A. P. Golub

An approach to the application of Dzyadyk's generalized moment representations in problems of construction and investigation of the Pade-Chebyshev approximants is developed. With its help, certain properties of the Pade-Chebyshev approximants of a class of functions that is a natural analog of the class of Markov functions are studied. In particular, it is proved that the poles of the Pade-Chebyshev approximants of these functions lie outside their domain of analyticity.

In the study of the Pade approximations on the first plan, as a rule, we introduce functions of the form

$$
\begin{equation*}
f(z)=\int_{\Gamma} \frac{d \mu(\zeta)}{1-\zeta z} \tag{1}
\end{equation*}
$$

where $\mathrm{d} \mu(\zeta)$ is a measure on the compactum $\Gamma \subset \mathbb{C}$. This is connected with the classical ideas of Chebyshev, concerning the moments problem for the numerical sequence $\left\{s_{h}\right\}_{k=0}^{\infty}$ (see, e.g., [1]):

$$
\begin{equation*}
s_{k}=\int_{\Gamma} \zeta^{k} d \mu(\zeta), \quad k=\overline{0, \infty} \tag{2}
\end{equation*}
$$

In the case of a nonnegative measure $d \mu(\zeta)$ on a real set, many problems of rational approximation of functions of form (1) are solved in terms of polynomials that are orthogonal with respect to the measure $\mathrm{d} \mu(\zeta)$. For the extension of this class of functions, some investigators (see, e.g., [2, 3]) have studied the properties of sequences of orthogonal polynomials, corresponding to variable-sign and complex-valued measures. Dzyadyk suggested in 1981 another method, included in the generalization of moments problem (2).

Definition 1 [4]. The set of equations

$$
\begin{equation*}
s_{i+j}=\int_{\Gamma} a_{i}(t) b_{j}(t) d \mu(t), \quad i, j=\overline{0, \infty} \tag{3}
\end{equation*}
$$

in which Γ is a Borel set (most often, a segment of the real axis), $d \mu(t)$ is a measure on Γ, and $\left\{a_{i}(t)\right\}_{i=0}^{\infty}$ and $\left\{b_{j}(t)\right\}_{j=0}^{\infty}$ are sequences of measurable functions on Γ, for which all the integrals in (3) exist, is called a generalized moment representation of the sequence of complex numbers $\left\{s_{k}\right\}_{k=0}^{\infty}$.

In some works, Dzyadyk and the author have indicated methods and examples of applications of the generalized moment representations to the problems of Pade approximations, many-point Padé approximations, joint Pade approximations, etc. Dzyadyk and Chyp have obtained with the help of generalized moment representations integral representations for a series of special functions [5, Chap. VI]. These applications are based on the transformation of Eq. (3) to the form

$$
\begin{equation*}
f(z) Q_{N}(z)-P_{N-1}(z)=z^{N} \int_{\boldsymbol{\Gamma}} A(z, t) B_{N}(t) d \mu(t) \tag{4}
\end{equation*}
$$

where

$$
\begin{gathered}
f(z)=\sum_{k=0}^{\infty} s_{k} z^{k}, \quad A(z, t)=\sum_{i=0}^{\infty} a_{i}(t) z^{i}, \quad B_{N}(t)=\sum_{i=0}^{N} c_{j}^{(N)} b_{j}(t) \\
Q_{N}(z)=\sum_{j=0}^{N} c_{j}^{(N)} z^{N-i}, \quad P_{N-1}(z)=\sum_{i=1}^{N} c_{j}^{(N)} z^{N-j} \sum_{k=0}^{j-1} s_{k} z^{k}
\end{gathered}
$$

Mathematics Institute, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 42, No. 6, pp. 762-766, June, 1990. Original article submitted January 27, 1989.

The present article is devoted to the application of generalized moment representations to the Pade-Chebyshev approximation problem, which is realized in a manner somewhat different from that given above.

