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PADÉ-TYPE APPROXIMANTS FOR SOME CLASSES OF MULTIVARIATE FUNCTIONS

A. P. Holub and L. O. Lysenko UDC 517.53

We extend Dzyadyk’s method of generalized moment representations to the multidimensional case and,
on this basis, construct and investigate the Padé-type approximants for some classes of multivariate func-
tions.

The method of Padé approximants is one of the most efficient and known methods used for the rational ap-
proximation of analytic functions. The Padé-type approximations for functions of many variables are constructed
and studied for more than forty years. Numerous works are devoted to the investigation and application of these
approximants (see, e.g., [1, 2] and the references in [3]).

In 1981, Dzyadyk [4] proposed a method of generalized moment representations, which enabled us to consider,
from the common point of view, the problems of investigation of the Padé approximants for numerous important
special functions and, in particular, for the functions that do not belong to the class of Markov functions. This
approach was later developed by Holub [5, 6].

Dzyadyk’s approach was generalized to the multidimensional case (see [7]). The aim of the present paper is
to construct Padé-type approximants for some classes of multivariate functions of a special form.

We now give the corresponding definition:

Definition 1 [7]. A generalized moment representation of a d-dimensional numerical sequence {sk}k2Zd
+

on the product of linear spaces X and Y with respect to a bilinear form h , i given on this product is defined as
a collection of equalities

sk+j = hxk, yji, k, j 2 Zd
+, (1)

where {xk}k2Zd
+
⇢ X and {yj}j2Zd

+
⇢ Y.

Consider a formal power series in d variables

f(z) =
X

k2Zd
+

skz
k
, (2)

where

z = (z1, z2, . . . , zd) 2 Cd
, k = (k1, k2, . . . , kd) 2 Zd

+, and z

k = z

k1
1 z

k2
2 . . . z

kd
d .

For the sake of convenience, we now introduce some notation.
For p = 0, 1, . . . , d, we denote

⌦p =
�

! ✓ {1, 2, . . . , d
 

: |!| = p}.
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PADÉ-TYPE APPROXIMANTS FOR SOME CLASSES OF MULTIVARIATE FUNCTIONS 735

We order elements of each set ! 2 ⌦p : ! = {l1(!), l2(!), . . . , lp(!)} so that

1  l1(!) < l2(!) < . . . < lp(!)  d.

We also order elements of the complement

! = {1, 2, . . . , d} \ ! = {m1(!),m2(!), . . . ,md−p(!)} 2 ⌦d−p

so that

1  m1(!) < m2(!) < . . . < md−p(!)  d.

For each set ! 2 ⌦p, p = 1, . . . , d, we introduce the notation

δ(!) =
�

δ1(!), δ2(!), . . . , δd(!)
�

,

where

δi(!) =

8

<

:

0 for i 2 !,

1 for i 62 !,

"(!) =
�

"1(!), "2(!), . . . , "d(!)
�

.

Here,

"i(!) =

8

<

:

−1 for i 2 !,

1 for i 62 !,

and, hence,

δi(!) =
"i(!) + 1

2
, i = 1, 2, . . . , d.

We also denote 0 = (0, 0, . . . , 0) 2 Zd
+ and 1 = (1, 1, . . . , 1) 2 Zd

+. Thus,

1 = δ(?) and 0 = δ
�

{1, 2, . . . , d}
�

.

For two vectors a,b 2 Zd
+, a = (a1, a2, . . . , ad), b = (b1, b2, . . . , bd), we denote their coordinatewise prod-

uct by a ◦ b :

a ◦ b = (a1b1, a2b2, . . . , adbd).

For each vector a = (a1, a2, . . . , ad) 2 Zd
+, we denote

∆(a) =
n

j = (j1, j2, . . . , jd) 2 Zd
+ : ji 2 {0, 1, . . . , ai}, i = 1, 2, . . . , d

o

.

