̃ is contained in T if the unilateral shift Ṽ ∗ is contained
in T ∗. Then from Theorem 1.6 it follows that the operator VT∗ = Rstr. H⊥

F
T ∗ is

the maximal shift contained in T ∗. If H⊥
G = {0} (resp. H⊥

F = {0}) we will say that
the shift VT (resp. VT∗) has multiplicity zero.

Definition 1.8. Let T be a completely nonunitary contraction in H. Then the coshift
ṼT := (VT∗)∗ is called the maximal coshift contained in T .

Theorem 1.9. Let T be a completely nonunitary contraction in H. Then the mul-
tiplicities of the maximal shifts VT and VT∗ are not greater than δT∗ and δT ,
respectively.
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Proof. It is sufficient to show that the multiplicity of the shift VT is not greater than
δT∗ . Then the second assertion follows immediately via replacing the contraction
T by the contraction T ∗. Let L0 be the generating wandering subspace for the shift

VT and let PL0 be the orthogonal projection of H onto L0. Then H⊥
G =

∞⊕
n=0

V n
T L0 =

∞⊕
n=0

T nL0. According to the decomposition H = H⊥
G ⊕ HG the operator T is given

by the block matrix

T =
(

VT R
0 TG

)
. (1.9)

To prove the inequality dimL0 ≤ δT∗ it is sufficient to verify the identity

L0 = PL0DT∗ , (1.10)

which is equivalent to L0 ∩ kerDT∗ = {0}. We set N0 := L0 ∩ kerDT∗ and M0 :=
T ∗N0. From (1.9) follows T ∗L0 ⊥ H⊥

G. This implies

M0 ⊥ H⊥
G . (1.11)

We will show that for each h ∈ M0 the identities

‖T nh‖ = ‖h‖ , n = 1, 2, 3, . . . (1.12)

hold true. Indeed, h = T ∗f for some f ∈ N0. Because of N0 ⊆ kerDT∗ , we have
Th = TT ∗f = f . Thus, ‖f‖ = ‖TT ∗f‖ = ‖Th‖ ≤ ‖h‖ = ‖T ∗f‖ ≤ ‖f‖. Hence,
(1.12) is proved for n = 1. Hereby ‖f‖ = ‖h‖. If n ∈ {2, 3, . . .} from the inclusions
N0 ⊆ L0 ⊆ H⊥

G and Theorem 1.2 we obtain ‖T nh‖ = ‖T n−1Th‖ = ‖T n−1f‖ =
‖f‖ = ‖h‖. Now from (1.12) and Theorem 1.2 it follows M0 ⊆ H⊥

G. Combining
this with (1.11) we obtain M0 = {0} and thus, N0 = {0}. �

Corollary 1.10. Let ∆ be a simple unitary colligation of type (1.5). Denote L0

and L̃0 the generating wandering subspaces for the maximal shifts VT and VT∗ ,
respectively. Then PL0F (F) = L0, PL̃0

G∗(G) = L̃0, where PL0 and PL̃0
are the

orthogonal projections from H onto L and L̃, respectively.

Proof. The validity of the first of the identities follows from (1.4) and (1.10). The
second one is verified by changing T for T ∗. �

Remark 1.11. In [19, part III] it was shown that the multiplicity of the shift VT

coincides with δT∗ if and only if the multiplicity of the shift VT∗ coincides with δT .
Moreover, all remaining cases connected with the inequalities

0 ≤ dimL0 < δT∗ , 0 ≤ dim L̃0 < δT

are possible.
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1.2. Characteristic operator functions

Let F and G be Hilbert spaces.

Definition 1.12. The symbol S(D; F, G) denotes the set of all operator-valued func-
tions which are defined and holomorphic in D and the values of which are contrac-
tive operators acting between F and G.

Definition 1.13. Let ∆ be the unitary colligation given in (1.5). The operator func-
tion

θ∆(ζ) := S + ζG(IH − ζT )−1F , ζ ∈ D , (1.13)
is called the characteristic operator function (c.o.f.) of the colligation ∆.

The next result is very important (see, e.g., Brodskii [12]):

Theorem 1.14. The characteristic operator function θ∆ of the unitary colligation ∆
belongs to the class S(D; F, G). Conversely, suppose that θ is an operator function
belonging to the class S(D; F, G). Then there exists a simple unitary colligation ∆
of the form (1.5) such that θ is the characteristic operator function of ∆.

Definition 1.15. Let ∆k = (Hk, F, G; Tk, Fk, Gk, Sk), k = 1, 2, be unitary colliga-
tions. Then ∆1 and ∆2 are called unitarily equivalent if S1 = S2 and if there exists
a unitary operator Z : H1 → H2 which satisfies ZT1 = T2Z, ZF1 = F2, G2Z = G1.

It can be easily seen that the characteristic operator functions of unitarily
equivalent colligations coincide. In this connection it turns out to be important
that the converse statement is also true (see, e.g., Brodskii [12]):

Theorem 1.16. If the characteristic operator functions of two simple colligations
coincide then the colligations are unitarily equivalent.

1.3. Naimark dilations

Let us consider interrelations between unitary colligations and Naimark dilations
of Borel measures on the unit circle T := {t ∈ C : |t| = 1}.

Let E be a separable complex Hilbert space and denote [E] the set of bounded
linear operators in E. We consider a [E]-valued Borel measure µ on T. More pre-
cisely, µ is defined on the σ-algebra B(T) of Borelian subsets of T and has the
following properties:
(a) For ∆ ∈ B(T), µ(∆) ∈ [E].
(b) µ(∅) = 0.
(c) For ∆ ∈ B(T), µ(∆) ≥ 0.
(d) µ is σ-additive with respect to the strong operator convergence.

The set of all [E]-valued Borel measures on T is denoted by M(T, E).

Definition 1.17. Let µ ∈ M(T, E) and assume µ(T) = I. Denote by (sn)n∈Z the
sequence of Fourier coefficients of µ, i.e.,

sn :=
∫
T

t−nµ(dt) , n ∈ Z . (1.14)
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By a Naimark dilation of the measure µ we mean an ordered triple (K,U , τ) having
the following properties.

1. K is a separable Hilbert space over C.
2. U is a unitary operator in K.
3. τ is an isometric operator from E into K, the so-called embedding operator,

i.e., τ : E → K and τ∗τ = IE.
4. For n ∈ Z

sn = τ∗Unτ . (1.15)

A Naimark dilation is called minimal if

K =
∨
n∈Z

Unτ(E) . (1.16)

Definition 1.18. Two Naimark dilations (Kj ,Uj , τj), j = 1, 2, of a measure µ ∈
M(T, E), µ(T) = I, are called unitarily equivalent if there exists a unitary operator
Z : K1 → K2 which satisfies U2Z = ZU1 and Zτ1 = τ2.

Analogously with Theorem 1.16 one can prove

Lemma 1.19. Any two minimal Naimark dilations (Kj ,Uj , τj), j = 1, 2, of a mea-
sure µ ∈ M(T, E), µ(T) = I, are unitarily equivalent (i.e., a minimal Naimark
dilation is essentially unique).

According to the construction of a Naimark dilation of the measure µ we
consider two functions. The first of them has the form

Φ(ζ) =
∫
T

t + ζ

t − ζ
µ(dt) , ζ ∈ D . (1.17)

Obviously, Φ(ζ) is holomorphic in D. Moreover, �[Φ(ζ)] = 1
2 [Φ(ζ) + Φ∗(ζ)] ≥ 0,

ζ ∈ D, and, as it follows from (1.14), Φ(ζ) has the Taylor series representation

Φ(ζ) = I + 2s1ζ + 2s2ζ
2 + . . . , ζ ∈ D . (1.18)

Thus, Φ(ζ) belongs to the Carathéodory class C(D, E) of all [E]-valued functions
which are holomorphic in D and have nonnegative real part in D.

The second of these functions θ(ζ) is related to Φ(ζ) via the Cayley transform:

ζθ(ζ) = (Φ(ζ) − I)(Φ(ζ) + I)−1 . (1.19)

From the properties of θ and the well-known lemma of H.A. Schwarz it follows
that θ(ζ) ∈ S(D; E) where S(D; E) := S(D; E, E). The functions Φ(ζ) and θ(ζ)
are called the functions of classes C(D; E) and S(D; E), respectively, which are
associated with the measure µ.

If

θ(ζ) = c0 + c1ζ + c2ζ
2 + . . . (1.20)
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then from (1.18) and (1.19) we obtain

(c0 + c1ζ + c2ζ
2 + . . . )(I + s1ζ + s2ζ

2 + . . . ) = s1 + s2ζ + s3ζ
2 + . . . .

Thus

s1 = c0 , sn = c0sn−1 + c1sn−2 + · · · + cn−2s1 + cn−1 , n ∈ N \ {1} . (1.21)

Theorem 1.20. Let µ ∈ M(T, E) and assume µ(T) = I. Denote by θ(ζ) the function
from the class S(D; E) associated with µ.
(a) Let ∆ = (H, E, E; T, F, G, S) be a simple unitary colligation which satisfies

θ∆(ζ) = θ(ζ). Then the triple

(K,U , τ) (1.22)

where K = H ⊕ E, U =
(

T F
G S

)
: H ⊕ E → H ⊕ E and τ is the operator

of embedding E into H ⊕ E, i.e., τe = (0, e) ∈ H ⊕ E for each e ∈ E, is a
minimal Naimark dilation of the measure µ.

(b) Let (K,U , τ) be a minimal Naimark dilation of the measure µ and τ(E) = Ẽ.
Let H = K � Ẽ and suppose that according to the decomposition K = H ⊕ Ẽ
the unitary operator U has the matrix representation

U =
(

T F
G S

)
: K ⊕ Ẽ → K ⊕ Ẽ.

Then the tuple (H, E, E; T, Fτ, τ∗G, τ∗Sτ) is a minimal unitary colligation
which satisfies θ∆(ζ) = θ(ζ).

Remark 1.21. The spaces F and G in the unitary colligation (1.5) are different,
whereas they are identified in the consideration of Naimark dilation. For this reason
one has to distinguish between the unitary operator U from (1.2) and the unitary
operator U from (1.22). The first of them acts between different spaces, whereas
the second one acts in the space K.

Proof. (a) Suppose that θ has the Taylor series representation (1.20). In view of

θ(ζ) = S + ζG(I − ζT )−1F = S +
∞∑

n=1

ζnGT n−1F , ζ ∈ D,

we obtain

c0 = S , cn = GT n−1F , n ∈ N . (1.23)

Observe that concerning the proof of the identities (1.15) it is enough to
prove them for n ∈ N. For this, it is sufficient to prove that

Un =
(

∗ xn

∗ yn

)
, n ∈ N (1.24)

where

xn = T n−1Fs0 + T n−2Fs1 + · · · + TFsn−2 + Fsn−1 (1.25)
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and

yn = sn . (1.26)

Indeed, if the identity (1.24) is verified, for n ∈ N we get

τ∗Unτ = (0, I)
(

∗ xn

∗ yn

)(
0
I

)
= yn = sn.

From (1.21) and (1.23) we infer that (1.24) is satisfied for n = 1. Applying the
method of mathematical induction we assume that (1.24) is satisfied for n. Then(

∗ xn+1

∗ yn+1

)
= Un+1 = UUn

=
(

T F
G S

)
·
(

∗ xn

∗ yn

)
=

(
∗ Txn + Fyn

∗ Gxn + Syn

)
.

This, together with (1.21), (1.23), (1.25) and (1.26), yields the validity of (1.24) for
n+1, too. Hence the triple (1.22) is a Naimark dilation of the measure µ. According

to the proof of minimality, we note that from (1.24) it follows that
m∨

n=0
UnE =

(
m−1∨
n=0

T nF (E)) ⊕ E, m ∈ N. Thus,
∞∨

n=0
UnE = (

∞∨
n=0

T nF (E)) ⊕ E. Analogously, we

get
0∨

n=−∞
UnE = (

∞∨
n=0

T ∗nG∗(E))⊕E. Now the minimality condition (1.16) follows

from the simplicity of the colligation ∆. The assertion of (b) follows from the fact
that the above considerations can be done in the reverse order. �

Remark 1.22. Thus, the model of unitary colligations is also a model for the
Naimark dilation of Borel measures on the unit circle.

2. Construction of a model of a unitary colligation via
the Schur parameters of its c.o.f. in the scalar case

In this chapter, a construction of a model of a simple unitary colligation ∆ of type
(1.5) will be given for the case dimF = dimG = 1. In this case, F and G can be
identified with the field C of complex numbers. Then in view of Theorems 1.14
the corresponding c.o.f. θ∆(ζ) is characterized by the following conditions: θ∆(ζ)
is defined and holomorphic in D and θ∆(D) ⊆ D. The set of all functions having
these properties will be denoted by S. Thus, S = S(D; F, G), if dimF =dimG = 1.

2.1. Schur algorithm, Schur parameters

Let θ(ζ) ∈ S. Following I. Schur [31] we set θ0(ζ) := θ(ζ) and γ0 := θ0(0). Obvi-
ously, |γ0| ≤ 1. If |γ0| < 1, we consider the function

θ1(ζ) :=
1
ζ

θ0(ζ) − γ0

1 − γ0θ0(ζ)
.
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In view of the Lemma of H.A. Schwarz θ1(ζ) ∈ S. As above we set γ1 := θ1(0) and
if |γ1| < 1 we consider the function θ2(ζ) := 1

ζ
θ1(ζ)−γ1
1−γ1θ1(ζ) . Further, we continue this

procedure inductively. Namely, if in the jth step a function θj(ζ) occurs for which
|γj | < 1 where γj := θj(0) we set

θj+1(ζ) :=
1
ζ

θj(ζ) − γj

1 − γjθj(ζ)

and continue this procedure. Then two cases are possible:
(1) The procedure can be carried out without end, i.e., |γj | < 1, j = 0, 1, 2, . . . .
(2) There exists an n ∈ {0, 1, 2, . . .} such that |γn| = 1 and, if n > 0, then

|γj | < 1, j ∈ {0, . . . , n − 1}.
Thus, a sequence (γj)ω

j=0 is associated with each function θ(ζ) ∈ S. Hereby we
have ω = ∞ in the first case and ω = n in the second. From I. Schur’s paper [31]
it is known that the second case appears if and only if θ(ζ) is a finite Blaschke
product of degree n.

Definition 2.1. The sequence (γj)ω
j=0 obtained by the above procedure is called the

sequence of Schur parameters associated with the function θ(ζ) .

The following two properties established by I. Schur in [31] determine the
particular role which the Schur parameters play in the study of functions of class S.
(a) There is a one-to-one correspondence between the set of functions θ(ζ) ∈ S

and the set of corresponding sequences (γj)ω
j=0.

(b) For each sequence (γj)ω
j=0 which satisfies⎧⎨⎩ |γj | < 1 , j ∈ {0, 1, 2, . . .} , if ω = ∞,

|γj | < 1 , j ∈ {0, . . . , ω − 1} , |γω| = 1 , if 0 < ω < ∞,
|γ0| = 1 , if ω = 0

there exists a function θ(ζ) ∈ S such that the sequence (γj)ω
j=0 is the Schur

parameter sequence of θ(ζ).
Thus, the Schur parameters are independent parameters which determine the

functions of class S.

2.2. General form of the model

Let θ(ζ) ∈ S. Assume that

∆ = (H, G, F; T, F, G, S) (2.1)

is a simple unitary colligation satisfying θ(ζ) = θ∆(ζ). In the considered case is
F = G = C. We take 1 as basis vector of the one-dimensional vector space C. Set

φ′
1 := F (1) , φ̃′

1 := G∗(1) . (2.2)

Then (see (1.7)) HF =
∞∨

n=0
T nφ′

1, HG =
∞∨

n=0
T ∗nφ̃′

1. If (fα)α∈A is some family of

vectors from H the symbol
∨

α∈A
fα denotes the smallest (closed) subspace of H
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which contains all vectors of this family. The orthogonalization of the sequence
(T nφ′

1)
∞
n=0 emphasizes an important place in the construction of the model. First

we assume that (T nφ′
1)∞n=0 is a sequence of linearly independent vectors. Then the

Gram-Schmidt orthogonalization procedure uniquely determines an orthonormal
basis (φk)∞k=1 of the subspace HF such that, for n ∈ N the conditions

n∨
k=1

φk =
n−1∨
k=0

T kφ′
1 , (T n−1φ′

1, φn) > 0 (2.3)

are satisfied. Observe that for n ∈ {2, 3, . . .} the second condition is equivalent to
(Tφn−1, φn) > 0. It is well known that the sequence (φk)∞k=1 is constructed in the
following way. We set

φ′
k := T k−1φ′

1 , k ∈ {1, 2, 3, . . .} (2.4)

and define inductively the sequence of vectors (φ̂k)∞k=1 via

φ̂1 := φ′
1 , φ̂k := φ′

k −
k−1∑
s=1

λksφ
′
s , k ∈ {2, 3, . . .} (2.5)

where the coefficients λks are determined by the conditions φ̂k ⊥ φ′
j , j ∈ {1, . . . ,

k − 1}. This means that the sequence (λks)k−1
s=1 yields a solution of the system of

linear equations
k−1∑
s=1

λks(φ′
s, φ

′
j) = (φ′

k, φ′
j), j ∈ {1, . . . , k − 1}. Now we set φk :=

1

‖φ̂k‖
φ̂k, k ∈ {1, 2, . . .}. Thus, φ1 = 1

‖φ′
1‖φ′

1, φk = 1

‖φ̂k‖
T k−1φ′

1+uk−1, k ∈ {2, 3, . . .}

where uk ∈
k∨

j=1

φj . These relations are equivalent to T k−1φ′
1 = ‖φ̂k‖(φk − uk−1),

u0 = 0, k ∈ {1, 2, . . .}. From these identities we obtain for k ∈ N

Tφk =
1

‖φ̂k‖
T kφ′

1 + Tuk−1 =
1

‖φ̂k‖
‖φ̂k+1‖(φk+1 − uk) + Tuk−1

=
‖φ̂k+1‖
‖φ̂k‖

φk+1 + vk

where vk ∈
k∨

j=1

φj . Thus,

φ′
1 = ‖φ′

1‖φ1 (2.6)

and Tφk =
k+1∑
j=1

tjkφj where

tk+1,k =
‖φ̂k+1‖
‖φ̂k‖

, k ∈ {1, 2, . . .} . (2.7)
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Denote TF the restriction of T onto the invariant subspace HF. From the
above consideration it follows that the matrix of the operator TF with respect to
the basis (φk)∞k=1 of HF has the form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

t11 t12 . . . t1n . . .
t21 t22 . . . t2n . . .
0 t32 . . . t3n . . .
...

...
. . .

...
0 0 . . . tn+1,n . . .
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.8)

We assume that H⊥
F = H�HF �= {0}. Remember that the maximal shift VT∗

= Rstr. H⊥
F
T ∗ acts in H⊥

F . Denote L̃0 the generating wandering subspace for the
shift VT∗ . Then

H⊥
F =

∞⊕
n=0

T ∗nL̃0 (2.9)

where in view of Theorem 1.9 we have dim L̃0 = 1. In view of Corollary 1.10 there
exists a unique unit vector ψ1 ∈ L̃0 such that

(φ̃′
1, ψ1) > 0 (2.10)

where φ̃′
1 is defined in (2.2). In view of (2.9) and (2.10) the sequence (ψk)k∈N where

ψk := T ∗k−1ψ1 , k ∈ {1, 2, . . .} is the unique orthonormal basis in H⊥
F satisfying

the conditions

(φ̃′
1, ψ1) > 0 , ψk+1 = T ∗ψk , k ∈ {1, 2, . . .} . (2.11)

Definition 2.2. The constructed orthonormal basis

φ1, φ2, . . . ; ψ1, ψ2, . . . (2.12)

of H which satisfies the conditions (2.3) and (2.11) is called canonical.

From the form of the construction it is clear that the canonical basis is
uniquely defined by the conditions (2.3) and (2.11). This allows us to identify
in the following considerations operators and their matrix representations with
respect to this basis. We note that we suppose in the sequel that the vectors of the
canonical basis are ordered as in (2.12). From the above considerations it follows
that the matrix of the operator T with respect to the canonical basis of H has the
block form

T =

(
TF R̃

0 ṼT

)
, ṼT = (VT∗)∗ , (2.13)
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where the matrix of TF is given by (2.8),

R̃ =

⎛⎜⎜⎜⎜⎜⎜⎝

r′1 0 . . .
r′2 0 . . .
...

...
r′n 0 . . .
...

...

⎞⎟⎟⎟⎟⎟⎟⎠ , ṼT =

⎛⎜⎜⎜⎜⎝
0 1

0 1

0
. . .
. . .

⎞⎟⎟⎟⎟⎠ . (2.14)

Hereby missing matrix elements are assumed to be zero. Because of (2.2) and (2.6)
the matrix of the operator F with respect to the canonical basis has the form

F = col (‖φ′
1‖, 0, 0, . . . ; 0, 0, 0, . . . ) . (2.15)

For the remaining elements of the unitary colligation ∆ we obtain the following
matrix representations

G = (g1, g2, g3, . . . ; g∞, 0, 0, . . . ) , S = θ(0) = γ0 , (2.16)

where, in accordance with the above notations, we get

gk = Gφk = (Gφk, 1) = (φk, G∗(1)) = (φk, φ̃′
1) , k ∈ {1, 2, . . .},

g∞ = Gψ1 = (Gψ1, 1) = (ψ1, G
∗(1)) = (ψ1, φ̃

′
1) .

The remaining entries in formula (2.16) are zero since from the colligation condition
TG∗ + FS∗ = 0 we have for k ∈ {2, 3, . . .}

Gψk = (Gψk, 1) = (T ∗ψk−1, G
∗(1)) = (ψk−1, TG∗(1)) = −(ψk−1, FS∗(1))

= −γ0(ψk−1, F (1)) = −γ0‖φ′
1‖(ψk−1, φ1) = 0 .

Expressing the matrix elements in (2.13)-(2.16) in terms of Schur parameters
we obtain the final form of the model of a unitary colligation. Hereby we will
see under which conditions the elements of the sequence (T nφ′

1)
∞
n=0 are linearly

independent (see Corollary 2.6) and also when H = HF is satisfied (see Corollary
2.10).

From the colligation condition F ∗F + S∗S = I we get ‖F‖2 = 1 − |γ0|2.
Therefore, from (2.15) we infer

‖φ′
1‖ = ‖F‖ =

√
1 − |γ0|2 . (2.17)

We determine the remaining elements in following order. First we determine tn+1,n

in (2.8). After that we will find the sequence (gk)∞k=1 in (2.16). The knowledge of
this elements will permit us to find all others.

2.3. Schur determinants and contractive operators. Computation of tn+1,n

Clearly, to determine the sequence (tk+1,k)∞k=1 it suffices, in view of (2.7), to find
the sequence (‖φ̂k‖)∞k=1. As it is known (see, e.g., Akhiezer/Glasman [2, Chapter I])
from (2.5) it follows

‖φ̂k‖2 =
Γ(φ′

1, . . . , φ
′
k)

Γ(φ′
1, . . . , φ

′
k−1)

, k ∈ {2, 3, . . .} , (2.18)
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where Γ(φ′
1, . . . , φ

′
k) is the Gram determinant

Γ(φ′
1, . . . , φ

′
k) =

∣∣∣∣∣∣∣
(φ′

1, φ
′
1) . . . (φ′

k, φ′
1)

...
...

(φ′
1, φ

′
k) . . . (φ′

k, φ′
k)

∣∣∣∣∣∣∣ .
Lemma 2.3. Let θ(ζ) ∈ S. Assume that θ(ζ) has the Taylor series representation

θ(ζ) = c0 + c1ζ + · · · + cnζn + . . . , ζ ∈ D . (2.19)

Suppose that ∆ is a simple unitary colligation of type (2.1) which satisfies θ∆ = θ.
Then the sequence (2.4) satisfies the conditions

Γ(φ′
1, . . . , φ

′
k) = det(I − C∗

k−1Ck−1) , k ∈ N , (2.20)

where

Ck =

⎛⎜⎜⎜⎝
c0 0 . . . 0
c1 c0 . . . 0
...

...
. . .

...
ck ck−1 . . . c0

⎞⎟⎟⎟⎠ , k ∈ {0, 1, 2, . . .}.

Proof. Denote by Jk, k ∈ {0, 1, 2, . . .}, the matrix of (k + 1)th order given by

J0 := 1 and Jk :=

⎛⎜⎝ 0 . . . 1
... . · .

...
1 . . . 0

⎞⎟⎠ , if k ∈ N .

If we set Ĉk = JkC∗
kJk, k ∈ N, then for proving (2.20) it suffices to verify the

identity

Γ(φ′
1, . . . , φ

′
k) = det(I − Ĉk−1Ĉ

∗
k−1) , k ∈ N . (2.21)

From (1.13) we obtain θ(ζ) = S+
∞∑

k=1

ζkGT k−1F , ζ ∈ D. Hence,

c0 = S , ck = GT k−1F , k ∈ {1, 2, . . .} . (2.22)

Thus,

Ĉ∗
k =

⎛⎜⎜⎜⎝
c0 c1 . . . ck

0 c0 . . . ck−1

...
...

...
0 0 . . . c0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
S GF GTF . . . GT k−1F
0 S GF . . . GT k−2F
...

...
...

...
0 0 0 . . . GF
0 0 0 . . . S

⎞⎟⎟⎟⎟⎟⎠
= diag k+1(S) + diag k+1(G)triang k+1(IH, T )diag k+1(F ) , (2.23)
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where we use the following matrices: diag k+1(S) := diag (S, S, . . . , S︸ ︷︷ ︸
k+1

),

triang k+1(Q, T ) :=

⎛⎜⎜⎜⎜⎜⎝
0 Q QT . . . QT k−1

0 0 Q . . . QT k−2

...
...

...
...

0 0 0 . . . Q
0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ , Q ∈ [H] .

From this taking into account the colligation conditions (1.3), we obtain

I − ĈkĈ∗
k = diag k+1(F

∗)
{
diag k+1(IH) + triang k+1(T ) + (triang k+1(T ))∗

−(triang k+1(IH, T ))∗diag k+1(IH − T ∗T )triang k+1(IH, T )
}

diag k+1(F ) ,

where triang k+1(T ) := triang k+1(T, T ). After some simple manipulations the ex-
pression in braces takes the form⎛⎜⎜⎜⎝

I T . . . T k

T ∗ T ∗T . . . T ∗T k

...
...

...
T ∗k T ∗kT . . . T ∗kT k

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
I
T ∗
...

T ∗k

⎞⎟⎟⎟⎠ (I, T, . . . , T k) .

Thus,

I − ĈkĈ∗
k =

⎛⎜⎜⎜⎝
F ∗

F ∗T ∗
...

F ∗T ∗k

⎞⎟⎟⎟⎠ (F, TF, . . . , T kF ) , k ∈ {0, 1, . . .} . (2.24)

Taking into account the identities F ∗T ∗jT iF = (T iF (1), T jF (1)) = (φ′
i+1, φ

′
j+1)

we obtain (2.21). �

It should be mentioned that analogous expressions were obtained in [19, part
III] for (I − ĈkĈ∗

k )n, n ∈ Z.
The determinants det(I − C∗

kCk), k ∈ {0, 1, 2, . . .} were introduced by I.
Schur in [31] and it is known (see, e.g., Bertin et al. [7, Ch.3]) that

det(I − C∗
kCk) = (1 − |γ0|2)k+1(1 − |γ1|2)k . . . (1 − |γk|2) , k ∈ {0, 1, 2, . . .}(2.25)

where (γk)ω
k=0 are the Schur parameters of the function θ.

Lemma 2.4. For k ∈ {1, 2, . . .} the identities ‖φ̂k‖ =
k−1∏
j=0

√
1 − |γj |2 hold true.

Proof. For k = 1, from (2.5) and (2.17) we infer ‖φ̂1‖ = ‖φ′
1‖ =

√
1 − |γ0|2. For

k ∈ {2, 3, . . .} the assertion follows from (2.18), (2.20) and (2.25). �
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From (2.7) and Lemma 2.4 we get the following result.

Corollary 2.5. The identities

tk+1,k =
√

1 − |γk|2 , k ∈ {1, 2, . . . } (2.26)

hold true.

Corollary 2.6. The sequence (T nφ′
1)

∞
n=0 consists of linearly independent vectors if

and only if |γk| < 1, k ∈ {0, 1, . . .}.

The proof follows from Lemma 2.4 and the observation that the sequence
(T nφ′

1)
∞
n=0 consists of linearly independent elements if and only if ‖φ̂k‖ > 0, k ∈

{1, 2, . . .}.

2.4. Schur determinants and contractive operators again. Computation of gn

We return to the Schur algorithm and set θ0(ζ) := θ(ζ). We assume that
|γk| < 1, k ∈ {0, 1, 2, . . .}. Then θ1(ζ) = 1

ζ
θ0(ζ) −γ0
1−γ0θ0(ζ) . Using the representation

(1.13) we get
1
ζ
[θ0(ζ) − γ0] = G(I − ζI)−1F = (G(I − ζT )−1F (1), 1)

=
(
(I − ζT )−1F (1), G∗(1)

)
=

(
(I − ζT )−1φ′

1, φ̃
′
1

)
,

where φ′
1 and φ̃′

1 are defined in (2.2). Taking into account the series representation
(2.19), (2.22) and the colligation conditions (1.3) we obtain

1 − γ0θ0(ζ) = 1 − S

(
S + ζ

∞∑
n=0

ζnGT nF

)
= (I − S∗S) − ζ

∞∑
n=0

ζnS∗GT nF

= F ∗F + ζ
∞∑

n=0

ζnF ∗T n+1F = F ∗(I − ζT )−1F

= ((I − ζT )−1F (1), F (1)) = ((I − ζT )−1φ′
1, φ

′
1)

Thus, θ1(ζ) = ((I−ζT )−1φ′
1,φ̃′

1)
((I−ζT )−1φ′

1,φ′
1)

. In other words,

θ1(ζ) =
a0 + a1ζ + a2ζ

2 + . . .

b0 + b1ζ + b2ζ2 + . . .
, (2.27)

where taking into account (2.4) we get for n ∈ {0, 1, 2, . . .}
an = (T nφ′

1, φ̃
′
1) = (φ′

n+1, φ̃
′
1) (2.28)

and

bn = (T nφ′
1, φ

′
1) = (φ′

n+1, φ
′
1) . (2.29)

Exactly for the functions represented via (2.27), I. Schur [31, part I,§4] derived
the following representation for the γk’s:

γ1 =
a0

b0
, γk = −dk−1

δk−1
, k ∈ {2, 3, . . .} (2.30)
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where

d1 =
∣∣∣∣ a0 a1

b0 b1

∣∣∣∣ , δ1 =
∣∣∣∣ b0 a0

a0 b0

∣∣∣∣
and

dk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 . . . 0 a0 a1 . . . ak−1 ak

b0 0 . . . 0 0 a0 . . . ak−2 ak−1

b1 b0 . . . 0 0 0 . . . ak−3 ak−2

...
...

...
...

...
...

...
bk−2 bk−3 . . . b0 0 0 . . . a0 a1

0 0 . . . 0 b0 b1 . . . bk−1 bk

a0 0 . . . 0 0 b0 . . . bk−2 bk−1

a1 a0 . . . 0 0 0 . . . bk−3 bk−2

...
...

...
...

...
...

...
ak−2 ak−3 . . . a0 0 0 . . . b0 b1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k ∈ N \ {1} ,(2.31)

δk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b0 0 . . . 0 a0 a1 . . . ak−2 ak−1

b1 b0 . . . 0 0 a0 . . . ak−3 ak−2

b2 b1 . . . 0 0 0 . . . ak−4 ak−3

...
...

...
...

...
...

...
bk−1 bk−2 . . . b0 0 0 . . . 0 a0

a0 0 . . . 0 b0 b1 . . . bk−2 bk−1

a1 a0 . . . 0 0 b0 . . . bk−3 bk−2

a2 a1 . . . 0 0 0 . . . bk−4 bk−3

...
...

...
...

...
...

...
ak−1 ak−2 . . . a0 0 0 . . . 0 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, k ∈ N \ {1} . (2.32)

Observe that in (2.30) the index associated with γk is shifted for one unit in
comparison with [31]. This is related to the fact that I. Schur had obtained these
formulas under the assumption that θ0(ζ) had the form (2.27).

We denote the columns of the determinant dk by lk1, lk2, . . . , lk,2k. The value
of dk does not change if lk,2k is replaced by the linear combination

l̂k,2k = lk,2k − λk+1,1lkk − λk+1,2lk,k+1 − · · · − λk+1,klk,2k−1 (2.33)

where (λk+1,s)k
s=1 is taken from (2.5). Using coordinates we get

l̂k,2k = col (pkk, pk,k−1, . . . , pk1, qkk, qk,k−1, . . . , qk1) .

Taking into account (2.28) and (2.29) for j ∈ {1, . . . , k} we obtain

pkj = (wkj , φ̃
′
1) , qkj = (wkj , φ

′
1) (2.34)

where wkj = φ′
j+1−λk+1,k−j+1φ

′
1 - · · ·−λk+1,kφ′

j . Observe that for j ∈ {1, . . . , k−1}

Twkj = wk,j+1 + λk+1,k−jφ
′
1 . (2.35)
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From (2.5) it follows wkk = φ̂k+1, k ∈ {1, 2, . . .}. Thus, taking into account Lemma
2.4, (2.2) and (2.16), we obtain for k ∈ {1, 2, . . .}

pkk = (φ̂k+1, φ̃
′
1) = ‖φ̂k+1‖(φk+1, φ̃

′
1) = ‖φ̂k+1‖(φk+1, G

∗(1))

= ‖φ̂k+1‖Gφk+1 = gk+1

k∏
j=0

√
1 − |γj |2 . (2.36)

Moreover, in view of φ̂k ⊥ φ′
1 , k ∈ {2, 3, . . .} we infer qkk = (φ̂k+1, φ

′
1) = 0,

k ∈ {1, 2, . . .}. Consequently, we get the additive decomposition

l̂k,2k = l̂
(1)
k,2k + l̂

(2)
k,2k (2.37)

where l̂
(1)
k,2k = col (pkk, 0, . . . , 0, 0, 0, . . . , 0) and

l̂
(2)
k,2k = col (0, pk,k−1, . . . , pk1, 0, qk,k−1, . . . , qk1) .

Lemma 2.7. The determinant obtained by replacing the last column in dk by l̂
(2)
k,2k

vanishes, i.e., det(lk1, . . . , lk,2k−1, l̂
(2)
k,2k) = 0, k ∈ {1, 2, . . .}.

Proof. We will show that the column l̂
(2)
k,2k is a linear combination of the vectors

lk1, . . . , lk,k−1, i.e., there exists a vector x = col (x1, . . . , xn) which satisfies
k−1∑
j=1

xj lkj = l̂
(2)
k,2k . (2.38)

Let

Ak =

⎛⎜⎝ a0 . . . 0
...

...
ak . . . a0

⎞⎟⎠ , Bk =

⎛⎜⎝ b0 . . . 0
...

...
bk . . . b0

⎞⎟⎠ .

Then from the form (2.31) of the determinant dk it can be seen that the system
(2.38) can be rewritten in the form

Bk−2x = pk , (2.39)
Ak−2x = qk , (2.40)

where pk = col (pk,k−1, . . . , pk1), qk = col (qk,k−1, . . . , qk1). Because of b0 = ‖φ′
1‖2

= (1− |γ0|2) > 0 the matrix Bk−2 is invertible and the system (2.39) has a unique
solution. To complete the proof it suffices to show that this solution also solves
(2.40). Let Zk−2 := Ak−2B

−1
k−2. Then

Zk−2Bk−2 = Ak−2 . (2.41)

From the structure of the matrices Ak−2 and Bk−2 we obtain that Zk−2 has the
same structure, namely

Zk−2 =

⎛⎜⎝ z0 . . . 0
...

. . .
...

zk−2 . . . z0

⎞⎟⎠ .
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Hence, formula (2.41) can be rewritten in coordinate form as

zjb0 + zj−1b1 + · · · + z0bj = aj , j ∈ {0, 1, . . . , k − 2} .

Taking into account (2.28) and (2.29) these equations can be rewritten for j ∈
{0, 1, . . . , k − 2} in the form

zj(φ′
1, φ

′
1) + zj−1(φ′

1, Tφ′
1) + · · · + z0(φ′

1, T
jφ′

1) = (φ̃′
1, φ

′
j+1) . (2.42)

From the colligation condition GG∗ + SS∗ = 1 and (2.17) we get

(φ′
1, φ

′
1) = 1 − |γ0|2 = 1 − SS∗ = GG∗ = (φ̃′

1, φ̃
′
1) (2.43)

and for r ∈ {1, 2, . . .}
(φ′

1, T
rφ′

1) = (T ∗F (1), T r−1φ′
1)

= −(G∗S(1), T r−1φ′
1) = −γ0(φ̃′

1, φ
′
r) = −(φ̃′

1, γ0φ
′
r) .

Hence, the system (2.42) can be rewritten in the form

zj(φ̃′
1, φ̃

′
1)− zj−1(φ̃′

1, γ0φ
′
1)− · · ·− z0(φ̃′

1, γ0φ
′
j) = (φ̃′

1, φ
′
j+1) , j ∈ {0, 1, . . . , k− 2} .

This is equivalent to

hj ⊥ φ̃′
1 , j ∈ {0, 1, . . . , k − 2} (2.44)

where

hj = zj φ̃
′
1 − γ0(zj−1φ

′
1 + zj−2φ

′
2 + · · · + z0φ

′
j) − φ′

j+1 . (2.45)

From (2.2) and (1.4) it follows that (2.44) is equivalent to

hj ∈ ker(I − T ∗T ) , j ∈ {0, 1, . . . , k − 2} . (2.46)

Thus, equation (2.41) is equivalent to the conditions (2.44) and also to (2.46). Note
that for j ∈ {0, 1, . . . , k − 3}

hj+1 = zj+1φ̃
′
1 + Thj . (2.47)

Let x be the unique solution of the system (2.39). Then from (2.41) it follows
Ak−2x = Zk−2Bk−2x = Zk−2pk. To complete the proof it suffices to verify that

Zk−2pk = qk . (2.48)

Using coordinates the system (2.48) can be rewritten in the form

zjpk,k−1 + zj−1pk,k−2 + · · · + z0pk,k−j−1 = qk,k−j−1 , j ∈ {0, 1, . . . , k − 2} .

Taking into account (2.34) these equations can be rewritten again as

(wk,k−1, zj φ̃
′
1) + (wk,k−2, zj−1φ̃

′
1) + · · · + (wk,k−j−1 , z0φ̃

′
1) = (wk,k−j−1, φ

′
1)

or equivalently for j ∈ {0, 1, . . . , k − 2}

(wk,k−1, zj φ̃
′
1) + (wk,k−2, zj−1φ̃

′
1) + · · · +

+(wk,k−j , z1φ̃
′
1) + (wk,k−j−1 , z0φ̃

′
1 − φ′

1) = 0 . (2.49)
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From (2.45) and (2.46) we infer for j = 0 now z0φ̃
′
1 - φ′

1 = h0 ∈ ker(I − T ∗T ).
Consequently, taking into account (2.35) the last term in (2.49) can be rewritten as

(wk,k−j−1 , z0φ̃
′
1 − φ′

1)

= (Twk,k−j−1, T (z0φ̃
′
1 − φ′

1)) = (wk,k−j + λk+1,j+1φ
′
1, T (z0φ̃

′
1 − φ′

1))

= (wk,k−j , T (z0φ̃
′
1 − φ′

1)) = (wk,k−j , Th0) .

Hereby, we have taken into account that from the colligation condition T ∗F +
G∗S = 0 and (2.44) it follows

(φ′
1, T (z0φ̃

′
1 − φ1)) = (F (1), Th0) = (T ∗F (1), h0)

= (G∗S(1), h0) = −γ0(G∗(1), h0) = −γ0(φ̃′
1, h0) = 0 .

Combining now the last two terms in (2.49) and taking into account formula (2.47)
for j = 0 we rewrite (2.49) for j ∈ {0, 1, . . . , k − 2} in the form

(wk,k−1, zj φ̃
′
1) + (wk,k−2, zj−1φ̃

′
1) + · · · + (wk,k−j+1 , z2φ̃

′
1) + (wk,k−j , h1) = 0.

