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MANY-DIMENSIONAL GENERALIZED MOMENT REPRESENTATIONS AND
PADÉ-TYPE APPROXIMANTS FOR FUNCTIONS OF MANY VARIABLES

A. P. Holub and L. O. Chernets’ka UDC 517.53

We propose an approach to the construction of multidimensional Padé-type approximants for analytic
functions based on the extension of Dzyadyk’s method of generalized moment representations.

In 1981, Dzyadyk proposed a method of generalized moment representations for the construction and in-
vestigation of the Padé approximants for numerous important classes of special functions [1]. The subsequent
generalizations of this method made it possible to use it for the study of various generalizations of Padé approx-
imants, e.g., multipoint Padé approximants, Padé–Chebyshev approximants, consistent Padé approximants, etc.
(see [2]). In [3–5], we proposed a definition of two- and three-dimensional generalized moment representations
and illustrated their applications to the construction of rational Padé-type approximants for functions of two and
three variables.

In the present paper, we generalize this approach to the case of an arbitrary dimension d > 2.

We introduce the following definition:

Definition 1. We say that a d-dimensional number sequence {sk}k2Zd
+
has a generalized moment represen-

tation on the product of linear spaces X and Y for the bilinear form h., .i on this product if a d-dimensional
sequence of elements {xk}k2Zd

+
is defined in the space X and a d-dimensional sequence of elements {yj}j2Zd

+

is defined in the space Y so that

sk+j = hxk, yji, k, j 2 Zd
+. (1)

Consider a formal power series in d variables

f(z) =
X

k2Zd
+

skz
k
, (2)

where z = (z1, z2, . . . , zd) 2 Cd
, k = (k1, k2, . . . , kd) 2 Zd

+, and z

k = z

k1
1 z

k2
2 . . . z

kd
d .

For the sake of convenience, we introduce the following notation:
For p = 0, 1, . . . , d, we introduce a set

⌦p = {! ✓ {1, 2, . . . , d} : |!| = p} .

Further, we arrange elements of each set ! 2 ⌦p,

! = {l1(!), l2(!), . . . , lp(!)}
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so that

1 6 l1(!) < l2(!) < . . . < lp(!) 6 d.

We also arrange elements of the complement ! = {1, 2, . . . , d} \ !,

! =
�

m1(!),m2(!), . . . ,md−p(!)
 

2 ⌦d−p,

so that

1 6 m1(!) < m2(!) < . . . < md−p(!) 6 d.

For each set ! 2 ⌦p, p = 0, 1, . . . , d, we introduce the notation

δ(!) = (δ1(!), δ2(!), . . . , δd(!)),

where

δi(!) =

8

<

:

0 for i 2 !,

1 for i 62 !,

"(!) = ("1(!), "2(!), . . . , "d(!)),

"i(!) =

8

<

:

−1 for i 2 !,

1 for i 62 !,

so that

δi(!) =
"i(!) + 1

2
, i = 1, 2, . . . , d.

We also denote

0 = (0, 0, . . . , 0) 2 Zd
+, 1 = (1, 1, . . . , 1) 2 Zd

+,

so that

1 = δ(?), 0 = δ({1, 2, . . . , d}).

For each vector a,b 2 Zd
+, a = (a1, a2, . . . , ad), b = (b1, b2, . . . , bd), by a ◦ b, we denote the coordinate-

by-coordinate product of two vectors a and b :

a ◦ b = (a1b1, a2b2, . . . , adbd).

For each vector a 2 Zd
+, we denote

∆(a) =
n

j = (j1, j2, . . . , jd) 2 Zd
+ : ji 2 {0, 1, . . . , ai}, i = 1, 2, . . . , d

o

.
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By using this notation, we establish the following fact, which enables us to construct d-dimensional Padé-
type approximants for series (2) whose coefficients satisfy representations of the form (1). For the dimensions
d = 2 and d = 3, the corresponding results were obtained in [3–5]. A survey of the results obtained for various
multidimensional analogs of Padé approximations can be found in [6, pp. 323–332].

