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GENERALIZED MOMENT REPRESENTATIONS AND PADÉ APPROXIMANTS

ASSOCIATED WITH BILINEAR TRANSFORMATIONS

Using the method of generalized moment representations

[1] with operator of bilinear transformation of independent

variable Padé approximants of orders [N−1/N ], N ≥ 1, are

constructed for some special functions.

10. Introduction. V.K. Dzyadyk [1] in 1981 had proposed

the method of generalized moment representations allowing

to construct and to investigate rational Padé approximants

for a number of elementary and special functions.

Definition 1. We shall call by generalized moment representation

of the numerical sequence {sk}∞k=0 on the product of linear

spaces X and Y the two-parameter collection of equalities

sk+j = 〈xk, yj〉, k, j = 0,∞, (1)

where xk ∈ X , k = 0,∞, yj ∈ Y , j = 0,∞, and 〈., .〉 -

bilinear form defined on X × Y .

In the case when linear operator A : X → Y exists such
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that

Axk = xk+1, k = 0,∞,

and in the space Y linear operator A∗ : Y → Y exists such

that

〈Ax, y〉 = 〈x,A∗y〉, ∀x ∈X , ∀y ∈ Y ,

(we shall call operator A∗ as conjugate to operator A with

respect to bilinear form 〈., .〉), the representation (1) as it

was shown in [2] is equivalent to the representation

sk = 〈Akx0, y0〉, k = 0,∞, (2)

In this paper the representation of the form (2) will be considered

with operatorA defined by bilinear transformation of independent

variable.

Let us introduce some necessary definitions. We shall denote

by R[M/N ] a class of rational functions with nominators of

degree ≤M and denominators of degree ≤ N

R[M/N ] =

{
r(z) =

p(z)

q(z)
, deg p(z) ≤M, deg q(z) ≤ N

}
.

Definition 2 [3, Part 1, Chap.1, Par.B]. We shall call by

Padé approximant of the order [M/N ], M,N = 0,∞, for

power series

f(z) =
∞∑
k=0

skz
k
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the rational function

[M/N ]f(z) =
PM(z)

QN(z)
∈ R[M/N ]

such that

f(z)− [M/N ]f(z) = O
(
zM+N+1)

in the neighbourhood of z = 0.

20.Compositions of bilinear transformations. Let us consider

for some γ ∈ (0,+∞) \ {1} bilinear transformation

σ(t) =
t

(1− γ)t+ γ
.

It is easily seen that transformation σ maps the segment

[0, 1] onto itself, and in addition σ(0) = 0 as well as σ(1) = 1.

Let us define in the space X = C[0, 1] of continuous on

[0, 1] functions linear bounded operator

(Aϕ) = ϕ(σ(t)) = ϕ

(
t

(1− γ)t+ γ

)
.

It is simple to calculate its degrees(
Akϕ

)
= ϕ

(
t

(1− γk)t+ γk

)
.

Let us assume for some δ ∈ (0,+∞) \ {1}

x0(t) =
t

(1− δ)t+ δ
,
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and construct a system of functions

xk(t) =
(
Akx0

)
(t) =

t

(1− δγk)t+ δγk
, k = 0,∞. (3)

For arbitrary system of points

0 < t0 < t1 < . . . < tN < 1, N = 0,∞

let us consider determinants

∆N = ∆N (t0, t1, . . . , tN) = det ‖xk(tj)‖Nk,j=0 =

= det

∥∥∥∥ tj
(1− δγk)tj + δγk

∥∥∥∥N
k,j=0

=
N∏
j=0

tj×
N∏
k=0

1

1− δγk
×det

∥∥∥∥ 1

tj + κk

∥∥∥∥N
k,j=0

,

where κk = δγk

1−δγk , k = 0, N, N = 0,∞. The last determinant

is determinant of Cauchy matrix (see [4, Chapter I, §3, example

4]) which is equal

det

∥∥∥∥ 1

tj + κk

∥∥∥∥N
k,j=0

=

∏
j<k

(tk − tj) (κk − κj)∏
j,k

(tj + κk)
.

Because as easily seen κk 6= κj for k 6= j then last determinant

as well as determinant ∆n is different from zero, hence, system

of functions {xk(t)}Nk=0 for any N = 0,∞ is Tchebycheff on

segment [0, 1] (see [4, Chapter I, §1, Def.1.1]).

Let us consider on the product of spaces X ×X bilinear

form

〈x, y〉 =

1∫
0

x(t)y(t)dt. (4)
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Simple calculations give expressions for the degrees of operator

A∗ conjugate to operator A with respect to bilinear form (4)

(A∗ψ) (t) =
γ

(1− (1− γ)t)2ψ

(
γt

1− (1− γ)t

)
.

Let us assume now that y0(t) ≡ 1, and construct system of

functions

yj(t) = (A∗y0) (t) =
γj

(1− (1− γj)t)2 . (5)

Let us verify that system of functions (5) is also Tchebycheff.