Taking into account now that h1 belongs to ker(I −T ∗T ) the above considerations
can be repeated. After the kth step the system (2.49) has the form (wkk, Thj) = 0,
j ∈ {0, 1, . . . , k − 2}. The validity of these conditions follows from the fact that
according to (2.45) and the colligation condition TG∗ + FS∗ = 0 the relations

Thj ∈
k∨

r=1
φ′

r, j ∈ {0, 1, . . . , k − 2} are satisfied, but wkk = φ̂k+1. Hereby, keeping

in mind the orthogonalization procedure, we have φ̂k+1 ⊥
k∨

r=1
φ′

r. �

Corollary 2.8. For k ∈ {1, 2, . . .} the identities

dk = −gk+1δk−1(1 − |γ0|2)
k∏

j=0

√
1 − |γj |2 , δ0 = 1 (2.50)

hold true.

Proof. From (2.33), (2.37) and Lemma 2.7 we get

dk = det(lk1, . . . , lk,2k−1, lk,2k) = det(lk1, . . . , lk,2k−1, l̂k,2k)

= det(lk1, . . . , lk,2k−1, l̂
(1)
k,2k) = −pkkM1,2k

where M1,2k is the minor of the element at position (1, 2k) in the determinant
(2.31). Computing M1,2k with the aid of the Laplace formula for the kth column
and taking into account (2.29), (2.17) and (2.32), we obtain M1,2k = b0δk−1 =
(1 − |γ0|2)δk−1, k ∈ {1, 2, . . .}. From this and (2.36) we infer dk = −pkkM1,2k =

−gk+1δk−1(1 − |γ0|2)
k∏

j=0

√
1 − |γj |2, k ∈ {1, 2, . . .}. �



Contractions and Schur Parameters 197

Lemma 2.9. For k ∈ {1, 2, . . .} the identities

gk = γk

k−1∏
j=0

√
1 − |γj |2 (2.51)

hold true.

Proof. From (2.16), (2.17), (2.28) and (2.30) we infer

g1 = (φ1, φ̃
′
1) =

1
‖φ′

1‖
(φ′

1, φ̃
′
1) =

1
‖φ′

1‖
a0 = γ1

b0

‖φ′
1‖

= γ1

√
1 − |γ0|2 ,

i.e., formula (2.51) is proved for k = 1. For k ∈ {2, 3, . . . }, using (2.30) and (2.50),
we get

γk
δk−1

δk−2
= gk(1 − |γ0|2)

k−1∏
j=0

√
1 − |γj |2 . (2.52)

It is known (see Schur[31, part I, §4]) that 1−|γj+1|2 = δj−1δj+1

δ2
j

, j ∈ {0, 1, 2, . . .},
δ−1 = 1

b20
. Hereby, comparing with [31] one has to take into account that we have

shifted the index associated with γj for one unit. Thus,
k−2∏
j=0

(1−|γj+1|2) = δ−1δk−1
δ0δk−2

,

k ∈ {2, 3, . . .}. Taking into account the identity b0 = 1 − |γ0|2, we obtain

δk−1

δk−2
= (1 − |γ0|2)

k−1∏
j=0

(1 − |γj |2) .

Substituting this expression in (2.52) we obtain (2.51) for k ∈ {2, 3, . . .}. �
Corollary 2.10. The vector system (φ′

k)∞k=1 (see (2.4)) is not total in H if and only
if the product

∞∏
j=0

(1 − |γj |2) (2.53)

converges. If this condition is satisfied then

g∞ =
∞∏

j=0

√
1 − |γj |2 . (2.54)

Proof. Because of the Corollary 1.10 the vector system (2.4) is not total in H if
and only if the vector φ̃′

1 = G∗(1) does not belong to HF, i.e.,

‖φ̃′
1‖2 − ‖PHF

φ̃′
1‖2 > 0 (2.55)

where PHF
is the orthogonal projection from H onto HF. From the coordinate

representation (2.16) and (2.43) we get

|g∞|2 = ‖φ̃′
1‖2 − ‖PHF

φ̃′
1‖2 = (1 − |γ0|2) −

∞∑
k=1

|gk|2 .
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Using (2.51) we obtain

|g∞|2 = lim
n→∞{(1 − |γ0|2) −

n∑
k=1

|γk|2
k−1∏
j=0

(1 − |γj |2)}

= lim
n→∞

n∏
j=0

(1 − |γj |2) =
∞∏

j=0

(1 − |γj |2) . (2.56)

Hence, the inequality (2.55) is satisfied if and only if the infinite product (2.53) con-
verges. Using now the normalization condition (2.11) we obtain g∞ = (φ̃′

1, ψ1) > 0.
From this and (2.56) we get (2.54). �

If the vector system (2.4) is not total in H then we obtain H⊥
F = H�HF �= {0}.

In view of Theorem 1.6 this implies that T ∗ contains a nonzero maximal shift VT∗ .
Because of δT = 1, from Theorem 1.9 we obtain that the multiplicity of VT∗ is
equal to 1, too. In view of Remark 1.11 this is equivalent to the fact that T contains
a nonzero maximal shift VT of multiplicity 1. Thus, we have obtained the following
result.

Lemma 2.11. Let θ(ζ) ∈ S and let ∆ be a simple unitary colligation of the form
(2.1) which satisfies θ∆(ζ) = θ(ζ). Then the contraction T (resp. T ∗) contains a
nonzero maximal shift if and only if the infinite product (2.53) converges. If this
condition is satisfied the multiplicities of the maximal shifts VT and VT∗ are both
equal to 1.

Remark 2.12. It is known (see, e.g., Bertin et al. [7, Chapter 3]), that

∞∏
j=0

(1 − |γj |2) = exp{ 1
2π

π∫
−π

ln(1 − |θ(eiα)|2)dα} ,

where θ(eiα) denotes the nontangential boundary values of θ(ζ) which exist and are
finite almost everywhere in view of a theorem due to Fatou. Hence, the convergence
of the product (2.53) means that ln(1 − |θ(eiα)|2) ∈ L1[−π, π].

2.5. Description of the model of a unitary colligation if
∞∏

j=0

(1 − |γj |2) converges

In this case we have in particular |γk| < 1 for all k ∈ {0, 1, 2, . . .}. Therefore,
in view of Corollary 2.6 the sequence (2.4) does not contain linearly dependent
elements whereas the Corollary 2.10 states us that this vector system is not total
in H. This means that the canonical basis in H has the form (2.12). The operators
T, F, G and S have with respect to this basis the matrix representations (2.13)-
(2.16). In view of the above results in order to reach a complete description of
the model of a unitary colligation it is sufficient to find the elements (tkj)k

j=1,
k ∈ {1, 2, . . .} in the matrix representation (2.8), (2.13) of TF and (r′k)∞k=1 in the
matrix representation (2.14) of R̃.
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From the colligation condition T ∗F+G∗S = 0 and (2.15) we conclude T ∗φ1 =
1

‖φ′
1‖T ∗F (1) = − 1

‖φ′
1‖G∗S. From this in view of (2.16) and (2.17) we get

T ∗φ1 = − γ0√
1 − |γ0|2

G∗(1) = − γ0√
1 − |γ0|2

{
∞∑

k=1

gkφk + g∞ψ1} . (2.57)

On the other side, the matrix representations (2.8), (2.13) and (2.14) yield T ∗φ1 =
∞∑

k=1

t1kφk + r′1ψ1. Comparing this series representation with (2.57) and taking into

account (2.51) and (2.54), we obtain

t11 = − γ0√
1 − |γ0|2

g1 = −γ0γ1 , (2.58)

t1k = − γ0√
1 − |γ0|2

gk = −γ0γk

k−1∏
j=1

√
1 − |γj |2 , k ∈ {2, 3, . . .} (2.59)

and

r′1 = − γ0√
1 − |γ0|2

g∞ = −γ0

∞∏
j=1

√
1 − |γj |2 . (2.60)

Thus, the elements in the first row of the matrix representation (2.13) of T are
determined.

We consider the colligation condition T ∗T + G∗G = I. Using the matrix
representation (2.13), we get(

T ∗
F 0

R̃∗ Ṽ ∗
T

)(
TF R̃

0 ṼT

)
+ G∗G = I . (2.61)

Postmultiplying in this identity the kth row with the first column and taking into
account formulas (2.8), (2.14) and (2.16) we get for k ∈ {2, 3, . . .} the equations
t1kt11+t2kt21+gkg1 = 0. Substituting in this identity the expressions (2.58) for t11,
(2.59) for t1k, (2.26) for t21 and (2.51) for gk after straightforward computations

we obtain t22 = −γ1γ2t2k = −γ1γk

k−1∏
j=2

√
1 − |γj |2, k ∈ {3, 4, . . .}. Multiplying in

(2.61) the row with elements (r′j)
∞
j=1 with the first column we get r′1t11 + r′2t21 +

g∞g1 = 0. Inserting in this identity the expressions (2.58) for t11, (2.26) for t21,

(2.60) for r′1 and (2.54) for g∞ as above we obtain r′2 = −γ1

∞∏
j=2

√
1 − |γj |2. Thus,

we have determined the elements in the second row of the matrix representation
(2.13) of the operator T .

Postmultiplying now in (2.61) the rows with the second column, as above,

we obtain t33 = −γ2γ3, t3k = −γ2γk

k−1∏
j=3

√
1 − |γj |2, k ∈ {4, 5, . . .}, and r′3 =
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−γ2

∞∏
j=3

√
1 − |γj |2. Thus, the elements in the third row of the matrix represen-

tation (2.13) of the operator T are determined. Applying the method of mathe-
matical induction we assume that the first n rows in the matrix representation
(2.13) of T are determined. Then postmultiplying in (2.61) the rows with the
nth column as above we obtain for n ∈ {1, 2, . . .} the formulas tnn = −γn−1γn,

tnk = −γn−1γk

k−1∏
j=n

√
1 − |γj |2, k ≥ n + 1, and r′n = −γn−1

∞∏
j=n

√
1 − |γj |2.

Let us set Dγj :=
√

1 − |γj |2, j ∈ {0, 1, 2, . . .}. Thus, we obtain

Theorem 2.13. Let θ(ζ) ∈ S and let ∆ be a simple unitary colligation of the form
(2.1) which satisfies θ∆(ζ) = θ(ζ). Assume that for the Schur parameter sequence
of the function θ(ζ) the product (2.53) converges. Then the canonical basis of the
space H has the form (2.12). The operators T, F, G and S have with respect to this
basis the following matrix representations:

T =

(
TF R̃

0 ṼT

)
, (2.62)

where the operators in (2.62) are given by

TF =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−γ0γ1 −γ0Dγ1γ2 . . . −γ0

n−1∏
j=1

Dγj γn . . .

Dγ1 −γ1γ2 . . . −γ1

n−1∏
j=2

Dγj γn . . .

0 Dγ2 . . . −γ2

n−1∏
j=3

Dγj γn . . .

...
...

...
0 0 . . . −γn−1γn . . .
0 0 . . . Dγn . . .
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.63)

R̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−γ0

∞∏
j=1

Dγj 0 0 . . .

−γ1

∞∏
j=2

Dγj 0 0 . . .

...
...

...

−γn

∞∏
j=n+1

Dγj 0 0 . . .

...
...

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, ṼT =

⎛⎜⎜⎜⎝
0 1 0 . . .
0 0 1 . . .
0 0 0 . . .
...

...
...

⎞⎟⎟⎟⎠ ,

F = col (Dγ0 , 0, 0, . . . ; 0, 0, 0, . . . ) , (2.64)
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G = (γ1Dγ0 , γ2

1∏
j=0

Dγj , . . . , γn

n−1∏
j=0

Dγj , . . . ;
∞∏

j=0

Dγj , 0, 0, . . . ) (2.65)

and S = γ0.

We consider the model space

H̃ = l2 ⊕ l2 = {[(xk)∞k=1, (yk)∞k=1] : xk, yk ∈ C;
∞∑

k=1

|xk|2 <∞,

∞∑
k=1

|yk|2 <∞} (2.66)

For hj = [(xjk)∞k=1, (yjk)∞k=1] ∈ H̃, j = 1, 2 we define

h1 +h2 := [(x1k +x2k)∞k=1, (y1k + y2k)∞k=1] , λh1 := [(λx1k)∞k=1, (λy1k)∞k=1] , λ ∈ C ,

(h1, h2) :=
∞∑

k=1

x1kx2k +
∞∑

k=1

y1ky2k.

Equipped with these operations H̃ becomes a Hilbert space. By the canonical basis
in H̃ we mean the orthonormal basis

e1, e2, . . . , en, . . . ; e′1, e
′
2, . . . , e

′
n, . . . (2.67)

where ej = [(δjk)∞k=1, (δ0k)∞k=1], e′j = [(δ0k)∞k=1, (δjk)∞k=1], j ∈ {1, 2, . . .}, and, as

usual, for j, k ∈ {0, 1, 2, . . .} δjk =
{

1, k = j,
0, k �= j .

We suppose that the elements

of the canonical basis are ordered as in (2.67).

Corollary 2.14. (Description of the model) Let θ(ζ) ∈ S and let ∆ be a simple
unitary colligation of the form (2.1) which satisfies θ∆(ζ) = θ(ζ). Assume that
the product (2.53) formed from the Schur parameter sequence of the function θ(ζ)
converges. Let us consider the model space (2.66) and let T̃ be the operator in
H̃ which has the matrix representation (2.62) with respect to the canonical basis
(2.67). Moreover, let F̃ : C → H̃, G̃ : H̃ → C be those operators which have the
matrix representations (2.64) and (2.65) with respect to the canonical basis in H̃,
respectively. Furthermore, let S̃ := γ0. Then the tuple ∆̃ = (H̃, F̃, G̃; T̃ , F̃ , G̃, S̃)
where F̃ = G̃ = C, is a simple unitary colligation which is unitarily equivalent to
∆ and, thus, θ∆̃(ζ) = θ(ζ).

Proof. From Theorem 2.13 it is obvious that the unitary operator Z : H → H̃

which maps the canonical basis (2.12) of H to the canonical basis (2.67) of H̃ via
Zφk = ek, Zψk = ẽk, k = 1, 2, satisfies the conditions

ZT = T̃Z , ZF = F̃ , G̃Z = G . (2.68)

Thus, the tuple ∆̃ is a simple unitary colligation which is unitarily equivalent
to ∆. �
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2.6. Description of the model of a unitary colligation in the case of

divergence of the series
∞∑

j=0

|γj |2

In the case considered now the sequence of Schur parameters does not terminate.
Thus, |γj | < 1 for all j ∈ {0, 1, 2, . . .}. From Corollary 2.6 we obtain that in this
case the sequence (2.4) does not contain linearly dependent vectors. On the other
hand, the infinite product (2.53) diverges in this case. Thus, in view of Corollary
2.10, we have HF = H. This means that in this case the canonical basis of the
space H consists of the sequence

φ1, φ2, . . . , φn, . . . . (2.69)

Hence, in the case considered now we have T = TF. So we obtain the following
statement.

Theorem 2.15. Let θ(ζ) ∈ S and let ∆ be a simple unitary colligation of the form
(2.1) which satisfies θ∆(ζ) = θ(ζ). Assume that the Schur parameter sequence
(γj)∞j=0 of the function θ(ζ) satisfies

∞∑
j=0

|γj |2 = +∞ . (2.70)

Then the canonical basis of H has the shape (2.69). The operator T has the matrix
representation (2.63) with respect to this basis, whereas the matrix representation
of the operators F, G and S with respect to this basis are given by

F = col (Dγ0 , 0, 0, . . . ) , (2.71)

G = (γ1Dγ0 , γ2

1∏
j=0

Dγj , . . . , γn

n−1∏
j=0

Dγj , . . . ) (2.72)

and S = γ0.

In the case considered now as model space H̃ we choose the space l2 equipped
with the above defined operations. By the canonical basis in H̃ we mean the or-
thonormal basis ej = (δjk)∞k=1, j ∈ {1, 2, 3, . . .}. Hereby, the elements of this basis
are supposed to be naturally ordered via

e1, e2, . . . , en, . . . . (2.73)

Corollary 2.16. (Description of the model) Let θ(ζ) ∈ S and let ∆ be a simple
unitary colligation of the form (2.1) which satisfies θ∆(ζ) = θ(ζ). Assume that
the Schur parameter sequence (γj)∞j=0 of the function θ(ζ) satisfies the divergence
condition (2.70). Let us consider the model space H̃ = l2 and let T̃ be the operator
in H̃ which has the matrix representation (2.63) with respect to the canonical basis
(2.73). Moreover, let F̃ : C → H̃, G̃ : H̃ → C be those operators which have the
matrix representations (2.71) and (2.72) with respect to the canonical basis in H̃,
respectively. Furthermore, let S̃ := γ0. Then the tuple ∆̃ = (H̃, F̃, G̃; T̃ , F̃ , G̃, S̃)
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where F̃ = G̃ = C, is a simple unitary colligation which is unitarily equivalent to
∆ and, thus, θ∆̃(ζ) = θ(ζ).

Proof. It suffices to mention that the unitary operator Z : H → H̃ which maps the
canonical basis (2.69) of H to the canonical basis (2.73) of H̃ satisfies the conditions
(2.68). �

2.7. Description of the model in the case that the function θ
is a finite Blaschke product

Now we consider the case when the product (2.53) diverges whereas the series
(2.70) converges. Obviously, this can only occur, if there exists a number n such
that |γk| < 1, k = 0, 1, . . . , n − 1; |γn| = 1. As already mentioned this means that
the function θ(ζ) is a finite Blaschke product of degrees n. From (2.26) it follows
that in this case tk+1,k > 0, k = 1, 2, . . . , n− 1; tn+1,n = 0. Then from (2.7) we see
that this is equivalent to the fact that the vectors (φ′

k)n
k=1 are linearly dependent

whereas the vector φ′
n+1 is a linear combination of them. This means that in the

case considered now we have H = HF =
∞∨

k=1

φ′
k =

n∨
k=1

φ′
k . Hence, dimH = n and

the canonical basis in H has the form

φ1, φ2, . . . , φn . (2.74)

As above we obtain the following result.

Theorem 2.17. Let θ(ζ) be a finite Blaschke product of degree n and let ∆ be a
simple unitary colligation of the form (2.1) which satisfies θ∆(ζ) = θ(ζ). Then the
canonical basis of the space H has the form (2.74). The operators T, F, G and S
have the following matrix representations with respect to this basis:

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−γ0γ1 −γ0Dγ1γ2 . . . −γ0

n−1∏
j=1

Dγj γn

Dγ1 −γ1γ2 . . . −γ1

n−1∏
j=2

Dγj γn

0 Dγ2 . . . −γ2

n−1∏
j=3

Dγj γn

...
...

...
0 0 . . . −γn−1γn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.75)

F = col (Dγ0 , 0, . . . , 0) , (2.76)

G = (γ1Dγ0 , γ2

1∏
j=0

Dγj , . . . , γn

n−1∏
j=0

Dγj ), (2.77)

and S = γ0.
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In the case considered now we choose the n-dimensional Hilbert space C
n

as model space H̃. By the canonical basis in H̃ we mean the orthonormal basis
ej = (δjk)n

k=1, j ∈ {1, . . . , n}. Hereby we assume that the elements of this basis
are naturally ordered via

e1, e2, . . . , en . (2.78)

As above the following result can be verified:

Corollary 2.18. (Description of the model) Let θ(ζ) be a finite Blaschke product of
degree n and let ∆ be a simple unitary colligation of the form (2.1) which satisfies
θ∆(ζ) = θ(ζ). Let (γj)n

j=0 be the Schur parameter sequence of the function θ. Let
us consider the model space H̃ = Cn and let T̃ be the operator in H̃ which has the
matrix representation (2.75) with respect to the canonical basis (2.78). Moreover,
let F̃ : C → H̃, G̃ : H̃ → C be those operators which have the matrix representations
(2.76) and (2.77) with respect to the canonical basis in H̃, respectively. Furthermore,
let S̃ := γ0. Then the tuple ∆̃ = (H̃, F̃, G̃; T̃ , F̃ , G̃, S̃) where F̃ = G̃ = C, is a simple
unitary colligation which is unitarily equivalent to ∆ and, thus, θ∆̃(ζ) = θ(ζ).

2.8. Comments

A. Let µ ∈ M(T, C) and assume µ(T) = 1, i.e., the measure µ is a scalar, normal-
ized Borel measure on T. Let us define the usual Hilbert space of square integrable
complex-valued functions on T with respect to µ by

L2(µ) = L2(µ, T) = {f : f is µ-measurable and
∫
T

|f(t)|2µ(dt) < ∞}.

On the space L2(µ) we consider the unitary operator U× which is generated by
multiplication by t where t ∈ T is the independent variable : (U×f)(t) = tf(t), f ∈
L2(µ).

Let τ be the embedding operator of C into L2(µ), i.e., τ : C → L2(µ) and
for each c ∈ C the value τc is the constant function with the value c. It is obvious
that the triple (L2(µ), U×, τ) is the minimal Naimark dilation of the measure µ.

Consider the subspace Hµ := L2(µ) � τ(C). According to the decomposition
L2(µ) = Hµ ⊕ τ(C) the operator U× is given by the block matrix

U× =
(

T× F×

G× S×

)
.

Then from Theorem 1.20, statement (b), it follows that the set

∆µ := (Hµ, C, C; T×, F×τ, τ∗G×, τ∗S×τ)

is a simple unitary colligation. Moreover, the characteristic function θ∆µ(ζ) is
associated with the measure µ. Thus, if the function Φ(ζ) has the form (1.17) then
from (1.19) it follows that ζθ∆µ(ζ) = (Φ(ζ) − I)(Φ(ζ) + I)−1.

It is important that the canonical basis (2.12) for the colligation ∆µ is
generated by the system of orthogonal polynomials in L2(µ). Hence (see Theorem
1.20 and Remark 1.22), Theorem 2.13, Theorem 2.15 and Theorem 2.17 give the
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matrix representation of the operator U× in this basis. The first appearance (1944)
of this matrix is in Geronimus [27]. Ya.L. Geronimus considered the case when the
sequence of the orthogonal polynomials is basis in L2(µ), i.e., when the series
∞∑

j=0

|γj |2 diverges (see Theorem 2.15). W.B. Gragg [27] in 1982 rediscovered this

matrix representation and used it for calculations. A.V. Teplyaev [34] (1991) seems
to be first to use it for spectral purposes. What concerns the role of this matrix
representation in theory of orthogonal polynomials on the unit circle we refer the
reader to B. Simon [32, Chapter 4].

B. The full matrix representation (see Theorem 2.13) appeared in Constantinescu
[14] in 1984 (see also Bakonyi/Constantinescu [6]). He finds it as the Naimark
dilation. Let us establish some connections with results in [14]. We note that from
Remark 1.22 it follows that the above constructed models of unitary colligations
are also models of Naimark dilations of corresponding Borel measures on T. Under
this aspect we consider in more detail the model described in Corollary 2.14. In
this case the model space K for the Naimark dilation (1.22) has the form

K = H̃ ⊕ C = (l2 ⊕ l2) ⊕ C . (2.79)

Moreover, U =

(
T̃ F̃

G̃ S̃

)
: (l2 ⊕ l2)⊕C → (l2 ⊕ l2)⊕C. In accordance to (2.79),

the vectors k ∈ K have the form

k = (x1, x2, . . . , xn, . . . ; y1, y2, . . . , yn, . . . ; c) , (2.80)

where (xk)k∈N ∈ l2, (yk)k∈N ∈ l2, c ∈ C. The operator τ embeds C into K in the
following way: τc = (0, 0, . . . , 0, . . . ; 0, 0, . . . , 0, . . . ; c), c ∈ C. We change the order
in the considered orthonormal base of K in such way that the vector k which has
the form (2.80) is given in the following way

k = (. . . , yn, . . . , y2, y1, c, x1, x2, . . . , xn, . . . ) ,

In this case, it is convenient to set c = x0, yk = x−k, k ∈ {1, 2, . . .}, i.e.,

k = (. . . , x−n, . . . , x−2, x−1, x0 , x1, x2, . . . , xn, . . . ) (2.81)

where we have drawn a square around the central entry with index 0. Now

τx0 = (. . . , 0, . . . , 0, x0 , 0, . . . , 0, . . . ) .

We associate with the representation (2.81) the following orthogonal decomposition

K = l−2 ⊕ l+2 (2.82)

where l−2 = {k ∈ K : xk = 0, k ≥ 0} and l+2 = {k ∈ K : xk = 0, k < 0}. From
the form of the operators T̃ , F̃ , G̃ and S̃ it follows that the operator U has the
following matrix representation with respect to the new basis and with respect to
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the orthogonal decomposition (2.82):
(

U11 U12

U21 U22

)
, where U12 = 0,

U11 =

⎛⎜⎜⎜⎜⎝
. . .
. . . 0

1 0
1 0

⎞⎟⎟⎟⎟⎠ , U21 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0
∞∏

j=0

Dγj

. . . 0 0 −γ1

∞∏
j=1

Dγj

...
...

...

. . . 0 0 −γn

∞∏
j=n+1

Dγj

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

U22 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ0 Dγ0γ1 . . .
n−1∏
j=0

Dγj γn . . .

Dγ0 −γ0γ1 . . . −γ0

n−1∏
j=1

Dγj γn . . .

0 Dγ1 . . . −γ1

n−1∏
j=2

Dγj γn . . .

...
...

...
0 0 . . . −γn−1γn . . .
0 0 . . . Dγn . . .
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.83)

In this form but using different methods a Naimark dilation is constructed
in Constantinescu [14] and Bakonyi/Constantinescu [6, Chapter 2].
C. We consider a simple unitary colligation ∆ of the form (2.1). If we choose in H
the canonical basis in accordance with (2.15) we obtain for the contraction (S, G)
the matrix representation (S, G) = (S, g1, g2, . . . , g∞, 0, 0, . . . ). The above results
show that if we parametrize the contractive block row (S, g1, g2, . . . , gn, . . . ) by
the method proposed in Constantinescu [15, Chapter 1] we will obtain all blocks
described in Theorem 2.13 with exception of the coshift ṼT .

D. Because of U12 = 0 the operator U22 is an isometry acting in l+2 . We mention
that the representation of an isometry in the form (2.83) plays an important role
in Foias/Frazho [25, Chapter 13] in connection with the construction of Schur
representations for the commutant lifting theorem.
E. If |γk| < 1, k ∈ {0, 1, 2, . . .} and the product (2.53) diverges then K = l+2 ,
i.e., U = U22. In this case the layered form of the model is particularly clear. For
example, if we pass in the Schur algorithm from the Schur function θ0(ζ) = θ(ζ)
to the function θ1(ζ) = θ0(ζ)−γ0

ζ(1−γ0θ0(ζ)) the Schur parameter sequence changes from
(γk)∞k=0 to (γk)∞k=1. This is expressed in the model representation (2.83) in the
following way. One has to cancel the first column and the first row. After that
one has to divide the second row by −γ0. This “layered form” finds its expression
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in the following multiplicative representation of U22 which can be immediately
checked (see also Foias/Frazho [25], Constantinescu [15]): U22 = V0V1V2 . . . Vn · · · =
s − lim

n→∞V0V1 . . . Vn where V0 = Rγ0 ⊕ 1 ⊕ 1 ⊕ . . . , V1 = 1 ⊕ Rγ1 ⊕ 1 ⊕ . . . ,
V2 = 1⊕ 1⊕Rγ2 ⊕ . . . and Rγj is the elementary rotation matrix associated with

γj , i.e., Rγj =
(

γj Dγj

Dγj −γj

)
, j ∈ {0, 1, 2, . . .}.

3. A model representation of the maximal shift VT

contained in a contraction T

3.1. The conjugate canonical basis

Let θ(ζ) ∈ S. Assume that

∆ = (H, F, G; T, F, G, S) (3.1)

is a simple unitary colligation satisfying θ(ζ) = θ∆(ζ). As above we consider the
case F = G = C. Moreover, we choose the complex number 1 as basis vector
of the one-dimensional complex vector space C. We assume that the sequence
γ = (γj)ω

j=0 of Schur parameters of the function θ(ζ) is infinite (i.e., ω = ∞) and
that the infinite product (2.53) converges. In this case, as it follows from Theorem
2.13, the canonical basis of the space H has the form (2.12). Hereby, the matrix
representation of the operators of the colligation ∆ with respect to this basis are
given by formulas (2.62)–(2.65).

We consider the function θ̃(ζ) which is associate to θ(ζ), i.e., θ̃(ζ) = θ(ζ), ζ ∈
D. Clearly, that θ̃(ζ) ∈ S and

∆̃ := (H, G, F; T ∗, G∗, F ∗, S∗) (3.2)

is a simple unitary colligation satisfying θ̃(ζ) = θ∆̃(ζ)(see Brodskii[12]). The uni-
tary colligation (3.2) is called adjoint to the colligation (3.1). Hence, the function
θ̃(ζ) is the c.o.f. of the contraction T ∗. It can be easily seen that the Schur pa-
rameter sequence (γ̃j)∞j=0 of the function θ̃(ζ) is given by γ̃j = γj , j ∈ {0, 1, 2, . . .}
and, consequently, the product (2.53) converges for (γ̃j)∞j=0, too. This means that
the canonical basis of the space H which is constructed for the colligation ∆̃ will
also consist of two sequences of vectors

φ̃1, φ̃2, . . . ; ψ̃1, ψ̃2, . . . . (3.3)

From the considerations in Section 2.2 it follows that this basis can be uniquely
characterized by the following conditions:

(1) The sequence (φ̃k)∞k=1 arises in the result of the Gram-Schmidt orthogonal-
ization procedure of the sequence (T ∗k−1G∗(1))∞k=1 taking into account the
normalization conditions (T ∗k−1G∗(1), φ̃k) > 0, k ∈ {1, 2, 3, . . .}.
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(2) The vector ψ̃1 is that basis vector of the one-dimensional generating wan-
dering subspace of the maximal unilateral shift VT acting in H⊥

G = H � HG

which satisfies the inequality (φ1, ψ̃1) > 0 and, moreover,

ψ̃k+1 = T ψ̃k, k ∈ {1, 2, 3, . . .}. (3.4)

Definition 3.1. The canonical basis (3.3) which is constructed for the adjoint col-
ligation (3.2) is called conjugated to the canonical basis (2.12) constructed for the
colligation (3.1).

Remark 3.2. In view of θ(ζ) = (˜̃θ(ζ)) and ∆ = ( ˜̃∆) the canonical basis (2.12) is
conjugated to the canonical basis (3.3).

Our approach is based on the study of interrelations between the canonical
basis (2.12) and the basis (3.3) which is conjugated to it. For this reason, we
introduce the unitary operator U(γ) : H → H which maps the first basis onto the
second one:

U(γ)φk = φ̃k, U(γ)ψk = ψ̃k, k ∈ {1, 2, 3, . . .}. (3.5)

The orthonormal systems (φk)∞k=1 and (ψk)∞k=1 are bases of the subspaces HF and
H⊥

F , respectively, whereas the orthonormal systems (φ̃k)∞k=1 and (ψ̃k)∞k=1 are bases
of the subspaces HG and H⊥

G, respectively. Therefore, the operator U(γ) transfers
the decomposition H = HF ⊕H⊥

F into the decomposition H = HG ⊕H⊥
G taking into

account the structures of the canonical bases. Consequently, the knowledge of the
operator U(γ) enables us to describe the position of each of the subspaces HG and
H⊥

G in relation to HF and H⊥
F . We emphasize that many properties of the function

θ(ζ) and the corresponding contraction T depend on the mutual position of these
subspaces.

In view of γ̃j = γj , j ∈ {0, 1, 2, . . .}, the replacement of the canonical basis
(2.12) by its conjugated basis (3.3) requires that in corresponding matrix repre-
sentations we have to replace γj by γj . In particular, the following result holds:

Theorem 3.3. The matrix representation of the operator T ∗ with respect to the
canonical basis (3.3) is obtained from the matrix representation of the operator T
with respect to the canonical basis (2.12) by replacing γj by γj , j ∈ {0, 1, 2, . . .}.

3.2. A model representation of the maximal unilateral shift VT

contained in a contraction T

Let θ(ζ) ∈ S and assume that ∆ is a simple unitary colligation of the form (3.1)
which satisfies θ(ζ) = θ∆(ζ). We assume that the sequence of Schur parameters of
the function θ(ζ) is infinite and that the infinite product (2.53) converges. Then it
follows from Lemma 2.11 that in this and only this case the contraction T (resp.
T ∗) contains a nontrivial maximal shift VT (resp. VT∗). Hereby, the multiplicity of
the shift VT (resp. VT∗) equals 1. The shift VT∗ in the model representation asso-
ciated with the canonical basis (2.12) is immediately determined by the sequence
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of basis vectors (ψk)∞k=1 since ψ1 is a basis vector of the one-dimensional generat-
ing wandering subspace of VT∗ and ψk = V k−1

T∗ ψ1, k ∈ {2, 3, 4, . . .}. Analogously
(see property (2) of the conjugate canonical basis (3.3)) the sequence (ψ̃k)∞k=1 of
the basis (3.3) determines the maximal shift VT . Thus, representing the vectors
(ψ̃k)∞k=1 in terms of the vectors of the basis (2.12) we obtain a model representa-
tion of the maximal shift VT with the aid of the canonical basis (2.12). The main
goal of this paragraph is the detailed description of this model. In the following we
use the same symbol for an operator and its matrix with respect to the canonical
basis (2.12).

The unitary operator (3.5) has the matrix representation

U(γ) =
(

R(γ) L(γ)
P(γ) Q(γ)

)
(3.6)

where R,P , L and Q are the matrices of the operators

PHF
Rstr. HF

U : HF → HF , PH⊥
F
Rstr. HF

U : HF → H⊥
F ,

PHF
Rstr. H⊥

F
U : H⊥

F → HF and PH⊥
F
Rstr. H⊥

F
U : H⊥

F → H⊥
F ,

respectively. Hereby, if K is a closed subspace of H, the operator PK denotes the
orthoprojection from H onto K.

From (3.5) we see that the columns of the matrix(
L(γ)
Q(γ)

)
(3.7)

provide the coefficients in the representation of the vectors (ψ̃k)∞k=1 with respect
to the canonical basis (2.12). Thus, the model description of the shift VT leads to
the determination of the matrix (3.7). We note that the matrix (3.7) shows how
the subspace H⊥

G is located relatively to the subspaces HF and H⊥
F .

Theorem 3.4. The identities

(ψ̃1, φ1) =
∞∏

j=1

(1 − |γj |2)
1
2 (3.8)

and

(ψ̃j , φ1) = 0, j ∈ {2, 3, . . .} (3.9)

hold true.

Proof. In view of φ̃1 = 1√
1−|γ0|2

G∗(1) from the matrix representation (2.65) of

the operator G it follows

(ψ1, φ̃1) =
1√

1 − |γ0|2
(ψ1, G

∗(1)) =
∞∏

j=1

(1 − |γj |2)
1
2 . (3.10)

Since changing from (ψ1, φ̃1) to (ψ̃1, φ1) is realized by replacing γj by γ̃j = γj ,
j ∈ {0, 1, 2, . . . , }, formula (3.8) follows from (3.10).
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For j ∈ {2, 3, . . . , } we obtain

(ψ̃j , φ1) = (T ψ̃j−1,
1√

1 − |γ0|2
F (1)) =

1√
1 − |γ0|2

(ψ̃j−1, T
∗F (1)).

From the colligation condition (1.3) we infer

T ∗F (1) = −G∗S(1) = −γ0G
∗(1) = −γ0

√
1 − |γ0|2 φ̃1.

Thus, (ψ̃j , φ1) = −γ0(ψ̃j−1, φ̃1) = 0. �

Definition 3.5. Denote by Γ the set of all sequences γ = (γj)ω
j=0 which occur as

Schur parameters of Schur functions. Furthermore, denote Γl2 the subset of all
sequences belonging to Γ for which the product (2.53) converges. Thus,

Γl2 := {γ = (γj)∞j=0 : γj ∈ C, |γj | < 1, j ∈ {0, 1, 2, . . .} and

∞∑
j=0

|γj |2 < ∞}.

We define the coshift W : l2 → l2 via

(γ0, γ1, γ2, . . .) �→ (γ1, γ2, γ3, . . .) , γ = (γj)∞j=0 ∈ l2. (3.11)

In the sequel, the system of functions (Ln(γ))∞n=0, which was introduced for
γ ∈ Γl2 in [21] will play an important role. For γ ∈ Γl2 we set

L0(γ) := 1, Ln(γ) = Ln(γ0, γ1, γ2, . . .) := (3.12)
n∑

r=1

(−1)r
∑

s1+...+sr=n

∞∑
j1=n−s1

∞∑
j2=j1−s2

. . .

∞∑
jr=jr−1−sr

γj1γj1+s1
γj2γj2+s2

. . . γjrγjr+sr
.

Here the summation runs over all ordered r-tuples (s1, . . . , sr) of positive integers
which satisfy s1 + s2 + . . . + sr = n. For example,

L1(γ) = −
∞∑

j=0

γjγj+1, L2(γ) = −
∞∑

j=0

γjγj+2 +
∞∑

j1=1

∞∑
j2=j1−1

γj1γj1+1γj2γj2+1.

In view of γ ∈ Γl2 the series in (3.12) converges absolutely.

Theorem 3.6. (Model representation of the maximal shift VT with respect to the
canonical basis (2.12)) Let θ(ζ) be a function of class S the Schur parameter se-
quence γ = (γj)∞j=0 of which belongs to Γl2. Further, let ∆ be a simple unitary
colligation of the form (3.1) which satisfies θ(ζ) = θ∆(ζ). Then the vectors (ψ̃j)∞j=1

of the conjugate canonical basis (3.3) admit the following representations in terms
of the vectors of the canonical basis (2.12):

ψ̃j =
∞∑

k=j

ΠkLk−j(W jγ)φk +
∞∑

k=1

Q(W k+j−1γ)ψk (3.13)

where

Πk =
∞∏

j=k

√
1 − |γj |2, k ∈ {0, 1, 2, . . .} (3.14)
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and

Q(γ) = −
∞∑

j=0

γjLj(γ). (3.15)

Hereby, the sequence (Ln(γ))∞n=0 is defined by (3.12) whereas the coshift W is given
via (3.11). The series in (3.15) converges absolutely.

Proof. Clearly, we have ψ̃1 =
∞∑

k=1

(ψ̃1, φk)φk +
∞∑

k=1

(ψ̃1, ψk)ψk. If k ∈ N, then taking

into account Πk �= 0 we define Φk−1(γ) := (ψ̃1,φk)
Πk

and Qk(γ) := (ψ̃1, ψk). Thus,

ψ̃1 =
∞∑

k=1

ΠkΦk−1(γ)φk +
∞∑

k=1

Qk(γ)ψk. (3.16)

Then from (3.8) it follows Φ0(γ) = 1. Thus, in view of (3.12) we have

Φ0(γ) = L0(Wγ). (3.17)

As well the vectors (φj)∞j=1 and (ψj)∞j=1 from the canonical basis (2.12) as
the vectors (φ̃j)∞j=1 and (ψ̃j)∞j=1 from the conjugate canonical basis (3.3) clearly
depend on γ. For this reason, we will mark this dependence on γ in the following
consideration by the notations φj(γ), ψj(γ), φ̃j(γ) and ψ̃j(γ), j ∈ N. The identity

ψ̃j+1(γ) =
(

0
ψ̃j(Wγ)

)
, j ∈ N (3.18)

will turn out to be essential in the sequel. In order to prove (3.18) we will mainly
use the layered structure of the model of the colligation ∆ (see Theorem 2.13).
Namely, the matrix representation (2.62) implies

T (γ) =
(

−γ0γ1 −γ0G(Wγ)
F (Wγ) T (Wγ)

)
(3.19)

where

T (Wγ) =

(
TF(Wγ) R̃(Wγ)

0 ṼT (Wγ)

)
(3.20)

and where T (γ), F (γ) and G(γ) are given via (2.62), (2.64) and (2.65). Hereby,
we have ṼT(Wγ)= ṼT (γ) = ṼT . From (3.19) we infer

T (γ)
(

0
ψ̃1(Wγ)

)
=

(
−γ0(ψ̃1(Wγ), G∗(Wγ)(1))

T (Wγ)ψ̃1(Wγ)

)
(3.21)

In view of φ̃1(Wγ) = 1√
1−|γ1|2

G∗(Wγ)(1) we get

(ψ̃1(Wγ) , G∗(Wγ)(1)) =
√

1 − |γ1|2(ψ̃1(Wγ) , φ̃1(Wγ)) = 0.
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Taking into account the identity T (Wγ)ψ̃1(Wγ) = ψ̃2(Wγ) from (3.21) it follows

that T (γ)
(

0
ψ̃1(Wγ)

)
=

(
0

ψ̃2(Wγ)

)
. Analogously, the identity

T n(γ)
(

0
ψ̃1(Wγ)

)
=

(
0

ψ̃n+1(Wγ)

)
, n ∈ N,

can be obtained. Thus, for n ∈ N we have

‖T n(γ)
(

0
ψ̃1(Wγ)

)
‖ = ‖

(
0

ψ̃n+1(Wγ)

)
‖ = 1 = ‖

(
0

ψ̃1(Wγ)

)
‖.