Theorem 1. Assume that the coefficients of a formal power series of the form (2) admit a generalized moment
representation of the form (1). If, for some N = (N1, N2, . . . , Nd) 2 Nd

, there exists a generalized polynomial

YN =
X

j2∆(N)

c

(N)
j yj (3)

such that c(N)
N 6= 0 and the condition of biorthogonality

hxk, YNi = 0 (4)

holds for k = ∆(N) \ {N}, then the rational function

[M /N ]f (z) =
P (z)

Q(z)
, (5)

where

Q(z) =
X

j2∆(N)

c

(N)
N−jz

j
, (6)

and

P (z) =
d−1
X

p=0

X

!2⌦p

p
Y

r=1

z

Nlr(!)

lr(!)

X

k2∆(N−δ(!)◦1)

z

k
X

j2∆(δ(!)◦N+δ(!)◦k)

cδ(!)◦N+"(!)◦jsk+"(!)◦j, (7)

can be expanded in a power series whose coefficients coincide with the coefficients of series (2) for all k 2
∆(2N) \

��

2N1, 2N2, . . . , 2Nd

� 

and, hence, this rational function is the d-dimensional Padé-type approximant
of series (2) of the order [M /N ], where

M = ∆(2N) \
d
Y

i=1

{Ni, Ni + 1, . . . , 2Ni}

and N = ∆(N).

Proof. We fix a vector K 2 Zd
+ with sufficiently large coordinates Ki 2 Z+, i = 1, 2, . . . , d. We multiply

each equality in (1) by z

k and sum these equalities over all k 2 ∆(K). On the left-hand side, we get

X

k2∆(K)

sk+jz
k = z

−j
X

k−j2∆(K)

skz
k

= z

−j

8

<

:

f(z)−
d−1
X

p=0

X

!2⌦p

X

k2
Qd

i=1[δi(!)ji,ji+δi(!)Ki−δi(!)]

skz
k

9

=

;

− Ek,j(z), (8)
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where

Ek,j(z) =
X

k2Zd
+\∆(K)

ek,jz
k
.

We now multiply the equalities obtained as a result by c

(N)
j and find their sum over j 2 ∆(N). In view of (8),

we obtain

X

j2∆(N)

c

(N)
j

8

<

:

z

−j

8

<

:

f(z)−
d−1
X

p=0

X

!2⌦p

X

k2
Qd

i=1[δi(!)ji,ji+δi(!)Ki−δi(!)]

skz
k

9

=

;

− Ek,j(z)

9

=

;

= z

−N

8

<

:

f(z)
X

j2∆(N)

c

(N)
N−jz

j −
d−1
X

p=0

X

!2⌦p

X

j2∆(N)

c

(N)
j z

N−j
X

k2
Qd

i=1[δi(!)ji,ji+δi(!)Ki−δi(!)]

skz
k

9

=

;

− eEK,N(z),

where

eEK,N(z) =
X

k2Zd
+\∆(K)

eeK,Nz

k
.

To get the final form of numerator (7), we use the following lemma:

Lemma 1. For any N,K 2 N, an arbitrary sequence {sk}1k=0, any collection of numbers {c(N)
j }Nj=0, and

any z 2 C, the following identities are true:

N
X

j=1

cjz
N−j

j−1
X

k=0

skz
k =

N−1
X

k=0

z

k
k
X

j=0

cN−jsk−j ,

N
X

j=0

cjz
N−j

j+K
X

k=j

skz
k = z

N
K
X

k=0

z

k
N
X

j=0

cjsk+j .

To prove the lemma, it suffices to perform elementary changes of variables under the signs of summation and
change the order of summation.