For fixed N 2 Zd
+, we consider a continuous function ΦN : Rd

+ ! R with the following properties:

(i) the set DΦN
= {x 2 Rd

+ | ΦN(x)  0} is bounded in Rd
+;
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(ii) the cardinality of DΦN

T

�

x 2 Zd
+ | xi ≥ Ni, i = 1, 2, . . . , d

 

is equal to
Yd

i=1
(Ni + 1)− 1;

(iii) for all i = 1, 2, . . . , d, there exist uniquely defined functions

xi = 'i(x1, x2, . . . , xi−1, xi+1, . . . , xd)

with

(x1, x2, . . . , xi−1, xi+1, . . . , xd) 2 Di :=
�

(x1, x2, . . . , xi−1, xi+1, . . . , xd) 2 Rd−1
+ |

9xi 2 R+ : ΦN(x)  0
 

such that

ΦN

�

x1, x2, . . . , xi−1, 'i(x1, x2, . . . , xi−1, xi+1, . . . , xd), xi+1, . . . , xd

�

⌘ 0;

(iv) for each i = 1, 2, . . . , d,

'i(x1, x2, . . . , xi−1, xi+1, . . . , xd) ≥ Ni 8(x1, x2, . . . , xi−1, xi+1, . . . , xd) 2 Di.

By using this notation, we establish the following result, which enables one to construct d-dimensional Padé-
type approximants for series of the form (2) whose coefficients admit representations of the form (1):

Theorem 1 [7]. Suppose that the coefficients of a formal power series of the form (2) satisfy the generalized
moment representation of the form (1). If, for some N 2 Nd

, there exists a generalized polynomial of the form

YN =
X

j2∆(N)

c

(N)
j yj

such that

c

(N)
N 6= 0

and, for k 2
�

k 2 Zd
+ : k+N 2 DΦN

 

, the conditions of biorthogonality

hxk, YNi = 0

are satisfied, then the rational function

[M/N]f (z) =
P (z)

Q(z)
,

where

Q(z) =
X

j2∆(N)

c

(N)
N−jz

j
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and

P (z) =
d−1
X

p=0

X

!2⌦p

p
Y

r=1

z

Nlr(!)

lr(!)

X

0kmi(!)Nmi(!)−1,i=1,2,...,d−p

ΦN(k)0

⇥ z

k
X

j2∆(δ(!)◦N+δ(!)◦k)

cδ(!)◦N+"(!)◦jsk+"(!)◦j,

admits an expansion in a power series whose coefficients coincide with the coefficients of series (2) for all
k 2 DΦN

\ Zd
+ and, hence, this rational function is a d-dimensional Padé-type approximant for series (2) of

order [M/N], where

M = DΦN
\ Zd

+ \
�

x 2 Zd
+ : xi ≥ Ni, i = 1, 2, . . . , d

 

and N = ∆(N).

Generalized moment representations of the form (1) can be also represented in the operator form. Assume
that the linear spaces X and Y are normed, the bilinear form h· , ·i is separately continuous, pairwise commuting
bounded linear operators

Ai : X ! X, i = 1, 2, . . . , d,

such that

Aixk = xk+ei,, i = 1, 2, . . . , d,

for each k 2 Zd
+, where

ei = (0, 0, . . . , 0, 1, 0, . . . , 0) = 1− δ({i}), i = 1, 2, . . . , d,

are given in the space X, and the space Y contains bounded linear operators A?
i : Y ! Y, i = 1, 2, . . . , d, adjoint

to the operators Ai, i = 1, 2, . . . , d, with respect to the bilinear form h· , ·i.
Thus, representations (1) can be rewritten in the form

sk =
⌦

xk, y0

↵

=

*

d
Y

i=1

A

ki
i x0, y0

+

, k 2 Zd
+,

and series (2) is convergent in the vicinity of the origin of coordinates to an analytic function with the following
representation:

f(z) =

*

d
Y

i=1

Rzi(Ai)x0, y0

+

,

where

Rz(A) = (I − zA)−1

is the resolvent function of the operator A.
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Let X = Y = L2 ([0, 1], dµ) for some measure defined by a nondecreasing function µ with infinitely many
points of increase on [0, 1]. On the product of the spaces X⇥ Y, we define a separately continuous bilinear form

hx, yi =
1
Z

0

x(t)y(t) dµ(t).