Using Theorem 1.2, we obtain
(

0
ψ̃1(Wγ)

)
∈ H⊥

G. This implies

(
0

ψ̃1(Wγ)

)
=

∞∑
j=1

yjψ̃j(γ) (3.22)

where yj = (
(

0
ψ̃1(Wγ)

)
, ψ̃j(γ)), j ∈ N. Combining formula (3.22) with Theorem

3.4 we infer

0 = (
(

0
ψ̃1(Wγ)

)
,

(
1
0

)
) = (

(
0

ψ̃1(Wγ)

)
, φ1(γ))

=
∞∑

j=1

yj(ψ̃j(γ) , φ1(γ)) = y1(ψ̃1(γ) , φ1(γ)) = y1Π1.

Hence y1 = 0. Thus, from (3.22) we get

(
(

0
ψ̃1(Wγ)

)
, φ2(γ)) =

∞∑
j=2

yj(ψ̃j(γ) , φ2(γ)). (3.23)

From the matrix representation (2.62) we find

T (γ)φ1(γ) = −γ0γ1φ1(γ) + Dγ1φ2(γ).

This implies

φ2(γ) =
1

Dγ1

γ0γ1φ1(γ) +
1

Dγ1

T (γ)φ1(γ). (3.24)

Therefore, taking into account Theorem 3.4 for j ≥ 3 we obtain

(ψ̃j(γ) , φ2(γ)) =
1

Dγ1

γ0γ1(ψ̃j(γ) , φ1(γ)) +
1

Dγ1

(ψ̃j(γ) , T (γ)φ1(γ))

=
1

Dγ1

(ψ̃j(γ) , T (γ)φ1(γ)) =
1

Dγ1

(T ∗(γ)ψ̃j(γ) , φ1(γ))

=
1

Dγ1

(ψ̃j−1(γ) , φ1(γ)) = 0.
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From this and (3.23) we get

(
(

0
ψ̃1(Wγ)

)
, φ2(γ)) = y2(ψ̃2(γ) , φ2(γ)). (3.25)

From (3.8) it follows that

(
(

0
ψ̃1(Wγ)

)
, φ2(γ)) = (

⎛⎜⎜⎜⎝
0

Π2

∗
...

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
0
1
0
...

⎞⎟⎟⎟⎠) = Π2. (3.26)

On the other hand, using (3.24) and Theorem 3.4 we obtain

(ψ̃2(γ) , φ2(γ)) =
1

Dγ1

γ0γ1(ψ̃2(γ) , φ1(γ)) +
1

Dγ1

(ψ̃2(γ) , T (γ)φ1(γ))

=
1

Dγ1

(ψ̃2(γ) , T (γ)φ1(γ)) =
1

Dγ1

(T ∗(γ)ψ̃2(γ) , φ1(γ))

=
1

Dγ1

(ψ̃1(γ) , φ1(γ)) = Π2.

Combining this with (3.26) and (3.25) we infer y2 = 1. Comparing now the norms
of the vectors of both sides of identity (3.22) we obtain formula (3.18) for j = 1.
Assume now that formula (3.18) holds true for some j ∈ N. Then using (3.19)
we get

ψ̃j+2(γ)=T (γ)ψ̃j+1(γ)=T (γ)
(

0
ψ̃j(Wγ)

)
=
(

0
T (Wγ)ψ̃j(Wγ)

)
=
(

0
ψ̃j+1(Wγ)

)
.

Thus, formula (3.18) is proved by mathematical induction. Consequently,

ψ̃j(γ) =
(

0
ψ̃j−1(Wγ)

)
=

(
02×1

ψ̃j−2(W 2γ)

)
= · · · =

(
0(j−1)×1

ψ̃1(W j−1γ)

)
.

Hence, from (3.16) and (3.18) it follows that for j ∈ {2, 3, 4, . . .}

ψ̃j =
∞∑

k=j

ΠkΦk−j(W j−1γ)φk +
∞∑

k=1

Qk(W j−1γ)ψk. (3.27)

Thus, the matrices L(γ) and Q(γ) in (3.7) have the form

L(γ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π1 0 0 . . .
Π2Φ1(γ) Π2 0 . . .
Π3Φ2(γ) Π3Φ1(Wγ) Π3 . . .

...
...

...
. . .

ΠnΦn−1(γ) ΠnΦn−2(Wγ) ΠnΦn−3(W 2γ) . . .
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.28)



214 V.K. Dubovoy

and

Q(γ) =

⎛⎜⎜⎜⎝
Q1(γ) Q1(Wγ) Q1(W 2γ) . . .
Q2(γ) Q2(Wγ) Q2(W 2γ) . . .
Q3(γ) Q3(Wγ) Q3(W 2γ) . . .

...
...

...

⎞⎟⎟⎟⎠ , (3.29)

respectively.
Since lim

n→∞Πn = 1 and since L(γ) is a block of a unitary operator matrix,

from (3.28) it follows that

lim
n→∞Φk(Wnγ) = 0, k ∈ {1, 2, 3, . . .} (3.30)

and
∞∑

k=1

|Φk(W jγ)|2 < ∞, j ∈ {0, 1, 2, . . .}. (3.31)

Analogously, from (3.29) we infer
∞∑

k=1

|Qk(W jγ)|2 < ∞, j ∈ {0, 1, 2, . . .}. (3.32)

Taking into account the identities T ψ̃k = ψ̃k+1, T ∗ψk = ψk+1, k ∈ N for j ∈ N

we get Qj(Wγ) = (ψ̃2, ψj) = (T ψ̃1, ψj) = (ψ̃1, T
∗ψj) = (ψ̃1, ψj+1) = Qj+1(γ).

Thus, for j ∈ {2, 3, . . .} we obtain

Qj(γ) = Qj−1(Wγ) = · · · = Q1(W j−1γ). (3.33)

The identities (3.33) show that the matrix Q(γ) has Hankel structure⎛⎜⎜⎜⎝
Q1(γ) Q1(Wγ) Q1(W 2γ) . . .

Q1(Wγ) Q1(W 2γ) Q1(W 3γ) . . .
Q1(W 2γ) Q1(W 3γ) Q1(W 4γ) . . .

...
...

...

⎞⎟⎟⎟⎠ . (3.34)

Hereby from (3.32) we infer
∞∑

k=0

|Q1(W kγ)|2 < ∞ (3.35)

whereas the representations (3.16) and (3.27) take the form

ψ̃j =
∞∑

k=j

ΠkΦk−j(W j−1γ)φk +
∞∑

k=1

Q1(W k+j−2γ)ψk, j ∈ N. (3.36)

From (3.36) and the matrix representation (2.62) we find

(T ψ̃1, φ1) = −γ0Π1(
∞∑

k=0

γk+1Φk(γ) + Q1(γ)). (3.37)
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On the other side, in view of (3.9) we have

(T ψ̃1, φ1) = (ψ̃2, φ1) = 0. (3.38)

Assume that γ0 �= 0. Then the identities (3.37) and (3.38) provide

Q1(γ) = −
∞∑

k=0

γk+1Φk(γ). (3.39)

Now we show that the identities

Φk(γ) = Lk(Wγ), k ∈ {0, 1, 2, . . .} (3.40)

are satisfied, herein the sequence (Lk(γ))∞k=0 is given via (3.12). In view of (3.17)
the identity (3.40) holds true for k = 0. As above from formula (3.36) and the
matrix representation (2.62) we find

(T ψ̃1, φ3) =
√

1 − |γ2|2Π2Φ1(γ) − γ2Π3(
∞∑

k=2

γk+1Φk(γ) + Q1(γ)).

Taking into account (3.39) we get (T ψ̃1, φ3) = Π3(Φ1(γ)+γ1γ2). On the other side,
from (3.36) we infer (T ψ̃1, φ3) = (ψ̃2, φ3) = Π3Φ1(Wγ). The last two relations

imply Φ1(γ) = −γ1γ2 +Φ1(Wγ). Thus, Φ1(γ) = −
n∑

k=1

γkγk+1 +Φ1(Wnγ). Using

the limit process n → ∞ and (3.30) we obtain Φ1(γ) = −
∞∑

k=1

γkγk+1 = L1(Wγ)

and the identity (3.40) is proved for k = 1. Starting from (T ψ̃1, φ4) one can
analogously verify that formula (3.40) is also true for k = 2. We assume that
(3.40) holds true for 0 ≤ k ≤ n − 1. Then, as above, we obtain

(T ψ̃1, φn+2) =
√

1 − |γn+1|2Πn+1Φn(γ) − γn+1Πn+2(
∞∑

j=n+1

γj+1Φj(γ) + Q1(γ))

=
√

1 − |γn+1|2Πn+1Φn(γ) + γn+1Πn+2

n∑
p=0

γp+1Φp(γ)

= Πn+2[Φn(γ) + γn+1

n−1∑
p=0

γp+1Φp(γ)] = Πn+2[Φn(γ) + γn+1

n−1∑
p=0

γp+1Lp(Wγ)].

On the other hand, (T ψ̃1, φn+2) = (ψ̃2, φn+2) = Πn+2Φn(Wγ). Thus, we obtain
the recurrent formula

Φn(γ) = −γn+1

n−1∑
p=0

γp+1Lp(Wγ) + Φn(Wγ). (3.41)
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This implies Φn(γ) = −
m∑

k=0

γn+k+1

n−1∑
p=0

γp+k+1Lp(W k+1γ) + Φn(Wm+1γ). Ap-

plying the limit process m → ∞ and taking into account (3.30) we get

Φn(γ) = −
∞∑

k=0

n−1∑
p=0

γp+k+1γn+k+1Lp(W k+1γ).

Changing the order of summation we find

Φn(γ) = −
n∑

p=1

∞∑
k=0

γp+kγn+k+1Lp−1(W k+1γ).

Substituting new variables of summation via s1 = n − (p − 1), j1 = n − s1 + k

we have Φn(γ) = −
n∑

s1=1

∞∑
j1=n−s1

γj1+1γj1+1+s1
Ln−s1(W j1+1−n+s1γ). Thus,

Φn(γ) = −
∞∑

j1=0

γj1+1γj1+1+n −
n−1∑
s1=1

∞∑
j1=n−s1

γj1+1γj1+1+s1
Ln−s1(W

j1+1−n+s1γ).(3.42)

Taking into account for simplicity that k = j1 − n + s1 from (3.12) we find

Ln−s1(W
j1+1−n+s1γ) =

n−s1∑
r=1

(−1)r
∑

s2+s3+...+sr+1=n−s1

∞∑
k2=n−s1−s2

· · ·
∞∑

kr+1=kr−sr+1

γk2+1+kγk2+1+k+s2
· · ·γkr+1+1+kγkr+1+1+k+sr+1

.

Inserting this expression into (3.42) and introducing in the second sum new indices
of summation via jl = kl + k, l ∈ {2, 3, . . . , r + 1} we obtain

Φn(γ) = −
∞∑

j1=0

γj1+1γj1+1+n +
n−1∑
s1=1

n−s1∑
r=1

(−1)r+1
∑

s1+s2+...+sr+1=n

∞∑
j1=n−s1

∞∑
j2=j1−s2

· · ·
∞∑

jr+1=jr−sr+1

γj1+1γj1+1+s1
γj2+1γj2+1+s2

· · · γjr+1+1γjr+1+1+sr+1
.

This implies

Φn(γ) = −
∞∑

j1=0

γj1+1γj1+1+n +
n−1∑
r=1

(−1)r+1
∑

s1+s2+...+sr+1=n
1≤s1≤n−1

∞∑
j1=n−s1

∞∑
j2=j1−s2

· · ·
∞∑

jr+1=jr−sr+1

γj1+1γj1+1+s1
γj2+1γj2+1+s2

· · ·γjr+1+1γjr+1+1+sr+1
. (3.43)

Hereby, the sum runs over all ordered (r + 1)-tuples (s1, s2, . . . , sr+1) of positive
integers satisfying s1 + s2 + . . . + sr+1 = n and 1 ≤ s1 ≤ n − 1. This means that
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the sum
n−1∑
r=1

(−1)r+1
∑

s1+s2+...+sr+1=n
1≤s1≤n−1

· · ·

can be replaced by an analogous sum of the type
n∑

r=2

(−1)r
∑

s1+s2+...+sr+1=n
1≤s1≤n−1

· · · . (3.44)

Taking into account that the first term in (3.43) corresponds to the index s1 = n
in the sum (3.44), i.e., r = 1, from (3.43) we find Φn(γ) = Ln(Wγ). Thus, the
identity (3.40) holds true for all k ∈ {0, 1, 2, . . . , }.

From (3.39) and (3.40) it follows that

Q1(γ) = −
∞∑

k=0

γk+1Lk(Wγ) = Q(Wγ) (3.45)

where Q(γ) is given by (3.15). From (3.31) and (3.40) we get
∞∑

k=1

|Lk(W jγ)|2 < ∞, j ∈ N. (3.46)

Obviously (3.46) holds also true for j = 0. As γ ∈ Γl2 from (3.46) it follows the
absolute convergence of the series in (3.15). From (3.36), (3.40) and (3.45) we
obtain the representations (3.13).

Finally from (3.40) and (3.45) it is clear that Φk(γ), k ∈ {0, 1, 2, . . .} and
Q1(γ) do not depend on γ0. Since γ0 is an arbitrary number from D we see now
that the assumption γ0 �= 0 can be omitted. �

Corollary 3.7. The matrices L(γ) and Q(γ) introduced via (3.6) can be expressed
as

L(γ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Π1 0 0 . . .
Π2L1(Wγ) Π2 0 . . .
Π3L2(Wγ) Π3L1(W 2γ) Π3 . . .

...
...

...
. . .

ΠnLn−1(Wγ) ΠnLn−2(W 2γ) ΠnLn−3(W 3γ) . . .
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.47)

and

Q(γ) =

⎛⎜⎜⎜⎝
Q(Wγ) Q(W 2γ) Q(W 3γ) . . .
Q(W 2γ) Q(W 3γ) Q(W 4γ) . . .
Q(W 3γ) Q(W 4γ) Q(W 5γ) . . .

...
...

...

⎞⎟⎟⎟⎠ (3.48)
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where (Ln(γ))∞n=0, (Πn)∞n=0 and Q(γ) are defined via formulas (3.12), (3.14) and
(3.15), respectively, whereas W is the coshift introduced in (3.11).

Proof. The representation formula (3.47) follows from (3.28) and (3.40), whereas
formula (3.48) is an immediate consequence of (3.34) and (3.45). �

Corollary 3.8. ([21]) Each sequence (γj)∞j=0 ∈ Γl2 satisfies the following orthogo-
nality relations:
∞∑

n=0

Π2
n+kLn+k(γ)Ln(W kγ) +

∞∑
n=0

Q(Wnγ)Q(Wn+kγ) =
{

1, if k = 0,
0, if k ∈ {1, 2, 3, . . .}.

Proof. It suffices to consider for the sequence γ = (0, γ0, γ1, . . .) the representations
(3.13) and to substitute them into the orthogonality relations

(ψ̃1, ψ̃k+1) =
{

1, if k = 0,
0, if k ∈ {1, 2, 3, . . .}.

�

Corollary 3.9. The recurrent formulas

L0(γ) = L0(Wγ) (3.49)

and

Ln(γ) = Ln(Wγ) − γn

n−1∑
j=0

γjLj(γ), n ∈ N, (3.50)

hold true.

Proof. The relation (3.49) is obvious whereas the formulas (3.50) follow by com-
bining (3.40) and (3.41). �

The Hankel matrix (3.48) is the matrix of the Hankel operator which de-
scribes the mutual position of the subspaces H⊥

G and H⊥
F in which the maximal

shifts VT and VT∗ are acting, respectively. As it was already mentioned (see Intro-
duction) the subspaces H⊥

G and H⊥
F are interpreted as inner channels of scattering

in the scattering system associated with the contraction T . In this connection we
introduce the following notion.

Definition 3.10. The Hankel matrix (3.48) will be called the Hankel matrix of the
maximal shifts VT and VT∗ or the Hankel matrix of the inner channels of scattering
associated with T .

We note that the unitarity of the operator matrix given via (3.6) implies

I −Q∗(γ)Q(γ) = L∗(γ)L(γ).

This means the matrix L(γ) plays the role of a defect operator for Q(γ). Taking
into account (3.15) and (3.12) from (3.48) we infer Q∗(γ) = Q(γ).
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From the form (3.47) we get immediately the following observation.

Lemma 3.11. The block representation

L(γ) =
(

Π1 0
B(γ) L(Wγ)

)
(3.51)

with B(γ) = col (Π2L1(Wγ), Π3L2(Wγ), . . . ,ΠnLn−1(Wγ), . . .) holds true.

Theorem 3.12. It holds

L(γ) = M(γ)L(Wγ) (3.52)

where

M(γ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dγ1 0 0 . . .
−γ1γ2 Dγ2 0 . . .

−γ1Dγ2γ3 −γ2γ3 Dγ3 . . .
...

...
...

. . .

−γ1

n−1∏
j=2

Dγj γn −γ2

n−1∏
j=3

Dγj γn −γ3

n−1∏
j=4

Dγj γn . . .

...
...

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.53)

and Dγj =
√

1 − |γj |2, j ∈ {0, 1, 2, . . .}.

Proof. From (3.4) we infer T ∗ψ̃k+1 = ψ̃k, k ∈ {1, 2, 3, . . .}. Thus, T ∗ maps the
sequence (ψ̃2, ψ̃3, ψ̃4, . . .) to the sequence (ψ̃1, ψ̃2, ψ̃3, . . .), i.e.,

(ψ̃1, ψ̃2, ψ̃3, . . .) = (T ∗ψ̃2, T
∗ψ̃3, T

∗ψ̃4, . . .). (3.54)

From (2.62) it follows that the matrix representation of the operator T ∗ with
respect to the canonical basis (2.12) has the shape

T ∗ =
(

T ∗
F 0

R̃∗ Ṽ ∗
T

)
. (3.55)

Hereby, as it can be seen from (2.66) and (3.53), we have

T ∗
F = (−γ0η(γ) , M(γ) ) (3.56)

where

η(γ) := col (γ1, γ2Dγ1 , . . . , γn

n−1∏
j=1

Dγj , . . .). (3.57)

Taking into account (3.7), (3.48) and (3.51) we get the representations

(ψ̃1, ψ̃2, ψ̃3, . . .) =
(

L(γ)
Q(γ)

)
(3.58)

and

(ψ̃2, ψ̃3, ψ̃4, . . .) =

⎛⎝ (
0

L(Wγ)

)
Q(Wγ)

⎞⎠ (3.59)
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with respect to the canonical basis (2.12). Inserting the matrix representations
(3.55), (3.58) and (3.59) in formula (3.54) we find in particular

L(γ) = T ∗
F

(
0

L(Wγ)

)
.

Combining this with (3.56) we obtain (3.52). �

Corollary 3.13. It holds

I − M(γ)M∗(γ) = η(γ)η∗(γ) (3.60)

where η(γ) is given via (3.57).

Proof. From (2.65) and (3.57) we obtain

G = Dγ0( η∗(γ) ;
∞∏

j=1

Dγj , 0, 0, . . .). (3.61)

Substituting now the matrix representations (2.62) and (3.61) in the colligation
condition I−T ∗T = G∗G we infer in particular IHF

−T ∗
FTF = (1−|γ0|2)η(γ)η∗(γ).

Substituting the block representation (3.56) in this representation we get (3.60).
�

Lemma 3.14. The matrices P(γ) and L(γ) introduced via (3.6) are linked by the
formula P(γ) = L(γ)∗.

Proof. Let P(γ) = (pkj(γ))∞k,j=1 and L(γ) = (lkj(γ))∞k,j=1. Since the change from
the canonical basis (2.12) to the conjugate canonical basis (3.3) is connected via
the replacement of γj by γj, j ∈ {0, 1, 2, . . .} and taking into account matrix

representation (3.47) we get pkj(γ) = (φ̃j , ψk) = (φj , ψ̃k) = (ψ̃k, φj) = ljk(γ) =
ljk(γ), j, k ∈ N. �

4. The connection of the maximal shifts VT and VT ∗ with the
pseudocontinuability of the corresponding c.o.f. θ

4.1. Pseudocontinuability of Schur functions

Let f be a function which is meromorphic in D and which has nontangential
boundary limit values a.e. with respect to the Lebesgue measure on T := {ζ ∈ C :
|ζ| = 1}. Denote by De := {ζ : |ζ| > 1} the exterior of the unit circle including the
point infinity. The function f is said to admit a pseudocontinuation of bounded
type into De if there exist functions α(ζ) and β(ζ) �≡ 0 which are bounded and
holomorphic in De such that the boundary values of f and f̂ := α

β coincide a.e.
on T. From the Theorem of Luzin–Privalov (see, e.g., Koosis [28]) it follows that
there is at most one pseudocontinuation.

The study of the phenomenon of pseudocontinuability is important in many
questions of analysis. We draw our attention to two of them. For more detailed
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information we refer the reader to Douglas/Shapiro/Shields [17], Ross/Shapiro
[30], Arov [3], Nikolskii [29], Cima/Ross [13].

In the Hardy space H2(D) we consider the unilateral shift U× which is gen-
erated by multiplication by the independent variable ζ ∈ D, i.e., (U×f)(ζ) =
ζf(ζ), f ∈ H2(D). The operator which is adjoint to U× is given by

(Wf)(ζ) =
f(ζ) − f(0)

ζ
, f ∈ H2(D).

If we represent a function f ∈ H2(D) as Taylor series via

f(ζ) = a0 + a1ζ + a2ζ
2 + · · · + anζn + . . . , ζ ∈ D,

and identify f with the sequence (ak)∞k=0 ∈ l2 then the actions of the operators
U× and W (by preserving the notations) are given by

U× : (a0, a1, a2, a3, . . .) �→ (0, a0, a1, a2, . . .)

and
W : (a0, a1, a2, a3, . . .) �→ (a1, a2, a3, a4, . . .).

In view of the Beurling theorem (see, e.g., Koosis [28]) the invariant subspaces
of the shift U in H2(D) are described by inner functions whereas a function f ∈
H2(D) is cyclic for U× if and only if f is outer. In this connection we note that in
view of a theorem due to Douglas, Shapiro and Shields [17] a function f ∈ H2(D)
is not cyclic for the backward shift W if and only if it admits a pseudocontinuation
of bounded type in De.

Following D.Z. Arov [4] we denote by SΠ the subset of all functions belonging
to S which admit a pseudocontinuation of bounded type in De. We note that the
set J of all inner functions in D is a subset of SΠ. Indeed, if θ ∈ J then the function
θ̂(ζ) = θ−1(1

ζ
), ζ ∈ De is the pseudocontinuation of θ.

It is known (see Adamjan/Arov [1], Arov [4]) that each function of the Schur
class S is realized as a scattering suboperator (Heisenberg scattering function)
of a corresponding unitary coupling. D.Z. Arov indicated the important role of
the class SΠ in the theory of scattering with loss (see Arov [3], [4], [5]). In this
connection the following result is essential for our subsequent considerations.

Theorem 4.1. (Arov [3], De Wilde [16], Douglas/Helton [18]) A function θ belongs
to the class SΠ if and only if there exists a 2 × 2 inner (in D) matrix function
Ω(ζ) which satisfies

Ω(ζ) =
(

χ(ζ) φ(ζ)
ψ(ζ) θ(ζ)

)
, ζ ∈ D. (4.1)

The fact that the function Ω(ζ) has unitary boundary limit values a.e. on T

means that Ω(ζ) is the scattering suboperator of an orthogonal coupling without
loss.
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Definition 4.2. Let

wa(ζ) :=

{
|a|
a

a−ζ
1−aζ , if a ∈ D \ {0},
ζ, if a = 0

denote the elementary Blaschke factor associated with a. By an elementary 2× 2-
Blaschke–Potapov factor we mean a 2 × 2-inner (in D) matrix function of the
form

b(ζ) := I2 + (wa(ζ) − 1)P (4.2)

where wa(ζ) is an elementary Blaschke factor whereas P is an orthoprojection in
C2 of rank one, i.e., P 2 = P, P ∗ = P and rankP = 1. A 2 × 2-matrix function
B(ζ) which is inner in D is called a finite Blaschke–Potapov product if B admits
a representation of the form

B(ζ) = ub1(ζ)b2(ζ) · · · · · bn(ζ) (4.3)

where u is a constant unitary matrix and (bk(ζ))n
k=1 is a sequence of elementary

2 × 2-Blaschke–Potapov factors.

It follows easily from a result due to D.Z. Arov [3] that a function θ ∈ S is
rational if and only if there exists a finite Blaschke–Potapov product Ω(ζ) of the
form (4.1). Thus, a function θ ∈ S is rational if and only if it can be represented
as a block of a finite product of elementary 2 × 2-Blaschke–Potapov factors.

The following statement shows the principal difference between the properties
of Schur parameters of inner functions and the properties of Schur parameters of
pseudocontinuable Schur functions which are not inner.

Theorem 4.3. ([21]) Let θ ∈ SΠ and denote (γj)ω
j=0 the sequence of Schur param-

eters of θ. If θ is not inner then ω = ∞ and the product (2.53) converges. If θ is
inner then the product (2.53) diverges.

Proof. If θ ∈ SΠ \ J then the function φ in the representation (4.1) does not
identically vanish. Hence, ln(1 − |θ(eiα)|2) = 2 ln |φ(eiα)| ∈ L1[−π, π] and in view
of Remark 2.12 the product (2.53) converges. If θ ∈ J then from Remark 2.12 we
infer that the product (2.53) diverges. �

Corollary 4.4. Let θ ∈ SΠ\J . Then the sequence of Schur parameters of θ belongs
to Γl2.

4.2. On some connections between the maximal shifts VT and VT∗

and the pseudocontinuability of the corresponding c.o.f. θ

Let θ ∈ S. Assume that ∆ is a simple unitary colligation of type (3.1) which
satisfies θ∆(ζ) = θ(ζ). We suppose that the Schur parameter sequence of θ be-
longs to Γl2. Then from Lemma 2.11 it follows that in this and only in this case
the contraction T (resp. T ∗) contains a nontrivial maximal shift VT (resp. VT∗).
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Hereby, the multiplicities of the shifts VT and VT∗ coincide and are equal to one.
We consider the decompositions (1.6). Let

NGF := HG ∩ H⊥
F , NFG := HF ∩ H⊥

G, (4.4)

HGF := HG � NGF , HFG := HF � NFG. (4.5)

Then

H = H⊥
G ⊕ HGF ⊕ NGF, (4.6)

H = NFG ⊕ HFG ⊕ H⊥
F . (4.7)

From (4.4) and (4.5) it follows that

HGF = PHG
HF , HFG = PHF

HG. (4.8)

Thus,

dimHGF = dimHFG, (4.9)

The following criterion of pseudocontinuability of a noninner Schur function
(see, e.g., [10, Theorem 3.17]) plays an important role in our subsequent investi-
gations.

Theorem 4.5. Let θ ∈ S and assume that ∆ is a simple unitary colligation of
the form (3.1) which satisfies θ∆(ζ) = θ(ζ). Then the conditions NGF �= {0} and
NFG �= {0} are equivalent. They are satisfied if and only if θ ∈ SΠ \ J .

Theorem 4.5 will be complemented by the following result (see Arov [5])
which is obtained here in another way.

Theorem 4.6. (Arov [5]) Let θ be a function of class S such that its Schur parameter
sequence (γj)∞j=0 belongs to Γl2. Assume that ∆ is a simple unitary colligation
of the form (3.1) which satisfies θ∆(ζ) = θ(ζ). Then θ is a rational function
if and only if dimHGF < ∞ (resp. dimHFG < ∞). If dimHGF < ∞ then
dimHGF (resp. dimHFG) is the smallest number of elementary 2 × 2-Blaschke–
Potapov factors in a finite Blaschke–Potapov product of the form (4.3) with block θ.

Proof. From Lemma 2.11 it follows that in the given case we have H⊥
G �= {0} and

H⊥
F �= {0}. Hereby the multiplicities of the shifts VT and VT∗ are equal to one.

Assume that dim HGF < ∞. Taking into account that H⊥
G ∩H⊥

F = {0} we see
that in the decomposition (4.6) the relation NGF �= {0} holds true. Since HG and
H⊥

F are invariant with respect to T ∗ then NGF is also invariant with respect to T ∗.
Hereby it is easily seen that the operator ṼTG

= Rstr. NGF
T ∗ is the maximal shift

which is contained in T ∗
G (see matrix representation (1.9)). Thus, with respect to

the decomposition (4.6) the operator T has the matrix representation

T =

⎛⎝ VT ∗ ∗
0 TGF ∗
0 0 ṼTG

⎞⎠ (4.10)
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where TGF := Rstr. HGF
(PHGF

T ) : HGF → HGF. From (4.10) it follows in view of
[10, Theorem 3.3] that θ admits the factorization

θ(ζ) = (0, 1)θGF(ζ)
(

0
1

)
(4.11)

where θGF is the c.o.f. of the contraction TGF.
Let n = dim HGF. For the contraction TGF we consider the nested chain of

invariant subspaces (H(k)
GF)n

k=1 where dimH
(k)
GF = k. This chain generates a repre-

sentation of the function θGF(ζ) as product of n elementary 2×2-Blaschke–Potapov
factors of the form (4.2) (see Brodskii [12], Sz.-Nagy/Foias [33]).

Suppose that in addition to (4.11) the function θ(ζ) admits the factorization

θ(ζ) = (0, 1)B(ζ)
(

0
1

)
(4.12)

where B(ζ) is a finite 2 × 2-Blaschke–Potapov product of the form (4.3) with m
factors. Then we will show that m ≥ n.

We proceed by contradiction. Assume m < n. Then using [10, Theorem 3.19]
from (4.12) it follows that the space H admits the decomposition

H = N ⊕ Ĥ ⊕ Ñ. (4.13)

With respect to the decomposition (4.13) of H the operator T has the matrix
representation ⎛⎝ V ∗ ∗

0 T̂ ∗
0 0 Ṽ

⎞⎠ .

Hereby, (0, 1) and
(

0
1

)
are the characteristic function’s of the shift V and the

coshift Ṽ , respectively, whereas B(ζ) is the c.o.f. of the contraction T̂ .
Obviously, an elementary 2 × 2-Blaschke–Potapov factor is the c.o.f. of a

completely nonunitary one-dimensional contraction. Since every of these factors is
an inner function then (see Brodskii [12]) their product is regular. In the case of
regular factorizations the inner space will be summed up. Hence, it is dim Ĥ = m.
Thus,

dim Ĥ < dimHGF. (4.14)

Let H0 := H � (H⊥
F

∨
H⊥

G). Obviously, H0 ⊆ HGF and H0 ⊆ Ĥ. Further, let
H

(0)
GF := HGF�H0, Ĥ0 := Ĥ�H0. From (4.14) it follows dim Ĥ0 < dim H

(0)
GF. Hence,

there exists a vector h �= 0 with the properties

h ∈ H
(0)
GF , h ⊥ Ĥ0. (4.15)

It can be easily seen that H
(0)
GF ⊆ PHG

H⊥
F . Hereby, H

(0)
GF ∩ H⊥

F = {0}. Thus, there
exists a vector f1 ∈ H⊥

F which satisfies h = PHG
f1. Hereby, g1 = f1 − h �= 0, i.e.,

h = f1 − g1, f1 ∈ H⊥
F , g1 ∈ H⊥

G, ‖h‖ < ‖f1‖. (4.16)



Contractions and Schur Parameters 225

On the other hand, from (4.15) we infer h ⊥ Ĥ. Using (4.13) this implies
h ∈ N ⊕ Ñ. Hereby, we have N ⊆ H⊥

G and Ñ ⊆ H⊥
F . Consequently, there exist

vectors f2 ∈ H⊥
F and g2 ∈ H⊥

G satisfying f2 ⊥ g2 and h = f2 − g2. Thus,

h = f2 − g2, f2 ∈ H⊥
F , g2 ∈ H⊥

G, ‖h‖ ≥ ‖f2‖. (4.17)

Because of H⊥
F ∩ H⊥

G = {0} from (4.16) and (4.17) we get f1 = f2 and g1 = g2.
Hence, ‖h‖ < ‖f1‖ = ‖f2‖ ≤ ‖h‖. This contradiction shows that the assumption
m < n was wrong. Hence, m ≥ dim HGF.

Now assume that θ(ζ) is rational. We represent θ in the form

θ(ζ) = (0, 1)B̃(ζ)
(

0
1

)
where B̃(ζ) is a finite Blaschke–Potapov-product of the form (4.3). We assume that
the number of elementary 2× 2-Blaschke–Potapov factors satisfies the minimality
condition. Denote by m̃ this minimal number of elementary 2×2-Blaschke–Potapov
factors. Using now the factorization (4.11) of θ(ζ) we obtain, as in the above
considered case of the factorization (4.12), that dimHGF ≤ m̃ < ∞. Since m
satisfies the minimality condition we obtain the equality dim HGF = m̃. �
Lemma 4.7. It holds

NGF = kerQ∗(γ) (4.18)

where Q(γ) is that Hankel operator in H⊥
F the matrix representation of which with

respect to the basis (ψj)∞j=1 has the form (3.48).

Proof. From (4.4) it follows that h ∈ NGF if and only if h ∈ H⊥
F and h ⊥ H⊥

G.
Combining this with the fact that the vectors (3.13) form an orthonormal basis in
H⊥

G we obtain (4.18). �

5. Some criteria for the pseudocontinuability of a Schur function
in terms of its Schur parameters

5.1. Construction of a countable closed vector system in HGF and investigation of
the properties of the sequence (σn)∞n=1 of Gram determinants of this system

Let θ(ζ) ∈ S and assume that ∆ is a simple unitary colligation of the form (3.1)
which satisfies θ∆(ζ) = θ(ζ). As in the preceding chapter it is assumed that the
Schur parameter sequence (γj)∞j=0 of θ(ζ) belongs to Γl2.

Theorem 5.1. The linear span of vectors

hn := φn − Πn

n∑
j=1

Ln−j(W jγ)ψ̃j , n ∈ N (5.1)

is dense in HGF. Here (φk)∞k=1 and (ψ̃k)∞k=1 denote the orthonormal systems taken
from the canonical basis (2.12) and the conjugate canonical basis (3.3), respectively,
whereas W, (Lk(γ))∞k=1 and (Πk)∞k=1 are given via (3.11), (3.12) and (3.14).
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Proof. Since (φk)∞k=1 is an orthonormal basis in HF, from (4.8) it follows that the
vectors hn = PHG

φn, n ∈ N, form a closed system in HGF. Since (ψ̃k)∞k=1 is an

orthonormal basis in H⊥
G, the identities hn = PHG

φn = φn−
∞∑

j=1

(φn, ψ̃j)ψ̃j , n ∈ N,

hold true. It remains to note that from the decompositions (3.13) we obtain

(φn, ψ̃j) =
{

ΠnLn−j(W jγ), if j ≤ n,
0, if j > n.

�

Corollary 5.2. It holds⎛⎜⎜⎜⎝
(h1, h1) (h2, h1) . . . (hn, h1)
(h1, h2) (h2, h2) . . . (hn, h2)

...
...

...
(h1, hn) (h2, hn) . . . (hn, hn)

⎞⎟⎟⎟⎠ = I − Ln(γ)L∗
n(γ), n ∈ N (5.2)

where

Ln(γ) =

⎛⎜⎜⎜⎜⎜⎝
Π1 0 0 . . . 0

Π2L1(Wγ) Π2 0 . . . 0
Π3L2(Wγ) Π3L1(W 2γ) Π3 . . . 0

...
...

...
...

ΠnLn−1(Wγ) ΠnLn−2(W 2γ) ΠnLn−3(W 3γ) . . . Πn

⎞⎟⎟⎟⎟⎟⎠ (5.3)

is the nth order principal submatrix of the matrix L(γ) given in (3.47).

Proof. The identities (5.2) are an immediate consequence of (5.1). �

In the sequel, the matrices

An(γ) := In − Ln(γ)L∗
n(γ), n ∈ N (5.4)

and their determinants

σn(γ) :=
{

1, if n = 0,
detAn(γ), if n ∈ N

(5.5)

will play an important role. They have a lot of remarkable properties. In order to
prove these properties we need the following result which follows from Theorem
3.12 and Corollary 3.13.

Lemma 5.3. It holds

Ln(γ) = Mn(γ)Ln(Wγ) (5.6)
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where Ln(γ) is given via (5.3) whereas

Mn(γ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Dγ1 0 0 . . . 0
−γ1γ2 Dγ2 0 . . . 0

−γ1Dγ2γ3 −γ2γ3 Dγ3 . . . 0
...

...
...

. . .
...

−γ1

n−1∏
j=2

Dγj γn −γ2

n−1∏
j=3

Dγj γn −γ3

n−1∏
j=4

Dγj γn . . . Dγn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(5.7)

is the nth order principal submatrix of the matrix M(γ) given in (3.53). Hereby,

In − Mn(γ)M∗
n(γ) = ηn(γ)η∗

n(γ), n ∈ N, (5.8)

where

ηn(γ) = col (γ1, γ2Dγ1 , . . . , γn

n−1∏
j=1

Dγj). (5.9)

Corollary 5.4. The multiplicative decompositions

Ln(γ) = Mn(γ) · Mn(Wγ) · Mn(W 2γ) · . . . , n ∈ N

hold true.

Proof. From the form (5.3) of the matrices Ln(γ) it can be seen that

lim
m→∞Ln(Wmγ) = In for all n ∈ N.

Now using (5.6) we obtain the assertion. �

Theorem 5.5. ([23]) Let θ(ζ) be a function from S the sequence (γj)∞j=0 of Schur
parameters of which belongs to Γl2. Assume that ∆ is a simple unitary colligation
of the form (3.1) which satisfies θ∆(ζ) = θ(ζ). Then the matrices An(γ) (see (5.4))
and their determinants (σn(γ))∞n=1 have the following properties:

(1) For n ∈ N, it hold 0 ≤ σn(γ) < 1 and σn(γ) ≥ σn+1(γ).
Moreover, lim

n→∞σn(γ) = 0.

(2) If there exists some n0 ∈ {0, 1, 2, . . .} which satisfies σn0(γ) > 0 and
σn0+1(γ) = 0, then rankAn(γ) = n0 for n ≥ n0 holds true. Hereby, n0 =
dimHGF(= dim HFG) where HGF and HFG are given via (4.5).
Conversely, if dimHGF(= dimHFG) is a finite number n0 then σn0(γ) > 0
and σn0+1(γ) = 0.

(3) It holds

An(γ) = ηn(γ)η∗
n(γ) + Mn(γ)An(Wγ)M∗

n(γ), n ∈ N (5.10)

where Mn(γ) and ηn(γ) are defined via (5.7) and (5.9), respectively.
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(4) Let (λn,j(γ))n
j=1 denote the increasingly ordered sequence of eigenvalues of the

matrix An(γ), n ∈ N, where each eigenvalue is counted with its multiplicity,
then

0 ≤ λn,1(Wγ) ≤ λn,1(γ) ≤ λn,2(Wγ) ≤ λn,2(γ) ≤ . . .