By using Lemma 1, for sufficiently large coordinates of the vector K, we can prove the validity of relation (7).
As in the cases d = 2, 3 [3–5], Theorem 1 can be generalized if we choose a generalized polynomial YN from

the conditions of biorthogonality of the form (4) to the elements xk not for k 2 ∆(N) \ {N} but for k 2 HN,

where HN is a subset of Zd
+ containing exactly

d
Y

i=1

(Ni + 1)− 1

elements. To formulate the corresponding assertion, we consider a continuously differentiable function

Φ(x) : Rd
+ ! R

with the following properties:
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(i) the set DΦ =
�

x 2 Rd
+ : ΦN(x) 6 0

 

is bounded in Rd
+ ;

(ii) the cardinality of the set DΦ
T

�

x 2 Zd
+ : xi > Ni, i = 1, 2, . . . , d

 

is equal to

d
Y

i=1

(Ni + 1)− 1 ;

(iii) for all i = 1, 2, . . . , d, single-valued functions xi = 'i(x1, x2, . . . , xi−1, xi+1, . . . , xd) exist for

(x1, x2, . . . , xi−1, xi+1, . . . , xd) 2 Di :=
n

(x1, x2, . . . , xi−1, xi+1, . . . , xd) 2 Rd−1
+ :

9xi 2 R+ such that Φ(x1, x2, . . . , xd) 6 0
o

;

(iv) for any i = 1, 2, . . . , d ,

'i(x1, x2, . . . , xi−1, xi+1, . . . , xd) > Ni

for all values (x1, x2, . . . , xi−1, xi+1, . . . , xd) 2 Di.

In this case, by using the scheme of the proof of Theorem 1, we establish the following assertion:

Theorem 1

0 . Assume that, under the conditions of Theorem 1, for some N 2 Nd
, there exists a generalized

polynomial of the form (3) such that c(N)
N 6= 0 and that the conditions of biorthogonality (4) for k 2

�

k 2 Zd
+ :

k+N 2 DΦ

 

are satisfied. Then a rational function of the form (5), where Q(z) has the form (6) and

P (z) =

d−1
X

p=0

X

!2⌦p

p
Y

r=1

z

Nlr(!)

lr(!)

X

06kmi(!)6Nmi(!)−1,

i=1,2,...,d−p,
Φ(k)60

z

k
X

j2∆(δ(!)◦N+δ(!)◦k)

cδ(!)◦N+"(!)◦jsk+"(!)◦j,

admits an expansion in a power series whose coefficients coincide with the coefficients of series (2) for all k 2
DΦ \ Zd

+ and, hence, this rational function is a d-dimensional approximation of the Padé type of series (2) of
order [M /N ], where

M = DΦ \ Zd
+ \

�

x 2 Zd
+ : xi > Ni, i = 1, 2, . . . , d

 

and N = ∆(N).

In the case where the linear spaces X and Y are normed, the bilinear form h . , . i is separately continuous
(see, e.g., [7, p. 63]), pairwise commuting bounded linear operators Ai : X ! X , i = 1, 2, . . . , d, such that

Aixk = xk+ei,, i = 1, 2, . . . , d,

for each k 2 Zd
+, where

ei = (0, 0, . . . , 0, 1, 0, . . . , 0) = 1− δ({i}), i = 1, 2, . . . , d,
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are defined in the space X , and in addition, bounded linear operators A

?
i : Y ! Y , i = 1, 2, . . . , d, adjoint to

the operators Ai, i = 1, 2, . . . , d, with respect to the bilinear form h., .i exist in the space Y (see [2, p. 18]), under
the conditions of Theorem 1, we get the following formula for the error of approximation:

f(z)− [M /N ]f (z) =
1

Q(z)

(

d
Y

i=1

z

Ni
i

*

d
Y

r=1

b

Rzr(Ar)x0, YN

+

+

d−1
X

p=0

X

!2⌦p

p
Y

r=1

z

Nlr(!)

lr(!)

X

k2⇡(N)(!)

z

k
X

j2∆(δ(!)◦N+δ(!)◦k)

cδ(!)◦N+"(!)◦jsk+"(!)◦j

9

=

;

,

where

⇡

(N)(!) =

✓

⇡

(N)
1 (!),⇡

(N)
2 (!), . . . ,⇡

(N)
d (!)