It is easily seen that

dm

dtm
yj(t) =

(m+ 1)!γj
(
1− γj

)m
(1− (1− γj)t)m+2 .

Therefore Wronskian of system of functions (5) will have a

form

WN = det

∥∥∥∥ dmdtmyj(t)
∥∥∥∥N
j,m=0

= det

∥∥∥∥∥(m+ 1)!γj
(
1− γj

)m
(1− (1− γj)t)m+2

∥∥∥∥∥
N

j,m=0

=

=
N∏
m=0

(m+1)!×
N∏
j=0

γj×
N∏
j=0

1

(1− (1− γj)t)2×det

∥∥∥∥∥∥ 1(
1

1−γj − t
)m
∥∥∥∥∥∥
N

j,m=0

.

The last determinant is Vandermonde determinant (see [4,

Chapter I, §1])

det

∥∥∥∥∥∥ 1(
1

1−γj − t
)m
∥∥∥∥∥∥
N

j,m=0

=
∏
k<j

(
1

1
1−γk − t

− 1
1

1−γj − t

)
=
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=
∏
k<j

γj − γk

(1− t(1− γk)) (1− t(1− γj))
6= 0.

It implies that system of functions (5) is Tchebycheff on

[0, 1] for any N = 0,∞ (see [4, Chapter XI, §1, Theorem

1.1]).

30. Generalized moment representations associated with

bilinear transformations. Previous considerations may be summarized

in the following results.

Theorem 1. For the sequence

sk =
t0

(1− δγk)t0 + δγk
, k = 0,∞,

where γ ∈ (0,∞) \ {1}, δ ∈ (0,∞) \ {1}, t0 ∈ (0, 1) the

generalized moment representation holds in Banach space

X = C[0, 1]

sk+j = yj(xk), k, j = 0,∞

where

xk(t) =
t

(1− δγk)t+ δγk
, k = 0,∞,

and functionals yj(x), j = 0,∞ are defined by formulae

yj(x) = x(tj) = x

(
t0

(1− γj)t0 + γj

)
, j = 0,∞, (6)
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Theorem 2. For the sequence

sk =
1

1− δγk
+

(ln δ + k ln γ) δγk

(1− δγk)2 , k = 0,∞,

where γ ∈ (0,∞) \ {1}, δ ∈ (0,∞) \ {1}, the generalized

moment representation holds on the product of spacesC[0, 1]×
C[0, 1]

sk+j =

1∫
0

t

(1− δγk) t+ δγk
× γj

(1− (1− γj)t)2dt, k, j = 0,∞.

40. Applications to Padé approximants. Using the main

result by V.K. Dzyadyk [1] on application of generalized moment

representations to the problem of Padé approximation we

can receive the following results.

Theorem 3. Padé approximants for the power series

f(z) =
∞∑
k=0

t0z
k

(1− δγk)t0 + δγk
,

where γ ∈ (0,∞)\{1}, δ ∈ (0,∞)\{1}, t0 ∈ (0, 1) of orders

[N − 1/N ], N ≥ 1, exist and are nondegenerate and may be

represented in the form

[N − 1/N ]f(z) =
PN−1(z)

QN(z)
,

where

QN(z) =
N∑
k=0

c
(N)
k zN−k,
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PN−1(z) =
N−1∑
m=0

zm
m∑
k=0

c
(N)
N−k

t0
(1− δγm−k) t0 + γm−k

,

and c(N)
k , k = 0, N - coefficients of biorthogonal polynomial

YN =
N∑
j=0

c
(N)
j yj,

defined by the relations

YN(xk) = 0, k = 0, N − 1,

(functions xk(t), k = 0,∞, are defined by formulae (3), and

functionals yj, j = 0,∞, are defined by formulae (6)).

Theorem 4. Padé approximants for the power series

f(z) =
∞∑
k=0

{
1

1− δγk
+

(ln δ + k ln γ) δγk

(1− δγk)2

}
zk,

where γ ∈ (0,∞)\{1}, δ ∈ (0,∞)\{1}, of orders [N−1/N ],

N ≥ 1, exist and are nondegenerate and may be represented

in the form

[N − 1/N ]f(z) =
PN−1(z)

QN(z)
,

where

QN(z) =
N∑
k=0

c
(N)
k zN−k,

PN−1(z) =
N−1∑
j=0

zj
j∑

m=0

c
(N)
N−m

{
1

1− δγj−m
+

(ln δ + (j −m) ln γ) δγj−m

(1− δγj−m)2

}
,
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and c(N)
k , k = 0, N are coefficients of generalized polynomial

XN(t) =
N∑
k=0

c
(N)
k

t

(1− δγk) t+ δγk
,

for which biorthogonality conditions

1∫
0

XN(t)
γj

(1− (1− γj)t)2dt = 0, j = 0, N − 1,

are satisfied.
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