≤ λn,n(Wγ) ≤ λn,n(γ) < 1. (5.11)

Thus, the eigenvalues of the matrices An(γ) and An(Wγ) interlace.
(5) For n ∈ N, it holds

Γ(h1, h2, . . . , hn, G∗(1)) = σn(Wγ)
n∏

j=0

(1 − |γj |2) (5.12)

where Γ(h1,h2,. . .,hn,G∗(1)) is the Gram determinant of the vectors (hk)n
k=1

given by (5.1) and the vector G∗(1) defined by (2.2). Hereby, the rank of the
Gram matrix of the vectors (hk)n

k=1 and G∗(1) is equal to rankAn(Wγ) + 1.
(6) If σn(γ) > 0 for every n ∈ N then the sequence( n∏

j=0

(1 − |γj |2)
σn(Wγ)
σn(γ)

)∞

n=1

monotonically decreases. Moreover,

lim
n→∞

σn(Wγ)
σn(γ)

=
1

Π2
0

‖PNGF
G∗(1)‖2 (5.13)

where Π0 and NGF are defined via formulas (3.14) and (4.4), respectively.
(7) Assume that σn(γ) > 0 for every n ∈ N. Then σn(Wmγ) > 0 for every

m, n ∈ N. Moreover, if the limit (5.13) is positive, then

lim
n→∞

σn(Wm+1γ)
σn(Wmγ)

> 0 (5.14)

for every m ∈ N.

Proof. (1) Since by Corollary 5.2 An(γ) is a Gram matrix then σn(γ) ≥ 0, n ∈ N.
On the other side, in view of γ ∈ Γl2 the matrix Ln(γ) is invertible. Thus, from
(5.4) we infer σn(γ) < 1, n ∈ N. From (5.3) it follows that

An+1(γ) =
(

An(γ) −Ln(γ)bn(γ)
−b∗n(γ)L∗

n(γ) 1 − Π2
n+1 − b∗n(γ)bn(γ)

)
(5.15)

where

bn(γ) = Πn+1col (Ln(Wγ), Ln−1(W 2γ), . . . , L1(Wnγ)). (5.16)

From (5.15) we find

An+1(γ) = Fn,1(γ)
( An(γ) 0

0 A[c]
n (γ)

)
F ∗

n,1(γ) (5.17)
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where Fn,1(γ) =
(

In 0
Xn,1(γ) 1

)
, Xn,1(γ) = −b∗n(γ)L∗

n(γ)A−1
n (γ), and

A[c]
n (γ) = 1 − Π2

n+1 − b∗n(γ)bn(γ) − b∗n(γ)Ln(γ)A+
n (γ)Ln(γ)bn(γ) (5.18)

is the Schur complement of the matrix An(γ) in the matrix An+1(γ). The symbol
A+

n (γ) stands for the Moore–Penrose inverse of the matrix An(γ) (see, e.g., [24,
part 1.1]). Thus,

σn+1(γ) = σn(γ)A[c]
n (γ). (5.19)

In view of An+1(γ) ≥ 0 we have A[c]
n (γ) ≥ 0. Taking into account Πn > 0 and

lim
n→∞Πn = 1 from this and (5.18) we obtain 0 ≤ A[c]

n (γ) < 1 and lim
n→∞A[c]

n (γ) = 0.

Now (1) follows from (5.19).

(3) Using (5.6) we get

An(γ) = In − Ln(γ)L∗
n(γ) = In − Mn(γ)Ln(Wγ)L∗

n(Wγ)M∗
n(γ)

= In − Mn(γ)M∗
n(γ) + Mn(γ)An(Wγ)M∗

n(γ).

Combining this with (5.8) we obtain (5.10).

(4) Since Ln(γ), n ∈ N, is a contractive invertible matrix, from (5.4) we get

0 ≤ λn,j(γ) < 1 , n ∈ N , j ∈ {1, 2, . . . , n}. (5.20)

From (5.8) we see that the matrix Mn(γ) is contractive. Therefore, using
(5.6) we find

In − L∗
n(γ)Ln(γ) = In − L∗

n(Wγ)M∗
n(γ)Mn(γ)Ln(Wγ)

= In − L∗
n(Wγ)Ln(Wγ) + L∗

n(Wγ)[I − M∗
n(γ)Mn(γ)]Ln(Wγ)

≥ In − L∗
n(Wγ)Ln(Wγ).

Thus, taking into account that the eigenvalues of the matrices In − Ln(γ)L∗
n(γ)

and In −L∗
n(γ)Ln(γ) coincide and using minimax principles for the eigenvalues of

Hermitian matrices we get

λn,k(Wγ) ≤ λn,k(γ) , n ∈ N , k ∈ {1, 2, . . . , n}. (5.21)

On the other side, applying (5.10) for x ∈ Cn and n ∈ N we obtain

(An(γ)x, x) = |(x, ηn(γ))|2 + (An(Wγ)M∗
n(γ)x, M∗

n(γ)x). (5.22)

In the case n = 1 the inequality (5.11) follows from (5.21). Let n ≥ 2, k ∈
{1, 2, . . . , n} and assume that (wj)k

j=1 is an arbitrary sequence of vectors from
Cn. In view of γ ∈ Γl2 from (5.7) it follows that the matrix Mn(γ) is invertible.
Let w̃j := M−1

n (γ)wj , j ∈ {1, . . . , k} and η̃n(γ) := M−1
n (γ)ηn(γ). For x ∈ Cn,

we set y := M∗
n(γ)x. From (5.8) it can be seen that the conditions ‖x‖ = 1
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and (x, ηn(γ)) = 0 imply ‖y‖ = 1. Hereby, (x, wj) = (M∗−1
n (γ)y, wj) = (y, w̃j).

Therefore, using (5.22) and the minimax principle, for k ∈ {1, 2, . . . , n−1} we find

λn,k(γ) = max
w1,...,wk−1

min
‖x‖=1,(x,wj)=0,j∈{1,...,k−1}

(An(γ)x, x)

≤ max
w1,...,wk−1

min
‖x‖=1,(x,ηn(γ))=0,(x,wj)=0,j∈{1,...,k−1}

(An(γ)x, x)

= max
w̃1,...,w̃k−1

min
‖y‖=1,(y,η̃n(γ))=0,(y,w̃j)=0,j∈{1,...,k−1}

(An(Wγ)y, y)

≤ max
w̃1,...,w̃k

min
‖y‖=1,(y,w̃j)=0,j∈{1,...,k}

(An(Wγ)y, y)

= λn,k+1(Wγ).

Combining this with (5.20) and (5.21) we get (5.11).
(2) Assume that n0 ∈ {0, 1, 2, 3, . . .} satisfies σn0(γ) > 0 and σn0+1(γ) = 0. If

n0 = 0 then using σ1(γ) = 1 −
∞∏

j=1

(1 − |γj |2), we infer γj = 0, j ∈ N. Thus, (5.3)

implies Ln(γ) = In, n ∈ N and An(γ) = 0, n ∈ N. Consequently, from (5.2) it
follows that dim HGF = 0. In view of (4.9) this means dimHFG = 0.

Let n0 ∈ N. From (5.3) we get the block partition

Ln+1(γ) =
(

Π1 0
Bn+1(γ) Ln(Wγ)

)
(5.23)

where

Bn+1(γ) = col (Π2L1(Wγ), Π3L2(Wγ), . . . ,Πn+1Ln(Wγ)). (5.24)

From this, we obtain the block representation

An+1(γ) =
(

1 − Π2
1 −Π1B

∗
n+1(γ)

−Π1Bn+1(γ) An(Wγ) − Bn+1(γ)B∗
n+1(γ)

)
. (5.25)

We consider this block representation for n = n0 + 1. Since detAn0+1(γ) = 0, in
view of (5.11), we have detAn0+1(Wγ) = 0. Assume that x ∈ Cn0+1, x �= 0 and

x ∈ kerAn0+1(Wγ). Then from (5.25) we see that the vector x̃ :=
(

0
x

)
belongs

to kerAn0+2(γ).
Now we consider the block representation (5.15) for n = n0 + 1. Let y ∈

Cn0+1, y �= 0 and y ∈ kerAn0+1(γ). Then (5.15) implies that the vector ỹ :=(
y
0

)
belongs to kerAn0+2(γ). If the vectors x̃ and ỹ are collinear then from

their construction we get that kerAn0+2(γ) contains the vector w =

⎛⎝ 0
z
0

⎞⎠ where

z ∈ Cn0 and z �= 0. Then the representation (5.15) for n = n0 + 1 implies that(
0
z

)
∈ kerAn0+1(γ). Now using representation (5.25) for n = n0 + 1 we obtain

z ∈ kerAn0(γ). However, σn0(γ) > 0 and consequently kerAn0(γ) = {0}. From
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this contradiction we infer that the vectors x̃ and ỹ are not collinear. This means
dim kerAn0+2(γ) ≥ 2. Thus rankAn0+2(γ) ≤ n0. On the other side, using (5.15)
we obtain rankAn0+2(γ) ≥ rankAn0(γ) = n0. Hence, rankAn0+2(γ) = n0.

Applying the method of mathematical induction to the matrices An0+m(γ)
by analogous considerations we get rankAn0+m(γ) = n0 for m ∈ N. Now using
(5.2), (4.9) and the fact that (hn)∞n=1 is a system of vectors which is total in HGF

we find dimHFG = dimHGF = n0. The converse statement follows immediately
from (5.2) and the above considerations.

(5) Because of G∗(1) ∈ HG and ψ̃j ∈ H⊥
G, j ∈ N, from (2.65) and (5.1) we get

(G∗(1), hk) = (G∗(1), φk) = γk

k−1∏
j=0

Dγj , k ∈ N.

Combining this with (5.9) it follows that

col ((G∗(1), h1), (G∗(1), h2), . . . , (G∗(1), hn))

= Dγ0col (γ1, γ2Dγ1 , . . . , γn

n−1∏
j=1

Dγj) = Dγ0ηn(γ).

Thus, taking into account (G∗(1), G∗(1)) = 1 − |γ0|2 and using (5.2) and (5.10)
we get

Γ(h1, h2, . . . , hn, G∗(1)) =
∣∣∣∣ An(γ) Dγ0ηn(γ)

Dγ0η
∗
n(γ) 1 − |γ0|2

∣∣∣∣
= (1 − |γ0|2)

∣∣∣∣ ηn(γ)η∗
n(γ) + Mn(γ)An(Wγ)M∗

n(γ) ηn(γ)
η∗

n(γ) 1

∣∣∣∣ .
Subtracting now the (n + 1)th column multiplied by γ1 from the first column
and, moreover for k ∈ {2, . . . , n}, subtracting the (n + 1)th column multiplied by

γk

k−1∏
j=1

Dγj from the kth column, we obtain

Γ(h1, h2, . . . , hn, G∗(1)) = (1 − |γ0|2)
∣∣∣∣ Mn(γ)An(Wγ)M∗

n(γ) ηn(γ)
0 1

∣∣∣∣
= (1 − |γ0|2)σn(Wγ)| detMn(γ)|2. (5.26)

From (5.7) we see det Mn(γ) =
n∏

j=1

Dγj . Thus, (5.12) follows from (5.26). From

the concrete form of the matrix(
Mn(γ)An(Wγ)M∗

n(γ) ηn(γ)
0 1

)
it is clear that the rank of the Gram matrix of the vectors (hk)n

k=1 and G∗(1) is
equal to rankAn(Wγ) + 1.
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(6) From (5.12) we get
n∏

j=1

(1 − |γj |2)
σn(Wγ)
σn(γ)

=
Γ(h1, h2, . . . , hn, G∗(1))

Γ(h1, h2, . . . , hn)
, n ∈ N. (5.27)

Denote by Pn the orthoprojection from H onto HG � Lin {h1, h2, . . . , hn}, n ∈ N.
Because of G∗(1) ∈ HG using well-known properties of Gram determinants (see,
e.g., Akhiezer/Glasman [2, Chapter I ]) we see

Γ(h1, h2, . . . , hn, G∗(1))
Γ(h1, h2, . . . , hn)

= ‖PnG∗(1)‖2. (5.28)

This implies that the sequence on the left-hand side of formula (5.27) is monoto-
nically decreasing. Since the sequence (hn)∞n=1 is total in HGF the decomposition
(4.6) shows that PNGF

is the strong limit of the sequence (Pn)n∈N. Therefore,
(5.13) follows from (5.27) and (5.28).
(7) Assume that σn(γ) > 0 for every n ∈ N. Then the block representation
(5.25) shows that σn(Wγ) > 0 for every n ∈ N. From this by induction we get
σn(Wmγ) > 0 for all n, m ∈ N. Assume now that the limit (5.13) is positive.
This means that NGF �= {0} and PNGF

G∗(1) �= 0 are satisfied. As already men-
tioned, the operator Rstr. NGF

T ∗ is the maximal unilateral shift contained in T ∗
G.

Denote by τ, ‖τ‖ = 1, a basis vector of the generating wandering subspace of this
shift. Then the sequence (T ∗(n−1)τ)n∈N is an orthonormal basis in NGF. Since
NGF ⊆ H⊥

F (see (4.4)) and since the part (ψk)∞k=1 of the canonical basis (2.12) is
an orthonormal basis in H⊥

F , we obtain the representation

τ = β1ψ1 + β2ψ2 + · · · + βnψn + · · · (5.29)

where βj = (τ, φj), j ∈ N. Because of T ∗ψj = ψj+1, j ∈ {1, 2, . . .}, we get

T ∗kτ = β1ψk+1 + β2ψk+2 + · · · + βnψk+n + · · · , k ∈ N. (5.30)

From (2.68) we see

(G∗(1), ψ1) =
∞∏

j=0

Dγj , (G∗(1), ψk) = 0 , k ∈ {2, 3, . . .}. (5.31)

Combining (5.30) and (5.31) it follows that (G∗(1), T ∗kτ) = 0, k ∈ N. Thus,

PNGF
G∗(1) =

∞∑
k=0

(G∗(1), T ∗kτ)T ∗kτ = (G∗(1), τ)τ = β1

∞∏
j=0

Dγj τ.

This means

‖PNGF
G∗(1)‖ = |β1|

∞∏
j=0

Dγj . (5.32)

Thus, the condition ‖PNGF
G∗(1)‖ �= 0 is equivalent to (τ, ψ1) �= 0. This is equiva-

lent to the fact that ψ1 is not orthogonal to NGF. Now we pass to the model based
on the sequence Wγ = (γ1, γ2, γ3, . . .). We will denote the corresponding objects
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associated with this model by a lower index 1. For example, G1, NGF,1, ψj1 etc.
The identity (4.18) takes now the form NGF,1 = kerQ∗

1(γ) where the matrix of
the operator Q1(γ) is obtained by deleting the first row (or first column) in the
matrix of Q(γ). Therefore, if the vector τ with coordinate sequence (βj)∞j=1 (see
(5.29)) belongs to NGF then in view of (4.18) it belongs to kerQ∗(γ). Thus, in
view of the Hankel structure of Q∗(γ) it follows that the vector with these coor-
dinates also belongs to kerQ∗

1(γ). Hence, in view of (4.18) this vector belongs to
NGF,1. Thus, the condition β1 �= 0 implies that ψ1,1 is not orthogonal to NGF;1.
This is equivalent to ‖PNGF,1G

∗
1(1)‖ �= 0. Hence, if the limit (5.13) is positive then

the limit (5.14) is positive for m = 1. The case m ∈ {2, 3, 4, . . .} is handled by
induction. �

Using considerations as in the proof of statement (7) of the preceding The-
orem and taking into account the “layered” structure of the model (see Theorem
2.13 and Corollary 3.7), we obtain the following result.

Corollary 5.6. Suppose that the assumptions of Theorem 5.5 are fulfilled. Moreover,
assume that σn(γ) > 0 for all n ∈ N. Suppose that there exists an index m ∈
{0, 1, 2, . . .} for which (5.14) is satisfied and denote by m0(γ) the smallest index
with this property. Then for m ≥ m0(γ) the limit (5.14) is positive. The number
m0(γ) is characterized by the following condition. If τ is a normalized basis vector
of the generating wandering subspace of VT∗

G
then

τ = βm0(γ)+1ψm0(γ)+1 + βm0(γ)+2ψm0(γ)+2 + · · · and βm0(γ)+1 �= 0. (5.33)

Hereby, the relations

m0(Wγ) =
{

m0(γ), if m0(γ) = 0,
m0(γ) − 1, if m0(γ) ≥ 1 (5.34)

hold true.

Definition 5.7. Assume that γ ∈ Γl2. Let θ(ζ) be the Schur function associated
with γ and let ∆ be a simple unitary colligation of the form (3.1) which satisfies
θ(ζ) = θ∆(ζ). If NGF �= {0} then the number m0(γ) characterized by condition
(5.33) is called the level of the subspace NGF or also the level of the sequence γ. If
NGF = {0} we set m0(γ) := ∞

Thus, it is convenient to consider the vectors ψ1, ψ2, ψ3, . . . as levels of the
subspace H⊥

F . Hereby, we will say that the vector ψk, k ∈ {1, 2, 3, . . .} determines
the kth level. Then the number m0(γ) expresses the number of levels which have
to be overcome in order to “reach” the subspace NGF.

Theorem 4.5 implies that a function θ(ζ) belongs to SΠ \ J if and only if
m0(γ) < ∞. Hereby, as (5.32) shows, the verification of the statement NGF �= {0}
with the aid of the vector G∗(1) is only possible in the case m0(γ) = 0, this means
that NGF “begins” at the first level. Therefore, if NGF �= {0} but PNGF

G∗(1) = 0
then it is necessary to pass from the sequence γ to the sequence Wγ. Then from
(5.34) it follows that the subspace NGF will be “found” after a finite number of
such steps.
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5.2. Some criteria of pseudocontinuability of Schur functions

Theorem 5.8. ([21]) Let θ(ζ) be a function from S whose the sequence (γj)∞j=0 of
Schur parameters of which belongs to Γl2. Then the vector

ξ(γ) := (Q(Wγ), Q(W 2γ), . . . , Q(Wnγ), . . .)

where Q(γ) is given in (3.15), belongs to l2. The function θ(ζ) admits a pseudo-
continuation into De if and only if ξ(γ) is not cyclic for the coshift W (see (3.11))
in l2.

Proof. The vector ξ(γ) is not cyclic for W in l2 if and only if kerQ(γ) �= {0}, where
Q(γ) is defined via (3.48). The Hankel structure of Q(γ) implies that kerQ(γ) �=
{0} if and only if kerQ∗(γ) �= {0}. Now the assertion of the Theorem follows from
Lemma 4.7 and Theorem 4.5. �

The following series of quantitative criteria starts with a criterion which char-
acterizes the Schur parameters of a rational function of the Schur class S.

Theorem 5.9. ([23]) Let θ(ζ) ∈ S and denote γ = (γj)ω
j=0 the sequence of its Schur

parameters. Then the function θ(ζ) is rational if and only if one of the following
two conditions is satisfied:

(1) ω < ∞, i.e., |γω| = 1.
(2) γ ∈ Γl2 and there exists an index n ∈ N such that σn(γ) = 0, where σn(γ) is

defined via (5.5).

Hereby:

(1a) ω = 0 if and only if θ(ζ) ≡ γ0, |γ0| = 1.
(1b) ω ∈ N if and only if θ(ζ) is a finite Blaschke product of degree ω.

Let γ ∈ Γl2. If n0 ∈ {0, 1, 2, . . .} satisfies σn0(γ) > 0 and σn0+1(γ) = 0 then:

(2a) n0 = 0 if and only if θ(ζ) ≡ γ0, |γ0| < 1, i.e., if and only if θ(ζ) is not a
constant function with unitary value but a block of a constant unitary 2 × 2
matrix.

(2b) n0 ∈ N if and only if θ(ζ) is not a finite Blaschke product, but a block of a
finite 2 × 2-matrix-valued Blaschke–Potapov product of the form (4.3) where
n0 is the smallest number of elementary Blaschke–Potapov factors forming
such a 2 × 2-Blaschke–Potapov product.

Proof. All what concerns condition (1) is the well-known criterion of Schur [31,
part I] who described the Schur parameters of finite Blaschke products. Condition
(2) follows from the corresponding assertions (2) of Theorems 5.5 and 4.6. �

Theorem 5.10. ([23]) Let θ(ζ) ∈ S and denote by γ = (γj)∞j=0 the sequence of
its Schur parameters. Let σn(γ), n ∈ {0, 1, 2, . . .}, be the determinants defined via
(5.5). Then θ(ζ) ∈ SΠ\J if and only if γ ∈ Γl2 and one of the following conditions
is satisfied:
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(a) There exists an index n ∈ N such that σn(γ) = 0.
(b) If σn(γ) > 0 for all n ∈ N then there exists a number m ∈ {0, 1, 2, . . .} such

that

lim
n→∞

σn(Wm+1γ)
σn(Wmγ)

> 0. (5.35)

Suppose that there exists an index m for which (5.35) is satisfied and denote m0(γ)
the smallest index with this property. Then (5.35) is satisfied for all m ≥ m0(γ).
The number m0(γ) is characterized by condition (5.33), i.e., m0(γ) is the level of
the sequence γ.

Proof. Theorem 5.9 implies that condition (a) is satisfied if and only if the function
θ(ζ) is rational and therefore belongs to SΠ\J . In the case that θ(ζ) is not rational
the assertions of the Theorem follow from the assertions (6) and (7) of Theorem
5.5, Corollary 5.6 and Theorem 4.5. �

For the proof of the next criterion we need additional facts about the matrices
An(γ), n ∈ N, and their determinants.

Lemma 5.11. Assume that γ ∈ Γl2 and σn+1(γ) > 0 for some n ∈ N. Then
n∏

j=1

(1 − |γj |2)
σn(Wγ)
σn(γ)

= (1 +
1

1 − |γ1|2
Λ∗

n(γ)A−1
n (Wγ)Λn(γ))−1 (5.36)

where

Λn(γ) = col (γ1 , γ2D
−1
γ2

, γ3D
−1
γ2

D−1
γ3

, . . . , γn

n∏
j=2

D−1
γj

). (5.37)

Proof. From formula (5.25) it follows that in the considered case the matrix
An(Wγ) is invertible. Therefore, taking into account the invertibility of Mn(γ)
and using (5.10) we get

An(γ) = Mn(γ)A
1
2
n (Wγ)[Xn(γ)X∗

n(γ) + In]A
1
2
n (Wγ)M∗

n(γ) (5.38)

where Xn(γ) = A− 1
2

n (Wγ)M−1
n (γ)ηn(γ). By direct computation it is checked that

Mn(γ)Λn(γ) = Dγ1ηn(γ). (5.39)

Thus, Xn(γ) = D−1
γ1

A− 1
2

n (Wγ)Λn(γ). Taking the determinant in (5.38) and using
the form (5.7) of the matrix Mn(γ) we obtain

σn(γ) =
n∏

j=1

(1 − |γj |2)σn(Wγ) det(In + Xn(γ)X∗
n(γ)).

From this and the identity det(In + Xn(γ)X∗
n(γ)) = 1 + X∗

n(γ)Xn(γ) (see, e.g.,
[24, Lemma 1.1.8]) we obtain (5.36). �
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Lemma 5.12. Assume that γ ∈ Γl2 and that σn(γ) = 0 for some n ∈ N. Denote by
m0(γ) the level of the sequence γ, i.e., m0(γ) is characterized by condition (5.33).
Then:

(a) For m ≥ m0(γ) it holds rankAn(Wmγ) = rankAn(Wm+1γ), n ∈ N.
(b) If m0(γ) ≥ 1, m ∈ {0, 1, . . . , m0(γ) − 1} and n0(m) is such that

σn0(m)(Wmγ) > 0 and σn0(m)+1(Wmγ) = 0 then

rankAn(Wmγ) ≥ rankAn(Wm+1γ), n ∈ {1, 2, . . . , n0(m) − 1},
rankAn(Wmγ) = rankAn(Wm+1γ) + 1, n ≥ n0(m).

Proof. (a) It suffices to consider the case m0(γ) = 0. In the opposite case it is
necessary to change from γ to Wm0(γ)γ. Thus, assume that m0(γ) = 0. Because
of β1 �= 0 from (5.32) we get PNGF

G∗(1) �= 0. This means, for arbitrary n ∈ N

the rank of the Gram matrices of the vectors (hj)n
j=1 is one smaller than the rank

of the Gram matrix of the vectors (hj)n
j=1 and G∗(1). Now for the case m = 0

the assertion follows from statement (5) of Theorem 5.5. The case m > 0 can be
treated analogously.
(b) It suffices to consider the case m = 0. The other cases can be considered
analogously. Thus, let m = 0. In the considered case we proceed as above and take
into account that now β1 = 0. Hence, PNGF

G∗(1) = 0 and G∗(1) ∈ HGF. �

Theorem 5.13. ([23]) Let θ(ζ) ∈ S and denote by γ the sequence of its Schur
parameters. Then θ(ζ) ∈ SΠ \ J if and only if γ ∈ Γl2 and there exist numbers
m ∈ {0, 1, 2, . . .} and c > 0, which depends on m, such that(

A(Wm+1γ) Λ(Wmγ)
Λ∗(Wmγ) c

)
≥ 0 (5.40)

where
A(γ) = I − L(γ)L∗(γ),

Λ(γ) = col (γ1 , γ2D
−1
γ2

, γ3D
−1
γ2

D−1
γ3

, . . . , γn

n∏
j=2

D−1
γj

, . . .) (5.41)

and L(γ) is given via (3.47). Suppose that there exists an index m for which (5.40)
is satisfied and denote by m0(γ) the smallest index with this property. Then (5.40)
is satisfied for all m ≥ m0(γ). The number m0(γ) is characterized by condition
(5.33), i.e., m0(γ) is the level of the sequence γ.

Proof. We suppose first that σn(γ) > 0 for all n ∈ N. Then from statement (6) of
Theorem 5.5 and Lemma 5.11 it follows that the sequence (Λ∗

n(γ)A−1
n (γ)Λn(γ))∞n=1

is monotonically increasing and bounded from above if and only if the limit (5.13)
is positive. Thus, the existence of a number c > 0 such that for all n ∈ N the
inequality

Λ∗
n(γ)A−1

n (γ)Λn(γ) ≤ c (5.42)
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is satisfied is equivalent to the positivity of the limit (5.13). On the other hand, in
view of An(γ) > 0, n ∈ N, the condition (5.42) is equivalent (see, e.g., [24, Lemma
1.1.9]) to the inequality(

An(Wγ) Λn(γ)
Λ∗

n(γ) c

)
≥ 0, n ∈ N. (5.43)

But the conditions (5.40) and (5.43) are equivalent in the case m = 0.
Passing from the sequence γ to the sequence Wmγ and using analogous con-

siderations we obtain that the limit (5.35) is positive if and only if the condition
(5.40) is satisfied. Thus, the application of Theorem 5.10 shows that the assertion
is proved if σn(γ) > 0 for all n ∈ N.

Assume now that σn(γ) = 0 for some n ∈ N. We suppose that m0(γ) = 0. In
the opposite case, we pass from the sequence γ to the sequence V m0(γ)γ. Assume
that n0 ∈ {0, 1, 2, . . .} satisfies σn0(γ) > 0 and σn0+1(γ) = 0. Then, if the constant
c fulfills condition (5.42) for n = n0, condition (5.43) will also be satisfied for
n = n0. We will show that for a constant c chosen in this way the inequality (5.43)
will also be satisfied for all n > n0.

Let k ∈ N and n = n0 + k. The matrix An0+k(γ) admits the block represen-
tation

An0+k(γ) =
(

An0(γ) Bn0,k(γ)
B∗

n0,k(γ) Cn0,k(γ)

)
.

Statement (2) of Theorem 5.5 implies (see [24, Lemma 1.1.7]) that this block
representation leads to the factorization

An0+k(γ) = Fn0,k(γ)
(

An0(γ) 0
0 0

)
F ∗

n0,k(γ) (5.44)

where Fn0,k(γ) =
(

In0 0
Xn0,k(γ) Ik

)
, Xn0,k(γ) = B∗

n0,k(γ)A−1
n0

(γ). Using (5.39)

we rewrite (5.10) in the form

An(γ) = Mn(γ) (
1

1 − |γ1|2
Λn(γ)Λ∗

n(γ) + An(Wγ) ) M∗
n(γ), n ∈ N, (5.45)

On the one hand, statement (a) of Lemma 5.12 implies that rankAn0+k(γ) =
rankAn0+k(Wγ). Then from (5.45) for n = n0 + k it follows that Λn0+k(γ) is
contained in the range of An0+k(Wγ). Thus, we have the representation

Λn0+k(γ) =
(

In0 0
Xn0,k(Wγ) Ik

)(
Λn0(γ)

0

)
. (5.46)

We consider the matrix (5.43) for n = n0 + k and multiply it from the left by

the matrix
(

F−1
n0,k(Wγ) 0

0 1

)
and from the right by the adjoint of this matrix.

Taking into account (5.44) and (5.46) this gives us the nonnegative Hermitian
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matrix ⎛⎝ (
An0(Wγ) 0

0 0

) (
Λn0(γ)

0

)
( Λ∗

n0
(γ), 0 ) c

⎞⎠ .

Thus, the matrix (5.43) is nonnegative Hermitian for n = n0 + k, too.
Hence, in the considered case the Theorem is proved for the case m = 0. The

case of an arbitrary m ∈ {1, 2, . . .} is treated as above. One has only to pass from
the sequence γ to the sequence Wmγ. �

Corollary 5.14. Let θ(ζ) ∈ S and denote by γ the sequence of its Schur parameters.
Then θ(ζ) ∈ SΠ\J if and only if γ ∈ Γl2 and there exists an index m ∈ {0, 1, 2, . . .}
for which the vector Λ(Wmγ) belongs to the range of the operator A 1

2 (Wm+1γ).
Suppose that there exists such an index m and denote by m0(γ) the smallest one.
Then for all m ≥ m0(γ) the vector Λ(Wmγ) belongs to the range of the operator
A 1

2 (Wm+1γ). The number m0(γ) is characterized by condition (5.33). This means
that m0(γ) is the level of the sequence γ.

Proof. Because of A(Wmγ) ≥ 0, m ∈ {0, 1, 2, . . .}, the assertion follows from The-
orem 5.13 and the well-known criterion for nonnegative Hermitian block matrices
(see, e.g., [11, Lemma 2.1]). �

Remark 5.15. The matrix representation (3.6) implies

A(γ) = I − L(γ)L∗(γ) = R(γ)R∗(γ).

Therefore, Corollary 5.14 remains true if the range of the operator A 1
2 (Wm+1γ)

is replaced by the range of the operator R(Wm+1γ).

5.3. On some properties of the Schur parameter sequences
of pseudocontinuable Schur functions

In the term Λ∗
n(γ)A−1

n (Wγ)Λn(γ) (see Lemma 5.11) the parameter γ1 is only
contained in Λn(γ). This enables us to give a more concrete description of the
dependence of this expression on γ1. For this we consider the representation (5.25).
We assume that for n ∈ N the matrix An+1(γ) is invertible and introduce the
notations

Hn(γ) := An(Wγ) − Bn+1(γ)B∗
n+1(γ) (5.47)

and

H [c]
n (γ) := 1 − Π2

1 − Π2
1B

∗
n+1(γ)H−1

n (γ)Bn+1(γ). (5.48)

Then from (5.25) it follows

An+1(γ)

=
(

1 −Π1B
∗
n+1(γ)H−1

n (γ)
0 In

)(
H

[c]
n (γ) 0

0 Hn(γ)

)(
1 0

−Π1H
−1
n (γ)Bn+1(γ) In

)
.
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Thus,

A−1
n+1(γ)

=
(

1 0
Π1H

−1
n (γ)Bn+1(γ) In

)(
1

H
[c]
n (γ)

0

0 H−1
n (γ)

)(
1 Π1B

∗
n+1(γ)H−1

n (γ)
0 In

)
=

1

H
[c]
n (γ)

(
1

Π1H
−1
n (γ)Bn+1(γ)

)
(1 , Π1B

∗
n+1(γ)H−1

n (γ)) +
(

0 0
0 H−1

n (γ)

)
.

Using this product representation and the equality Λn+1(γ) =
(

γ1

D−1
γ2

Λn(Wγ)

)
we find

Λ∗
n+1(γ)A−1

n+1(Wγ)Λn+1(γ) (5.49)

=
1

H
[c]
n (Wγ)

|γ1 + Π3Λ∗
n(Wγ)H−1

n (Wγ)Bn+1(Wγ)|2

+
1

1 − |γ2|2
Λ∗

n(Wγ)H−1
n (Wγ)Λn(Wγ).

Hereby, γ1 occurs only in the expression in the modules.

Definition 5.16. Denote ΠΓ (resp. ΠΓl2) the set of all γ ∈ Γ for which the associ-
ated Schur function belongs to SΠ (resp. SΠ \ J).

Lemma 5.17. Let γ ∈ ΠΓl2. Assume that σn(γ) > 0 for all n ∈ N and m0(γ) = 0.
Then

lim
n→∞H [c]

n (γ) = 0 (5.50)

where H
[c]
n (γ) is given via (5.48).

Proof. In view of (5.47) for n ∈ N we get

B∗
n+1(γ)H−1

n (γ)Bn+1(γ)

= B∗
n+1(γ)A− 1

2
n (Wγ)(In −A− 1

2
n (Wγ)Bn+1(γ)B∗

n+1(γ)A− 1
2

n (Wγ))−1 ·

·A− 1
2

n (Wγ)Bn+1(γ) =
∞∑

k=1

qk
n(γ) =

qn(γ)
1 − qn(γ)

where qn(γ) = B∗
n+1(γ)A−1

n (Wγ)Bn+1(γ), n ∈ N. Thus,

H [c]
n (γ) = 1 − Π2

1 − Π2
1

qn(γ)
1 − qn(γ)

, n ∈ N. (5.51)
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Using the block partition (5.23) of the matrix Ln+1(γ) we obtain for n ∈ N

by analogy with the derivation of the formulas (5.19) (see, e.g., [24, Lemma 1.1.7])

σn+1(γ) = det(In+1 − L∗
n+1(γ)Ln+1(γ))

= det
(

1 − Π2
1 − B∗

n+1(γ)Bn+1(γ) −B∗
n+1(γ)Ln(Wγ)

−L∗
n(Wγ)Bn+1(γ) In − L∗

n(Wγ)Ln(Wγ)

)
= σn(Wγ){ 1−Π2

1− B∗
n+1(γ)( In + Ln(Wγ)A−1

n (Wγ)L∗
n(Wγ) )Bn+1(γ)}

= σn(Wγ)(1 − Π2
1 − B∗

n+1(γ)A−1
n (Wγ)Bn+1(γ)).

This means σn+1(γ) = σn(Wγ)(1−Π2
1−qn(γ)), n ∈ N. Comparing this expression

with (5.19) we obtain

1 =
σn(Wγ)
σn(γ)

· 1 − Π2
1 − qn(γ)

A[c]
n (γ)

.

It holds lim
n→∞A[c]

n (γ) = 0. Hereby, in view of m0(γ) = 0, the limit (5.13) is positive.

Thus, lim
n→∞ qn(γ) = 1 − Π2

1. Now (5.51) implies (5.50). �

Lemma 5.18. Let γ ∈ ΠΓl2. Assume that m0(γ) = 0 and that there exists an
index n0 ∈ N such that σn0(γ) > 0 and σn0+1(γ) = 0 are satisfied. Then there
exists a unique constant vector a = col (a1, . . . , an0) such that a1 �= 0 and for
j ∈ {0, 1, 2, . . .} the relations

(In0 − L∗
n0

(W jγ)Ln0(W
jγ))a =

1
Πn0+j+1

bn0(W
jγ), (5.52)

(
Πn0+j+1Ln0(W jγ)a

1

)
∈ kerAn0+1(W jγ) (5.53)

and

M∗
n0+1(W

jγ)
(

Πn0+j+1Ln0(W jγ)a
1

)
= Dγn0+j+1

(
Πn0+j+2Ln0(W j+1γ)a

1

)
(5.54)

are fulfilled where Πn, bn(γ) and Mn(γ) are defined via (3.14), (5.16) and (5.7),
respectively.

Proof. From the assumptions of the lemma we obtain analogously to (5.17)

An0+1(γ) =
(

In0 0
Xn0,1(γ) 1

)(
An0(γ) 0

0 0

)(
In0 X∗

n0,1(γ)
0 1

)
, (5.55)

where

X∗
n0,1(γ) = −A−1

n0
(γ)Ln0(γ)bn0(γ). (5.56)

Let a(γ) := (In0 − L∗
n0

(γ)Ln0(γ))−1bn0(γ). Thus,

(In0 − L∗
n0

(γ)Ln0(γ))a(γ) = bn0(γ). (5.57)
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From (5.55) and (5.56) we see that the vector(
Ln0(γ)a(γ)

1

)
(5.58)

belongs to kerAn0+1(γ). Because of m0(γ) = 0 Lemma 5.12 implies that for arbi-
trary j ∈ N the relations

σn0(W
jγ) > 0 , σn0+1(W j+1γ) = 0 (5.59)

hold true. This means dimkerAn0+1(W jγ) = 1, j ∈ {0, 1, 2, . . .}. For this reasons,
all computations can be done in the same way if we replace γ by W jγ, j ∈ N.
Thus, for j ∈ {0, 1, 2, . . .} we have(

Ln0(W jγ)a(W jγ)
1

)
∈ kerAn0+1(W jγ). (5.60)

Using (5.10) and (5.59) we infer

M∗
n0+1(W

jγ)(kerAn0+1(W jγ)) = kerAn0+1(W j+1γ) , j ∈ {0, 1, 2, . . .}.
This means for j ∈ {0, 1, 2, . . .}

M∗
n0+1(W

jγ)
(

Ln0(W jγ)a(W jγ)
1

)
= kj

(
Ln0(W j+1γ)a(W j+1γ)

1

)
. (5.61)

Hereby, from (5.7) we get

kj = Dγn0+j+1 , j ∈ {0, 1, 2, . . .}. (5.62)

Using (5.10) it follows ηn0+1(W jγ) ⊥ kerAn0+1(W jγ), j ∈ {0, 1, 2, . . .}.
Therefore, in view of (5.8), the operators M∗

n0+1(W
jγ) and M−1

n0+1(W
jγ) coin-

cide on the subspace kerAn0+1(W jγ). Combining this with (5.6) and (5.7) we find
for j ∈ {0, 1, 2, . . .} the equations

M∗
n0+1(W

jγ)
(

L0(W jγ)a(W jγ)
1

)
= M−1

n0+1(W
jγ)

(
L0(W jγ)a(W jγ)

1

)
=

(
M−1

n0
(W jγ) 0
∗ ∗

)(
L0(W jγ)a(W jγ)

1

)
=

(
L0(W j+1γ)a(W jγ)

∗

)
.

Taking into account (5.61) and (5.62) from this we get

a(W j+1γ) = D−1
γn0+j+1

a(W jγ) , j ∈ {0, 1, 2, . . .}.
This means

a(W jγ) =
j∏

k=1

D−1
γn0+k

a(γ) , j ∈ {0, 1, 2, . . .}. (5.63)

If we set a := Π−1
n0+1a(γ) then (5.63) implies a(W jγ) = Πn0+j+1a, j ∈ {0, 1, 2, . . .}.

Substituting this expression into formulas (5.57) for W jγ instead of γ, (5.60) and
(5.61) we obtain (5.52), (5.53) and (5.54), respectively.

If we assume that a1 = 0 then representation (5.3) shows that the first
component of the vector (5.58) is 0. Then representation (5.25) implies that
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kerAn0(Wγ) �= 0. This contradiction shows that a1 �= 0. Finally, the uniqueness
of the vector a follows from (5.57). �

Before formulating the next result we note that all functions Λn(γ), Hn(γ)
and Bn(γ) only depend on (γ1, γ2, . . .). This means that the functions Λn(Wmγ),
Hn(Wmγ) and Bn(Wmγ) only depend on (γm+1, γm+2, . . .).