In the space X, for some fixed d1, 1 < d1 < d, we consider bounded pairwise commuting linear operators

A1, A2, . . . , Ad : X ! X

defined as follows:

(Ap')(t) = t'(t), p = 1, d1,

(Al')(t) = (1− t)'(t), l = d1 + 1, d.

In this case, for x0(t), y0(t) ⌘ 1, we rewrite function (2) in the form

f(z) =

*

d1
Y

k=1

Rzk(A1)

d
Y

m=d1+1

Rzm(Ad)x0, y0

+

=

1
Z

0

dµ(t)
Yd1

k=1
(1− zkt)

Yd

k=d1+1
(1− zk(1− t))

. (3)

It is clear that

1

1− zm(1− t)
=

1

1− zm

1

1− zmt
zm−1

=
1

1− zm

1

1− ezmt

,

where

ezm =
zm

zm − 1
.

The following relation was used in [1]:

1
Yd

k=1
(1− wkt)

=
1

Y

k<j
(wk − wj)

8

>

<

>

:

d
X

k=1

w

d−1
k (−1)k+1

Y

p<q
p,q 6=k

(wp − wq)
1

1− wkt

9

>

=

>

;

= (−1)d−1
d
X

k=1

w

d−1
k

Yd

p=1
p6=k

(wp − wk)

1

1− wkt
.
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Thus, by setting

wk =

8

>

<

>

:

zk for k = 1, d1,

ezk =
zk

zk − 1
for k = d1 + 1, d,

we obtain

1
Yd1

k=1
(1− zkt)

Yd

k=d1+1
(1− zk(1− t))

=
Yd

k=d1+1

1

1− zk

1
Yd1

k=1
(1− zkt)

Yd

k=d1+1
(1− ezkt)

=
1

Yd

k=d1+1
(1− zk)

(−1)d−1

8

>

>

<

>

>

:

d1
X

k=1

z

d−1
k

Yd1

p=1
p6=k

(zp − zk)
Yd

p=d1+1
(ezp − zk)

1

1− zkt

+

d
X

k=d1+1

ez

d−1
k

Yd1

p=1
(zp − ezk)

Yd

p=d1+1
p 6=k

(ezp − ezk)

1

1− ezkt

9

>

>

=

>

>

;

= (−1)d−1

8

>

>

<

>

>

:

d1
X

k=1

z

d−1
k

Yd1

p=1
p 6=k

(zp − zk)
Yd

p=d1+1
(zp + zk − zpzk)

1

1− zkt

+(−1)d1
d
X

k=d1+1

z

d−1
k

Yd1

p=1
(zp + zk − zpzk)

Yd

p=d1+1
p 6=k

(zk − zp)

1

1− zk(1− t)

9

>

>

=

>

>

;

.

The coefficients sk of expansion of the function f in the formal power series with d variables have the
following form:

sk = hxk, y0i =
D

A

k1+k2+...+kd1
1 A

kd1+1+...+kd
d x0, y0

E

=

1
Z

0

t

k1+k2+...+kd1 (1− t)kd1+1+...+kd
dµ(t).

To determine Padé-type approximants for functions (2) by Theorem 1, it is necessary to construct the polyno-
mials

XN(t) =

N1
X

k1=0

. . .

Nd
X

kd=0

c

(N1,...,Nd)
k1,k2,...,kd

t

k1+k2+...+kd1 (1− t)kd1+1+...+kd
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satisfying the conditions of biorthogonality

hXN, yji = 0

for

j 2
�

(j1, j2, . . . , jd) 2 Zd
+ | ji 2 [0, Ni], i = 1, d

 

\
�

(N1, N2, . . . , Nd)
 

.

