
property is satisfied for the measures v~AV and is preserved for v~ ~ thanks to the convergence 
of the finite-dimensional distributions, which follows from the convergence of the character- 
istic functionals. 
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CONVERGENCE OF DENOMINATORS OF JOINT PADE APPROXIMATIONS OF A 

SET OF CONFLUENT HYPERGEOMETRIC FUNCTIONS 

A. P. Golub UDC 517.53 

This paper continues the investigation begun in [i] concerning the convergence of joint 
Pad4 approximations of a set of confluent hypergeometric functions {IF, (I, v h ~- I; z)}~=~ . We 
recall the main definitions and results. 

Definition i (see [2]). Let F = {~k (z)}~_, be a set of functions, analytic in the neigh- 

borhood of z = 0, and ~ = (r I .... ,r n) a vector whose coordinates are nonnegative integers 
Z n whose sum is some number N = N(r)E ~. Joint Pad4 approximations of the set {f~( )}~=-i, of order 

(IN/N]'~r), are rational polynomials ~xC2!N{F;~ z}, k----l,nl of degree [N/N] with a common denomina- 
tor, such that the following asymptotic relations are true: 

(k)  "" 
~k(Z)~aN,N{F;r ; z }=O(zN+~+I) ,  z-+O; k =  1,n. (1 )  

The following theorem was proved in [I]. 

Joint Pad~ approximations of a set of confluent hypergeometric functions THEOREM i. 

z h F = {fk ( )}k=, 

[~ (z) = 1F1 (1; ~k + 1; z), k = 1, n, v~ - -  v m ~ Z for k =/a m; 

v h ~ l :  k = l , n  

o f  o r d e r  ( [ N / N ] ;  7 )  a r e  u n i f o r m l y  c o n v e r g e n t  t o  t h e  f u n c t i o n s  f k ( z )  on any compact  s e t  K in  
the complex plane as N ~ ~. 

The arguments used to prove this theorem imply that if BN(t) are polynomials that satisfy 
the biorthogonality conditions 

I 

S B N ( t ) t i + ~ d t = O ,  i = O ,  r h - - 1 ;  k =  l , n ,  
0 

in the interval [0, i], having zeros so located that their arithmetic means satisfy relation 
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t(N~ , , l ~  N) 

~,v = N 

then for the denominators of the corresponding joint approximations one has 

l 
N--I- QN(Z)-+exp{(• 1)z}, as N-+  oo 

uniformly on compact sets. 

We wish to investigate the behavior of the numbers a N as N + co. We may assume without 
loss of generality that the leading coefficient of the polynomial BN(t) is unity: 

Bu (t) = t N + ~,Nt N-I @ PN--2 (0' 

where PN_2(t) is an algebraic polynomial of degree ~ N - - 2 .  Obviously, ~N =- ~u/N, We 
construct a generalized polynomial 

n rk--I N--I 

~ = l  1 = 0  / = 0  

d e f i n e d  by t h e  c o n d i t i o n s  
1 

~ tIAN_I (t) d l =  0 N 1. ! < 
0 

I f  ~ - - ~ m ( ~ 2 ~  f o r  k ~ m, such  a p o l y n o m i a l  i n d e e d  e x i s t s  and in  t h e  i n t e r v a l  (0 ,  i ) ,  
i t  has  e x a c t l y  N - 1 s i m p l e  r o o t s .  M u l t i p l y i n g  (3)  by AN_I ( t )  and i n t e g r a t i n g  o v e r  [0,  11 
with respect to the measure dt, we obtain 

1 

~ (t N + XNt N-I) AN-I (t) dt = O, 

whence 

Integration by parts gives 

1 1 t t l  

S tNAN_iCt )d t=( - -1 )N- / .N ,  ~'t S ~... 
0 0 0 0 

where 
l l, tN--2 

l 

S tNA~_I (t) dl 
0 
1 

~ tN--1AN--I (t) d t  

o 

IN--2 

~ AN--I (IN--l) diN--1 ... dtflt 
0 

*. 0=SS .--t 
0 0 0 

I 

= (--  I)N-~.N! ~ t~?u(Odt' 
0 

AN--1 (/N--l) dlN--I .., dticlt 1 
t 

= (-- 1 )N- i f  z N-2 (N - -  2)! AN-I (T) d"n 
O 

(2)  

(~) 

(4) 

(5) 

(6)  

Similarly, 

Thus, 

I ! 

S tN--'AN--~ (t)dt = (--  I) N-' .(N - -  1)t ~ *u (t) dt. 
0 0 

1 1 

t ,  N (t) ~ ~ t% (t) dt 
~ N  = - -  N o o 

1 ~ ( Z N - - - - -  t " "  

( ~ (t) dt f *N (t) dt 
u 

From (3) and (5) we obtain 

671 



N--I N--I  
~N) i f~i-% 

( - -  1) ~'-=' (N - -  2): % (Z) = ~ c(7 ~ tN-~+~: = t ~-'+~o ~'~ c: 
,--, N - -  l .+ kj ~ N--1.- t -  k~ 
/=u i=0 

Note that if ~m- % ~ Z the system of functions {tv~}~=l is an AT-system on [0, 1 + e] 
(see [2]), and moreover any polynomial of type (4) has at most N - I roots in (0, i + e) 
counting multiplicities. Therefore ~N(t) also has at most N- i roots in (0, i + e), count- 
ing multiplicities. But it is readily seen that ~N(t) has a root of multiplicity N - i at the 
point t = i. Consequently, up to a constant factor we can represent 0N(t) as 

1 I I . . .  1 

0 k I - -  k o k,., - -  k o ... kN-1 - -  ko 
%, (t) = t 'v-~+~~ . . . . . . . . . . . . . . . . . . . .  