Definition $2[6]$. Let a function $f(x) \in C[-1,1]$ be expanded in a uniformly convergent Fourier-Chebyshev series of the form

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} s_{k} T_{k}(x) \tag{5}
\end{equation*}
$$

where $T_{k}(x)=\cos k a r c c o s x$ are Chebyshev polynomials of first kind. The rational polynomial $\left.[M / N]_{f}^{r}(x)=P_{M}(x) / Q_{N}(x) \in R \mid M / N\right]:=\{r(x): r(x)=p(x) / q(x), \operatorname{deg} p(x)=M, \operatorname{deg} q(x)=N\}$ such that

$$
\begin{equation*}
f(x) Q_{N}(x)-P_{M}(x)=\sum_{k=M+N+1}^{\infty} \tau_{k} T_{k}(x) \tag{6}
\end{equation*}
$$

is called the Pade-Chebyshev approximant of $f(x)$ of order [M/N].
The following theorem establishes a connection between the generalized moment representations and the Padé-Chebyshev approximations.

THEOREM 1. Let the function $f(x)$ be expanded in a uniformly convergent Fourier-Chebyshev series of form (5) and a sequence $\left\{s_{k}\right\}_{k=0}^{\infty}$ be such that a generalized moment representation of the form

$$
\begin{equation*}
s_{i+j}=\int_{F} a_{i}(t) b_{j}(t) d \mu(t), \quad i=\overline{0, \infty} \tag{7}
\end{equation*}
$$

holds. Moreover, let the determinant

$$
\begin{equation*}
\Delta \mid M / N]=\operatorname{det}\left\|s_{M+1+i+j}+s_{M+1+i-i}\right\|_{i, j=0}^{N} \neq 0 \tag{8}
\end{equation*}
$$

for certain integers $M \geqslant N \geqslant 0$.
Then the Pade - Chebyshev approximant of $f(z)$ of order $[M / N]$ can be represented in the form

$$
\begin{equation*}
[M / N]_{i}^{\mathrm{\top}}(x)=P_{M}(x) / Q_{N}(x) \tag{9}
\end{equation*}
$$

where

$$
\begin{gather*}
Q_{N}(x)=\sum_{j=0}^{N} c_{j}^{(N)} T_{j}(x), \tag{10}\\
P_{M}(x)=\frac{1}{2} s_{0} \sum_{j=0}^{N} c_{j}^{(N)} T_{j}(x)-\frac{1}{2} \sum_{j=0}^{N} c_{j}^{(N)} s_{j}+\frac{1}{2} \sum_{i=0}^{M} T_{i}(x) \times \sum_{j=0}^{N} c_{j}^{(N)}\left[s_{i+j}+s_{[i-j]}\right] \tag{11}
\end{gather*}
$$

and the coefficients $c_{j}^{(N)}, j=\overline{0, N}$, not all equal to zero, are determined from the conditions of biorthogonality for the polynomial

$$
\begin{gather*}
B_{N}(t)=\sum_{j=0}^{N} c_{j}^{(N)}\left[b_{M+1+j}(t)+b_{M+1-j}(t)\right] \tag{12}\\
\int_{\mathbb{T}} a_{i}(t) B_{N}(t) d \mu(t)=0, \quad i=\overline{0, N-1}
\end{gather*}
$$

The approximation error has the integral representation

$$
\begin{equation*}
f(z) Q_{N}(z)-P_{M}(z)=\frac{1}{2} \int_{\Gamma} \sum_{k=0}^{\infty} T_{k+M+1}(z) a_{k}(t) B_{N}(t) d \mu(t) \tag{13}
\end{equation*}
$$

Proof. By virtue of (5) and (10), we have

$$
\begin{aligned}
& (x) Q_{N}(x)=\sum_{k=0}^{\infty} s_{k} T_{k}(x) \sum_{j=0}^{N} c_{j}^{(N)} T_{j}(x)=\frac{1}{2} \sum_{j=0}^{N} c_{i}^{(N)} \sum_{k=0}^{\infty} s_{k}\left[T_{k+j}(x)+T_{|k-j|}(x)\right]= \\
& =\frac{1}{2} \sum_{k=0}^{\infty} T_{k}(x) \sum_{j=0}^{N} c_{j}^{(N)}\left[s_{k+j}+s_{|k-j|}\right]-\frac{1}{2} \sum_{j=0}^{N} c_{j}^{(N)} s_{j} T_{0}(x)+\frac{1}{2} s_{0} \sum_{j=0}^{N} c_{j}^{(N)} T_{j}(x)=
\end{aligned}
$$

$$
=P_{M}(x)+\frac{1}{2} \sum_{k=M}^{\infty} T_{k}\left(x^{\prime} \sum_{i=0}^{N} c_{j}^{(N)} \mid s_{k+i}+s_{k-j}\right]=P_{M}(x)+\frac{1}{2} \int_{\mathbb{T}} \sum_{k=0}^{\infty} T_{k+M+1}(x) a_{k}(t) B_{N}(t) d \mu(t) .
$$