Theorem 5.19. Assume γ ∈ ΠΓl2. Denote by m0(γ) the level of the sequence
γ. Then for every m ≥ m0(γ) + 1 the element γm is uniquely determined by the
subsequent elements γm+1, γm+2, . . .. Moreover, the following statements hold true:
(1) Assume that σn(γ) > 0 for all n ∈ N. Then

γm = −Πm+2 · lim
n→∞ Λ∗

n(Wmγ)H−1
n (Wmγ)Bn+1(Wmγ) ,

m ≥ m0(γ) + 1 (5.64)

where Πn, Λn(γ), Hn(γ) and Bn+1(γ) are defined via (3.14), (5.37), (5.47)
and (5.24), respectively.

(2) Assume that there exists an n ∈ N such that σn(γ) = 0 is satisfied. Let n0 ∈
{0, 1, 2, . . .} be chosen such that σn0 (W

m0(γ)γ) > 0 and σn0+1(Wm0(γ)γ) = 0.
Then there exists a function w(γ) = w(γ1, γ2, . . .) such that the identities

γm = w(Wmγ) , m ≥ m0(γ) + 1 (5.65)

are fulfilled. Hereby, we have the following cases:
(2a) If n0 = 0 then w(γ1, γ2, . . .) ≡ 0, i.e., γm = 0 for m ≥ m0(γ) + 1.
(2b) If n0 ∈ N then

w(γ) = − 1
w1(γ)

n0∑
k=1

γkwk+1(γ)
k∏

j=1

D−1
γj

, (5.66)

where for k ∈ {1, 2, . . . , n0}

wk(γ) = Πn0+1Πk

k∑
j=1

ajLk−j(W jγ) and wn0+1(γ) ≡ 1. (5.67)

Hereby, the constant vector a = col (a1, a2, . . . , an0) satisfies (5.52) for
j ≥ m0(γ).

Proof. Without loss of generality we assume that m0(γ) = 0. If σn(γ) > 0 for all
n ∈ N then Lemma 5.11 implies that the expression (5.49) has to be bounded if
n → ∞. Thus, in the case m = 1 formula (5.64) follows from the boundedness of
the expressions (5.49) and (5.50). For arbitrary m ≥ 2 formula (5.64) is verified
analogously by passing from the sequence γ to the sequence Wm−1γ.

Assume now that there exists an n ∈ N such that σn(γ) = 0 is satisfied.
Without loss of generality, as above, we assume that m0(γ) = 0. If n0 = 0 then

σ1(γ) = 0, i.e., 1 −
∞∏

j=1

(1 − |γj |2) = 0. This implies (2a).
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Suppose now that n0 ∈ N. Then (see the proof of Theorem 5.13) there exists
m ≥ 0 and a constant c > 0 such that the inequality(

An0+1(Wm+1γ) Λn0+1(Wmγ)
Λ∗

n0+1(W
mγ) c

)
≥ 0 (5.68)

holds true. Let

Y (γ) =
(

Πn0+1Ln0(γ)a
1

)
, (5.69)

where the vector a satisfies (5.52). Then (5.53) implies Y (Wγ) ∈ kerAn0+1(Wγ).
From this and (5.68) for m = 0 we infer

Λ∗
n0+1(γ)Y (Wγ) = 0. (5.70)

Using (5.69) and (5.3) we see that Y (γ) has the form

Y (γ) = col (w1(γ), w2(γ), . . . , wn0+1(γ))

where the sequence (wj(γ))n0+1
j=1 is defined via (5.67). Taking into account (5.37)

and substituting the coordinates of Y (γ) in (5.70) we obtain the identity (5.65)
for m = 1. Hereby, w(γ) has the form (5.66). Passing now from γ to Wm−1γ and
repeating the above considerations we obtain from Lemma 5.18 the formulas (5.65)
for m ∈ {2, 3, 4, . . .}. �

The theorems proved above motivate the introduction of the following notation

Definition 5.20. The elements γ of the set ΠΓl2 are called Π-sequences. A Π-
sequence γ is called pure if m0(γ) = 0. If γ, γ′ ∈ Γl2 then γ′ is called a extension
of γ if there exists an n ∈ N such that Wnγ′ = γ is satisfied. If γ is a pure Π-
sequence and γ′ is a extension of γ then γ′ is called a regular extension of γ if γ′

is also a pure Π-sequence. Assume that γ ∈ ΠΓl2. Let θ(ζ) be the Schur function
associated with γ and let ∆ be a simple unitary colligation of type (3.1) which
satisfies θ(ζ) = θ∆(ζ). Then the number dim HGF(= dimHFG) is called the rank
of the Π-sequence γ.

Theorem 5.19 shows that in the case of a pure Π-sequence γ = (γj)∞j=0

every element γn, n ∈ N, is uniquely determined by the sequence γ = (γj)∞j=n+1.
Therefore, every Π-sequence γ is a extension of a pure Π-sequence Wm0(γ)γ.

Let us consider an arbitrary Π-sequence γ = (γj)∞j=0. Then obviously the
sequences (γj)∞j=1 and γ = (γj)∞j=−1 where |γ−1| < 1 are Π-sequences. This
means that as well deleting an arbitrary finite number of first elements of a Π-
sequence as finite extension of a Π-sequence gives us again a Π-sequence. However,
if γ = (γj)∞j=0 is a Π-sequence then the freedom of choice is restricted only to the

first m0(γ) + 1 elements (γj)
m0(γ)
j=0 . Beginning with the element γm0(γ)+1 all the

following elements of the sequence γ are uniquely determined by the corresponding
subsequent ones. Namely, the existence of a determinate chain (γj)∞m0(γ)+1 ensures
the pseudocontinuability of the corresponding function θ(ζ) ∈ S. Therefore, in
order to understand the phenomenon of pseudocontinuability it will be necessary
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to study the structure of pure Π-sequences. Theorem 5.19 shows that a regular
extension of a pure Π-sequence is always unique and preserves this structure.

Let γ be a pure Π-sequence and γ′ one of its nonregular one-step extensions.
Then, as it follows from Theorem 4.5, Lemma 4.7 and the structure of the kernel
of a Hankel matrix, an arbitrary extension of γ′ can never be a pure Π-sequence.

The combination of statement (2) of Theorem 5.5 and Theorem 5.9 shows
that a Π-sequence γ has finite rank if and only if its associated function θ(ζ) is
rational. Hereby, this rank coincides with the smallest number of elementary 2×2-
Blaschke–Potapov factors of type (4.2) occurring in a finite Blaschke–Potapov
product which has the block θ.

Lemma 5.12 shows that a regular extension of a pure Π-sequence of finite
rank has the same rank. On the other hand, the rank of every nonregular one-
step extension of a pure Π-sequence is one larger. Since every Π-sequence γ is a
nonregular m0(γ)-steps extension of a pure Π-sequence V m0(γ)γ we have

rank γ = m0(γ) + rankWm0(γ)γ. (5.71)

Hereby, rankWm0(γ)γ = rankWm0(γ)+nγ, n ∈ {1, 2, 3, . . .}.

5.4. The structure of pure Π-sequences of rank 0 or 1
Lemma 5.21. Every Π-sequence γ of rank 0 is pure and has the form

γ = (γ0, 0, 0, 0, . . .) , |γ0| < 1. (5.72)

Conversely, every sequence of type (5.72) is a pure Π-sequence of rank 0.

Proof. Indeed, if rankγ = 0 then σ1(γ) = 0, i.e., 1 −
∞∏

j=1

(1 − |γj |2) = 0. This

implies γj = 0, j ∈ {1, 2, 3, . . .}. The converse statement is obvious. �

Thus, Π-sequences of type (γ0, γ1, . . . , γn, 0, 0, . . .), |γn| > 0, n ∈ N are never
pure. They are n-step extensions of a pure Π-sequence of type (5.72) where |γ0| > 0.
Obviously, every such sequence has rank n.

Theorem 5.22. ([23]) A sequence γ = (γj)∞j=0 ∈ Γ is a pure Π-sequence of first rank
if and only if γ1 �= 0 and there exists a complex number λ such that the conditions

0 < |λ| ≤ 1 − |γ1| (5.73)

and

γm+1 = λ
γm

m∏
j=1

(1 − |γj |2)
, m ∈ N (5.74)

are satisfied.

Proof. Assume that γ is a pure Π-sequence of first rank. Using Theorem 5.19 we
see that in the case (2b) for n0 = 1 the function w(γ) has the form

w(γ) = − 1
w1(γ)

γ1D
−1
γ1

w2(γ).
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Hereby, we have w1(γ) = Π2Π1a1 and w2(γ) = wn0+1(γ) = 1. Thus, w(γ) =
− γ1

a1Π2
1
. From this and (5.65) we see that the elements of the sequence γ are related

by the identities γm = − γm+1
a1Π2

m+1
, m ≥ 1. This means

γm+1 = −a1Π2
m+1γm = −a1Π2

1

γm
m∏

j=1

(1 − |γj |2)
.

Setting λ := −a1Π2
1 this gives us (5.74). Hereby, because of a1 �= 0 we have λ �= 0.

From (5.74) it follows γ1 �= 0 since otherwise we would have that γ has rank 0.
Thus, |γj | > 0 for j ∈ N.

From (5.74) we get

|γm+1|
|γm| =

|λ|
m∏

j=1

(1 − |γj |2)
, m ∈ N.

Thus, lim
n→∞

|γm+1|
|γm| = |λ|

Π2
1
. In view of γ ∈ Γl2, this implies

|λ| ≤ Π2
1 < 1. (5.75)

The identities (5.74) can be rewritten in the form

Π1Dγ1Dγ2 · . . . · Dγmγm+1 = λγmΠm+1 , m ∈ N. (5.76)

Taking into account the equations
∞∑

m=1

D2
γ1

D2
γ2

· . . . · D2
γm

|γm+1|2 = 1 − |γ1|2 − Π2
1

and
∞∑

m=1
|γm|2Π2

m+1 = 1−Π2
1, from (5.76) we get Π2

1(1−|γ1|2−Π2
1) = |λ|2(1−Π2

1).

Thus, Π2
1 is a root of the equation

x2 − x(1 − |γ1|2 + |λ|2) + |λ|2 = 0. (5.77)

Hence, this equation has a root in the interval (0, 1). Consequently, taking into
account (5.75) we obtain (5.73).

Conversely, assume that 0 < |γ1| < 1 and that the conditions (5.73) and
(5.74) are satisfied. Then

|γ2| =
|λ|

1 − |γ1|
|γ1|

1 + |γ1|
≤ |γ1|

1 + |γ1|
. (5.78)

The identities (5.74) can be rewritten for m ∈ {2, 3, 4, . . .} in the form

γm+1 = λ1
γm

m∏
j=2

(1 − |γj |2)
(5.79)
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where λ1 = λ
1−|γ1|2 . From (5.78) we see 0 < |γ2| < 1. Hereby, it can be immediately

checked that

0 < |λ1| ≤ 1 − |γ2|. (5.80)

Thus, after replacing λ by λ1 and γj by γj+1, j ∈ {1, 2, 3, . . .} the conditions (5.73)
and (5.74) are still in force and go over in the conditions (5.80) and (5.79). In
particular, this implies

|γ3| =
|λ1|

1 − |γ2|
|γ2|

1 + |γ2|
≤ |γ2|

1 + |γ2|
.

Applying now the principle of mathematical induction we obtain

|γm+1| ≤
|γm|

1 + |γm| , m ∈ N.

This implies that the inequalities

|γm+1| ≤
|γm−1|

1+|γm−1|
1 + |γm−1|

1+|γm−1|
=

|γm−1|
1 + 2|γm−1|

≤ |γm−2|
1 + 3|γm−2|

≤ . . . ≤ |γ1|
1 + m|γ1|

, m ∈ N ,

hold true. Hence, γ ∈ Γl2. Hereby, we have σ1(γ) > 0.
Using (5.74) we find

L1(γ1, γ2, . . .) = −
∞∑

m=1

γmγm+1 = −λ
∞∑

m=1

γm
γm

m∏
j=1

(1 − |γj |2)

= − λ

Π2
1

∞∑
m=1

|γm|2Π2
m+1 = − λ

Π2
1

(1 − Π2
1). (5.81)

On the other hand, rewriting (5.74) in the form

γm =
Π2

1

λ

γm+1
∞∏

j=m+1

(1 − |γj |2)
, m ∈ N

we obtain

L1(γ1, γ2, . . .) = −
∞∑

m=1

γmγm+1 = −Π2
1

λ

∞∑
m=1

γm+1
∞∏

j=m+1

(1 − |γj |2)
γm+1

= − Π2
1

λΠ2
2

(|γ2|2 + |γ3|2(1 − |γ2|2) + . . . + |γm|2
m−1∏
j=1

(1 − |γj |2) + . . .)

= − Π2
1

λΠ2
2

(1 − Π2
2).
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Combining this with (5.81) we get |L1(Wγ)|2 = (1−Π2
1)(1−Π2

2)

Π2
2

. Thus,

σ2(γ) =
∣∣∣∣ 1 − Π2

1 −Π1Π2L1(Wγ)
−Π1Π2L1(Wγ) 1 − Π2

2(1 + |L1(Wγ)|2)

∣∣∣∣
= (1 − Π2

1)(1 − Π2
2) − Π2

2|L1(Wγ)|2 = 0.

Hence, the sequence γ has rank 1. Since the sequence γ is not an extension of a
sequence of rank 0, in view of (5.71), it is pure. �

Corollary 5.23. Let γ = (γj)∞j=0 ∈ Γl2. Then it is

|
∞∑

j=1

γjγj+1| ≤
(1 −

∞∏
j=1

(1 − |γj |2))(1 −
∞∏

j=2

(1 − |γj |2))
∞∏

j=2

(1 − |γj |2)
. (5.82)

Equality holds true if and only if there exists a complex number λ such that
0 ≤ |λ| ≤ 1 − |γ1| and the conditions (5.74) are satisfied. In this case we have:

(1) If γ1 = 0 then the sequence γ is a pure Π-sequence of rank 0.
(2) If γ1 �= 0 and λ = 0 then the sequence γ is a nonregular one-step extension

of a pure Π-sequence of rank 0.
(3) If γ1 �= 0 and λ �= 0 then the sequence γ is a pure Π-sequence of rank 1.

Proof. The inequality (5.82) is equivalent to the condition σ2(γ) ≥ 0. For this
reason equality holds if and only if σ2(γ) = 0. However, this occurs if and only if
we have one of the three cases mentioned in Corollary 5.23. �

As examples we consider the functions 1+ζ
2 and 1

2−ζ which belong to SΠ \ J .
As it was shown by I. Schur [31, part II], their Schur parameter sequences are
(1
2 , 2

3 , 2
5 , 2

7 , . . .) and (1
2 , 1

3 , 1
4 , 1

5 , . . .), respectively. We note that both sequences fulfill
the conditions of Theorem 5.22 with values λ = 1

3 and 2
3 , respectively. Thus, both

sequences are pure Π-sequences of rank 1. Furthermore, it can be easily checked
that the functions

θ(ζ) = eiσ w(1 + α) + eiβζ(1 − αw)
(1 + α) − eiβζ(α − w)

, σ, β ∈ R , w ∈ D , α > 0

belong to SΠ \ J and that their Schur parameter sequence (γk)∞k=0 is given by

γ0 = eiσw , γn =
ei(σ+nβ)

α + n
, n ∈ N. (5.83)

Using the identity 1−|γn|2 = (α+n−1)(α+n+1)
(α+n)2 it can be checked by straightforward

computations that the sequence (5.83) also satisfies the conditions of Theorem 5.22
with λ = eiβ α

α+1 . Hence, the sequence (5.83) is a pure Π-sequence of rank 1, too.
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The Matricial Carathéodory Problem in Both
Nondegenerate and Degenerate Cases

Bernd Fritzsche, Bernd Kirstein and Andreas Lasarow

Abstract. The main goal of this paper is to present a new approach to both the
nondegenerate and degenerate case of the matricial Carathéodory problem.
This approach is based on the analysis of central matrix-valued Carathéodory
functions which was started in [FK1] and then continued in [FK3]. In the
nondegenerate situation we will see that the parametrization of the solution
set obtained here coincides with the well-known formula of D.Z. Arov and
M.G. Krĕın for that case (see [AK]).
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0. Introduction

Interpolation problems have a rich history. Important results for the scalar case
were already obtained in the first half of the 20th century. In the early 1950’s
a new period started, where interpolation problems for matrix-valued functions
were considered. These investigations culminated in a series of monographs (see,
e.g., [BGR], [DFK], [Dy], [FF], [FFGK], and [Sa]). An essential common feature
of these monographs is that the considerations mainly concentrated on the so-
called nondegenerate case which is connected with positive Hermitian block Pick
matrices built from the interpolation data.

The study of the degenerate case (where the associated block Pick matrix
is nonnegative Hermitian and singular) began with the pioneering work [Du] of
V.K. Dubovoj in the framework of the matricial Schur problem. In the sequel,
quite different approaches to handle degenerate cases of matrix interpolation were

The work of the third author of the present paper was supported by the German Academy of
Natural Scientists Leopoldina by means of the Federal Ministry of Education and Research under
grant number BMBF-LPD 9901/8-88.



252 B. Fritzsche, B. Kirstein and A. Lasarow

used (see, e.g., [BH], [BD], [Br], [CH1], [CH2], [DGK3], [Dy, Chapter 7], and [Sa,
Chapter 5]).

The principal object of this paper is to present an approach to the matricial
Carathéodory problem in both nondegenerate and degenerate cases. Our method
is essentially based on the first and second authors former investigations [FK1] and
[FK3] on the central matrix-valued Carathéodory function associated with a finite
Carathéodory sequence of matrices. In particular, we will make frequently use of
the matrix ball description of the elements of matricial Carathéodory sequences.
The main results of this paper (see Theorems 1.1, 3.2, 3.7, and 4.1) contain de-
scriptions of the solution set of a matricial Carathéodory problem in terms of a
linear fractional transformation, the generating matrix-valued function of which is
a matrix polynomial. The canonical blocks of this matrix polynomial will be con-
structed with the aid of those quadruple of matrix polynomials which were used
in [FK3] to derive right and left quotient representations of central matrix-valued
Carathéodory functions (see Theorem 1.3).

A different approach to the degenerate matricial Carathéodory problem was
used in the paper [CH2] of Chen and Hu. Their method is based on an adaptation
of the Schur-Potapov algorithm to the degenerate case along the line proposed
in [DGK3, Section 3]. The descriptions of the solution set which were given in
[CH2, Theorems 3.5 and 4.1] are quite different from our parametrizations given
in Theorems 1.1, 3.2, 3.7, and 4.1. In fact, the parameters of the linear fractional
transformations presented here are expressed more explicitly by the given data of
the interpolation problem.

In the nondegenerate case, our approach provides quickly those parametri-
zations of the solution set of a matricial Carathéodory problem (see Theorem 5.6)
which was stated (without proof) by D.Z. Arov and M.G. Krĕın in [AK] for that
case. The right and left Arov-Krĕın resolvent matrices possess contractivity pro-
perties with respect to the signature matrices

jqq :=
(

Iq 0
0 −Iq

)
and Jq :=

(
0 −Iq

−Iq 0

)
.

A main theme of Section 4 is to show that appropriate degenerate analogues of
the Arov-Krĕın resolvent matrices satisfy natural generalizations of the above-
mentioned contractivity properties with respect to jqq and Jq. Moreover, we will
see that the recurrent formulas for the Arov-Krĕın resolvent matrices (see [FK3,
Section 5]) admit generalizations to the degenerate case as well.

Finally, we study in Section 6 the special case that the matricial Carathéodory
problem has a unique solution. In particular, we shall obtain some characterizations
of that case in terms of the central matrix-valued Carathéodory function correspon-
ding to the given data by the problem. Roughly speaking, the central matrix-valued
Carathéodory function has a simple structure in this situation. It is a finite sum of
rational Carathéodory functions having exactly one pole (which is located at the
unit circle). This result can be regarded as a matricial extension of a well-known
fact for the scalar case.
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1. Preliminaries

Throughout this paper, let p and q be positive integers. We will use C, N0, and N

to denote the set of all complex numbers, the set of all nonnegative integers, and
the set of all positive integers, respectively. If m ∈ N0 and if n ∈ N0 or n = ∞,
then we will write Nm,n for the set of all integers k satisfying m ≤ k ≤ n. The
set of all complex p × q matrices will be designated by Cp×q. For each A ∈ Cp×q,
let A+ be the Moore-Penrose inverse of A, let R(A) be the range of A, and let
‖A‖ be designate the operator norm of A. If A ∈ Cq×q, then detA stands for the
determinant of A and tr A denotes the trace of A. Further, for each A ∈ C

q×q, let
Re A be the real part of A, i.e., let Re A := 1

2 (A + A∗). The null matrix which
belongs to Cp×q will be denoted by 0p×q. If the size of a null matrix is obvious,
we will omit the index. For each A ∈ Cp×p and each B ∈ Cq×q, let

diag
(
A, B

)
:=

(
A 0
0 B

)
.

If n ∈ N0 and if (Γj)n
j=0 is a sequence of complex q× q matrices, then we associate

with (Γj)n
j=0 the block Toeplitz matrices Sn and Tn given by

Sn :=

⎛⎜⎜⎜⎜⎜⎝
Γ0 0 0 . . . 0
Γ1 Γ0 0 . . . 0
Γ2 Γ1 Γ0

. . .
...

...
...

...
. . . 0

Γn Γn−1 Γn−2 . . . Γ0

⎞⎟⎟⎟⎟⎟⎠ (1.1)

and
Tn := Re Sn. (1.2)

If n ∈ N0, then a sequence (Γj)n
j=0 of complex q × q matrices is called q × q

Carathéodory sequence if the matrix Tn is nonnegative Hermitian. Obviously, if
n ∈ N0 and if (Γj)n

j=0 is a q × q Carathéodory sequence, then for each m ∈ N0,n

the sequence (Γj)m
j=0 is also a q × q Carathéodory sequence. A sequence (Γk)∞k=0

from Cq×q is said to be a q × q Carathéodory sequence if for every nonnegative
integer n the sequence (Γj)n

j=0 is a q × q Carathéodory sequence.
Let D := {z ∈ C : |z| < 1} and T := {z ∈ C : |z| = 1} be the unit disk and

the unit circle of the complex plane, respectively. A q × q matrix-valued function
Ω : D → Cq×q which is holomorphic in D and which has nonnegative Hermitian
real part Re Ω(z) for each z ∈ D is called q × q Carathéodory function (in D). The
set of all q × q Carathéodory functions (in D) will be denoted by Cq(D).

The well-studied matricial version of the classical Carathéodory interpolation
problem consists of the following:

Let n ∈ N0 and let (Γj)n
j=0 be a sequence of complex q × q matrices. Describe the

set Cq[D, (Γj)n
j=0] of all q × q Carathéodory functions Ω (in D) such that

1
j!

Ω(j)(0) = Γj (1.3)

holds for each j ∈ N0,n where Ω(j)(0) is the jth derivative of Ω at the point z = 0.
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If n ∈ N0 and if (Γj)n
j=0 is a sequence of complex q× q matrices, then the set

Cq[D, (Γj)n
j=0] is nonempty if and only if (Γj)n

j=0 is a q× q Carathéodory sequence
(see, e.g., [Ko] or [FK1, Part I, Section 4]). In the case of a given nondegenerate
q × q Carathéodory sequence (Γj)n

j=0, i.e., that the block Toeplitz matrix Tn de-
fined by (1.1) and (1.2) is positive Hermitian, there are various parametrizations
of Cq[D, (Γj)n

j=0] via linear fractional transformations (see, e.g., [AK], [BGR], [FF],
[Ko], or [FK1, Part V]). The main results of this paper present such parametriza-
tions in the general case of an arbitrarily given q × q Carathéodory sequence
(Γj)n

j=0. To formulate a particular version, we introduce now some further terms.
If m ∈ N0, let em,q and εm,q be the matrix polynomials defined by

em,q(z) :=
(
Iq, zIq, z

2Iq, . . . , z
mIq

)
(1.4)

and

εm,q(z) :=

⎛⎜⎜⎜⎜⎜⎝
zmIq

zm−1Iq

...
zIq

Iq

⎞⎟⎟⎟⎟⎟⎠ (1.5)

for all z ∈ C. Let e be a q × q matrix polynomial, i.e., there are a nonnegative
integer m and a complex mq × q matrix E such that e(z) = em,q(z)E for each
z ∈ C. Then the reciprocal matrix polynomial ẽ[m] of e with respect to the unit
circle T and the formal degree m is given, for all z ∈ C, by

ẽ[m](z) := E∗εm,q(z).

If n ∈ N0 and if (Γj)n
j=0 is a sequence of complex q × q matrices, then let

L1 := Re Γ0, R1 := Re Γ0, (1.6)

and in the case n ≥ 1 moreover

Zn :=
1
2

(
Γn, Γn−1, . . . ,Γ1

)
, Yn :=

1
2

⎛⎜⎜⎜⎝
Γ1

Γ2

...
Γn

⎞⎟⎟⎟⎠ , (1.7)

and
Ln+1 := ReΓ0 − ZnT +

n−1Z
∗
n, Rn+1 := Re Γ0 − Y ∗

n T +
n−1Yn. (1.8)

Observe that the matrices Ln+1 and Rn+1 are both nonnegative Hermitian if
(Γj)n

j=0 is a q × q Carathéodory sequence (see, e.g., [DFK, Lemma 1.1.9]).
Recall that a matrix-valued function S : D → C

q×q which is holomorphic in
D is called q × q Schur function (in D) if, for each z ∈ D, the value S(z) of S at
the point z is a contractive matrix, i.e., the matrix I −

(
S(z)

)∗
S(z) is nonnegative

Hermitian. The set of all q× q Schur functions (in D) will be denoted by Sq×q(D).
A main goal of this paper is to prove the following description of the solution

set Cq[D, (Γj)n
j=0] of the matricial version of the classical Carathéodory problem.
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Theorem 1.1. Let n be a nonnegative integer and let (Γj)n
j=0 be a q×q Carathéodory

sequence. Let the matrix polynomials an, bn, cn, and dn be given by

an(z) :=
{

Γ0 if n = 0
Γ0 + zen−1,q(z)S∗

n−1T
+
n−1Yn if n ≥ 1 ,

(1.9)

bn(z) :=
{

Iq if n = 0
Iq − zen−1,q(z)T +

n−1Yn if n ≥ 1 ,
(1.10)

cn(z) :=
{

Γ0 if n = 0
ZnT +

n−1S
∗
n−1zεn−1,q(z) + Γ0 if n ≥ 1 ,

(1.11)

and

dn(z) :=
{

Iq if n = 0
−ZnT +

n−1zεn−1,q(z) + Iq if n ≥ 1 (1.12)

for each z ∈ C. Then the following statements hold:

(a) For each S ∈ Sq×q(D) and each z ∈ D,

det
(
zd̃[n]

n (z)
√

Ln+1
+

S(z)
√

Rn+1 + bn(z)
)
�= 0

and

det
(
z
√

Ln+1S(z)
√

Rn+1
+
b̃[n]
n (z) + dn(z)

)
�= 0.

Moreover, for each S ∈ Sq×q(D), the matrix-valued function Ω : D → Cq×q

given by

Ω(z) :=
(
−zc̃[n]

n (z)F (z) + an(z)
)(

zd̃[n]
n (z)F (z) + bn(z)

)−1

belongs to Cq[D, (Γj)n
j=0], where F :=

√
Ln+1

+
S
√

Rn+1, and admits the rep-
resentation

Ω(z)=
(
zG(z)b̃[n]

n (z) + dn(z)
)−1(

−zG(z)ã[n]
n (z) + cn(z)

)
for each z ∈ D, where G :=

√
Ln+1S

√
Rn+1

+
.

(b) For each Ω ∈ Cq[D, (Γj)n
j=0], there is an S ∈ Sq×q(D) such that the identity

Ω(z)=
(
−zc̃[n]

n (z)F (z) + an(z)
)(

zd̃[n]
n (z)F (z) + bn(z)

)−1

is fulfilled for each z ∈ D, where F :=
√

Ln+1
+
S
√

Rn+1.

In fact, we prove some results which include Theorem 1.1 as a special case
(see Theorems 3.2 and 3.7 for the exact formulation). A key role in the proof of
these results plays a comparison of possible candidates for solutions with a distin-
guished solution, namely with the so-called central q × q Carathéodory function
corresponding to the given q × q Carathéodory sequence (Γj)n

j=0. For this reason,
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it seems to be useful to give some preliminaries. Let us consider an arbitrary non-
negative integer n and an arbitrary q × q Carathéodory sequence (Γj)n

j=0. Using
(1.2) and (1.7), let furthermore

Mn+1 :=
{

0q×q if n = 0
ZnT +

n−1Yn if n ≥ 1 .
(1.13)

In view of (1.13), then [FK1, Part I, Theorem 1] leads to the notion of central
q × q Carathéodory functions as follows. If we put Γn+1 := 2Mn+1, then [FK1,
Part I, Theorem 1] implies particularly that (Γj)n+1

j=0 is a q × q Carathéodory
sequence. Consequently, we can continue this procedure, i.e., similar as in (1.13)
let Mn+2 := Zn+1T

+
n Yn+1, we put Γn+2 := 2Mn+2, and [FK1, Part I, Theorem 1]

provides that (Γj)n+2
j=0 is a q × q Carathéodory sequence, and so on. Therefore, if

(Γj)n
j=0 is a given q × q Carathéodory sequence, then the choice

Γn+1+k := 2 Mn+1+k, k ∈ N0, (1.14)

yields a particular q×q Carathéodory sequence (Γk)∞k=0 and hence (see, e.g., [BGR]
or [Ko]) a particular function which belongs to Cq[D, (Γj)n

j=0], the so-called central
q × q Carathéodory function Ωc,n corresponding to (Γj)n

j=0. If (Γj)n
j=0 is a q × q

Carathéodory sequence, then we call the sequence (Γk)∞k=0 given by (1.14) also the
central q × q Carathéodory sequence corresponding to (Γj)n

j=0. Clearly, the central
q × q Carathéodory function Ωc,n admits the Taylor series representation

Ωc,n(z) =
∞∑

k=0

Γkzk

for each z ∈ D, where (Γk)∞k=0 is the central q × q Carathéodory sequence corre-
sponding to (Γj)n

j=0.
If (Γj)0j=0 is a q × q Carathéodory sequence, then the constant function (de-

fined on D) with value Γ0 is the central q×q Carathéodory function corresponding
to (Γj)0j=0 (see [FK3, Remark 1.1]). In the case that a positive integer n and a
q × q Carathéodory sequence (Γj)n

j=0 are given the central q × q Carathéodory
function corresponding to (Γj)n

j=0 is a rational matrix-valued function which can
be explicitly constructed (see Theorem 1.3 below).

Remark 1.2. Let n be a positive integer and let (Γj)n
j=0 be a q × q Carathéodory

sequence. Then the matrix T +
n−1Yn belongs to the set

Yn := {V ∈ C
nq×q : Tn−1V = Yn}

and the matrix ZnT +
n−1 belongs to the set

Zn := {W ∈ C
q×nq : WTn−1 = Zn}

(cf. [FK3, Remark 1.4]). Moreover, [FK3, Proposition 2.2] implies that T +
n−1Yn

actually belongs to the set Ỹn of all Vn ∈ Yn such that det bn vanishes nowhere
in D, where bn is the matrix polynomial defined by bn(z) := Iq − zen−1,q(z)Vn.
Furthermore, from [FK3, Theorem 2.3] one can see that ZnT +

n−1 actually belongs
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to the set Z̃n of all Wn ∈ Zn such that det dn vanishes nowhere in D, where dn is
the matrix polynomial defined by dn(z) := −Wnzen−1,q(z) + Iq.

Theorem 1.3. Let n be a nonnegative integer and let (Γj)n
j=0 be a q×q Carathéodory

sequence. If n ≥ 1, then let the matrix polynomials en−1,q and εn−1,q be defined by
(1.4) and (1.5), let Vn ∈ Yn, and let Wn ∈ Zn. Then:
(a) The central q× q Carathéodory function Ωc,n corresponding to (Γj)n

j=0 is the
restriction of the rational matrix function anb−1

n onto D, where an and bn are
the q × q matrix polynomials which are defined, for each z ∈ C, by

an(z) :=
{

Γ0 if n = 0
Γ0 + zen−1,q(z)S∗

n−1Vn if n ≥ 1 (1.15)

and

bn(z) :=
{

Iq if n = 0
Iq − zen−1,q(z)Vn if n ≥ 1 .

(1.16)

(b) The function Ωc,n is the restriction of the rational matrix function d−1
n cn

onto D, where cn and dn are the q × q matrix polynomials which are given,
for each z ∈ C, by

cn(z) :=
{

Γ0 if n = 0
WnS∗

n−1zεn−1,q(z) + Γ0 if n ≥ 1 (1.17)

and

dn(z) :=
{

Iq if n = 0
−Wnzεn−1,q(z) + Iq if n ≥ 1 .

(1.18)

A proof of Theorem 1.3 is given in [FK3, Theorems 1.7 and 2.3, Remark 1.1].

2. On particular matrix polynomials

In this section we study the matrix polynomials realizing the representations of the
central Carathéodory function Ωc,n according to Theorem 1.3. In fact, we deduce
certain formulas for these matrix polynomials which are useful in view of the proof
of Theorem 1.1. Before, some further remarks on the matrices Ln+1, Rn+1, and
Mn+1 are stated which can be computed from a given q×q Carathéodory sequence
(Γj)n

j=0 via (1.6), (1.8), and (1.13).

Remark 2.1. Let n ∈ N0 and (Γj)n+1
j=0 be a q × q Carathéodory sequence. The

matrix
Kn+1 :=

√
Ln+1

+ (
1
2Γn+1 − Mn+1

)√
Rn+1

+
(2.1)

is contractive and the equation 1
2Γn+1 − Mn+1 =

√
Ln+1Kn+1

√
Rn+1 holds (see

[FK1, Part I, Theorem 1] and [DFK, Lemma 1.5.1]). Hence the matrices

fn+1 := L+
n+1

(
1
2Γn+1 − Mn+1

)
and gn+1 :=

(
1
2Γn+1 − Mn+1

)
R+

n+1 (2.2)

fulfill the identities

Ln+1fn+1 = 1
2Γn+1 − Mn+1 and gn+1Rn+1 = 1

2Γn+1 − Mn+1. (2.3)
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Let C
q×q
≥ be the set of all nonnegative Hermitian q× q matrices and let C

q×q
>

be the set of all positive Hermitian q× q matrices. Further, we will write A ≥ B or
B ≤ A to indicate that A and B are (quadratic) Hermitian matrices of the same
size such that A − B is a nonnegative Hermitian matrix. If A is a complex p × q
matrix, then we will use N (A) to denote the null space of A.

Remark 2.2. Let τ ∈ N or τ = +∞, and let (Γj)τ
j=0 be a q × q Carathéodory

sequence. For each n ∈ N1,τ , let the matrix Kn be defined by (2.1). Then

0 ≤ Ln+1 =
√

Ln(I − KnK∗
n)
√

Ln ≤ Ln,

0 ≤ Rn+1 =
√

Rn(I − K∗
nKn)

√
Rn ≤ Rn,

and, in particular, N (Ln) ⊆ N (Ln+1), N (Rn) ⊆ N (Rn+1),√
Ln

√
Ln

+√
Ln+1 =

√
Ln+1, and

√
Rn+1

√
Rn

+√
Rn =

√
Rn+1

hold for each n ∈ N1,τ (see [DFK, Remark 3.4.3]).

Remark 2.3. Let n ∈ N and let (Γj)n
j=0 be a q×q Carathéodory sequence. Further,

let Vn ∈ Yn and Wn ∈ Zn. In view of the equations

S∗
n−1Vn = 2Yn − Sn−1Vn and WnS∗

n−1 = 2Zn − WnSn−1

it is readily checked that, for each z ∈ C, the matrix polynomials an, bn, cn, and
dn given by (1.15), (1.16), (1.17), and (1.18) admit the representations

an(z) = en,q(z)SnV �
n , bn(z) = en,q(z)V �

n ,

cn(z) = W�
n Snεn,q(z), and dn(z) = W�

n εn,q(z),

where the matrix polynomials en,q and εn,q are defined by (1.4) and (1.5),

V �
n :=

(
Iq

−Vn

)
, and W�

n :=
(
−Wn, Iq

)
.

Let F0 be the constant matrix-valued function with value 0q×q. For each
n ∈ N, let Fn : C → C(n+1)q×(n+1)q be defined by

Fn(z) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 0
zIq 0 0 . . . 0 0
z2Iq zIq 0 . . . 0 0

z3Iq z2Iq zIq
. . .

...
...

...
...

...
. . . 0 0

znIq zn−1Iq zn−2Iq . . . zIq 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Proposition 2.4. Let n ∈ N0 and let (Γj)n
j=0 be a q × q Carathéodory sequence. If

n ≥ 1, then let Vn ∈ Yn and Wn ∈ Zn. Let the matrix polynomials an, bn, cn,
and dn be defined by (1.15), (1.16), (1.17), and (1.18). Let the matrices Rn+1 and
Ln+1 be given by (1.6) and (1.8). Then:



Matricial Carathéodory Problem 259

(a) For every choice of z in T,

Re
((

an(z)
)∗

bn(z)
)

= Rn+1 and Re
(
cn(z)

(
dn(z)

)∗) = Ln+1.

(b) The identities

ã[n]
n (z)bn(z) + b̃[n]

n (z)an(z) = 2 znRn+1

and
cn(z)d̃[n]

n (z) + dn(z)c̃[n]
n (z) = 2 znLn+1

hold for each z ∈ C.

Proof. (a) The case n=0 is trivial. Suppose n≥1. Using [DFK, Lemma 4.2.1] we
get

Fn(w)Sn = SnFn(w) (2.4)
for each w ∈ C. Moreover, for each w ∈ C \ {0}, it is readily checked that(

en,q

(
1
w

))∗
en,q(w) = Fn

(
1
w

)
+ I +

(
Fn(w)

)∗
holds. Now let z ∈ T. Then we have(

en,q(z)
)∗

en,q(z) = Fn(z) + I +
(
Fn(z)

)∗
.

Taking into account Remark 2.3, (2.4), and (1.2) it follows

2 Re
((

an(z)
)∗

bn(z)
)

=
(
an(z)

)∗
bn(z) +

(
bn(z)

)∗
an(z)

=
(
V �

n

)∗
S∗

n

(
en,q(z)

)∗
en,q(z)V �

n +
(
V �

n

)∗ (
en,q(z)

)∗
en,q(z)SnV �

n

=
(
V �

n

)∗ (
S∗

n

(
Fn(z) + I +

(
Fn(z)

)∗) +
(
Fn(z) + I +

(
Fn(z)

)∗)
Sn

)
V �

n

=
(
V �

n

)∗ (
S∗

nFn(z) + S∗
n +

(
Fn(z)

)∗
S∗

n + SnFn(z) + Sn +
(
Fn(z)

)∗
Sn

)
V �

n

= 2
(
V �

n

)∗ (
TnFn(z) + Tn +

(
Fn(z)

)∗
Tn

)
V �

n . (2.5)

The matrix Tn is nonnegative Hermitian and admits the block representation

Tn =
(

ReΓ0 Y ∗
n

Yn Tn−1

)
.

This implies Tn−1 ∈ C
nq×nq
≥ , Rn+1 ∈ C

q×q
≥ , and

Tn−1T
+
n−1Yn = Yn

(see [Al], [EP], or [DFK, Lemma 1.1.9 and Theorem 1.1.1]). Thus

TnV �
n =

(
Re Γ0 − Y ∗

n Vn

Yn − Tn−1Vn

)
=

(
Re Γ0 − Y ∗

n T +
n−1Tn−1Vn

0nq×q

)
=

(
Rn+1

0nq×q

)
.

Consequently, from (2.5) we obtain then

Re
((

an(z)
)∗

bn(z)
)

=
(
Rn+1, 0q×nq

)
Fn(z)V �

n + Rn+1 +
(
V �

n

)∗(
Fn(z)

)∗(Rn+1

0nq×q

)
.
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Because of
(
Rn+1, 0q×nq

)
Fn(z) = 0q×(n+1)q it follows the first equation in (a).