◆

,

and

⇡

(N)
i (!) =

8

>

<

>

:

[0, Ni − 1] for i 62 !,

[Ni + 1,1] for i 2 !.

Under the conditions of Theorem 10, this relation takes the form

f(z)− [M /N ]f (z) =
1

Q(z)

8

>

>

<

>

>

:

d
Y

i=1

z

Ni
i

*

d
Y

r=1

b

Rzr(Ar)x0, YN

+

+

d−1
X

p=0

X

!2⌦p

p
Y

r=1

z

Nlr(!)

lr(!)

⇥
X

06kmi(!)6Nmi(!)−1,

i=1,2,...,d−p,

Φ(k)>0

z

k
X

j2∆(δ(!)◦N+δ(!)◦k)

cδ(!)◦N+"(!)◦jsk+"(!)◦j

9

>

>

=

>

>

;

.

Remark. By c

Rz(A), we denote the resolvent function of the operator A : cRz(A) = (I − zA)−1
, where

I : X ! X is the identity operator.

We now consider the case where all operators Ai, i = 1, 2, . . . , d, coincide, i.e.,

A1 = A2 = . . . = Ad = A.

Then the approximated function takes the form

f(z) =

*

d
Y

i=1

b

Rzi(A)x0, y0

+

. (9)

We have established the following result:
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Lemma 2. Any function of the form (9) admits the representation

f(z) =
1

Q

s<t
(zs − zt)

d
X

i=1

z

d−1
i (−1)i+1

Y

s<t
s,t6=i

(zs − zt)g(zi), (10)

where

g(z) =
⌦

b

Rz(A)x0, y0
↵

.

This lemma can be easily proved by induction.

We now assume that the operator A is an operator of multiplication by an independent variable in the space
L2 ([0, 1], dµ) , where µ is a nondecreasing function with infinitely many points of increase on [0, 1] :

(A')(t) = t'(t).

Also let N = (N,N, . . . , N) 2 Nd
. Thus, in order to construct the d-dimensional Padé-type approximants

for a function f(z) of the form (10) with

g(z) =

1
Z

0

dµ(t)

1− zt

according to Theorems 1 and 10, it is necessary to construct the polynomials

YN(t) =
X

j2∆(N)

c

(N)
j t

|j|
, where |j| = j1 + j2 + . . .+ jd, (11)

satisfying the conditions of biorthogonality

1
Z

0

t

|k|
YN(t)dµ(t) = 0 (12)

for k 2 ∆(N) \ {N}. This is equivalent to the equality

1
Z

0

t

k
YN(t)dµ(t) = 0 (13)

for k = 0, 1, . . . , dN − 1.

It follows from (13) that, to within a constant factor, the polynomial YN(t) must coincide with the algebraic
polynomial

PdN (t) =

dN
X

j=0

p

(dN)
j t

j (14)

orthonormal on [0, 1] with the measure dµ(t).
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Since condition (12) is satisfied not only for k 2 ∆(N) \ {N} but also for k 2 {k 2 Zd
+ : |k| 6 2dN − 1},

it is necessary to choose the function Φ(x1, x2, . . . , xd) from the statement of Theorem 10 in the form of a function

Φ(x1, x2, . . . , xd) = |x|− 2dN + 1.

In this case, the functions 'i : Rd−1
+ ! R take the form

'i(x1, x2, . . . , xi−1, xi+1, . . . , xd) = 2dN − 1− x1 − x2 − . . .− xi−1 − xi+1 − . . .− xd.

Equality (11) enables us to find the coefficients

c

(N)
j , j 2 ∆(N),

by using the coefficients p

(dN)
j , j = 0, 1, . . . , dN. However, this can be done in infinitely many ways. For the

sake of definiteness, we assume that c(N)
j = c

(N)
k for |j| = |k|.