All assertions of the theorem follow from the last equation.
As an example, let us consider the class of the functions $f(x)$ that can be represented in the form

$$
\begin{equation*}
f(x)=\int_{\alpha}^{\beta} \frac{1-x t}{1-2 x t+t^{2}} d \mu(t), \tag{14}
\end{equation*}
$$

where $d \mu(t)$ is a positive measure on the segment $[\alpha, \beta] \subset[-1,1]$. Since $\frac{1-x t}{1-2 x t+t^{2}}$ is the generating function of Chebyshev polynomials of first kind, the coefficients in the expansion

$$
\begin{equation*}
f(x)=\sum_{k=0}^{\infty} s_{k} T_{k}(x) \tag{15}
\end{equation*}
$$

have the form

$$
\begin{equation*}
s_{h}=\int_{\alpha}^{\beta} t^{k} d \mu(t), \quad k=\overline{0, \infty} . \tag{16}
\end{equation*}
$$

Equations (16) can be rewritten in the form

$$
\begin{equation*}
s_{i+j}=\int_{\alpha}^{\beta} t^{i} t^{j} d \mu(t), \quad i, j=\overline{0, \infty} \tag{17}
\end{equation*}
$$

In order to construct the Pade-Chebyshev approximant of $\mathrm{f}(\mathrm{x})$ of order $[M / N], M \geqslant N \geqslant 0$, according to Theorem 1 , it is necessary to construct the biorthogonal polynomial

$$
\begin{equation*}
B_{N}(t)=t^{M+1} \sum_{i=1}^{N} c_{i}^{(N)}\left(t^{j}+t^{-j}\right) \tag{18}
\end{equation*}
$$

satisfying the conditions

$$
\begin{equation*}
\int_{\alpha}^{\beta} t^{i} B_{N}(t) d \mu(t)=0, \quad i=\overline{0, N-1} . \tag{19}
\end{equation*}
$$

It is easily seen that the polynomial $B_{N}(t) / t^{M+1}$ is an algebraic polynomial of degree N in the variable $t+1 / t$. Let us denote it by $U_{N}(x)$. Thus,

$$
\begin{equation*}
\frac{B_{N}(t)}{t^{M+1}}=U_{N}\left(t+\frac{1}{t}\right) \tag{20}
\end{equation*}
$$

So, biorthogonalization (18), (19) reduces in obvious manner to the biorthogonalization of the systems of functions $\left\{t^{k}\right\}_{k=0}^{N}$ and $\left\{t^{M+1}(t+1 / t)^{i}\right\}_{j=0}^{N}$ with respect to the measure $\mathrm{d} \mu(\mathrm{t})$ on the segment $[\alpha, \beta]$.

Since both the systems of functions are Chebyshev on $[-1,1]$, nondegenerate biorthogonalization is possible in the present situation. Moreover, in this connection the polynomial $U_{N}(t+1 / t)$ has exactly N simple zeros in (α, β) [7]. Let us now consider

$$
\begin{equation*}
U_{N}(2 z)=\sum_{i=0}^{N} c_{j}^{(N)}\left[\left(z-\sqrt{z^{2}-1}\right)^{j}+\left(z+\sqrt{z^{2}-1}\right)^{j}\right]=2 \sum_{i=0}^{N} c_{j}^{(N)} T_{j}(z)=2 Q_{N}(z) \tag{21}
\end{equation*}
$$

Thus, the denominator for the Pade-Chebyshev approximant has the form

$$
\begin{equation*}
Q_{N}(z)=\frac{1}{2} U_{N}(2 z) \tag{22}
\end{equation*}
$$

Since $U_{N}(t+1 / t)$ has N zeros in (α, β), we conclude that all the zeros of the denominator $Q_{N}(z)$ lie in the interval $(\beta+1 / \beta, \alpha+1 / \alpha)$ if $0<\alpha<\beta \leqslant 1$, on the ray $(\beta+1 / \beta,+\infty)$ if $0=\alpha<\beta \leqslant 1$, on the ray $(-\infty, \alpha+1 / \alpha)$ if $-1 \leqslant \alpha<\beta=0$, and on the union of rays $(-\infty, \alpha+$ $1 / \alpha) \cup(\beta+1 / \beta,+\infty)$ if $-1 \leqslant \alpha<0<\beta<1$.