In this case, XN(t) is an algebraic polynomial of degree N1 + N2 + . . . + Nd orthogonal to polynomials
of degree at most N1 + . . . + Nd − 1. Hence, to within a constant factor, it coincides with the polynomial of
degree N1 + . . .+Nd orthonormal on [0, 1] with respect to the measure dµ (see [8, p. 268]):

N1
X

k1=0

. . .

Nd
X

kd=0

c

(N1,...,Nd)
k1,...,kd

t

k1+k2+...+kd1 (1− t)kd1+1+...+kd = PN1+N2+...+Nd
(t). (4)

The coefficients

c

(N1,...,Nd)
k1,...,kd

, k 2 ∆(N),

in equality (4) can be defined in many different ways. Since functions of the form (2) are symmetric in their
variables if and only if

dµ(t) ⌘ dµ(1− t),

it is necessary to consider two cases:

Case 1. In the asymmetric case, as one of the possibility of determination of the coefficients c

(N1,...,Nd)
k1,...,kd

,

k 2 ∆(N), we consider the following procedure:

N1+...+Nd
X

i=0

p

(N1+...+Nd)
i t

i =

N1−1
X

k1=0

ck1,0,...,0t
k1 + t

N1

N2−1
X

k2=0

cN1,k2,0,...,0t
k2

+ t

N1+N2

N3−1
X

k3=0

cN1,N2,k3,0,...,0t
k3

+ . . .+ t

N1+...+Nd1−1

Nd1
−1

X

kd1=0

cN1,N2,...,Nd1−1,kd1 ,0,...,0
t

kd1

+ t

N1+...+Nd1

Nd1+1−1
X

kd1+1=0

cN1,...,Nd1
,kd1+1,0,...,0(1− t)kd1+1

+ t

N1+...+Nd1 (1− t)Nd1+1

Nd1+2−1
X

kd1+2=0

cN1,...,Nd1
,Nd1+1,kd1+2,0,...,0(1− t)kd1+2
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+ . . .+ t

N1+...+Nd1(1− t)Nd1+1+...+Nd−2

Nd−1−1
X

kd−1=0

cN1,...,Nd1
,Nd1+1,...,kd−1,0(1− t)kd−1

+ t

N1+...+Nd1 (1− t)Nd1+1+...+Nd−1

Nd
X

kd=0

cN1,...,Nd1
,Nd1+1,...,Nd−1,kd(1− t)kd .

Thus, for k1 = 0, N1 − 1, k2 = . . . = kd = 0, we get

c

(N1,...,Nd)
k1,...,kd

= p

(N1+...+Nd)
k1

.

For k1 = N1, k2 = 0, N2 − 1, k3 = . . . = kd = 0, we can write

c

(N1,...,Nd)
N1,k2,0,...,0

= p

(N1+...+Nd)
N1+k2

and, for k1 = N1, k2 = N2, k3 = 0, N3 − 1, k4 = . . . = kd = 0, we obtain

c

(N1,...,Nd)
N1,N2,k3,0,...,0

= p

(N1+...+Nd)
N1+N2+k3

.

Continuing in a similar way and using the same reasoning, we find:

for k1 = N1, k2 = N2, . . . , kd1−1 = Nd1−1, kd1 = 0, Nd1 − 1, kd1+1 = . . . = kd = 0,

c

(N1,...,Nd)
N1,N2,...,Nd1−1,kd1 ,0,...,0

= p

(N1+...+Nd)
N1+N2+...+Nd1−1+kd1

,

for k1 = N1, k2 = N2, . . . , kd1 = Nd1 , kd1+1 = 0, Nd1+1 − 1, kd1+2 = . . . = kd = 0,

c

(N1,...,Nd)
N1,N2,...,Nd1

,kd1+1,0,...,0
= (−1)kd1+1

Nd1+1−1
X

i=kd1+1

p

(N1+...+Nd)
i+N1+N2+...+Nd1

✓

i

kd1+1

◆

,

for k1 = N1, . . . , kd1 = Nd1 , kd1+1 = Nd1+1, kd1+2 = 0, Nd1+2 − 1, kd1+3 = . . . = kd = 0,