The second one can be proved analogously.
(b) For each z ∈ T, from [DFK, Lemma 1.2.2] and part (a) we obtain

ã[n]
n (z)bn(z) + b̃[n]

n (z)an(z) = zn
(
an

(
1
z

))∗
bn(z) + zn

(
bn

(
1
z

))∗
an(z)

= zn
((

an(z)
)∗

bn(z) +
(
bn(z)

)∗
an(z)

)
= 2 znRe

((
an(z)

)∗
bn(z)

)
= 2 znRn+1.

Since the left-hand side and the right-hand side of this equation form matrix
polynomials, one can conclude ã

[n]
n (z)bn(z) + b̃

[n]
n (z)an(z) = 2 znRn+1 for each

z ∈ C. Similarly, the second equality can be derived from part (a). �
For a q × q matrix polynomial e, we use in the following the notation

Ne := {w ∈ C : det e(w) = 0}.

Corollary 2.5. Let n ∈ N0 and let (Γj)n
j=0 be a q × q Carathéodory sequence. If

n ≥ 1, then let Vn ∈ Yn and Wn ∈ Zn. Let the matrix polynomials an, bn, cn, and
dn be defined by (1.15), (1.16), (1.17), and (1.18). Furthermore, let the matrices
Rn+1 and Ln+1 be given by (1.6) and (1.8). Then

Re
(
bn(z)

(
an(z)

)−1
)

=
(
an(z)

)−∗
Rn+1

(
an(z)

)−1 ≥ 0, z ∈ T \ Nan ,

Re
(
an(z)

(
bn(z)

)−1
)

=
(
bn(z)

)−∗
Rn+1

(
bn(z)

)−1 ≥ 0, z ∈ T \ Nbn ,

Re
((

cn(z)
)−1

dn(z)
)

=
(
cn(z)

)−1
Ln+1

(
cn(z)

)−∗ ≥ 0, z ∈ T \ Ncn ,

and

Re
((

dn(z)
)−1

cn(z)
)

=
(
dn(z)

)−1
Ln+1

(
dn(z)

)−∗ ≥ 0, z ∈ T \ Ndn .

The sets Nbn and Ndn consist of at most n ·q elements (and hence the sets T\Nbn

and T \ Ndn are nonempty).

Proof. From part (a) of Proposition 2.4, it follows

Re
(
bn(z)

(
an(z)

)−1
)

=
1
2
(
an(z)

)−∗((
an(z)

)∗
bn(z) +

(
bn(z)

)∗
an(z)

)(
an(z)

)−1

=
(
an(z)

)−∗ Re
((

an(z)
)∗

bn(z)
)(

an(z)
)−1

=
(
an(z))−∗Rn+1

(
an(z)

)−1 ≥ 0

for each z ∈ T \ Nan . Analogously, the relations with respect to z ∈ T \ Nbn ,
z ∈ T\Ncn , and z ∈ T\Ndn are an easy consequence of part (a) of Proposition 2.4.
Moreover, since bn (respectively, dn) is a q×q matrix polynomial of degree at most
n such that bn(0) = Iq (respectively, dn(0) = Iq), one can conclude that the set
Nbn (respectively, Ndn) consists of at most n · q elements. In particular, the set
T \ Nbn (respectively, T \ Ndn) is nonempty. �
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Note that in view of (1.15) and (1.17) one can immediately see that the sets
T\Nan and T\Ncn can be empty. Otherwise, for the special situation that a q× q
Carathéodory sequence (Γj)n

j=0 with nonsingular matrix Γ0 is given, then the sets
Nan and Ncn consist of at most n · q elements (cf. [FK3, Section 3]). Hence the
sets T \ Nan and T \ Ncn are nonempty in that case.

Proposition 2.6. Let n ∈ N0, k ∈ N, and (Γj)n+k
j=0 be a q×q Carathéodory sequence.

If n ≥ 1, then let Vn ∈ Yn and Wn ∈ Zn. Further, let an, bn, cn, and dn be
defined by (1.15), (1.16), (1.17), and (1.18). For each j ∈ N0,k−1, let the matrix
polynomials an+j+1, bn+j+1, cn+j+1, and dn+j+1 be defined by

an+j+1(z) := an+j(z) + zc̃
[n+j]
n+j (z)fn+j+1, (2.6)

bn+j+1(z) := bn+j(z) − zd̃
[n+j]
n+j (z)fn+j+1, (2.7)

cn+j+1(z) := cn+j(z) + gn+j+1zã
[n+j]
n+j (z), (2.8)

and
dn+j+1(z) := dn+j(z) − gn+j+1zb̃

[n+j]
n+j (z) (2.9)

for each z ∈ C, where fn+j+1 and gn+j+1 are the matrices given by (2.2). For each
j ∈ N0,k−1, the following statements hold:
(a) The central q × q Carathéodory function Ωc,n+j+1 corresponding to the q × q

Carathéodory sequence (Γ�)
n+j+1
�=0 admit the representations

Ωc,n+j+1 =an+j+1b
−1
n+j+1 and Ωc,n+j+1 =d−1

n+j+1cn+j+1.

(b) If n = 0 or in the case n ≥ 1 both Vn ∈ Ỹn and Wn ∈ Z̃n are chosen, then
the functions det bn+j+1 and det dn+j+1 vanish nowhere in D.

Proof. The assertion follows applying Theorem 1.3, Remark 2.1, and [FK3, Re-
mark 4.2, Proposition 4.4, Remark 4.5, Lemma 4.6]. �

Corollary 2.7. Let n ∈ N0 and let (Γj)n
j=0 be a q × q Carathéodory sequence. Let

the matrices Ln+1, Rn+1, and Mn+1 be defined by (1.6), (1.8), and (1.13), let K
be a contractive q × q matrix, and let

Γn+1 := 2Mn+1 +
√

2Ln+1(−K)
√

2Rn+1 .

If n ≥ 1, then let Vn ∈ Ỹn and Wn ∈ Z̃n. Furthermore, let the matrix poly-
nomials an, bn, cn, and dn be given by (1.15), (1.16), (1.17), and (1.18). Then
(Γj)n+1

j=0 is a q × q Carathéodory sequence. Moreover, for each z ∈ D, the matri-

ces zd̃
[n]
n (z)

√
Ln+1

+
K
√

Rn+1 + bn(z) and z
√

Ln+1K
√

Rn+1
+
b̃
[n]
n (z) + dn(z) are

nonsingular and the central q × q Carathéodory function Ωc,n+1 corresponding to
the q × q Carathéodory sequence (Γj)n+1

j=0 admits the representations

Ωc,n+1(z)=
(
−zc̃[n]

n (z)
√

Ln+1
+
K
√

Rn+1+an(z)
)(

zd̃[n]
n (z)

√
Ln+1

+
K
√

Rn+1+bn(z)
)−1

and
Ωc,n+1(z)=

(
z
√

Ln+1K
√

Rn+1
+
b̃[n]
n (z)+dn(z)

)−1(
−z

√
Ln+1K

√
Rn+1

+
ã[n]

n (z)+cn(z)
)
.
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Proof. Since (Γj)n
j=0 is a q×q Carathéodory sequence, the matrices Ln+1 and Rn+1

are nonnegative Hermitian. According to [FK1, Part I, Theorem 1], by (Γj)n+1
j=0

a q × q Carathéodory sequence is given. Moreover, the matrices fn+1 and gn+1

defined by (2.2) admit the representations

fn+1 = −
√

Ln+1
+
K
√

Rn+1 and gn+1 = −
√

Ln+1K
√

Rn+1
+
.

Consequently, if the matrix polynomials an+1, bn+1, cn+1, and dn+1 are given as
in (2.6), (2.7), (2.8), and (2.9) (with j = 0), then

an+1(z) = an(z) − zc̃[n]
n (z)

√
Ln+1

+
K
√

Rn+1,

bn+1(z) = bn(z) + zd̃[n]
n (z)

√
Ln+1

+
K
√

Rn+1,

cn+1(z) = cn(z) − z
√

Ln+1K
√

Rn+1
+
ã[n]

n (z),

and
dn+1(z) = dn(z) + z

√
Ln+1K

√
Rn+1

+
b̃[n]
n (z)

for each z ∈ C. Application of Proposition 2.6 completes the proof. �

Corollary 2.8. Let n ∈ N0 and let (Γj)n+1
j=0 be a q × q Carathéodory sequence. If

n ≥ 1, then let Vn ∈ Yn and Wn ∈ Zn. Further, let fn+1 and gn+1 be defined by
(2.2). The q × q matrix polynomials an, bn, cn, and dn given by (1.15), (1.16),
(1.17), and (1.18) satisfy the identities

gn+1

(
ã[n]

n bn + b̃[n]
n an

)
=

(
cnd̃[n]

n + dnc̃[n]
n

)
fn+1

and (
ã[n]

n bn + b̃[n]
n an

)
g∗n+1 = f∗

n+1

(
cnd̃[n]

n + dnc̃[n]
n

)
.

Proof. In the case n = 0 the assertion is obviously satisfied. Now let n ≥ 1. Further,
let the matrix polynomials an+1, bn+1, cn+1, and dn+1 be defined by (2.6), (2.7),
(2.8), and (2.9) (with j = 0). From Theorem 1.3 and Proposition 2.6 we get

dnan = cnbn, ã[n]
n d̃[n]

n = b̃[n]
n c̃[n]

n , (2.10)

and dn+1an+1 = cn+1bn+1. Hence, for each z ∈ C, it follows

dn(z)an(z) − gn+1zb̃[n]
n (z)an(z) + zdn(z)c̃[n]

n (z)fn+1 − gn+1z
2b̃[n]

n (z)c̃[n]
n (z)fn+1

=
(
dn(z) − gn+1zb̃[n]

n (z)
)(

an(z) + zc̃[n]
n (z)fn+1

)
= dn+1(z)an+1(z)

= cn+1(z)bn+1(z) =
(
cn(z) + gn+1zã[n]

n (z)
)(

bn(z) − zd̃[n]
n (z)fn+1

)
= cn(z)bn(z) + gn+1zã[n]

n (z)bn(z) − zcn(z)d̃[n]
n (z)fn+1 − gn+1z

2ã[n]
n d̃[n]

n fn+1

and consequently

−gn+1zb̃[n]
n (z)an(z) + zdn(z)c̃[n]

n (z)fn+1 = gn+1zã[n]
n (z)bn(z) − zcn(z)d̃ [n]

n (z)fn+1.

Thus the first identity follows. The second identity is an immediate consequence
of the first one. �
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Corollary 2.9. Let n ∈ N0 and let (Γj)n+1
j=0 be a q × q Carathéodory sequence. If

n ≥ 1, then let Vn ∈ Yn and Wn ∈ Zn. Further, let the matrix polynomials an, bn,
cn, and dn be given by (1.15), (1.16), (1.17), and (1.18), let the matrix polynomials
an+1, bn+1, cn+1, and dn+1 be defined by (2.6), (2.7), (2.8), and (2.9) (with j = 0),
and let the matrices fn+1 and gn+1 be defined as in (2.2). For each z ∈ C, then

ã
[n+1]
n+1 (z)bn+1(z)+ b̃

[n+1]
n+1 (z)an+1(z) = z

(
ã[n]

n (z)bn(z)+ b̃[n]
n (z)an(z)

)
(I−g∗n+1fn+1),

ã
[n+1]
n+1 (z)bn+1(z)+ b̃

[n+1]
n+1 (z)an+1(z) = z(I−f∗

n+1gn+1)
(
ã[n]

n (z)bn(z)+ b̃[n]
n (z)an(z)

)
,

cn+1(z)d̃[n+1]
n+1 (z)+dn+1(z)c̃[n+1]

n+1 (z) = z
(
cn(z)d̃[n]

n (z)+dn(z)c̃[n]
n (z)

)
(I−fn+1g

∗
n+1),

and

cn+1(z)d̃[n+1]
n+1 (z)+dn+1(z)c̃[n+1]

n+1 (z) = z(I−gn+1f
∗
n+1)

(
cn(z)d̃[n]

n (z)+dn(z)c̃[n]
n (z)

)
.

Proof. Let z ∈ C. Using (2.10), which follows from Theorem 1.3, we obtain

ã
[n+1]
n+1 (z)bn+1(z) + b̃

[n+1]
n+1 (z)an+1(z)

=
(
zã[n]

n (z) + f∗
n+1cn(z)

)(
bn(z) − zd̃[n]

n (z)fn+1

)
+
(
zb̃[n]

n (z) − f∗
n+1dn(z)

)(
an(z) + zc̃[n]

n (z)fn+1

)
= zã[n]

n (z)bn(z) − z2ã[n]
n (z)d̃[n]

n (z)fn+1 + f∗
n+1cn(z)bn(z)

−zf∗
n+1cn(z)d̃[n]

n (z)fn+1 + zb̃[n]
n (z)an(z) + z2b̃[n]

n (z)c̃[n]
n (z)fn+1

−f∗
n+1dn(z)an(z) − zf∗

n+1dn(z)c̃[n]
n (z)fn+1

= z
(
ã[n]

n (z)bn(z) + b̃[n]
n (z)an(z)

)
− zf∗

n+1

(
cn(z)d̃[n]

n (z) + dn(z)c̃[n]
n (z)

)
fn+1.

Hence, in view of Corollary 2.8, we get that the first and the second identities
hold. The other identities can be verified analogously. �

Note that Corollary 2.8 and Corollary 2.9 can also be derived from part (b)
of Proposition 2.4 in combination with Remark 2.1 and Remark 2.2.

3. Description of the set Cq[D, (Γj)
n
j=0]

The main goal of this section is to prove Theorem 1.1. More precisely, combining
Theorem 3.2 and Theorem 3.7 we will even verify a more general result which
shows us that Theorem 1.1 corresponds to that particular case which is associated
with a canonical choice of the matrix polynomials under consideration.

Lemma 3.1. Let n ∈ N0 and let (Γj)n
j=0 be a q × q Carathéodory sequence. If

n ≥ 1, then let Vn ∈ Ỹn and Wn ∈ Z̃n. Let the matrix polynomials an, bn, cn,
and dn be given by (1.15), (1.16), (1.17), and (1.18). If K is a contractive q × q
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matrix and if z ∈ D, then the matrices zd̃
[n]
n (z)

√
Ln+1

+
K
√

Rn+1 + bn(z) and
z
√

Ln+1K
√

Rn+1
+
b̃
[n]
n (z) + dn(z) are nonsingular, the equality(

−zc̃[n]
n (z)

√
Ln+1

+
K
√

Rn+1+an(z)
)(

zd̃[n]
n (z)

√
Ln+1

+
K
√

Rn+1+bn(z)
)−1

=
(
z
√

Ln+1K
√

Rn+1
+
b̃[n]
n (z)+dn(z)

)−1(
−z

√
Ln+1K

√
Rn+1

+
ã[n]

n (z)+cn(z)
)

is satisfied, and

Re
((
−zc̃[n]

n (z)
√

Ln+1
+
K
√

Rn+1+an(z)
)(

zd̃[n]
n (z)

√
Ln+1

+
K
√

Rn+1+bn(z)
)−1

)
is a nonnegative Hermitian q × q matrix, where the matrices Ln+1 and Rn+1 are
defined by (1.6) and (1.8). Moreover, in the case n ≥ 1, if an, bn, cn, and dn are
further matrix polynomials which can be represented, for each z ∈ C, via

an(z) = Γ0 + zen−1,q(z)S∗
n−1Vn, bn(z) = Iq − zen−1,q(z)Vn (3.1)

and

cn(z) = WnS∗
n−1zεn−1,q(z) + Γ0, dn(z) = −Wnzεn−1,q(z) + Iq (3.2)

with some Vn ∈ Ỹn and Wn ∈ Z̃n, then the identity(
−zc̃[n]

n (z)
√

Ln+1
+
K
√

Rn+1+an(z)
)(

zd̃[n]
n (z)

√
Ln+1

+
K
√

Rn+1+bn(z)
)−1

=
(
−zc̃[n]

n (z)
√

Ln+1
+
K
√

Rn+1+an(z)
)(

zd̃[n]
n (z)

√
Ln+1

+
K
√

Rn+1+bn(z)
)−1

is fulfilled for each z ∈ D.

Proof. The assertion is an immediate consequence of Corollary 2.7. �
Now we are able to prove a result which includes the statement of part (a)

of Theorem 1.1.

Theorem 3.2. Let n ∈ N0 and let (Γj)n
j=0 be a q × q Carathéodory sequence. If

n ≥ 1, then let Vn ∈ Ỹn and Wn ∈ Z̃n. Let the matrix polynomials an, bn, cn, and
dn be given by (1.15), (1.16), (1.17), and (1.18). Further, let the matrices Ln+1

and Rn+1 be defined by (1.6) and (1.8). If S ∈ Sq×q(D), then

det
(
zd̃[n]

n (z)
√

Ln+1
+

S(z)
√

Rn+1 + bn(z)
)
�= 0 (3.3)

and
det

(
z
√

Ln+1S(z)
√

Rn+1
+

b̃[n]
n (z) + dn(z)

)
�= 0 (3.4)

for each z ∈ D and the function Ω : D → Cq×q given by

Ω(z) :=
(
−zc̃[n]

n (z)F (z) + an(z)
)(

zd̃[n]
n (z)F (z) + bn(z)

)−1

(3.5)

belongs to Cq[D, (Γj)n
j=0] and satisfies, for each z ∈ D, the representation

Ω(z) =
(
zG(z)b̃[n]

n (z) + dn(z)
)−1 (

−zG(z)ã[n]
n (z) + cn(z)

)
, (3.6)
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where
F :=

√
Ln+1

+
S
√

Rn+1 and G :=
√

Ln+1S
√

Rn+1
+

. (3.7)

Moreover, in the case n ≥ 1, if S ∈ Sq×q(D) and if an, bn, cn, and dn are further
matrix polynomials which can be represented, for each z ∈ C, via (3.1) and (3.2)
with some Vn ∈ Ỹn and Wn ∈ Z̃n, then

Ω(z) =
(
−zc̃[n]

n (z)F (z) + an(z)
)(

zd̃[n]
n (z)F (z) + bn(z)

)−1

(3.8)

for each z ∈ C, where F is defined as in (3.7).

Proof. Let S ∈ Sq×q(D) and let z0 ∈ D. Then K := S(z0) is a contractive q × q
matrix. Consequently, from Lemma 3.1 we get that (3.3), (3.4), (3.6), and (3.8)
hold for z = z0 and that

Re Ω(z0) ∈ C
q×q
≥ .

Therefore, since z0 is arbitrarily chosen in D, we get that (3.3), (3.4), (3.6), and
(3.8) hold for each z ∈ D and that via (3.5) a q × q Carathéodory function Ω is
given. It remains to prove that Ω fulfills the condition (1.3) for each j ∈ N0,n. In
view of Wn ∈ Z̃n, (3.3), and (3.7), we obtain that Υn : D → Cq×q defined by

Υn(z) := −2 zn+1
(
dn(z)

)−1
Ln+1F (z)

(
zd̃[n]

n (z)F (z) + bn(z)
)−1

(3.9)

is a well-defined matrix-valued function which is holomorphic in D. Because of
Vn ∈ Ỹn, Wn ∈ Z̃n, and Theorem 1.3 the central q× q Carathéodory function Ωc,n

corresponding to (Γj)n
j=0 admits, for each z ∈ D, the representations

Ωc,n(z) = an(z)
(
bn(z)

)−1 and Ωc,n(z) =
(
dn(z)

)−1
cn(z).

In particular, dnan = cnbn. Thus using (3.5) and part (b) of Proposition 2.4 we
get, for each z ∈ D, the identity

Ω(z) − Ωc,n(z)

=
(
dn(z)

)−1
(
−zdn(z)c̃[n]

n (z)F (z)+dn(z)an(z)−zcn(z)d̃ [n]
n (z)F (z)−cn(z)bn(z)

)
·

·
(
zd̃ [n]

n (z)F (z) + bn(z)
)−1

=
(
dn(z)

)−1(−2 zn+1Ln+1F (z)
)(

zd̃ [n]
n (z)F (z)+bn(z)

)−1

= Υn(z).

Hence, because each entry of the matrix-valued function Υn forms a complex-
valued function which is holomorphic in D and has a zero at least of order n + 1
at the point 0 (see (3.9) and note dn(0) = Iq and bn(0) = Iq), there is a sequence
(�j)∞j=n+1 of complex q × q matrices such that

Ω(z) − Ωc,n(z) =
∞∑

j=n+1

�jz
j
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for each z ∈ D. Consequently, since Ωc,n belongs to Cq[D, (Γj)n
j=0] and we already

know that Ω is a q×q Carathéodory function, the matrix-valued function Ω belongs
to Cq[D, (Γj)n

j=0] as well. �

It should be mentioned that if S ∈ Sq×q(D), then the matrix-valued func-
tions F and G defined by (3.7) do not belong to Sq×q(D) in general. This will be
emphasized by the following simple example.

Example 3.3. By setting

Γ0 :=
(

1 0
0 4

)
and S :=

(
0 1
1 0

)
,

then (Γj)0j=0 is a 2×2 Carathéodory sequence for which L1 = R1 = Γ0 and S is a

contractive 2×2 matrix. Moreover,
√

L1S
√

R1
+ =

(√
L1

+
S
√

R1

)∗ and because of

I2 −
(√

L1

+
S
√

R1

)∗√
L1

+
S
√

R1 =
(

3
4 0
0 −3

)
the complex 2 × 2 matrices

√
L1S

√
R1

+ and
√

L1
+
S
√

R1 are not contractive.

Now we are going to prove an inverse statement to Theorem 3.2, i.e., we will
show that any solution Ω ∈ Cq[D, (Γj)n

j=0] can be represented via (3.5) and (3.6)
with some S ∈ Sq×q(D), where F and G are defined as in (3.7).

Remark 3.4. Let A and X be complex p× q matrices such that the following three
conditions are satisfied:

(i) R(A) ⊆ R(X).
(ii) R(A∗) ⊆ R(X∗).
(iii) det(I + X+A) �= 0 or det(I + AX+) �= 0.
Then, in view of [DFK, Lemma 1.1.8, Theorem 1.1.1, and Corollary 1.1.2], it is
readily checked that det(I + X+A) �= 0, det(I + AX+) �= 0, and

X(I + X+A)−1 = (I + AX+)−1X.

Remark 3.5. Let E ∈ C
(p+q)×(p+q)
≥ with block partition

E =
(

A B
C D

)
,

where A is a p × p block. Then one can easily see that ‖B‖2 ≤ ‖A‖ · ‖D‖ holds.

Lemma 3.6. Let Ω ∈ Cq(D) and let

Ω(z) =
∞∑

k=0

Γkzk, z ∈ D, (3.10)

be the Taylor series representation of Ω. For each nonnegative integer n, let Ωc,n be
the central q×q Carathéodory function corresponding to (Γj)n

j=0. For each compact
subset K of D, the sequence (Ωc,n)∞n=0 converges uniformly on K to Ω.



Matricial Carathéodory Problem 267

Proof. For each n ∈ N, let
Ωc,n(z) =

∞∑
k=0

Γ(n)
k zk, z ∈ D,

be the Taylor series representation of Ωc,n. Since Ω belongs to Cq(D), the sequence
(Γk)∞k=0 is a q×q Carathéodory sequence, i.e., for each n ∈ N0 the matrix Tn given
by (1.1) and (1.2) is nonnegative Hermitian. Hence the block matrix(

Re Γ0
1
2Γ∗

k
1
2Γk Re Γ0

)
is nonnegative Hermitian for each k ∈ N. Consequently, Remark 3.5 yields that

‖Γk‖ ≤ ‖2 ReΓ0‖ = ‖Γ0 + Γ∗
0‖ ≤ 2 ‖Γ0‖

holds for each k ∈ N. Analogously, for each n ∈ N and each k ∈ N, we get

‖Γ(n)
k ‖ ≤ 2 ‖Γ(n)

0 ‖ = 2 ‖Γ0‖.
Thus, for each n ∈ N0 and each z ∈ D, we obtain

‖Ωc,n(z) − Ω(z)‖ ≤
∞∑

k=n+1

‖Γ(n)
k − Γk‖ · |z|k ≤ 4 ‖Γ0‖

∞∑
k=n+1

|z|k.

The assertion immediately follows. �
Theorem 3.7. Let n ∈ N0 and let (Γj)n

j=0 be a q × q Carathéodory sequence. If
n ≥ 1, then let Vn ∈ Ỹn and Wn ∈ Z̃n. Let the matrix polynomials an, bn, cn, and
dn be given by (1.15), (1.16), (1.17), and (1.18). Further, let the matrices Ln+1

and Rn+1 be defined by (1.6) and (1.8). Let Ω ∈ Cq[D, (Γj)n
j=0]. Then there is an

S ∈ Sq×q(D) such that the conditions (3.3) and (3.4) are fulfilled for each z ∈ D

and that Ω admits, for each z ∈ D, the representations

Ω(z) =
(
−zc̃[n]

n (z)F (z) + an(z)
)(

zd̃[n]
n (z)F (z) + bn(z)

)−1

(3.11)

and
Ω(z) =

(
zG(z)b̃[n]

n (z) + dn(z)
)−1(

−zG(z)ã[n]
n (z) + cn(z)

)
,

where F :=
√

Ln+1
+
S
√

Rn+1 and G :=
√

Ln+1S
√

Rn+1
+

as in (3.7).

Proof. In view of Ω ∈ Cq[D, (Γj)n
j=0], let (Γk)∞k=n+1 be the sequence of complex

q×q matrices such that (3.10) is satisfied. Since Ω is a q×q Carathéodory function,
for all k ∈ N0, the sequence (Γj)k

j=0 is a q × q Carathéodory sequence. For each
k ∈ N0, let Ωc,k be the central q × q Carathéodory function corresponding to
(Γj)k

j=0. Application of Lemma 3.6 provides, for each z ∈ D, the relation
lim

k→∞
Ωc,k(z) = Ω(z). (3.12)

Since Vn ∈ Ỹn, the function det bn vanishes nowhere in D. Theorem 1.3 yields that
Ωc,n admits, for each z ∈ D, the representation Ωc,n(z) = an(z)

(
bn(z)

)−1. For each
j ∈ N0, let the q × q matrix polynomials an+j+1, bn+j+1, cn+j+1, and dn+j+1 be
defined by (2.6), (2.7), (2.8), and (2.9), where fn+j+1 and gn+j+1 are the matrices
given by (2.2). Since the function det bn vanishes nowhere in D, Proposition 2.6
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implies that, for each j ∈ N0, the function det bn+j+1 vanishes nowhere in D as
well. We are going to prove that, for each k ∈ N0 and each j ∈ N0, there is a q × q
Schur function Sjk defined on D such that

det
(
zd̃

[n+j]
n+j (z)

√
Ln+j+1

+
Sjk(z)

√
Rn+j+1 + bn+j(z)

)
�= 0 (3.13)

and
Ωc,n+j+k(z)=

(
−zc̃

[n+j]
n+j (z)Fjk(z)+an+j(z)

)(
zd̃

[n+j]
n+j (z)Fjk(z)+bn+j(z)

)−1

(3.14)

hold for each z ∈ D, where Fjk :=
√

Ln+j+1
+
Sjk

√
Rn+j+1. If k=0, we choose the

constant q × q Schur function Sj0 (defined on D) with value 0q×q for all j ∈ N0.
For each z ∈ D, then (3.13) holds and, moreover, Theorem 1.3 and Proposition 2.6
yield that (3.14) holds as well. Now we consider the case k = 1. Let j ∈ N0. From
Remark 2.1 we see that Kn+j+1 :=

√
Ln+j+1

+ (
1
2Γn+j+1 − Mn+j+1

)√
Rn+j+1

+

is a contractive matrix and that√
Ln+j+1

+
Kn+j+1

√
Rn+j+1 = L+

n+j+1

(
1
2Γn+j+1 − Mn+j+1

)
= fn+j+1, (3.15)√

Ln+j+1Kn+j+1

√
Rn+j+1

+
=

(
1
2Γn+j+1 − Mn+j+1

)
R+

n+j+1 = gn+j+1. (3.16)
Thus the constant function Sj1 (defined on D) with value −Kn+j+1 is a q×q Schur
function and from (3.15), (2.6), (2.7), and Proposition 2.6 we obtain

det
(
zd̃

[n+j]
n+j (z)

√
Ln+j+1

+
Sj1(z)

√
Rn+j+1 + bn+j(z)

)
= det

(
−zd̃

[n+j]
n+j (z)fn+j+1 + bn+j(z)

)
= det bn+j+1(z) �= 0

and, by setting Fj1 :=
√

Ln+j+1
+
Sj1

√
Rn+j+1, moreover

Ωc,n+j+1(z) = an+j+1(z)
(
bn+j+1(z)

)−1

=
(
zc̃

[n+j]
n+j (z)fn+j+1 + an+j(z)

)(
−zd̃

[n+j]
n+j (z)fn+j+1 + bn+j(z)

)−1

=
(
−zc̃

[n+j]
n+j (z)Fj1(z) + an+j(z)

)(
zd̃

[n+j]
n+j (z)Fj1(z) + bn+j(z)

)−1

for every choice of z in D. Hence there exists a κ ∈ N such that, for each k ∈ N0,κ,
there is a sequence (S�k)∞�=0 from Sq×q(D) such that

det
(
zd̃

[n+�]
n+� (z)

√
Ln+�+1

+
S�k(z)

√
Rn+�+1 + bn+�(z)

)
�= 0 (3.17)

and
Ωc,n+�+k(z)=

(
−zc̃

[n+�]
n+� (z)F�k(z)+an+�(z)

)(
zd̃

[n+�]
n+� (z)F�k(z)+bn+�(z)

)−1

(3.18)

hold for all � ∈ N0, and z ∈ D, where F�k :=
√

Ln+�+1
+

S�k

√
Rn+�+1. Let j ∈ N0.

The matrix-valued function

Σj,κ+1 :=
√

Ln+j+2

√
Ln+j+2

+
Sj+1,κ (3.19)

obviously belongs to Sq×q(D). The matrix-valued function Θj,κ+1 : D → Cq×q,
Φj,κ+1 : D → Cq×q, and Ψj,κ+1 : D → Cq×q defined by

Θj,κ+1(z) :=
√

Ln+j+1

√
Ln+j+2

+
Σj,κ+1(z)

√
Rn+j+2

√
Rn+j+1

+
, (3.20)
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Φj,κ+1(z) := Kn+j+1 − zΘj,κ+1(z), (3.21)

and
Ψj,κ+1(z) := I − zK∗

n+j+1Θj,κ+1(z) (3.22)

are holomorphic in D. Because of detΨj,κ+1(0) = det Iq �= 0 there is a discrete
subset A of D such that

detΨj,κ+1(z) �= 0 (3.23)

holds for each z ∈ D \ A. Hence Šj,κ+1 := Φj,κ+1Ψ−1
j,κ+1 is a well-defined matrix-

valued function which is meromorphic in D. For each z ∈ D \ A we have(
Ψj,κ+1(z)

)∗Ψj,κ+1(z) −
(
Φj,κ+1(z)

)∗Φj,κ+1(z)

= I−K∗
n+j+1Kn+j+1−|z|2

(
Θj,κ+1(z)

)∗(I−Kn+j+1K
∗
n+j+1)Θj,κ+1(z)

= I−K∗
n+j+1Kn+j+1−|z|2

√
Rn+j+1

+√
Rn+j+2

(
Σj,κ+1(z)

)∗√
Ln+j+2

+√
Ln+j+1 ·

·
(
I−Kn+j+1K

∗
n+j+1

)√
Ln+j+1

√
Ln+j+2

+
Σj,κ+1(z)

√
Rn+j+2

√
Rn+j+1

+
. (3.24)

From Remark 2.2 we obtain√
Ln+j+2

+√
Ln+j+1

(
I − Kn+j+1K

∗
n+j+1

)√
Ln+j+1

√
Ln+j+2

+

=
√

Ln+j+2
+
Ln+j+2

√
Ln+j+2

+
=

√
Ln+j+2

√
Ln+j+2

+
.

Thus, in view of (3.19), for each z ∈ D \ A it follows√
Rn+j+1

+√
Rn+j+2

(
Σj,κ+1(z)

)∗√
Ln+j+2

+√
Ln+j+1

(
I − Kn+j+1K

∗
n+j+1

)
·

·
√

Ln+j+1

√
Ln+j+2

+
Σj,κ+1(z)

√
Rn+j+2

√
Rn+j+1

+

=
√

Rn+j+1
+√

Rn+j+2

(
Σj,κ+1(z)

)∗√
Ln+j+2

√
Ln+j+2

+
Σj,κ+1(z)

√
Rn+j+2

√
Rn+j+1

+

=
√

Rn+j+1
+√

Rn+j+2

(
Σj,κ+1(z)

)∗Σj,κ+1(z)
√

Rn+j+2

√
Rn+j+1

+
. (3.25)

From Remark 2.1 and Remark 2.2 we can conclude

I − K∗
n+j+1Kn+j+1

= I −
√

Rn+j+1
+√

Rn+j+1

+
√

Rn+j+1
+√

Rn+j+1(I − K∗
n+j+1Kn+j+1)

√
Rn+j+1

√
Rn+j+1

+

= I −
√

Rn+j+1
+√

Rn+j+1 +
√

Rn+j+1
+
Rn+j+2

√
Rn+j+1

+
. (3.26)

Then using (3.24), (3.25), and (3.26), for each z ∈ D \ A, we get(
Ψj,κ+1(z)

)∗
Ψj,κ+1(z) −

(
Φj,κ+1(z)

)∗
Φj,κ+1(z)

= I −
√

Rn+j+1
+√

Rn+j+1

+
√

Rn+j+1
+√

Rn+j+2

(
I−|z|2

(
Σj,κ+1(z)

)∗ Σj,κ+1(z)
)√

Rn+j+2

√
Rn+j+1

+
.



270 B. Fritzsche, B. Kirstein and A. Lasarow

For every choice of z in D \ A, the right-hand side of this equation is nonnegative
Hermitian. Consequently, in view of the identity

I −
(
Šj,κ+1(z)

)∗
Šj,κ+1(z)

=
(
Ψj,κ+1(z)

)−∗((Ψj,κ+1(z)
)∗Ψj,κ+1(z) −

(
Φj,κ+1(z)

)∗Φj,κ+1(z)
)(

Ψj,κ+1(z)
)−1

for all z ∈ D\A, we see that Šj,κ+1 is a meromorphic matrix-valued function which
is both holomorphic and contractive in D \ A. Since A is a discrete subset of D,
because of Riemann’s theorem on removable singularities of bounded holomorphic
functions there is a q × q Schur function Sj,κ+1 (defined on D) such that Šj,κ+1 is
the restriction of Sj,κ+1 onto D \ A. For each z ∈ D \ A, from (3.23), (3.22), and
(3.20) we have(

Ψj,κ+1(z)
)−1√

Rn+j+1

=
(
I − zK∗

n+j+1Θj,κ+1(z)
√

Rn+j+1

√
Rn+j+1

+
)−1 √

Rn+j+1.

For each z ∈ D \ A, because of (2.1), (3.20), (3.22), and (3.23), from Remark 3.4
it follows det

(
I − z

√
Rn+j+1

+
K∗

n+j+1Θj,k+1(z)
√

Rn+j+1

)
�= 0 and(

Ψj,κ+1(z)
)−1√

Rn+j+1

=
√

Rn+j+1

(
I − z

√
Rn+j+1

+
K∗

n+j+1Θj,κ+1(z)
√

Rn+j+1

)−1

. (3.27)

For each z ∈ D \ A, from (3.20), Remark 2.2, (3.16), and (3.19) we get

I − z
√

Rn+j+1
+
K∗

n+j+1Θj,κ+1(z)
√

Rn+j+1

= I − z
√

Rn+j+1
+
K∗

n+j+1

√
Ln+j+1

√
Ln+j+2

+ ·

·Σj,κ+1(z)
√

Rn+j+2

√
Rn+j+1

+√
Rn+j+1

= I − z
√

Rn+j+1
+
K∗

n+j+1

√
Ln+j+1

√
Ln+j+2

+
Σj,κ+1(z)

√
Rn+j+2

= I − zg∗n+j+1

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2. (3.28)

In particular, for each z ∈ D \ A, the matrix on the right-hand side of (3.28) is
nonsingular. Thus, for each z ∈ D \ A, from (3.27) and (3.28) we get(

Ψj,κ+1(z)
)−1√

Rn+j+1

=
√

Rn+j+1

(
I − zg∗n+j+1

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2

)−1

. (3.29)

Using (3.21), (3.20), (3.19), (3.15), and Remark 2.2, for each z ∈ D \A, we obtain√
Ln+j+1

+
Φj,κ+1(z)

√
Rn+j+1 =

√
Ln+j+1

+(
Kn+j+1 − zΘj,κ+1(z)

)√
Rn+j+1

=
√

Ln+j+1
+
Kn+j+1

√
Rn+j+1

−z
√

Ln+j+1
+√

Ln+j+1

√
Ln+j+2

+
Σj,κ+1(z)

√
Rn+j+2

√
Rn+j+1

+√
Rn+j+1

= fn+j+1 − z
√

Ln+j+2
+

Sj+1,κ(z)
√

Rn+j+2 (3.30)
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and, moreover, by application of (3.29), (3.30), (2.7), and (2.9) then

−zd̃
[n+j]
n+j (z)

√
Ln+j+1

+
Sj,κ+1(z)

√
Rn+j+1 + bn+j(z)

= −zd̃
[n+j]
n+j (z)

√
Ln+j+1

+
Φj,κ+1(z)

(
Ψj,κ+1(z)

)−1√
Rn+j+1 + bn+j(z)

= −zd̃
[n+j]
n+j (z)

√
Ln+j+1

+
Φj,κ+1(z)

√
Rn+j+1 ·

·
(
I − zg∗n+j+1

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2

)−1

+ bn+j(z)

=
(
bn+j(z)

(
I − zg∗n+j+1

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2

)
− zd̃

[n+j]
n+j (z)

(
fn+j+1

−z
√

Ln+j+2
+
Sj+1,κ(z)

√
Rn+j+2

))(
I−zg∗n+j+1

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2

)−1

=
(
bn+j(z) − zd̃

[n+j]
n+j (z)fn+j+1 + z

(
zd̃

[n+j]
n+j (z) − bn+j(z)g∗n+j+1

)√
Ln+j+2

+ ·

·Sj+1,κ(z)
√

Rn+j+2

)(
I − zg∗n+j+1

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2

)−1

=
(
bn+j+1(z) + zd̃

[n+j+1]
n+j+1 (z)

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2

)
·

·
(
I − zg∗n+j+1

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2

)−1

. (3.31)

Taking into account (3.29), (3.30), (2.6), and (2.8), for each z ∈ D \ A, we get

zc̃
[n+j]
n+j (z)

√
Ln+j+1

+
Sj,κ+1(z)

√
Rn+j+1 + an+j(z)

= zc̃
[n+j]
n+j (z)

√
Ln+j+1

+
Φj,κ+1(z)

(
Ψj,κ+1(z)

)−1√
Rn+j+1 + an+j(z)

= zc̃
[n+j]
n+j (z)

(
fn+j+1 − z

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2

)
·

·
(
I − zg∗n+j+1

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2

)−1

+ an+j(z)

=
(
zc̃

[n+j]
n+j (z)

(
fn+j+1−z

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2

)
+ an+j(z)

(
I−zg∗n+j+1·

·
√

Ln+j+2
+
Sj+1,κ(z)

√
Rn+j+2

))(
I−zg∗n+j+1

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2

)−1

=
(
−z

(
zc̃

[n+j]
n+j (z) + an+j(z)g∗n+j+1

)√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2 + an+j(z)

+zc̃
[n+j]
n+j (z)fn+j+1

)(
I − zg∗n+j+1

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2

)−1

=
(
−zc̃

[n+j+1]
n+j+1 (z)

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2 + an+j+1(z)

)
·

·
(
I − zg∗n+j+1

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2

)−1

. (3.32)

Because of (3.17), for each z ∈ D \ A, the right-hand side of (3.31) is nonsingular.
Hence, for each z ∈ D \ A, the left-hand side of (3.31) is nonsingular as well and,
by setting Fj,κ+1 :=

√
Ln+j+1

+
Sj,κ+1

√
Rn+j+1, from (3.32), (3.31), and (3.18),
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we obtain then(
zc̃

[n+j]
n+j (z)Fj,κ+1(z) + an+j(z)

)(
−zd̃

[n+j]
n+j (z)Fj,κ+1(z) + bn+j(z)

)−1

=
(
−zc̃

[n+j+1]
n+j+1 (z)

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2 + an+j+1(z)

)
·

·
(
zd̃

[n+j+1]
n+j+1 (z)

√
Ln+j+2

+
Sj+1,κ(z)

√
Rn+j+2 + bn+j+1(z)

)−1

= Ωc,n+j+1+κ(z) = Ωc,n+j+κ+1(z). (3.33)

Using Lemma 3.1 (note [FK3, Proposition 4.4, Lemma 4.6]) and a continuity ar-
gument we get that (3.33) holds for each z ∈ D. Thus, for all nonnegative integers
j and k, there is a q × q Schur function Sjk defined on D such that (3.13) and
(3.14) hold for each z ∈ D, where Fjk :=

√
Ln+j+1

+
Sjk

√
Rn+j+1. The matricial

version of Montel’s theorem yields that there are a q × q Schur function S defined
on D and a subsequence (S0km)∞m=0 of (S0k)∞k=0 such that

lim
m→∞S0km(z) = S(z) (3.34)

holds for each z ∈ D. From Theorem 3.2 we get (3.3) and (3.4) for each z ∈ D.
Using (3.12), (3.14), and (3.34) we obtain (3.11) for each z ∈ D. Application of
Theorem 3.2 completes the proof. �

Now we are able to prove Theorem 1.1.