Summing up all the above arguments, we formulate the following theorem.

THEOREM 2. Let a function $f(x)$ be represented in the form

$$
\begin{equation*}
f(x)=\int_{\alpha}^{\beta} \frac{1-x t}{1-2 x t+t^{2}} d \mu(t) \tag{23}
\end{equation*}
$$

where $\mu(t)$ is a function that is nondecreasing and has infinite number of growth points on $[\alpha, \beta] \subset[-1,1]$. Then the Pade -Chebyshev approximant of $\mathrm{f}(\mathrm{x})$ of order $[M / N], M \geqslant N \geqslant 0$, is a function that is analytic in the real domain of analyticity of $f(x)$ and can be represented in the form

$$
\begin{equation*}
[M / N]_{f}^{T}(x)=P_{M}(x) / Q_{N}(x), \tag{24}
\end{equation*}
$$

where

$$
\begin{gather*}
Q_{N}(x)=\frac{1}{2} U_{N}(2 x), \tag{25}\\
P_{M}(x)=\frac{1}{2} \int_{\alpha}^{\beta}\left[\frac{(1-x t)\left(U_{N}(2 x)-U_{N}(t+1 / t)\right.}{1-2 x t+t^{2}}-\sum_{k=0}^{s} t^{k} T_{k}(x) U_{N}(t+1 / t)\right] d \mu(t), \tag{26}
\end{gather*}
$$

and the algebraic polynomials $U_{N}(t)$ are defined by the biorthogonality relations

$$
\begin{equation*}
\int_{\alpha}^{\beta} t^{M+1+i} U_{N}(t+1 / t) d \mu(t)=0, \quad i=0,1, \ldots, N-1 \tag{27}
\end{equation*}
$$

Proof. Using Eqs. (23) and (25), we write

$$
\begin{gathered}
f(x) Q_{N}(x)=Q_{N}(x) \int_{\alpha}^{\beta} \frac{1-x t}{1-2 x t+t^{2}} d \mu(t)=Q_{N}(x)\left[\int _ { \alpha } ^ { \beta } \left(\frac{1-x t}{1-2 x t+t^{2}}-\right.\right. \\
\left.\left.\quad-\sum_{k=0}^{M} t^{k} T_{k}(x)\right) d \mu(x)+\sum_{k=0}^{M} s_{k} T_{k}(x)\right]=\frac{1}{2} \int_{\alpha}^{\beta}\left(\frac{1-x t}{1-2 x t+t^{2}}-\right. \\
\left.\quad-\sum_{k=0}^{M} t^{k} T_{k}(x)\right) U_{N}(2 x) d \mu(t)+Q_{N}(x) \sum_{k=0}^{M} s_{k} T_{k}(x)=\frac{1}{2} \times \\
\times \int_{\alpha}^{\beta}\left(\frac{1-x^{i}}{1-2 x t+t^{2}}-\sum_{k=0}^{M} t^{k} T_{k}(x)\right)\left(U_{N}(2 x)-U_{N}(t+1 / t)\right] d \mu(t)+ \\
+\frac{1}{2} \int_{\alpha}^{\beta}\left(\frac{1-x t}{1-2 x t+t^{2}}-\sum_{k=0}^{M} t^{k} T_{k}(x)\right) U_{N}(t+1 / t) d \mu(t)+Q_{N}(x) \times \\
\times \sum_{k=0}^{M} s_{k} T_{k}(x)= \\
\frac{1}{2} \int_{\alpha}^{\beta}\left[\frac{(1-x t)\left[U_{N}(2 x)-U_{N}(t+1 / t)\right]}{1-2 x+t^{2}}-\sum_{k=0}^{M} t^{k} T_{k}(x) U_{N}(t+1 / t)\right] d \mu(t)+R_{M+N+1}(x) .
\end{gathered}
$$

Hence the theorem follows.