c

(N1,...,Nd)
N1,N2,...,Nd1

,Nd1+1,kd1+2,0,...,0
= (−1)kd1+2

Nd1+2−1
X

i=kd1+2

p

(N1+...+Nd)
i+N1+N2+...+Nd1+1

✓

i

kd1+2

◆

,

for k1 = N1, . . . , kd1 = Nd1 , kd1+1 = Nd1+1, kd1+2 = 0, Nd1+2 − 1, kd1+3 = . . . = kd = 0,

c

(N1,...,Nd)
N1,N2,...,Nd1

,Nd1+1,kd1+2,0,...,0
= (−1)kd1+2

Nd1+2−1
X

i=kd1+2

p

(N1+...+Nd)
i+N1+N2+...+Nd1+1

✓

i

kd1+2

◆

,

and so on.
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We also present the last two equalities:

for k1 = N1, . . . , kd−2 = Nd−2, kd−1 = 0, Nd−1 − 1, kd = 0,

c

(N1,...,Nd)
N1,N2,...,Nd−2,kd−1,0

= (−1)kd−1

Nd−1−1
X

i=kd−1

p

(N1+...+Nd)
i+N1+N2+...+Nd−2

✓

i

kd−1

◆

;

for k1 = N1, . . . , Nd−1, kd = 0, Nd − 1,

c

(N1,...,Nd)
N1,N2,...,Nd−1,kd

= (−1)kd
Nd−1
X

i=kd

p

(N1+...+Nd)
i+N1+N2+...+Nd−1

✓

i

kd

◆

.

Case 2. In the symmetric case, we assume that

N1 = N2 = . . . = Nd1 ,

Nd1+1 = Nd1+2 = . . . = Nd,

and, in addition,

N1 +N2 + . . .+Nd1 = Nd1+1 +Nd1+2 + . . .+Nd.

Let

N1 = N2 = . . . = Nd1 = N and Nd1+1 = Nd1+2 = . . . = Nd = M.

Then

d1N = (d− d1)M

and

XN(t) =

N
X

k1=0

. . .

N
X

kd1=0

M
X

kd1+1=0

. . .

M
X

kd=0

c

(N1,...,Nd)
k1,...,kd

t

k1+...+kd1 (1− t)kd1+1+...+kd = P2d1N (t).

We set

ck1,k2,...,kd = 0 for k1 + k2 + . . .+ kd1 6= kd1+1 + . . .+ kd,

ck1,k2,...,kd = ec|k|/2 for k1 + k2 + . . .+ kd1 = kd1+1 + . . .+ kd = |k|/2.

Then

XN(t) =

2d1N
X

m=0

ec|k|/2t
Pd1

i=1 ki(1− t)
Pd

i=d1+1 ki

= P2d1N (t) =

2d1N
X

i=0

p

(2d1N)
i t

i
.
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According to Lemma 3.1 (see [9]), the coefficients ecm have the form

ecm =

8

>

>

>

<

>

>

>

:

p

(2d1N)
0 for m = 0,

m
X

j=1

(2m− j − 1)!j

m!(m− j)!
p

(2d1N)
j for m ≥ 1.

(5)

For the measure

dµ(t) = t

⌫(1− t)σdt,

the coefficients of the power expansion of function (3) have the form

sk =
Γ(k1 + k2 + . . .+ kd1 + ⌫ + 1)Γ(kd1+1 + . . .+ kd + σ + 1)

Γ(|k|+ ⌫ + σ + 2)

=

Γ

✓

Xd1

i=1
ki + ⌫ + 1

◆

Γ

✓

Xd

i=d1+1
ki + σ + 1

◆

Γ(|k|+ ⌫ + σ + 2)
. (6)

Hence, we obtain the function

f(z) =

1
X

k1,k2,...,kd=0

Γ

✓

Xd1

i=1
ki + ⌫ + 1

◆

Γ

✓

Xd

i=d1+1
ki + σ + 1

◆

Γ(|k|+ ⌫ + σ + 2)
z

k1
1 . . . z

kd
d

in the form of a hypergeometric series of the second order (see [10]).
In this case, the polynomial XN(t) coincides, to within a constant factor, with the orthonormal Jacobi poly-

nomial P (⌫,σ)⇤
|N| (t) of degree |N| shifted to [0, 1].