1 tk~ - %  tk~-~ ... t~N-~-% 

In particular, when kj - k 0 = j/n, j = 0, ~, which corresponds to joint Pad4 approximations 

of the functions {~F, (I; vk + I; z u'~ (k-- l) -- ,.k--l, %=~i-~ N , v,>--l,k=l,n of order([N/N]; r),~=(rx ..... r,.) 
i 

rk----- , where m is the remainder upon division of N by n, we have ~N(0~- 

lN--l+k'(~ TM -- I) N-I. Then we obtain 

1 1 

i tg+~'(l'/n--l)N--ldt S U"(te+k~ 
0 0 

S :,_,+k. (t,,,. - 1)"-'dt S < " -  l : ' - ' . , , - ,e. 
0 0 

r (n (N + k, + I)) r (N) r (n (N + k.) + N) 

r (n (N q- k o q- I) q- N) r (n (N + ko) ) P (N) 

nfN -+ k,) [n(N -}- k,) 4- 11 ... [n(N + ko) --}- n - -  II 
= [n (N + ko) + N] in (N -? k0) q- N /- II In(N+k0')q-N+n-- I] " 

Hence  N-.l imaN=( n_~__/] 

We h a v e  t h u s  p r o v e d  t h e  f o l l o w i n g .  

THEOREM 2. The denominators of joint Pad~ approximations of a set of confluent hyper- 
g e o m e t r i c  f u n c t i o n s  

t ~ ( z ) = ~ F l ( 1 ; v ~ . +  1;z), k =  l,--n, v k = v , ~  ( k - - l )  , k =  l , n - ' - - , v l> - - l ,  
n 

of order ([NIN],r),r=(q ..... r.), rh= , where m is the remainder upon division 

o f  N by  n ,  c o n v e r g e  u n i f o r m l y  a s  N ~ ~ on a n y  c o m p a c t  s e t  i n  t h e  c o m p l e x  p l a n e :  

1 n " 

Remark 1. F o r m u l a  ( 5 )  y i e l d s  an  e l e m e n t a r y  d e r i v a t i o n  o f  a r e s u l t  due  t o  de B r u i n  [ 3 ] ,  
concerning the convergence of the denominators of the off-diagonal Padg approximations for 
IFI (I; c; x), c6 N-. To this end, by [4], one need only substitute the expressions given by 
Rodrigues' formula for the appropriate Jacobi polynomials into (5), and then use property 
( 2 ) .  
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LINDELOF'S THEOREM IN ~n 

P. V. Dovbush UDC 517.55 

In this article we make more precise LindelSf's theorem for holomorphic functions in 
several complex variables. 

Let D be a domain in �9 with C2-smooth boundary 8D. For any a > 0 and e~0 we denote 

D~ (5) = {z E r :1 ( z - -  ~, ~) J < (I + ~) ~ (z), I z - -  ~ 1 ~ < ~ (6~z))1+~}, 

where ( . , . )  i s  t h e  u s u a l  H e r m i t i a n  s c a l a r  p r o d u c t  in  �9 v~ i s  t h e  v e c t o r  u n i t  o u t e r  normal  
t o  8D a t  t h e  p o i n t  ~, 5~(z) = min~d~(z), 5(z)}. Here d$ (z )  i s  E u c l i d e a n  d i s t a n c e  f rom t h e  p o i n t  z 
t o  t h e  r e a l  t a n g e n t  p l a n e  T$ = T~(SD) to  aD a t  t h e  p o i n t  $, and 6 (z )  i s  E u c l i d e a n  d i s t a n c e  
from t h e  p o i n t  z t o  8D. 

We denote the set D~(~) by Da(~). Clearly D~(~) ~ D~(~) for all ~ > 0. 

We will say that a function f:D-+�9 has K-limit a at the point ~E#D if, for any a > 0 
and for any sequence of points {z TM} from D~($) converging to ~,f(z~)-+a as m + = (see [i, 
p. 83]). A function f:D-~ has limit a along the normal ~ to 3D at the point $, if f(g - 
tv~)-+~ as t + 0. 

We denote by H(D) the algebra of all functions holomorphic in the domain D. 

For any point zCD sufficiently close to 8D there is defined a unique point ~(z)EOD 
such that ]z--~(z)I = 5(z). 

Let z I ..... z n be coordinates in ~.. For any real function ~ of class C 2 in the domain 
D the Hermitian quadratic form is called its Levi form 

n 

~ , V ~  1 

Definition. A function fE,V(D), where D is a domain in �9 with boundary 8D of class C 2 
belongs to the class N(D) if there is a constant K such that for all ZE D 

L ~ ( l o g ( l + [ / [ ~ ) , d z ) ~ K t  [dzT]~ ' [dz~]~ / (1)  
/ ~(~) ~ ~ / '  

where dz T and dz N are the projections of the vector dz onto the complex tangent :plane T~I~) 
T~r iT~z) to 8D at the point $(z) and the complex normalN~z) , ~=N~r �9 T~(~) , to 3D at the 
point ~(z), respectively. 

Geometrically this condition on the function f means that its spherical product in the 
normal and complex tangent directions grows no faster than K/~(z) and K/~r respectively. 

In strongly pseudoconvex domains of the space ~ the right-hand side of inequality (I) 
is equivalent to the standard invariant metrics of Carath~odory, Kobayashi, and Bergman. 

Center for the Automation of Scientific Research and Metrology, Academy of Sciences of 
the Moldavian SSR, Kishinev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 40, 
No. 6, pp. 796-899, November-December, 1988. Original article submitted January 20, 1986. 

0041-5995/88/4006-0673512.50 �9 1989 Plenum Publishing Corporation 673 