LITERATURE CITED

1. N. I. Akhiezer, The Classical Moments Problem and Certain Questions of Analysis Connected with Them [in Russian], Nauka, Moscow (1961).
2. H. Stahl, "Orthogonal polynomials of complex-valued meaures and the convergence of Padé approximants," in: Fourier Analysis and Approximation Theory, Vol. II, North-Holland, Amsterdam (1978), pp. 771-788.
3. J. Gilewicz and E. Leopold, "Location of the zeros of polynomials satisfying three term recurrence relations. I. General case with complex coefficients," J. Approx. Theory, 43, No. 1, 1-14 (1985).
4. V.K. Dzyadyk, "On a generalization of the moments problem," Dokl. Akad. Nauk UkrSSR, Ser. A., No. 6, 8-12 (1981).
5. V. K. Dzyadyk, Approximation Methods for the Solution of Differential and Integral Equations [in Russian], Naukova Dumka, Kiev (1988).
6. G. A. Baker, Jr. and P. R. Graves-Morris, Padé Approximations, Parts I and II, AddisonWesley, Reading, Mass. (1981).
7. A. P. Golub, Generalized Moment Representations and Rational Approximations [in Russian], Kiev (1987). (Preprint No. 87.25, Inst. Mat., Akad. Nauk UkrSSR.)

DIFFERENTIAL INVARIANTS OF A EUCLIDEAN ALGEBRA
I. A. Egorchenko

UDC 517.944:519.46

Functional bases of second-order differential invariants of a Euclidean algebra and a conformal algebra are found for a set of scalar functions depending on n variables.

1. INTRODUCTION AND BASIC RESULTS

In the present article we construct explicitly the functional bases of second-order differential invariants of Euclidean algebra AE(n) with basis operators

$$
\begin{equation*}
\partial_{a}=\partial / \partial x_{a}, \quad J_{a b}=x_{a} \partial_{b}-x_{b} \partial_{a} \tag{1}
\end{equation*}
$$

for a set of m scalar functions. (Here and in the following, the letters a, b, c, and d used as indices take values from 1 to n, where n is a collection of spatial variables, $n \geqslant 3$.)

Algebra $A E(n)(1)$ is an algebra of invariance of a wide class of multidimensional equations of mathematical physics [1].

Definition $1[2,3]$. The function

$$
\begin{equation*}
F(x, u, u, \ldots, u) \tag{2}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), u=\left(u^{1}, \ldots, u^{m}\right),{ }_{l}^{u}$ is the set of all partial derivatives of the functions of ℓ-th order, is called a differential invariant of a Lie algebra with basis operators X_{i} if it is an invariant of the ℓ-the extension of this algbera

$$
\begin{equation*}
\stackrel{l}{X_{i}} F(x, u, u, \ldots, u)=\lambda_{i}(x, u, u, \ldots, u) F, \tag{3}
\end{equation*}
$$

where if $\lambda_{i} \equiv 0, F$ is called an absolute differential invariant, and if $\lambda_{i} \neq 0$, F is called a relative differential invariant.

In the following, we shall call absolute invariants simply invariants.
Definition 2. The set of functionally independent invariants of order $r \leqslant l$ of Lie algebra $\left\{\bar{X}_{i}\right\}$ through which it is possible to express any of its invariants of order $r \leq \ell$ is called a functional basis of order ℓ of algebra $\left\{X_{i}\right\}$.

We shall use the following notation:

$$
\begin{gathered}
u_{a}=\partial u / \partial x_{a}, \quad u_{a b}=\partial^{2} u / \partial x_{a} \partial x_{b}, \\
S_{k}\left(u_{a b}\right)=u_{a_{1} a_{2}} u_{a_{2} a_{3}} \ldots u_{a_{k-1} a_{k}} u_{a_{k} a_{1}}, \\
S_{j k}\left(u_{a b}, v_{a b}\right)=u_{a_{1} a_{2}} \ldots u_{a_{j-1} a_{j}} v_{a_{j} a_{j+1}} \ldots v_{a_{k} a_{1}} \\
R_{k}\left(u_{a}, u_{a b}\right)=u_{a_{1}} u_{a_{k}} u_{a_{1} a_{2}} u_{a_{2} a_{3}} \ldots u_{a_{k-1} a_{k}}
\end{gathered}
$$

Here and in the following, the repeated indices will signify summation from 1 to n . Everywhere in lists of invariants, k will take values from 1 to n, j from 0 to k.

We shall state the basic results of the article in the form of theorems.
THEOREM 1. A functional basis of second-order differential invariants of Euclidean AE (n) with basis operators (2) for a scalar function $u=u\left(x_{1}, \ldots, x_{n}\right)$ consists of $2 n+1$

Institute of Mathematics, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 42, No. 6, pp. 767-772, June, 1990. Original article submitted February 14, 1989.