We now write the explicit expression for the coefficients of orthogonal Jacobi polynomials (see [11, p. 581],
Sec. 22.3.3; for the sake of convenience, we set the constant equal to 1):

P

(⌫,σ)⇤
N1+...+Nd

(t) =

N1+...+Nd
X

m=0

(−1)m
✓

N1 + . . .+Nd

m

◆

Γ(N1 + . . .+Nd + ⌫ + σ +m+ 1)

Γ(⌫ +m+ 1)
t

m
.

For ⌫ = σ, which corresponds to the symmetric case, the polynomial XN coincides, to within a constant
factor, with the orthonormal Gegenbauer polynomial C(⌫+1/2)

2d1N
shifted to [0, 1].

The coefficients of this polynomial can be found from the relationship connecting it with the Jacobi polynomial
(see [11, p. 584], Sec. 22.5.27):

C

(⌫)
N (t) =

(2⌫)N
✓

⌫ +
1

2

◆

N

P

(⌫−1/2,⌫−1/2)
N (t).

Thus, we get

p

(2d1N)
i = (−1)i

(2⌫ + 1)2d1N
(⌫ + 1)2d1N

✓

2d1N

i

◆

Γ(2d1N + 2⌫ + 1 + i)

Γ(⌫ + 1 + i)
. (7)
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Substituting (7) in (5), we obtain

ecm =

8

>

>

>

>

>

<

>

>

>

>

>

:

Γ2(2d1N + 2⌫ + 1)

Γ(2d1N + ⌫ + 1)Γ(2⌫ + 1)
, m = 0,

m
X

j=1

(−1)j
✓

2d1N

j

◆

(2⌫ + 1)2d1N
(⌫ + 1)2d1N

(2m−j−1)!j

m!(m− j)!

Γ(2d1N + 2⌫ + 1 + j)

Γ(⌫ + 1 + j)
, m ≥ 1.

(8)

Hence, for the multidimensional hypergeometric series of the second kind given by the formula

f(z) =
1
X

k1,k2,...,kd=0

Γ

✓

Xd1

i=1
ki + ⌫ + 1

◆

Γ

✓

Xd

i=d1+1
ki + ⌫ + 1

◆

Γ(|k|+ 2⌫ + 2)
z

k1
1 . . . z

kd
d , (9)

it is possible to construct Padé-type approximants by using Theorem 1, namely, the following assertion is true:

Theorem 2. For any N = (N, . . . , N,M, . . . ,M ) 2 Nd
, the rational function

[M/N]f (z) =
P (z)

Q(z)
,

where

Q(z) =
X

j2∆(N)

c

(N)
N−jz

j
,

P (z) =
d−1
X

p=0

X

!2⌦p

p
Y

r=1

z

Nlr(!)

lr(!)

X

0kmi(!)Nmi(!)−1,i=1,2,...,d−p

ΦN(k)0

z

k

⇥
X

j2∆(δ(!)◦N+δ(!)◦k)

cδ(!)◦N+"(!)◦jsk+"(!)◦j,

ΦN(k) = k1 + k2 + . . .+ kd − 2d1N + 1,

the coefficients c

(N)
j are determined by relations (8), and the quantities sk are given by relations (6), admits

an expansion in a power series whose coefficients coincide with the coefficients of the Taylor–Maclaurin series for
a function of the form (9) for all

k 2
�

k 2 Zd
+ : |k|  4d1N − 1

 

and, hence, this rational function is a d-dimensional Padé-type approximant of function (9) of the order [M/N],

where

M =
�

k 2 Zd
+ : |k|  4d1N − 1

 

\
�

k 2 Zd
+ : k1 ≥ N1, . . . , kd ≥ Nd

 

and

N = ∆(N).
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