Proof of Theorem 1.1. Use Remark 1.2, Theorem 3.2, and Theorem 3.7. �

4. Resolvent matrices which are constructed recursively

A closer look at the construction of the matrix polynomials an, bn, cn, and dn which
realize via Theorem 3.2 and Theorem 3.7 a parametrization of the solution set of
an arbitrary matricial Carathéodory problem shows that there is some freedom in
building polynomials an, bn, cn, and dn with the required properties. The main
objective of this section is to present a recursive construction of a distinguished
quadrupel [an,bn, cn,dn] of matrix polynomials which satisfy the assumptions of
Theorem 3.2 and Theorem 3.7.

In the present section, if a nonnegative integer n and a q × q Carathéodory
sequence (Γj)n

j=0 are given, then always Lk+1 and Rk+1 stand for the matrices
defined by (1.6) and (1.8) for each k ∈ N0,n. Furthermore, let a0, b0, c0, and d0

be the constant matrix-valued functions defined, for each z ∈ C, by

a0(z) := Γ0, b0(z) := Iq, c0(z) := Γ0, d0(z) := Iq (4.1)

and for all m ∈ N0,n−1 let the matrix polynomials am+1, bm+1, cm+1, and dm+1

be recursively defined, for each z ∈ C, by

am+1(z) := am(z) + zc̃[m]
m (z)fm+1, bm+1(z) := bm(z) − zd̃[m]

m (z)fm+1, (4.2)

cm+1(z) := cm(z) + gm+1zã[m]
m (z), dm+1(z) := dm(z) − gm+1zb̃[m]

m (z), (4.3)
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where the matrices fm+1 and gm+1 are given as in (2.2) with respect to (Γj)m+1
j=0 .

In the following, we point out some results on the special structure of these matrix
polynomials. Note that from [FK3, Example 4.3] (see also Example 4.5 below) one
can see that the matrix polynomials an, bn, cn, and dn do not coincide, in general,
with the matrix polynomials an, bn, cn, and dn, respectively, which are defined by
(1.9), (1.10), (1.11), and (1.12). Nevertheless, they comply with the requirements
of Theorem 3.2 and Theorem 3.7.

Theorem 4.1. Let n ∈ N0 and let (Γj)n
j=0 be a q× q Carathéodory sequence. Then:

(a) For each S ∈ Sq×q(D) and each z ∈ D, the inequalities

det
(
zd̃[n]

n (z)
√

Ln+1
+
S(z)

√
Rn+1 + bn(z)

)
�= 0

and
det

(
z
√

Ln+1S(z)
√

Rn+1
+
b̃[n]

n (z) + dn(z)
)
�= 0

are satisfied. Moreover, for each S ∈ Sq×q(D), the matrix-valued function
Ω : D → Cq×q defined by

Ω(z) :=
(
−zc̃[n]

n (z)F (z)+an(z)
)(

zd̃[n]
n (z)F (z)+bn(z)

)−1

belongs to Cq[D, (Γj)n
j=0] and admits, for each z ∈ D, the representations

Ω(z)=
(
zG(z)b̃[n]

n (z)+dn(z)
)−1(

−zG(z)ã[n]
n (z)+cn(z)

)
(4.4)

and

Ω(z)=
(
−zc̃[n]

n (z)F (z)+an(z)
)(

zd̃[n]
n (z)F (z)+bn(z)

)−1

,

where F :=
√

Ln+1
+
S
√

Rn+1 as well as G :=
√

Ln+1S
√

Rn+1
+

and where
an, bn, cn, and dn are defined by (1.9), (1.10), (1.11), and (1.12).

(b) For each Ω ∈ Cq[D, (Γj)n
j=0], there is an S ∈ Sq×q(D) such that for each z ∈ D

the representations (4.4) and

Ω(z)=
(
−zc̃[n]

n (z)F (z)+an(z)
)(

zd̃[n]
n (z)F (z)+bn(z)

)−1

of Ω hold, where F :=
√

Ln+1
+
S
√

Rn+1 and G :=
√

Ln+1S
√

Rn+1
+
.

Proof. In the case n = 0 the assertion follows immediately from Theorem 3.2 and
Theorem 3.7. Now suppose n ≥ 1. According to [FK3, Proposition 4.4, Remark 4.5,
and Lemma 4.6] there are some matrices Vn ∈ Ỹn and Wn ∈ Z̃n such that the
q × q matrix polynomials an, bn, cn, and dn can be represented, for each z ∈ C,
via (3.1) and (3.2). Application of Remark 1.2, Theorem 3.2, and Theorem 3.7
completes the proof for that case. �

Remark 4.2. Let n ∈ N0 and let (Γj)n
j=0 be a q × q Carathéodory sequence. By

induction, one can see that an(0) = Γ0, bn(0) = Iq , cn(0) = Γ0, and dn(0) = Iq.
In particular, the q × q matrix polynomials b̃[n]

n and d̃[n]
n are both of degree n
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with leading coefficient matrix Iq and the q × q matrix polynomials ã[n]
n and c̃[n]

n

are either both the constant function with value 0q×q or both of degree n with
leading coefficient matrix Γ∗

0. Moreover, ã[n]
n (0)=Γ∗

0, b̃[n]
n (0)=Iq, c̃[n]

n (0)=Γ∗
0, and

d̃[n]
n (0)=Iq in the case of n = 0 and if n ≥ 1 then in view of the recursions it is not

hard to see that ã[n]
n (0)=f∗

nΓ0, b̃[n]
n (0)=−f∗

n, c̃[n]
n (0)=Γ0g

∗
n, and d̃[n]

n (0)=−g∗n.

Lemma 4.3. Let C ∈ C
q×q be such that Re C is a nonnegative Hermitian matrix.

(a) If A is a complex p × q matrix such that AC = 0p×q, then A(Re C) = 0p×q.
(b) If B is a complex q × p matrix such that CB = 0q×p, then (Re C)B = 0q×p.

Proof. Let A ∈ Cp×q be such that AC = 0p×q. Then(
A
√

Re C
)(

A
√

ReC
)∗

=
1
2
A(C + C∗)A∗ =

1
2

(
ACA∗ + A(AC)∗

)
= 0p×p

and consequently

A(Re C) =
(
A
√

Re C
)√

Re C = 0p×q

√
Re C = 0p×q.

Part (a) is proved. Part (b) follows easily from part (a). �

Proposition 4.4. Let n ∈ N and let (Γj)n
j=0 be a q× q Carathéodory sequence. Fur-

ther, let Ωc,n and Ωc,n−1 be the central q× q Carathéodory function corresponding
to (Γj)n

j=0 and (Γj)n−1
j=0 , respectively. Then the following statements are equivalent:

(i) Ωc,n = Ωc,n−1.
(ii) an = an−1, bn = bn−1, cn = cn−1, and dn = dn−1.
(iii) At least one of the matrix polynomials an, bn, cn, and dn is of degree not

greater than n−1.

Proof. (i) ⇒ (ii): Because of (i) we have 1
2Γn = Mn. From (2.2) we obtain then

fn = 0q×q and gn = 0q×q. Using (4.2) and (4.3) we get (ii).
(ii) ⇒ (iii): Since the relations (4.1), (4.2), and (4.3) yield that an−1, bn−1, cn−1,
and dn−1 are matrix polynomials of degree not greater than n−1, this implication
follows obviously.
(iii) ⇒ (i): First suppose that the matrix polynomial bn is of degree not greater
than n − 1. From Remark 4.2 we can conclude fn = 0q×q so that (2.3) provides

1
2
Γn − Mn = Lnfn = 0q×q.

Thus (i) holds. Analogously, one can check that if dn is a matrix polynomial of
degree not greater than n−1, then (i) follows. Now we suppose that an is a matrix
polynomial of degree not greater than n−1. Then Remark 4.2 yields f∗

nΓ0 = 0q×q.
Hence Lemma 4.3 provides us

L1fn = (Re Γ0)fn =
(
f∗

n(Re Γ0)
)∗ = 0q×q.

Taking into account (2.3) and Remark 2.2 we get
1
2
Γn − Mn = Lnfn = L1fn = 0q×q.
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This implies (i). If cn is a matrix polynomial of degree not greater than n − 1,
then one can similarly verify that (i) holds. �

In view of (3.1) and (3.2) (cf. the proof of Theorem 4.1), the matrix polyno-
mials an, bn, cn, and dn are special choices of the matrix polynomials an, bn, cn,
and dn given by (1.15), (1.16), (1.17), and (1.18). The following example emphasi-
zes that the statement of Proposition 4.4 depends on these special choices. In fact,
an, bn, cn, and dn can not be replaced via an, bn, cn, and dn, respectively, defined
by (1.9), (1.10), (1.11), and (1.12) (note Remark 1.2).

Example 4.5. By setting Γ0 := 1
2Iq , Γ1 := Iq, and Γ2 := Iq, then (Γj)2j=0 is a

q × q Carathéodory sequence for which T +
0 Y1 = Iq, Z1T

+
0 = Iq, L2 = 0, R2 = 0,

T +
1 Y2 = 1

2

(
Iq , Iq

)∗
, and Z2T

+
1 = 1

2

(
Iq, Iq

)
. Hence, for each z ∈ D, it follows

Ωc,2(z) =
1 + z

2(1 − z)
Iq = Ωc,1(z),

but

a2(z) =
1
2
Iq +

3
4
zIq +

1
4
z2Iq, b2(z) = Iq −

1
2
zIq −

1
2
z2Iq,

c2(z) = a2(z), and d2(z) = b2(z) if a2, b2, c2, and d2 are defined as in (1.9), (1.10),
(1.11), and (1.12) with n = 2. In particular, the matrix polynomials a2, b2, c2, and
d2 are of degree 2.

A complex p× p matrix J is said to be p× p signature matrix if J∗ = J and
J2 = I hold. In particular, the matrices

jqq :=
(

Iq 0
0 −Iq

)
and Jq :=

(
0 −Iq

−Iq 0

)
are 2q×2q signature matrices. Now we are going to show that the resolvent matrices
formed by the matrix polynomials an, bn, cn, and dn fulfill similar formulas with
respect to these 2q×2q signature matrices jqq and Jq as the Arov-Krĕın’s resolvent
matrices in the nondegenerate case (cf., e.g., [FK3, Section 5]).

Proposition 4.6. Let n ∈ N and let (Γj)n
j=0 be a q × q Carathéodory sequence. For

each m ∈ N0,n, let Φ•
m : C → C2q×2q and Ψ•

m : C → C2q×2q be defined by

Φ•
m(z) :=

(
−zc̃[m]

m (z) am(z)
zd̃[m]

m (z) bm(z)

)(√
Lm+1

+
0

0
√

Rm+1
+

)
(4.5)

and

Ψ•
m(z) :=

(√
Rm+1

+
0

0
√

Lm+1
+

)(
−zã[m]

m (z) zb̃[m]
m (z)

cm(z) dm(z)

)
. (4.6)

Further, for each m ∈ N0,n−1, let Km+1 :=
√

Lm+1
+(

1
2Γm+1 − Mm+1

)√
Rm+1

+
.

Then the following statements hold for each m ∈ N0,n−1:
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(a) For each z ∈ C, the identities

Φ•
m+1(z)=Φ•

m(z)Gm+1(z) and Ψ•
m+1(z)=Hm+1(z)Ψ•

m(z) (4.7)

are satisfied, where

Gm+1(z) :=
(

I −Km+1

−K∗
m+1 I

)(
z
√

Lm+1

√
Lm+2

+
0

0
√

Rm+1

√
Rm+2

+

)

and

Hm+1(z) :=

(
z
√

Rm+2
+√

Rm+1 0
0

√
Lm+2

+√
Lm+1

)(
I −K∗

m+1

−Km+1 I

)
.

(b) Φ•
m+1 = Φ•

0G1G2 · · ·Gm+1 and Ψ•
m+1 = Hm+1Hm · · ·H1Ψ•

0.
(c) For each z ∈ C,

diag
(
Lm+2L

+
m+2,−Rm+2R

+
m+2

)
−

(
Gm+1(z)

)∗
jqq Gm+1(z)

= diag
(
(1 − |z|2)Lm+2L

+
m+2, 0q×q

)
, (4.8)

(
Gm+1(z)

)∗diag
(
Lm+1L

+
m+1,−Rm+1R

+
m+1

)
Gm+1(z)

=
(
Gm+1(z)

)∗
jqq Gm+1(z), (4.9)

diag
(
Rm+2R

+
m+2,−Lm+2L

+
m+2

)
− Hm+1(z) jqq

(
Hm+1(z)

)∗
= diag

(
(1 − |z|2)Rm+2R

+
m+2, 0q×q

)
, (4.10)

and

Hm+1(z) diag
(
Rm+1R

+
m+1,−Lm+1L

+
m+1

) (
Hm+1(z)

)∗
= Hm+1(z) jqq

(
Hm+1(z)

)∗
. (4.11)

Proof. Let m ∈ N0,n−1 and let z ∈ C. From (4.2) and (4.3) we obtain

Φ•
m+1(z) =

(
−zc̃[m]

m (z) am(z)
zd̃[m]

m (z) bm(z)

)(
zIq −fm+1

−zg∗m+1 Iq

)(√
Lm+2

+
0

0
√

Rm+2
+

)
. (4.12)

Since the matrices Lm+1 and Rm+1 are nonnegative Hermitian, the relations√
Lm+1

√
Lm+1

+
=

√
Lm+1

+√
Lm+1 and

√
Rm+1

√
Rm+1

+
=

√
Rm+1

+√
Rm+1
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hold. Because of Remarks 2.1 and 2.2 we have then(
zIq −fm+1

−zg∗m+1 Iq

)(√
Lm+2

+
0

0
√

Rm+2
+

)

=

(
z
√

Lm+2
+ −

√
Lm+1

+
Km+1

√
Rm+1

√
Rm+2

+

−z
√

Rm+1
+
K∗

m+1

√
Lm+1

√
Lm+2

+ √
Rm+2

+

)

=

(
z
√

Lm+1
+√

Lm+1

√
Lm+2

+ −
√

Lm+1
+
Km+1

√
Rm+1

√
Rm+2

+

−z
√

Rm+1
+
K∗

m+1

√
Lm+1

√
Lm+2

+ √
Rm+1

+√
Rm+1

√
Rm+2

+

)

=

(√
Lm+1

+
0

0
√

Rm+1
+

)(
I −Km+1

−K∗
m+1 I

)(
z
√

Lm+1

√
Lm+2

+
0

0
√

Rm+1

√
Rm+2

+

)
.

A combination of this equation with (4.12) supplies the first equality in (4.7). The
second one can be proved analogously. Part (b) follows immediately from part (a).
A straightforward calculation yields(

Gm+1(z)
)∗

jqq Gm+1(z)

=

(
|z|2

√
Lm+2

+√
Lm+1(I−Km+1K

∗
m+1)

√
Lm+1

√
Lm+2

+
0

0
√

Rm+2
+√

Rm+1(K∗
m+1Km+1−I)

√
Rm+1

√
Rm+2

+

)
and (note (2.1))(
Gm+1(z)

)∗diag
(
Lm+1L

+
m+1,−Rm+1R

+
m+1

)
Gm+1(z)

=

(
|z|2

√
Lm+2

+√
Lm+1Lm+1L

+
m+1(I−Km+1K

∗
m+1)

√
Lm+1

√
Lm+2

+
0

0
√

Rm+2
+√

Rm+1(K∗
m+1Km+1−I)Rm+1R

+
m+1

√
Rm+1

√
Rm+2

+

)
.

Hence, it follows (4.9) and from Remark 2.2 we get furthermore(
Gm+1(z)

)∗
jqq Gm+1(z)=

(
|z|2

√
Lm+2

+
Lm+2

√
Lm+2

+
0

0 −
√

Rm+2
+
Rm+2

√
Rm+2

+

)
which implies (4.8). Equations (4.10) and (4.11) can be verified analogously. �
Corollary 4.7. Let n ∈ N0 and let (Γj)n

j=0 be a q × q Carathéodory sequence.
Furthermore, let the 2q × 2q matrix-valued functions Φ•

n and Ψ•
n be defined as in

Proposition 4.6, let

Θn :=
(

Ln+1L
+
n+1 0

0 −Rn+1R
+
n+1

)
−

(
1√
2
Φ•

n

)∗
Jq

(
1√
2
Φ•

n

)
,

and let

Ξn :=
(

Rn+1R
+
n+1 0

0 −Ln+1L
+
n+1

)
−

(
1√
2
Ψ•

n

)
Jq

(
1√
2
Ψ•

n

)∗
.

(a) For each z ∈ D, the matrices Θn(z) and Ξn(z) are nonnegative Hermitian.
(b) For each z ∈ T, the identities Θn(z) = 0 and Ξn(z) = 0 are satisfied.
(c) For each z ∈ C \ (D ∪ T), the complex 2q × 2q matrices −Θn(z) and −Ξn(z)

are both nonnegative Hermitian.
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Proof. For each z ∈ C, a straightforward calculation yields

Θ0(z)=diag
(
(1−|z|2)L1L

+
1 , 0q×q

)
and Ξ0(z)=diag

(
(1−|z|2)R1R

+
1 , 0q×q

)
.

Application of parts (b) and (c) of Proposition 4.6 completes the proof. �
Corollary 4.8. Let n ∈ N0 and let (Γj)n

j=0 be a q× q Carathéodory sequence. Then

Ψ•
n(z)

(
0 Iq

−Iq 0

)
Φ•

n(z) = −2zn+1

(
0 Rn+1R

+
n+1

−Ln+1L
+
n+1 0

)
for each z ∈ C, where the 2q × 2q matrix-valued functions Φ•

n and Ψ•
n are defined

as in Proposition 4.6.

Proof. For each z ∈ T, an application of [DFK, Lemma 1.2.2] and |z|2 = 1 implies

−zn+1

(
Iq 0
0 −Iq

)(
Ψ•

n(z)
)∗ = −zn+1

(
−z

(
ã[n]

n (z)
)∗√

Rn+1
+ (

cn(z)
)∗√

Ln+1
+

−z
(
b̃[n]

n (z)
)∗√

Rn+1
+ −

(
dn(z)

)∗√
Ln+1

+

)

=

(
an(z)

√
Rn+1

+ −zc̃[n]
n (z)

√
Ln+1

+

bn(z)
√

Rn+1
+

zd̃[n]
n (z)

√
Ln+1

+

)

= Φ•
n(z)

(
0 Iq

Iq 0

)
.

Consequently, from(
0 Iq

−Iq 0

)(
Iq 0
0 −Iq

)
= Jq,

(
0 Iq

Iq 0

)−1

=
(

0 Iq

Iq 0

)
,

and part (b) of Corollary 4.7 it follows

Ψ•
n(z)

(
0 Iq

−Iq 0

)
Φ•

n(z) = −zn+1Ψ•
n(z)Jq

(
Ψ•

n(z)
)∗ ( 0 Iq

Iq 0

)
= −2zn+1

(
0 Rn+1R

+
n+1

−Ln+1L
+
n+1 0

)
for each z ∈ T. Since the left-hand side and the right-hand side of this equation
form matrix polynomials, one can conclude the assertion. �

Observe that the formula in Corollary 4.8 is closely related to Proposition 2.4.
In particular, using part (b) of Proposition 2.4 and (2.10) we obtain an alternative
approach to Corollary 4.8. In fact, these considerations yield that the statement
of Corollary 4.8 remains true if one replaces in the definitions of Φ•

n and Ψ•
n

according to Proposition 4.6 the special polynomials an, bn, cn, and dn there by
the polynomials an, bn, cn, and dn defined as in (1.15), (1.16), (1.17), and (1.18)
with some Vn ∈ Yn and Wn ∈ Zn if n ≥ 1. Applying the arguments of the proof
of Corollary 4.8 then in a slightly modified order, one can see that also part (b) of
Corollary 4.7 remains true under these general settings.
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5. The nondegenerate case

In this section, we will deal with the nondegenerate matricial Carathéodory prob-
lem. There can be found several approaches to this problem in the literature (see,
e.g., [AK], [Ko], [BGR], [FK1], and [FKK]). The main goal of the following consi-
derations is to demonstrate that Theorem 1.1 (respectively, Theorem 4.1) quickly
leads us to Arov-Krĕın’s parametrization of the solution set for this case. Before,
we give some general remarks on the nondegenerate case which are expressed in
terms of the q × q matrix polynomials an, bn, cn, and dn defined by (1.15), (1.16),
(1.17), and (1.18).

Let n ∈ N0. A sequence (Γj)n
j=0 of complex q × q matrices is said to be a

nondegenerate q × q Carathéodory sequence if the block Toeplitz matrix Tn given
by (1.1) and (1.2) is positive Hermitian.

Lemma 5.1. Let n ∈ N0, let (Γj)n
j=0 be a q × q Carathéodory sequence, and let the

matrices Lk and Rk be defined as in (1.6) and (1.8) for each k ∈ N1,n+1. Then
the following statements are equivalent:

(i) (Γj)n
j=0 is a nondegenerate q × q Carathéodory sequence.

(ii) For each k ∈ N1,n+1, the matrices Lk and Rk are both positive Hermitian.
(iii) Ln+1 or Rn+1 is nonsingular.

Proof. (i) ⇒ (ii): From (i) and [DFK, Lemma 1.1.9] we obtain that the matrices
Ln+1 and Rn+1 are positive Hermitian. Thus Remark 2.2 yields (ii).
(ii) ⇒ (iii): This implication holds obviously.
(iii) ⇒ (i): Since (Γj)n

j=0 is a q × q Carathéodory sequence, the matrices Ln+1

and Rn+1 are nonnegative Hermitian. Because of (iii) and Remark 2.2, one of the
sequences (Lk)n+1

k=1 and (Rk)n+1
k=1 consists of positive Hermitian matrices. Hence, an

application of [DFK, Lemma 1.1.9] provides us (i). �

Remark 5.2. Let n ∈ N and let (Γj)n
j=0 be a q×q Carathéodory sequence such that

the q × q Carathéodory sequence (Γj)n−1
j=0 is nondegenerate. Then Yn = {T−1

n−1Yn}
and Zn = {ZnT−1

n−1}. Thus the matrix polynomials an, bn, cn, and dn defined by
(1.9), (1.10), (1.11), and (1.12) coincide with the matrix polynomials an, bn, cn,
and dn which admit, for each z ∈ C, the representations (3.1) and (3.2). On the
other hand, from [FK3, Proposition 4.4 and Remark 4.5] we obtain that an, bn,
cn, and dn can be constructed recursively by (4.1), (4.2), and (4.3), where the
sequences (fm+1)n−1

m=0 and (gm+1)n−1
m=0 of complex q×q matrices are given by (2.2).

Remark 5.3. Let n ∈ N and let (Γj)n
j=0 be a q×q Carathéodory sequence. Further,

let the matrix polynomials an, bn, cn, and dn be constructed recursively by (4.1),
(4.2), and (4.3), where the sequences (fm+1)n−1

m=0 and (gm+1)n−1
m=0 of complex q × q

matrices are given by (2.2). If at least one of the matrix polynomials an, bn, cn, and
dn is of degree n with a nonsingular leading coefficient matrix, then an application
of Lemma 5.1, Remark 4.2, and (2.2) implies that the q×q Carathéodory sequence
(Γj)n−1

j=0 is nondegenerate.
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Proposition 5.4. Let n ∈ N0 and let (Γj)n
j=0 be a q × q Carathéodory sequence.

If n ≥ 1, then let Vn ∈ Yn and Wn ∈ Zn. Further, let an, bn, cn, and dn be the
matrix polynomials which are defined by (1.15), (1.16), (1.17), and (1.18). Then
the following statements are equivalent:

(i) (Γj)n
j=0 is a nondegenerate q × q Carathéodory sequence.

(ii) For each z∈T, the matrices an(z), bn(z), cn(z), and dn(z) are all nonsingu-
lar and, moreover, the matrices Re

(
an(z)

(
bn(z)

)−1
)
, Re

((
dn(z)

)−1
cn(z)

)
,

Re
(
bn(z)

(
an(z)

)−1
)
, and Re

((
cn(z)

)−1
dn(z)

)
are all positive Hermitian.

(iii) There is a z ∈ T such that Re
((

an(z)
)∗

bn(z)
)

or Re
(
cn(z)

(
dn(z)

)∗) is a
nonsingular matrix.

Proof. (i) ⇒ (ii): According to Lemma 5.1, (i) implies that the matrices Ln+1 and
Rn+1 are both positive Hermitian. Thus part (a) of Proposition 2.4 yields that,
for each z ∈ T, the matrices Re

((
an(z)

)∗
bn(z)

)
and Re

(
cn(z)

(
dn(z)

)∗) are both

positive Hermitian. Consequently, for each z ∈ T, the matrices
(
an(z)

)∗
bn(z) and

cn(z)
(
dn(z)

)∗ are both nonsingular (see, e.g., [DFK, part (c) of Lemma 1.1.13]).
Therefore we obtain that, for each z ∈ T, the matrices an(z), bn(z), cn(z), and
dn(z) are nonsingular. Moreover, for each z ∈ T, we can conclude

2 Re
(
an(z)

(
bn(z)

)−1
)

=
(
bn(z)

)−∗((
bn(z)

)∗
an(z) +

(
an(z)

)∗
bn(z)

)(
bn(z)

)−1

= 2
(
bn(z)

)−∗ Re
((

an(z)
)∗

bn(z)
)(

bn(z)
)−1 ∈ C

q×q
>

and, analogously, that the matrices Re
((

dn(z)
)−1

cn(z)
)
, Re

(
bn(z)

(
an(z)

)−1
)
,

and Re
((

cn(z)
)−1

dn(z)
)

are positive Hermitian.
(ii) ⇒ (iii): Because of (ii) we obtain

Re
((

an(z)
)∗

bn(z)
)

=
(
bn(z)

)∗ Re
(
an(z)

(
bn(z)

)−1
)

bn(z)

and

Re
(
cn(z)

(
dn(z)

)∗) = dn(z)Re
((

dn(z)
)−1

cn(z)
) (

dn(z)
)∗

for each z ∈ T. In particular, one can see that (ii) implicates (iii).
(iii) ⇒ (i): From part (a) of Proposition 2.4 and (iii) we get that at least one of
the matrices Rn+1 and Ln+1 is nonsingular. Hence Lemma 5.1 provides us (i). �

Now we are going to prove that Theorem 1.1 quickly leads to the Arov-Krĕın’s
parametrization of the solution set for the nondegenerate case.

Let n ∈ N0 and let (Γj)n
j=0 be a sequence of complex q × q matrices with

nonsingular matrix Γ0. Then the matrix Sn defined in (1.1) is nonsingular as well
and there is a unique sequence (Γ#

j )n
j=0 of complex q × q matrices such that the
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block Toeplitz matrix

S#
n :=

⎛⎜⎜⎜⎜⎜⎝
Γ#

0 0 0 . . . 0
Γ#

1 Γ#
0 0 . . . 0

Γ#
2 Γ#

1 Γ#
0

. . .
...

...
...

...
. . . 0

Γ#
n Γ#

n−1 Γ#
n−2 . . . Γ#

0

⎞⎟⎟⎟⎟⎟⎠
coincides with S−1

n . This sequence (Γ#
j )n

j=0 is called the reciprocal q × q sequence
corresponding to (Γj)n

j=0. Setting T #
n := Re S#

n it follows

T #
n = S−1

n TnS−∗
n and T #

n = S−∗
n TnS−1

n . (5.1)

Hence it is obvious that (Γj)n
j=0 is a q × q Carathéodory sequence (respectively, a

nondegenerate q×q Carathéodory sequence) if and only if (Γ#
j )n

j=0 is a q×q Cara-
théodory sequence (respectively, a nondegenerate q × q Carathéodory sequence).

Now we assume that (Γj)n
j=0 is a nondegenerate q×q Carathéodory sequence.

Furthermore, let the q × q matrix polynomials ηn, ζn, η#
n , and ζ#

n be defined by

ηn := en,qT
−1
n

(
Iq

0

)
, ζn :=

(
0, Iq

)
T−1

n εn,q, (5.2)

and

η#
n := en,q(T #

n )−1

(
Iq

0

)
, ζ#

n :=
(
0, Iq

)
(T #

n )−1εn,q, (5.3)

where en,q and εn,q are given as in (1.4) and (1.5). Therewith, let the 2q × 2q
matrix polynomials Φn and Ψn be defined, for each z ∈ C, by

Φn(z) :=

(
−z(ζ̃#

n )[n](z)Γ−1
0

√
Ln+1 η#

n (z)Γ−∗
0

√
Rn+1

zζ̃
[n]
n (z)

√
Ln+1 ηn(z)

√
Rn+1

)
(5.4)

and

Ψn(z) :=

(
−
√

Rn+1Γ−1
0 z(η̃#

n )[n](z)
√

Rn+1zη̃
[n]
n (z)√

Ln+1Γ−∗
0 ζ#

n (z)
√

Ln+1ζn(z)

)
. (5.5)

We check now that the matrix polynomials Φn and Ψn introduced in (5.4) and
(5.5) coincide with the matrix polynomials Φ•

n and Ψ•
n defined by (4.5) and (4.6).

Lemma 5.5. Let n ∈ N0 and let (Γj)n
j=0 be a nondegenerate q × q Carathéodory

sequence. Then Φn = Φ•
n and Ψn = Ψ•

n.

Proof. From Lemma 5.1 we know that the matrices Rn+1 and Ln+1 defined by
(1.6) and (1.8) are both positive Hermitian. In particular,

√
Rn+1

+
=

√
Rn+1

−1

and
√

Ln+1
+

=
√

Ln+1
−1

. Consequently, in view of (5.4), (5.5), (4.5), (4.6), and
Remark 5.2, it is sufficient to show that the identities

ηn

√
Rn+1 = bn

√
Rn+1

−1
,

√
Ln+1ζn =

√
Ln+1

−1
dn (5.6)
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and

η#
n Γ−∗

0

√
Rn+1 = an

√
Rn+1

−1
,

√
Ln+1Γ−∗

0 ζ#
n =

√
Ln+1

−1
cn (5.7)

are satisfied, where the matrix polynomials ηn, ζn, η#
n , and ζ#

n are defined by (5.2)
and (5.3) as well as the matrix polynomials an, bn, cn, and dn are given as in (1.9),
(1.10), (1.11), and (1.12). The case n = 0 is trivial. Now let n ≥ 1. Obviously, the
nonnegative Hermitian block Toeplitz matrix Tn given by (1.1) and (1.2) can be
represented via

Tn =
(

Tn−1 Z∗
n

Zn Re Γ0

)
and Tn =

(
Re Γ0 Y ∗

n

Yn Tn−1

)
, (5.8)

where Zn and Yn are given as in (1.7). From the first block representation in (5.8)
we get (

0, Iq

)
T−1

n = L−1
n+1

(
−ZnT−1

n−1, Iq

)
and consequently, by virtue of (1.12) and (5.2), the identity ζn = L−1

n+1dn. This
implies immediately the second formula in (5.6). Moreover, the block Toeplitz
matrix Sn given by (1.1) admits the block representations

Sn =
(

Sn−1 0
2 Zn Γ0

)
and Sn =

(
Γ0 0

2 Yn Sn−1

)
. (5.9)

The first formula in (5.9), the first formula in (5.1), and

2 Zn − ZnT−1
n−1Sn−1 = ZnT−1

n−1S
∗
n−1

yield

Γ−∗
0

(
0, Iq

)
(T #

n )−1 = L−1
n+1

(
−ZnT−1

n−1, Iq

)
Sn = L−1

n+1

(
ZnT−1

n−1S
∗
n−1, Γ0

)
.

Using (1.11) and (5.3) then the second formula in (5.7) follows. From the second
identities in (5.8), (5.9), and (5.1) one can similarly derive the first formulas in
(5.6) and (5.7). �

In order to describe the Arov-Krĕın representation of the solution set of the
nondegenerate matricial Carathéodory problem we give some further notations.
Let B be a complex 2q × 2q matrix and let

B =
(

B11 B12

B21 B22

)
be the q×q block partition of B. If the set D := {X ∈ Cq×q : det(B21X+B22) �= 0}
(respectively, E := {X ∈ Cq×q : det(XB12 + B22) �= 0}) is nonempty, then the
right (respectively, left) linear fractional transformation SB :D → Cq×q is given by

SB(X) := (B11X + B12)(B21X + B22)−1, X ∈ D,

(respectively, TB : E → Cq×q is given by

TB(X) := (XB12 + B22)−1(XB11 + B21), X ∈ E ).

Now we are able to prove the announced result due to Arov and Krĕın.
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Theorem 5.6. Let n ∈ N0 and let (Γj)n
j=0 be a nondegenerate q × q Carathéodory

sequence. Further, let Ω be a complex q × q matrix-valued function defined on D.
Then the following statements are equivalent:

(i) Ω belongs to Cq[D, (Γj)n
j=0].

(ii) There is a q × q Schur function g in D such that Ω can be represented via

Ω(z) = SΦn(z)

(
g(z)

)
, z ∈ D.

(iii) There is a q × q Schur function h in D such that Ω can be represented via

Ω(z) = TΨn(z)

(
h(z)

)
, z ∈ D.

If (i) is fulfilled, then g = h and g(z) = S(Φn(z))−1

(
Ω(z)

)
for each z ∈ D \ {0}.

Proof. Combine Theorem 1.1, Lemma 5.1, Remark 5.2 and Lemma 5.5. �

An alternative proof of Theorem 5.6 was given in [FK1, Part V]. This proof
is based on the interrelation between the matricial Carathéodory problem and the
matricial Schur problem and makes essentially use of the analysis of the Schur-
Potapov algorithm for matrix-valued Schur functions which was done in [FK2] (see
also [DFK, Section 3.8]) on the basis of the foregoing papers of Delsarte, Genin,
and Kamp [DGK1] and [DGK2] on orthogonal matrix polynomials and related
questions.

6. The case of a unique solution

In this section, we consider finally the case of a given q× q Carathéodory sequence
(Γj)n

j=0 for which the central q×q Carathéodory function corresponding to (Γj)n
j=0

is the unique q × q Carathéodory function Ω fulfilling (1.3) for each j ∈ N0,n.

Lemma 6.1. Let n ∈ N0 and let (Γj)n
j=0 be a q×q Carathéodory sequence. Further,

let (Γk)∞k=0 be the central q × q Carathéodory sequence corresponding to (Γj)n
j=0

and, for each � ∈ Nn+1,∞, let the matrices L� and R� be defined as in (1.6) and
(1.8) with respect to (Γj)�

j=0. Then the following statements are equivalent:

(i) There is a unique Carathéodory function Ω (in D) such that the relation (1.3)
is fulfilled for each j ∈ N0,n (namely the central q × q Carathéodory function
Ω = Ωc,n corresponding to (Γj)n

j=0 ).
(ii) For each � ∈ Nn+1,∞, the identities L� = 0 and R� = 0 hold.
(iii) Ln+1 = 0 or Rn+1 = 0.

Proof. In view of the definition of the involved parameters, the connection between
q × q Carathéodory sequences and q × q Carathéodory functions (see, e.g., [BGR]
or [Ko]), and the equality rankL� = rankR� for each � ∈ Nn+1,∞ (cf. [FK3,
Remark 2]), the assertion follows from [DFK, Theorem 3.4.1 and Remark 3.4.3].

�
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Proposition 6.2. Let n ∈ N0 and let (Γj)n
j=0 be a q × q Carathéodory sequence. If

n ≥ 1, then let Vn ∈ Yn and Wn ∈ Zn. Furthermore, let an, bn, cn, and dn be
the matrix polynomials which are defined by (1.15), (1.16), (1.17), and (1.18). The
following statements are equivalent:

(i) There is a unique Carathéodory function Ω (in D) such that the relation (1.3)
is fulfilled for each j ∈ N0,n.

(ii) The identity ã
[n]
n bn = −b̃

[n]
n an is satisfied.

(iii) The identity cnd̃
[n]
n = −dnc̃

[n]
n is satisfied.

(iv) For each z ∈ T, Re
((

an(z)
)∗

bn(z)
)

=0 and Re
(
cn(z)

(
dn(z)

)∗)=0.

(v) Re
((

an(z)
)∗

bn(z)
)

=0 or Re
(
cn(z)

(
dn(z)

)∗)=0 for some z ∈ T.

Proof. Use Lemma 6.1 in combination with Proposition 2.4. �

Corollary 6.3. Let n ∈ N0, let (Γj)n
j=0 be a q × q Carathéodory sequence, and let

Ωc,n be the central q× q Carathéodory function corresponding to (Γj)n
j=0. If n ≥ 1,

then let Vn ∈ Yn and Wn ∈ Zn. Furthermore, let an, bn, cn, and dn be the matrix
polynomials which are defined by (1.15), (1.16), (1.17), and (1.18). The following
statements are equivalent:

(i) There is a unique Carathéodory function Ω (in D) such that the relation (1.3)
is fulfilled for each j ∈ N0,n.

(ii) Ωc,n is the restriction of the rational matrix function −(b̃[n]
n )−1ã

[n]
n onto D.

(iii) Ωc,n is the restriction of the rational matrix function −c̃
[n]
n (d̃[n]

n )−1 onto D.

(iv) The equality Re
(
−
(
b̃
[n]
n (z)

)−1
ã
[n]
n (z)

)
= 0 holds for each z ∈ T \ N

b̃
[n]
n

and

the equality Re
(
−c̃

[n]
n (z)

(
d̃
[n]
n (z)

)−1
)

= 0 holds for each z ∈ T \ N
d̃
[n]
n

.

(v) The complex q × q matrix Re
(
−
(
b̃
[n]
n (z)

)−1
ã
[n]
n (z)

)
is nonnegative Hermitian

for some z ∈ T \ N
b̃
[n]
n

or for some z ∈ T \ N
d̃
[n]
n

the complex q × q matrix

Re
(
−c̃

[n]
n (z)

(
d̃
[n]
n (z)

)−1
)

is nonnegative Hermitian.