Thus, it is possible to establish the following auxiliary result:

Lemma 3. Let N 2 N and 0 6 j 6 dN. Then the number of vectors k 2 Zd
+ such that ki 6 N,

i = 1, 2, . . . , d, and |k| = j, is equal to

γ

(N)
j =

[ j
N+1 ]
X

r=0

✓

d

r

◆

(−1)r
(d+ j − r(N + 1)− 1)!

(d− 1)!(j − r(N + 1))!
.

Proof. Consider a polynomial

VN(z) =
X

k2∆(N)

z

k
.

It is clear that

VN(z) =
d
Y

i=1

 

N
X

k=0

z

k
i

!

=
d
Y

i=1

1− z

N+1
i

1− zi
.

Setting z1 = z2 = . . . = zd = z, we obtain

(1− z

N+1)d

(1− z)d
=

dN
X

j=0

γ

(N)
j z

j
.

By using the decompositions

(1− z

N+1)d =

d
X

m=0

✓

d

m

◆

(−1)mz

m(N+1)

and

1

(1− z)d
=

1
X

k=0

(d+ k − 1)!

(d− 1)!k!
z

k
,

we prove the lemma.
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It follows from Lemma 3 that the coefficients c

(N)
j , j 2 ∆(N), of the polynomials YN must be chosen in

the form

c

(N)
j =

p

(dN)
|j|

γ

(N)
|j|

=
p

(dN)
|j|

X

h
|j|

N+1

i

r=0

✓

d

r

◆

(−1)r
�

d+ |j|− r(N + 1)− 1
�

!

(d− 1)!
�

|j|− r(N + 1)
�

!

. (15)

By using these arguments and Theorem 10, we arrive at the following assertion:

Theorem 2. For every N 2 N, the rational function

[M /N ]f (z) =
P (z)

Q(z)
,

where

Q(z) =
X

j2∆(N)

c

(N)
N−jz

j
,

P (z) =

d−1
X

p=0

X

!2⌦p

p
Y

r=1

z

Nlr(!)

lr(!)

X

06kmi(!)6N−1,

i=1,2,...,d−p,

|k|62dN−1

z

k
X

j2∆(δ(!)◦N+δ(!)◦k)

cδ(!)◦N+"(!)◦jsPd−p
i=1 jmi+|k|−

Pp
i=1 jli

,

N = (N,N, . . . , N),

the coefficients c

(N)
j are determined by relations (15), and sk =

Z 1

0
t

k
dµ(t), can be expanded in a power series

whose coefficients coincide with the coefficients of the Taylor–Maclaurin series for a function f(z) of the form (10)
for all k 2

�

k 2 Zd
+ : |k| 6 2dN − 1

 

and, hence, this rational function plays the role of d-dimensional Padé-
type approximant for a function of the form (10) of order [M /N ], where M =

�

k 2 Zd
+ : |k| 6 2dN − 1

 

and N = ∆(N).

If dµ(t) = t

⌫(1 − t)σdt, ⌫,σ > −1, then function (10) is a special case of the d-dimensional Lauricella
function

FD(a, b1, . . . , bd; c; z1, . . . , zd) =
X

k2Zd
+

(a)|k|(b1)k1 . . . (bd)kd
c|k|k1! . . . kd!

z1
k1
. . . zd

kd

for a = ⌫ + 1, b1 = b2 = . . . = bd = 1, and c = ⇢+ ⌫ + 2 (see [8; 9, p. 33]).
In this case, polynomials (14) are shifted Jacobi polynomials orthonormal on [0, 1] with weight t⌫(1−t)σ and

their coefficients can be found in the explicit form (see [10, p. 581]). Hence, by Theorem 2, we obtain the explicit
form of the d-dimensional Padé-type approximations for the corresponding functions.
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8. G. Lauricella, “Sulle funzioni ipergeometriche a piú variabili,” Rend. Circ. Mat. Palermo, No. 7, 111–158 (1983).
9. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Wiley, New York (1985).
10. M. Abramowitz and I. A. Stegun (editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables

[Russian translation], Nauka, Moscow (1979).


	Abstract
	Theorem 1
	Theorem 1'
	Theorem 2
	REFERENCES