Proof. Taking into account that Corollary 2.5 yields that the set Nbn (respectively,
Ndn) consists of at most n · q elements and hence the set N

b̃
[n]
n

(respectively,
N

d̃
[n]
n

) as well, the equivalence of (i), (ii), and (iii) follows from Proposition 6.2,
Theorem 1.3, and a continuity argument. Furthermore, (iv) implicates immediately
(v). Moreover, Corollary 2.5 and [DFK, Lemma 1.2.2] imply

Re
((

b̃[n]
n (z)

)−1
ã[n]

n (z)
)

=
(
b̃[n]
n (z)

)−1
Rn+1

(
b̃[n]
n (z)

)−∗ ≥ 0, z ∈ T \ N
b̃
[n]
n

,

and

Re
(
c̃[n]
n (z)

(
d̃[n]

n (z)
)−1

)
=

(
d̃[n]

n (z)
)−∗

Ln+1

(
d̃[n]

n (z)
)−1 ≥ 0, z ∈ T \ N

d̃
[n]
n

,

where T \ N
b̃
[n]
n

= T \ Nbn and T \ N
d̃
[n]
n

= T \ Ndn . Therefore (v) involves that
Rn+1 = 0 or Ln+1 = 0 is fulfilled on the one hand and on the other hand if
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Rn+1 = 0 and Ln+1 = 0 is satisfied then it follows (iv), so that Lemma 6.1 finally
yields the equivalence of (i), (iv), and (v). �

Now we are going to give a further characterization of the case that the ma-
tricial Carathéodory problem has a unique solution. This characterization is also
given in terms of the central matrix-valued Carathéodory function Ωc,n correspon-
ding to the given data. Recall that a q × q Carathéodory function Ω is called
degenerate if the block Toeplitz matrix Tm given by (1.1) and (1.2) is singular
for some nonnegative integer m, where (Γk)∞k=0 is the sequence of complex q × q
matrices fulfilling the Taylor series representation (3.10) of Ω. Clearly, if the matri-
cial Carathéodory problem has a unique solution, then the function Ωc,n correspon-
ding to the given data has to be a degenerate Carathéodory function. The following
considerations show that Ωc,n has a very specialized structure in that case.

Remark 6.4. Let r ∈ N, let (zs)r
s=1 be a sequence from the unit circle T, let

(As)r
s=1 be a sequence of nonnegative Hermitian q × q matrices, and let H be a

Hermitian q× q matrix. Then it is readily checked that the matrix-valued function
Ψ : C \ {z1, z2, . . . , zr} → Cq×q given by

Ψ(z) :=
r∑

s=1

zs + z

zs − z
As + iH

satisfies Re Ψ(z)≥0 for each z∈D and Re Ψ(z)=0 for each z∈T \ {z1, z2, . . . , zr}.

Remark 6.5. Let µ be a nonnegative Hermitian q × q Borel measure on T and let
τ := trµ be the trace measure of µ. Since a nonnegative Hermitian q × q matrix
A is equal to 0q×q if and only if trA = 0, the following statements are equivalent:

(i) There is a finite subset F of T such that µ(T \ F) = 0q×q.
(ii) There is a finite subset G of T such that τ(T \ G) = 0.

If (i) or (ii) holds, one can choose F = G.

Lemma 6.6. Let Ω be a q × q Carathéodory function (in D) and let ϕ := tr Ω. The
following statements are equivalent:

(i) There are an � ∈ N, a sequence (ws)�
s=1 of points belonging to T, a sequence

(as)�
s=1 of nonnegative numbers, and a real number h such that

ϕ(z) =
�∑

s=1

ws + z

ws − z
as + i h, z ∈ D. (6.1)

(ii) There are an r ∈ N, a sequence (zs)r
s=1 of points belonging to T, a sequence

(As)r
s=1 of nonnegative Hermitian q × q matrices, and a Hermitian q × q

matrix H such that

Ω(z) =
r∑

s=1

zs + z

zs − z
As + i H, z ∈ D. (6.2)

(iii) Ω is the restriction of a rational q × q matrix-valued function Ω♦ which sat-
isfies Re Ω♦(z) = 0q×q for each T \ F, where F is some finite set.
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(iv) ϕ is the restriction of a rational (complex-valued) function ϕ♦ which satisfies
Re ϕ♦(z) = 0 for each T \ G, where G is some finite set.

In particular, one can choose � = r, ws = zs for each s ∈ N1,r, F = G, and
F = {z1, z2, . . . , zr}.

Proof. (i) ⇒ (ii): Clearly, since Ω is a q × q Carathéodory function, ϕ is a 1 × 1
Carathéodory function. For each x ∈ T, let εx be denote the Dirac measure on the
Borelian σ-algebra of T which has its unit mass at the point x. Because of (i) and
the Riesz-Herglotz theorem (see, e.g., [DFK, Theorem 2.2.2]), by setting

τ :=
�∑

s=1

asεws

we obtain the Riesz-Herglotz measure of ϕ. In particular, we have τ(T \ G) = 0
for G := {w1, w2, . . . , w�}. Thus if µ denotes the Riesz-Herglotz measure of Ω then
ϕ = tr Ω implies τ = trµ and from Remark 6.5 we get that µ(T \ G) = 0q×q.
Applying the matricial version of the Riesz-Herglotz theorem (see, e.g., [DFK,
Theorem 2.2.2]) we can finally conclude that (6.2) is fulfilled with r := �, zs := ws

for each s ∈ N1,r, some sequence (As)r
s=1 of nonnegative Hermitian q× q matrices,

and some Hermitian q × q matrix H .
(ii) ⇒ (iii): In view of Remark 6.4 we see that (ii) yields (iii) by the special choice
F := {z1, z2, . . . , zr}.
(iii) ⇒ (iv): This implication is obviously fulfilled with G := F.
(iv) ⇒ (i): Since ϕ ∈ C1(D), from (iv) it follows that the function 1 +ϕ♦ does not
vanish in D and that

B :=
1 − ϕ♦

1 + ϕ♦ (6.3)

is a well-defined rational function such that its restriction onto D belongs to
S1×1(D). Furthermore, (iv) and (6.3) imply that |B(z)| = 1 for each z ∈ T \ G.
Consequently (see, e.g., [FFK, Lemma 36]), the function B is a finite Blaschke
product. In view of (6.3), some well-known results on finite Blaschke products
and the Cayley transform (see, e.g., [Sc] and use [DFK, Lemma 1.1.21]) one can
conclude that ϕ is a degenerate 1 × 1 Carathéodory function. Finally, applying
[FKL, Proposition 3.2] we obtain that (6.1) is fulfilled for some � ∈ N, some se-
quence (ws)�

s=1 of points belonging to T, some sequence (as)�
s=1 of nonnegative

numbers, and some real number h, whereby Remark 6.4 and (iv) supply that one
can particularly choose {w1, w2, . . . , w�} = G. �

Note that Theorem 1.3 and Corollary 2.5 show particularly that there is a
unique rational extension Ω♦

c,n of Ωc,n to C \ {z1, z2, . . . , zr} for some complex
numbers z1, z2, . . . , zr with r ≤ n · q.

Theorem 6.7. Let n ∈ N0, let (Γj)n
j=0 be a q×q Carathéodory sequence, let Ωc,n be

the central q × q Carathéodory function corresponding to (Γj)n
j=0, and let Ω♦

c,n be
the unique rational extension of Ωc,n. Then the following statements are equivalent:
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(i) There is a unique Carathéodory function Ω (in D) such that the condition
(1.3) is fulfilled for each j ∈ N0,n (namely Ω = Ωc,n).

(ii) There are an r ∈ N, a sequence (zs)r
s=1 of points belonging to the unit circle T,

a sequence (As)r
s=1 of nonnegative Hermitian q×q matrices, and a Hermitian

q × q matrix H such that

Ωc,n(z) =
r∑

s=1

zs + z

zs − z
As + i H, z ∈ D. (6.4)

(iii) There is a finite subset F of T such that Re Ω♦
c,n(z) = 0q×q for each T \ F.

(iv) Re Ω♦
c,n(z) = 0q×q for a z ∈ T \ Nbn or z ∈ T \ Ndn , where bn and dn are

defined as in (1.16) and (1.18) with some Vn ∈ Yn and Wn ∈ Zn if n ≥ 1.

Proof. (i) ⇒ (iii): If n ≥ 1 then let Vn ∈ Yn. Furthermore, let an and bn be defined
as in (1.15) and (1.16). Thus part (a) of Theorem 1.3 yields that the equality

Ω♦
c,n(z) = an(z)

(
bn(z)

)−1 (6.5)

is fulfilled for each z ∈ C \ Nbn . From (6.5) and Corollary 2.5 we obtain then(
bn(z)

)∗(Re Ω♦
c,n(z)

)
bn(z) =

(
bn(z)

)∗ Re
(
an(z)

(
bn(z)

)−1
)

bn(z) = Rn+1 (6.6)

for each z ∈ T\Nbn , where the matrix Rn+1 is defined as in (1.6) and (1.8). In view
of (i) and Lemma 6.1 we have Rn+1 = 0q×q, so that (6.6) implies Re Ω♦

c,n(z) = 0q×q

for each z ∈ T \ Nbn . Since Corollary 2.5 includes particularly that the set Nbn

consists of at most n · q elements, it follows (iii).
(ii) ⇔ (iii): Taking into account Theorem 1.3, the equivalence of (ii) and (iii) is an
easy consequence of Lemma 6.6.
(iii) ⇒ (iv): Because F is a finite set but Corollary 2.5 shows that T \ Nbn is an
infinite set, this implication follows immediately.
(iv) ⇒ (i): If Re Ω♦

c,n(z) = 0q×q for some z ∈ T \ Nbn then by using (6.6) we get
Rn+1 = 0q×q. Similarly, in the case of Re Ω♦

c,n(z) = 0q×q for a certain z ∈ T \Ndn ,
where dn is the matrix polynomial defined as in (1.18) with some Wn ∈ Zn if
n ≥ 1, by an application of part (b) of Theorem 1.3 and Corollary 2.5 one can
conclude Ln+1 = 0q×q, where the matrix Ln+1 is defined as in (1.6) and (1.8).
Hence (iv) and Lemma 6.1 supply (i). �

Remark 6.8. Let n ∈ N0 and let (Γj)n
j=0 be a q × q Carathéodory sequence such

that (i) of Theorem 6.7 is satisfied. If n = 0 then Lemma 6.1 implies Re Γ0 = 0
and hence the constant function (defined on D) with value i ImΓ0 is the unique
Carathéodory function Ω (in D) such that Ω(0) = Γ0. If n ∈ N, then by virtue of
Theorem 1.3, Corollary 2.5, and Theorem 6.7 it is not hard to accept that one can
choose an r ∈ N1,n·q and z1, . . . , zr belonging to

{z ∈ T : det bn(z) = 0} ∩ {z ∈ T : det dn(z) = 0},
where bn and dn are defined as in (1.16) and (1.18) with some Vn ∈ Yn and
Wn ∈ Zn, such that the central q × q Carathéodory function Ωc,n corresponding
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to (Γj)n
j=0 admits, for each z ∈ D, the representation (6.4) with some Hermitian

q × q matrix H and sequence (As)r
s=1 of nonnegative Hermitian q × q matrices.

Corollary 6.9. Let n ∈ N, let (zs)n
s=1 be a sequence of pairwise different points

belonging to T, let (As)n
s=1 be a sequence of nonnegative Hermitian q × q matrices

such that
∑n

s=1 As is a positive Hermitian q× q matrix, and let H be a Hermitian
q × q matrix. Further, let Ω : D → Cq×q be defined by

Ω(z) :=
n∑

s=1

zs + z

zs − z
As + i H.

Then Ω is a q× q Carathéodory function such that Re Ω(0) is a positive Hermitian
q×q matrix. In particular, Ω(z) is a nonsingular matrix for each z ∈ D and Ω−1 is
a q× q Carathéodory function. Moreover, there are a sequence (us)

n·q
s=1 of pairwise

different points belonging to T, a sequence (Bs)
n·q
s=1 of nonnegative Hermitian q× q

matrices, and a Hermitian q×q matrix K such that Ω−1 admits the representation

(
Ω(z)

)−1 =
n·q∑
s=1

us + z

us − z
Bs + i K, z ∈ D.

Proof. Let

Γ0 :=
n∑

s=1

As + i H and Γj := 2
n∑

s=1

z−j
s As, j ∈ N1,n.

From [FKL, Corollary 3.4] we know that Ω is the unique Carathéodory function
Ω such that the condition (1.3) is fulfilled for each j ∈ N0,n. Furthermore, by
virtue of Re Ω(0) =

∑n
s=1 As we get that Re Ω(0) is a positive Hermitian matrix.

Consequently, since [DFK, Proposition 2.1.3, Lemma 1.1.13, Lemma 2.1.10 and
Lemma 1.1.21] imply that if Ψ is a Carathéodory function fulfilling Re Ψ(0) ∈ C

q×q
>

then Ψ(z) is a nonsingular matrix for each z ∈ D, that Ψ−1 is a q×q Carathéodory
function as well, and that the first n+1 coefficients of the Taylor expansion of Ψ−1

at the point 0 are uniquely determined by the first n + 1 coefficients of the Taylor
expansion of Ψ at the point 0, an application of Theorem 6.7 and Remark 6.8
completes the proof. �
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A Gohberg-Heinig Type Inversion Formula
Involving Hankel Operators

G.J. Groenewald and M.A. Kaashoek

Abstract. A Gohberg-Heinig type inversion formula is derived for operators
I − K2K1, where K1 and K2 are Hankel integral operators acting between
vector-valued L1-spaces over [0,∞]. The main result is first proved, by using
linear algebra tools, for the case when the corresponding kernel functions have
a finite dimensional stable exponential representation.

Mathematics Subject Classification (2000). Primary 45B05, 47B35; Secondary
47A50, 45A05.

Keywords. Hankel operators, Fredholm integral equations, inversion formulas,
kernel functions with stable exponential representations.

0. Introduction

This paper deals with the inversion of the operator I − K2K1, where K1 and K2

are Hankel operators given by

(Kjf)(t) =
∫ ∞

0

kj(t + s)f(s) ds, t ≥ 0, j = 1, 2. (0.1)

Here k1 ∈ Lm×p
1 (R+) and k2 ∈ Lp×m

1 (R+), that is, k1 and k2 are matrix functions
on R+ = [0,∞), of sizes m × p and p × m, respectively, and the entries of k1 and
k2 are Lebesgue integrable over R+. We consider K1 as an operator from Lp

1(R+)
into Lm

1 (R+), and K2 as an operator from Lm
1 (R+) into Lp

1(R+). The main result
is the following theorem.

Theorem 0.1. The following statements are equivalent:
(i) the operator I − K2K1 is invertible,

The first author is supported by the National Research Foundation of South Africa, under Grant
Number 2053733. The second author thanks the North-West University for support for a visit
during which this paper was written.
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(ii) there exist solutions a1 ∈ Lp×m
1 (R+) and a2 ∈ Lm×p

1 (R+) to the equations

a1(t) −
∫ ∞

0

∫ ∞

0

k2(t + s)k1(s + r)a1(r) dsdr = −k2(t), t ≥ 0, (0.2)

a2(t) −
∫ ∞

0

∫ ∞

0

k1(t + s)k2(s + r)a2(r) dsdr = −k1(t), t ≥ 0, (0.3)

(iii) there exist solutions α1 ∈ Lp×m
1 (R+) and α2 ∈ Lm×p

1 (R+) to the equations

α1(t) −
∫ ∞

0

∫ ∞

0

α1(r)k1(r + s)k2(s + t) dsdr = −k2(t), t ≥ 0, (0.4)

α2(t) −
∫ ∞

0

∫ ∞

0

α2(r)k2(r + s)k1(s + t) dsdr = −k1(t), t ≥ 0. (0.5)

Moreover, in this case the inverse of I − K2K1 is given by

((I − K2K1)−1f)(t) = f(t) +
∫ ∞

0

∫ ∞

0

a(t + s)b(s + r)f(r) dsdr

−
∫ ∞

0

∫ ∞

0

c(t + s)d(s + r)f(r) dsdr, t ≥ 0, (0.6)

where a = a1, b = α2, and

c(t) =
∫ ∞

0

k2(t + s)a2(s) ds, d(t) =
∫ ∞

0

α1(s)k1(t + s) ds (t ≥ 0). (0.7)

Here a1, a2, α1, α2 are the functions determined by (0.2)–(0.5).

For the case when p = m and k2(·) = k1(·)∗ the equivalence of the statements
(i)–(iii) is proved in Chapter 12 of [3] (see also [1]). It turns out that with some
modifications the proof of the equivalence of (i)–(iii) given in [3] carries over to
the more general setting considered here (see the second part of Section 3). The
inversion formula (0.6) is new. It can be viewed as an analogue of the Gohberg-
Heinig formula for convolution operators on a finite interval, [4]. The discrete
analogue of Theorem 0.1, with the operators K1 and K2 being replaced by Hankel
operators with Wiener algebra symbols on �m

1 , is known and can be found in [2].
Our approach is inspired by the proof of the Gohberg-Heinig inversion theo-

rem given in [5]. We shall obtain the inversion formula (0.6) in two steps. In the
first step k1 and k2 admit a stable exponential representation, that is,

k1(t) = C1e
tA1B1, k2(t) = C2e

tA2B2. (0.8)

Here A1 and A2 are square matrices of sizes n1×n1 and n2×n2, respectively, and
we require these matrices to be stable, that is, the eigenvalues of A1 and A2 are
in the open left half plane. Furthermore, C1 and C2 are matrices of sizes m × n1

and p × n2, respectively, and B1 and B2 are matrices of sizes n1 × p and n2 × m,
respectively. In this case K1 and K2 are operators of finite rank, and we show that
the inversion formula (0.6) can be obtained by inverting the matrix M = I −PQ,
where P and Q are the unique matrix solutions of

A1P + PA2 = −B1C2, A2Q + QA1 = −B2C1. (0.9)
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Notice that P has size n1 × n2 and Q has size n2 × n1, and that these matrices
are also given by

P =
∫ ∞

0

esA1B1C2e
sA2 ds, Q =

∫ ∞

0

esA2B2C1e
sA1 ds. (0.10)

We refer to M as the indicator for I − K2K1 corresponding to representations
(0.8). In the second step we use the fact that any L1-kernel function is the limit
in the L1-norm of a sequence of kernels with a stable exponential representation.
We derive the inversion formula (0.6) as a limit of the inverse formula for the case
when k1 and k2 are given by (0.8).

This paper consists of three sections (not counting this introduction). In
Section 1 we study the indicator, and we show that it can be inverted whenever
the matrix equations MZ = −PB2 and M#U = −QB1 are solvable. Here M# =
I−QP is the associate indicator, which is equal to the indicator for L# = I−K1K2

corresponding to representations (0.8). In Section 2 we prove Theorem 0.1 for
kernel functions of the type (0.8). In the final section we prove the equivalence
of statements (i), (ii) and (iii) in Theorem 0.1, and we use the approximation
argument referred to above to prove the inversion formula (0.6) for the general
case.

Finally, we mention that in the sequel we shall often use the following fact. If
A : X → Y and B : Y → X are bounded linear operators acting between Banach
spaces, then IY −AB is invertible if and only if IX −BA is invertible, and in this
case

(IY − AB)−1 = IY + A(IX − BA)−1B. (0.11)

1. The indicator

Throughout this section M is the indicator corresponding to the representations
(0.8), and M# is the associate indicator. In other words,

M = I − PQ, M# = I − QP,

where P and Q are determined by (0.9) or, equivalently, by (0.10). From the
remark made at the end of the previous section, it is clear that M is invertible if
and only if M# is invertible.

Proposition 1.1. The indicator M is invertible if and only if the following matrix
equations are solvable:

MZ = −PB2, M#U = −QB1. (1.1)

Moreover, if M is invertible, then M# is invertible, and

QM−1 =
∫ ∞

0

esA2X1Y1e
sA1 ds −

∫ ∞

0

esA2X2Y2e
sA1 ds (1.2)

where

X1 = (M#)−1B2, X2 = QM−1B1, Y1 = C1M
−1, Y2 = C2QM−1. (1.3)
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Proof. We first show that

MA1 − A1M = PB2C1 − B1C2Q. (1.4)

To do this we use M = I − PQ and the formulas for P and Q in (0.10). Indeed,

MA1 = A1 − PQA1 = A1 − P (−B2C1 − A2Q)
= A1 + PB2C1 + PA2Q

= A1 + PB2C1 + (−A1P − B1C2)Q
= A1 + PB2C1 − A1PQ − B1C2Q

= A1M + PB2C1 − B1C2Q.

This yields (1.4).
If M is invertible, then the matrix equations in (1.1) are solvable. To prove

the reverse implication, assume the matrix equations in (1.1) are solvable. Since
M is a square matrix of order n1, it suffices to show that x ∈ Cn1 and x∗M = 0,
imply that x = 0. To do this, we use (1.1). The identity x∗M = 0 together with
the first identity in (1.1), yields x∗PB2 = 0. Using the second identity in (1.1) and
MP = PM#, we also have x∗PQB1 = 0.

Using x∗M = 0, x∗PB2 = 0 and x∗B1 = 0 in (1.4) yields x∗A1M = 0.
Repeating the above arguments with x∗A1 in place of x∗ we obtain x∗A2

1M = 0.
Continuing by induction we see that x∗An

1 M = 0 for n = 0, 1, 2, . . . . As we have
seen, x∗M = 0 implies x∗B1 = 0. Thus x∗An

1B1 = 0 for n = 0, 1, 2, . . .. Using
the formula for P in (0.10), we see that the latter implies that x∗P = 0. Hence
x∗PQ = 0. But then

x∗ = x∗(I − PQ) + x∗PQ = x∗M + x∗PQ = 0.

Thus M is invertible.
We already know that the invertibility of M implies that of M#. Thus to

complete the proof it remains to prove (1.2). Assume M is invertible. We first
show that

A2(QM−1) + (QM−1)A1 = −(M#)−1B2C1M
−1 + QM−1B1C2QM−1. (1.5)

Indeed, note that the definitions of M and M# imply

M#A2Q = (I − QP )A2Q = A2Q − Q(PA2)Q

and
QA1M = QA1(I − PQ) = QA1 − Q(A1P )Q.

The sum of the above equations and (0.9) gives

M#A2Q + QA1M = −B2C1 + QB1C2Q.

Next, we premultiply by (M#)−1 and postmultiply by M−1 to obtain

A2QM−1 + (M#)−1QA1 = −(M#)−1B2C1M
−1 + (M#)−1QB1C2QM−1.
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Now use that QM = M#Q, and hence (M#)−1Q = QM−1. This proves (1.5).
Since A1 and A2 are stable, (1.5) shows

QM−1 =
∫ ∞

0

esA2

(
− (M#)−1B2C1M

−1 + QM−1B1C2QM−1
)
esA1 ds.

Finally, use the matrices defined by (1.3) to obtain formula (1.2). �

2. The main theorem for kernel functions
of stable exponential type

Throughout this section K1 and K2 are the Hankel operators given by (0.1), and
we assume that the kernel functions k1 and k2 are given by (0.8). As before M is
the indicator of I − K2K1 corresponding to the representations (0.8).

To analyze I − K2K1 in terms of the representations (0.8) we introduce the
following auxiliary operators:

Λ1 : C
n1 → Lm

1 (R+), (Λ1x)(t) = C1e
tA1x,

Λ2 : C
n2 → Lp

1(R+), (Λ2x)(t) = C2e
tA2x,

Γ1 : Lp
1(R+) → C

n1 , Γ1f =
∫ ∞

0

esA1B1f(s) ds,

Γ2 : Lm
1 (R+) → C

n2 , Γ2f =
∫ ∞

0

esA2B2f(s) ds.

Allowing for a slight abuse of notation we shall apply Λ1 and Λ2 also to matrices,
and Γ1 and Γ2 also to matrix functions. For instance, when X is an n1 × q matrix,
then Λ1X is the matrix function of which the k-th column is obtained by applying
Λ1 to the k-th column of X . Similarly, if a ∈ Lp×q

1 (R+), then Γ1a is the n1 × q
matrix of which the k-th column is obtained by applying Γ1 to the function given
by the k-th column of a.

Note that
P = Γ1Λ2, Q = Γ2Λ1,

and hence M = I − Γ1Λ2Γ2Λ1. Furthermore, K1 = Λ1Γ1 and K2 = Λ2Γ2. It
follows that I −K2K1 = I −Λ2Γ2Λ1Γ1. Now put A = Λ2Γ2Λ1, B = Γ1, and apply
the result mentioned in the final paragraph of the introduction. This shows that
I − K2K1 is invertible if and only if M is invertible, and in that case

(I − K2K1)−1 = I + Λ2Γ2Λ1(I − Γ1Λ2Γ2Λ1)−1Γ1

= I + Λ2Q(I − PQ)−1Γ1

= I + Λ2QM−1Γ1.

Since (1.2) provides a formula for QM−1, we shall see that the above calculation
will allow us to prove (0.6) for the case when the kernel functions are given by
(0.8). For this purpose we also need the following lemma.
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Lemma 2.1. Equation (0.2) is solvable if and only if the following matrix equation
is solvable

MZ = −PB2. (2.1)

More precisely, if a ∈ Lp×m
1 (R+) satisfies

a(t) −
∫ ∞

0

∫ ∞

0

k2(t + s)k1(s + r)a(r) dsdr = −k2(t), t ≥ 0, (2.2)

then Z = Γ1a satisfies (2.1). Conversely, if Z is a solution of (2.1), then a =
Λ2(QZ − B2) satisfies (2.2).

Proof. Equation (2.2) can be rewritten as

a − Λ2Γ2Λ1Γ1a = −k2 (2.3)

Notice that now we consider Γ1 as a map from Lp×m
1 (R+) into Cn1×m. Similar

remarks apply to the other operators in (2.3). Put Z = Γ1a. Then

MZ = (I − PQ)Γ1a = (I − Γ1Λ2Γ2Λ1)Γ1a

= Γ1a − Γ1(Λ2Γ2Λ1Γ1a)
= Γ1a − Γ1(a + k2) = −Γ1k2 = −Γ1Λ2k2 = −PB2.

Conversely, assume Z is a solution of (2.1). Put a = Λ2(QZ − B2). Then

a − Λ2Γ2Λ1Γ1a = Λ2(QZ − B2) − Λ2Γ2Λ1Γ1Λ2(QZ − B2)
= Λ2Γ2Λ1Z − Λ2B2 − Λ2Γ2Λ1PQZ + Λ2Γ2Λ1PB2

= Λ2Γ2Λ1Z − Λ2B2 − Λ2Γ2Λ1(Z + PB2) + Λ2Γ2Λ1PB2

= −Λ2B2 = −k2.

This proves that a is a solution of (2.2). �

Proof of Theorem 0.1 with k1 and k2 given by (0.8).
We divide the proof into five parts.
Part 1. In this part we show that (ii) implies (i). So assume equations (0.2) and
(0.3) are solvable. Recall that I−K2K1 is invertible if and only if its indicator M is
invertible. Therefore it suffices to prove the invertibility of M . Since equation (0.2)
is solvable, we know from Lemma 2.1 that the first equation in (1.1) is solvable.
Next, we apply Lemma 2.1 to I − K1K2 in place of I − K2K1. Note that M# is
the indicator of I − K1K2 corresponding to the representations (0.8). Moreover
equation (2.1) transforms into M#U = −QB1. Thus (0.3) is solvable if and only
if the second equation in (1.1) is solvable. But then we can apply Proposition 1.1
to show that (ii) implies that M is invertible.
Part 2. We show that (iii) implies (i). Assume equations (0.4) and (0.5) are solvable.
Again it suffices to show that the indicator M is invertible. By taking adjoints we
can rewrite (0.4) and (0.5) in the following equivalent form:

α∗
1(t) −

∫ ∞

0

∫ ∞

0

k∗
2(t + s)k∗

1(s + r)α∗
1(r) dsdr = −k∗

2(t), t ≥ 0, (2.4)
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α∗
2(t) −

∫ ∞

0

∫ ∞

0

k∗
1(t + s)k∗

2(s + r)α∗
2(r) dsdr = −k∗

1(t), t ≥ 0. (2.5)

Here for any matrix function g we use the convention that g∗(t) = g(t)∗. Now let
K̃1 and K̃2 be the Hankel operators corresponding to the kernel functions k∗

1 and
k∗
2 , respectively, that is,

(K̃1f)(t) =
∫ ∞

0

k∗
1(t + s)f(s) ds, t ≥ 0, (2.6)

(K̃2g)(t) =
∫ ∞

0

k∗
2(t + s)g(s) ds, t ≥ 0. (2.7)

Then applying the result of the first step to I − K̃2K̃1 in place of I − K2K1, we
conclude that I − K̃2K̃1 is invertible. The kernel functions k∗

1 and k∗
2 have stable

exponential representations, namely

k∗
1(t) = B∗

1etA∗
1C∗

1 , k∗
2(t) = B∗

2etA∗
2C∗

2 . (2.8)

Notice that

Q∗ =
∫ ∞

0

esA∗
1C∗

1B∗
2esA∗

2 ds, P ∗ =
∫ ∞

0

esA∗
2C∗

2B∗
1esA∗

1 ds.

It follows that the indicator for I − K̃2K̃1 corresponding to the representations
(2.8) is precisely equal to M∗. Since I − K̃2K̃1 is invertible, we conclude that M∗

is invertible, and hence M is.
Part 3. In this part we show that (i) implies (ii) and (iii). The implication from
(i) to (ii) is trivial. To prove (i) implies (iii), note that (i) is equivalent to the
invertibility of M . Thus (i) implies M∗ is invertible, which is the indicator of
I − K̃2K̃1, and hence I − K̃2K̃1 is invertible. Here K̃1 and K̃2 are defined by (2.6)
and (2.7). It follows that equations (2.4) and (2.5) are solvable. Taking adjoints,
we see that (iii) holds.
Summarizing we have proved that statements (i), (ii) and (iii) in Theorem 0.1 are
equivalent.
Part 4. In this part we assume that I − K2K1 is invertible and we derive the
solutions of (0.2)–(0.5). Note that our assumption implies that all operators

I − K2K1, I − K1K2, I − K̃2K̃1, I − K̃1K̃2 (2.9)

are invertible, and hence each of the equations (0.2), (0.3), (0.4), (0.5) is uniquely
solvable. Here we used that (0.4) and (0.5) are equivalent to (2.4) and (2.5), re-
spectively. Now we apply Lemma 2.1 to each of the operators in (2.9). This yields
that the unique solutions of the equations (0.2), (0.3), (0.4), (0.5) are, respectively,
given by

a1(t) = −C2e
tA2X, X = (M#)−1B2, (2.10)

a2(t) = −C1e
tA1X̃, X̃ = M−1B1, (2.11)

α1(t) = −Y etA2B2, Y = C2(M#)−1, (2.12)

α2(t) = −Ỹ etA1B1, Ỹ = C1M
−1. (2.13)
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Let us prove (2.10). According to Lemma 2.1 we have

a1 = Λ2(QZ − B2) = −Λ2(QM−1P + I)B2

= −Λ2(I − QP )−1B2 = −Λ2(M#)−1B2 = −Λ2X.

Using the definition of Λ2, this yields (2.10).
Interchanging the roles of K1 and K2 transforms (2.10) into (2.11). Indeed,

the indicator for I − K1K2 is equal to M#, and hence the associate indicator for
I − K1K2 is M . In a similar way, replacing K1 by K̃1 and K2 by K̃2, and using
the dual representations (2.8) in place of (0.8), we see that

α∗
1(t) = −B∗

2etA∗
2Y ∗, Y ∗ = ((M#)−1)∗C∗

2 , (2.14)

α∗
2(t) = −B∗

1etA∗
1 Ỹ ∗, Ỹ ∗ = (M−1)∗C∗

1 . (2.15)

Here we used that the indicator for I−K̃2K̃1 corresponding to the representations
(2.8) is equal to M∗, and that the associate indicator is equal to (M#)∗. Taking
adjoints in (2.14) and (2.15) gives (2.12) and (2.13).
Part 5. In this part we derive the inversion formula (0.6). Thus I−K2K1 is assumed
to be invertible. We claim that

a(t) = −C2e
tA2X1, X1 = (M#)−1B2, (2.16)

b(t) = −Y1e
tA1B1, Y1 = C1M

−1, (2.17)

c(t) = −C2e
tA2X2, X2 = QM−1B1, (2.18)

d(t) = −Y2e
tA1B1, Y2 = C2QM−1. (2.19)

Since a = a1 and b = α2, formulas (2.16) and (2.17) follow directly from (2.10)
and (2.13). To compute (2.18), we use that c is given by the first identity in (0.7).
Together with (2.11), this yields

c(t) = −
∫ ∞

0

C2e
(t+s)A2B2C1e

sA1X̃ ds

= −C2e
tA2(

∫ ∞

0

esA2B2C1e
sA1 ds)X̃ = −C2e

tA2QX̃.

But X̃ = M−1B1. So c is given by (2.18). In a similar way, using (2.12), the second
identity in (0.7), and (M#)−1Q = QM−1, one obtains (2.19). Indeed,

d(t) = −
∫ ∞

0

Y esA2B2C1e
(t+s)A1B1 ds

= −Y (
∫ ∞

0

esA2B2C1e
sA1 ds)etA1B1 = −C2(M#)−1QetA1B1.

Now to get (0.6), recall that (I − K2K1)−1 = I + Λ2QM−1Γ1. Hence

((I − K2K1)−1f)(t) = f(t) + C2e
tA2QM−1

∫ ∞

0

esA1B1f(s) ds.

Using formula (1.2) for QM−1, together with (1.3) and the formulas (2.16)–(2.19),
we obtain (0.6).
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3. Proof of the main theorem (general case)

In this section we prove Theorem 0.1 for arbitrary kernel functions. The proof is
split into two parts. In the first part we assume that I − K2K1 is invertible, and
we derive the inversion formula (0.6) by an approximation argument using the
result of the previous section. In the second part we prove the equivalence of the
statements (i), (ii) and (iii).

Part 1. Assume L = I −K2K1 is invertible, and let us prove the inversion formula
(0.6). To do this we choose for j = 1, 2 a sequence kj,1, kj,2, kj,3, . . ., consisting of
kernel functions with a stable exponential representation, such that

‖kj − kj,n‖L1 → 0 (n → ∞). (3.1)

Put Ln = I − K2,nK1,n, where

(Kj,nf)(t) =
∫ ∞

0

kj,n(t + s)f(s) ds, t ≥ 0 (j = 1, 2).

Then (3.1) implies that ‖L − Ln‖ → 0 if n → ∞, and hence Ln is invertible for n
sufficiently large. By passing to a subsequence we can assume that Ln is invertible
for each n, and

‖L−1
n − L−1‖ → 0 (n → ∞). (3.2)

Now, let a1,n, a2,n, α1,n, α2,n be the solutions of the equations (0.2) − (0.5) which
one obtains with k1,n in place of k1 and k2,n in place of k2. Put

an(t) = a1,n(t), bn(t) = α2,n(t),

cn(t) =
∫ ∞

0

k2,n(t + s)a2,n(s) ds, dn(t) =
∫ ∞

0

α1,nk1,n(t + s) ds.

Then (3.1) implies that

‖a − an‖L1 + ‖b − bn‖L1 + ‖c− cn‖L1 + ‖d − dn‖L1 → 0 (n → ∞). (3.3)

Here a, b, c, d are the matrix functions defined in the second part of Theorem 0.1.
Consider the operators

(Af)(t) =
∫ ∞

0

a(t + s)f(s) ds, (Bf)(t) =
∫ ∞

0

b(t + s)f(s) ds,

(Cf)(t) =
∫ ∞

0

c(t + s)f(s) ds, (Df)(t) =
∫ ∞

0

d(t + s)f(s) ds,

and let An, Bn, Cn, Dn be the operators which one obtains from A, B, C, D when
the role of a is taken over by an, that of b by bn, that of c by cn, and that of d by
dn. From the result of the previous section we know that

L−1
n = I + AnBn − CnDn,

and (3.3) implies that

‖A − An‖ + ‖B − Bn‖ + ‖C − Cn‖ + ‖D − Dn‖ → 0 (n → ∞).
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It follows that

L−1 = lim
n→∞L−1

n = lim
n→∞(I + AnBn − CnDn) = I + AB − CD,

which proves (0.6).
Part 2. In this part we prove the equivalence of (i), (ii), and (iii). For k2 = k∗

1 this
proof can be found in Chapter 12 of [3], pages 213–218. The general case requires
some modifications of the arguments given in [3]. In what follows we concentrate
on these modifications. We begin with some preparations.

By W p we denote the linear space of all φ ∈ Lp
1(R+) that are absolutely

continuous on compact intervals of R+ and such that φ′ again belongs to Lp
1(R+).

Notice that for each φ ∈ W p we have

φ(t) = −
∫ ∞

t

φ′(s) ds, t ≥ 0. (3.4)

The space W p endowed with the norm ‖φ‖W = ‖φ‖L1 +‖φ′‖L1 is a Banach space.
As a set W p is dense in Lp

1(R+).
Now, let k ∈ Lm×p

1 (R+), and let K be the corresponding Hankel operator
from Lp

1(R+) into Lm
1 (R+). In [3], page 214, it is proved that K maps W p into

Wm and
(Kφ)′ = Kφ′ − k(·)φ(0), φ ∈ W p. (3.5)

From (3.4) and (3.5) it follows that K induces a bounded linear operator from W p

into W q which we shall denote by KW . The operator KW is compact ([3], page
215).

From (3.4) it follows that W p ⊂ Lp
∞(R+). Hence for φ ∈ W p and f ∈ Lp

∞(R+)
we can define

〈φ, f〉 =
∫ ∞

0

f∗(t)φ(t) dt.

Using Fubini’s theorem it is straightforward to check that

〈KW φ, f〉 = 〈φ, K̃f〉, φ ∈ W p, f ∈ Lm
1 (R+), (3.6)

where K̃ is the Hankel operator from Lm
1 (R+) into Lp

1(R+) corresponding to k∗

(cf., (2.6), (2.7)).
Now, let K1 and K2 be the Hankel operators defined by (0.1), and consider

the corresponding operators K1W and K2W . From (3.5) it follows that

K2K1D − DK2W K1W = k2E2K1W + K2k1E1. (3.7)

Here D and E are the operators defined by

D : W p → Lp
1(R+), Dφ = φ′,

E1 : W p → C
p, E1φ = φ(0), E2 : Wm → C

m, E2φ = φ(0).

Since K2K1 and K2W K1W are compact, I−K2K1 and I−K2W K1W are Fredholm
operators of index zero. Furthermore, because W p is dense in Lp

1(R+), we have

Ker (I − K2W K1W ) = Ker (I − K2K1). (3.8)

To prove this one can use the same arguments as in [3], pages 215, 216.
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Now, assume that (iii) is satisfied. We have to prove that I −K2K1 is invert-
ible. Since I −K2K1 is a Fredholm operator of index zero, it suffices to show that
Ker (I − K2K1) = {0}.

Using (3.8) it suffices to show that Ker (I − K2W K1W ) = {0}.
So, take ψ ∈ W p and assume K2W K1W ψ = ψ. Using (3.6) and taking adjoints

we see that

0 = 〈(I − K2W K1W )ψ, α∗
2〉 = 〈ψ, (I − K̃1K̃2)α∗

2〉 = 〈ψ,−k∗
1〉

= −
∫ ∞

0

k1(t)ψ(t) dt = −(K1W ψ)(0) = −E2K1W ψ.

Thus E2K1W ψ = 0.
Next, put φ = K1W ψ. Then K2W φ = ψ, and

(I − K1W K2W )φ = φ − K1W ψ = 0.

Repeating the arguments given in the previous paragraph with the roles of K1

and K2 interchanged, it follows that E1K2W φ = 0. But K2W φ = ψ, and hence
E1ψ = 0.

Using that the vectors E2K1W ψ and E1ψ are both zero in (3.7), we see that
K2K1ψ

′ = ψ′, that is, ψ′ ∈ Ker (I − K2K1). Now, use again (3.8). So we can use
the same arguments with ψ′ in place of ψ. This yields

E2K1W ψ′ = 0, E1ψ
′ = 0, K2K1ψ

′′ = ψ′′.

Proceeding by induction we conclude that for each n = 0, 1, 2, . . . the function
ψ(n) ∈ Ker (I−K2K1) and ψ(n)(0) = 0. Since Ker (I−K2K1) is finite-dimensional,
this implies (see [3], page 218) that ψ = 0. Hence Ker (I − K2K1) = {0}, and
I − K2K1 is invertible.

In a similar way one shows that (ii) implies that I − K̃2K̃1 is invertible. Here
K̃1 and K̃2 are given by (2.6) and (2.7), respectively. Using (3.6) and (3.8), it then
follows that (ii) implies that I − K1K2 is invertible, which is equivalent to (ii)
implies (i).
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