Golub A.P. (Institute of Mathematics of the National Ukrainian Academy of Sciences, Kiev)

GENERALIZED MOMENT REPRESENTATIONS AND PADÉ APPROXIMANTS ASSOCIATED WITH BILINEAR TRANSFORMATIONS

Using the method of generalized moment representations [1] with operator of bilinear transformation of independent variable Padé approximants of orders $[N-1 / N], N \geq 1$, are constructed for some special functions.
1^{0}. Introduction. V.K. Dzyadyk [1] in 1981 had proposed the method of generalized moment representations allowing to construct and to investigate rational Padé approximants for a number of elementary and special functions.

Definition 1. We shall call by generalized moment representation of the numerical sequence $\left\{s_{k}\right\}_{k=0}^{\infty}$ on the product of linear spaces \mathscr{X} and \mathscr{Y} the two-parameter collection of equalities

$$
\begin{equation*}
s_{k+j}=\left\langle x_{k}, y_{j}\right\rangle, \quad k, j=\overline{0, \infty} \tag{1}
\end{equation*}
$$

where $x_{k} \in \mathscr{X}, k=\overline{0, \infty}, y_{j} \in \mathscr{Y}, j=\overline{0, \infty}$, and $\langle.,$.$\rangle -$ bilinear form defined on $\mathscr{X} \times \mathscr{Y}$.

In the case when linear operator $A: \mathscr{X} \rightarrow \mathscr{Y}$ exists such
that

$$
A x_{k}=x_{k+1}, \quad k=\overline{0, \infty},
$$

and in the space \mathscr{Y} linear operator $A^{*}: \mathscr{Y} \rightarrow \mathscr{Y}$ exists such that

$$
\langle A x, y\rangle=\left\langle x, A^{*} y\right\rangle, \quad \forall x \in \mathscr{X}, \quad \forall y \in \mathscr{Y},
$$

(we shall call operator A^{*} as conjugate to operator A with respect to bilinear form $\langle.,$.$\rangle), the representation (1) as it$ was shown in [2] is equivalent to the representation

$$
\begin{equation*}
s_{k}=\left\langle A^{k} x_{0}, y_{0}\right\rangle, \quad k=\overline{0, \infty}, \tag{2}
\end{equation*}
$$

In this paper the representation of the form (2) will be considered with operator A defined by bilinear transformation of independent variable.

Let us introduce some necessary definitions. We shall denote by $\mathscr{R}[M / N]$ a class of rational functions with nominators of degree $\leq M$ and denominators of degree $\leq N$ $\mathscr{R}[M / N]=\left\{r(z)=\frac{p(z)}{q(z)}, \quad \operatorname{deg} p(z) \leq M, \quad \operatorname{deg} q(z) \leq N\right\}$.

Definition 2 [3, Part 1, Chap.1, Par.B]. We shall call by Padé approximant of the order $[M / N], M, N=\overline{0, \infty}$, for power series

$$
f(z)=\sum_{k=0}^{\infty} s_{k} z^{k}
$$

the rational function

$$
[M / N]_{f}(z)=\frac{P_{M}(z)}{Q_{N}(z)} \in \mathscr{R}[M / N]
$$

such that

$$
f(z)-[M / N]_{f}(z)=O\left(z^{M+N+1}\right)
$$

in the neighbourhood of $z=0$.
2^{0}. Compositions of bilinear transformations. Let us consider for some $\gamma \in(0,+\infty) \backslash\{1\}$ bilinear transformation

$$
\sigma(t)=\frac{t}{(1-\gamma) t+\gamma} .
$$

It is easily seen that transformation σ maps the segment $[0,1]$ onto itself, and in addition $\sigma(0)=0$ as well as $\sigma(1)=1$.

Let us define in the space $\mathscr{X}=C[0,1]$ of continuous on $[0,1]$ functions linear bounded operator

$$
(A \varphi)=\varphi(\sigma(t))=\varphi\left(\frac{t}{(1-\gamma) t+\gamma}\right) .
$$

It is simple to calculate its degrees

$$
\left(A^{k} \varphi\right)=\varphi\left(\frac{t}{\left(1-\gamma^{k}\right) t+\gamma^{k}}\right)
$$

Let us assume for some $\delta \in(0,+\infty) \backslash\{1\}$

$$
x_{0}(t)=\frac{t}{(1-\delta) t+\delta}
$$

and construct a system of functions

$$
\begin{equation*}
x_{k}(t)=\left(A^{k} x_{0}\right)(t)=\frac{t}{\left(1-\delta \gamma^{k}\right) t+\delta \gamma^{k}}, \quad k=\overline{0, \infty} . \tag{3}
\end{equation*}
$$

For arbitrary system of points

$$
0<t_{0}<t_{1}<\ldots<t_{N}<1, \quad N=\overline{0, \infty}
$$

let us consider determinants

$$
\begin{aligned}
\Delta_{N}=\Delta_{N}\left(t_{0}, t_{1}, \ldots, t_{N}\right) & =\operatorname{det}\left\|x_{k}\left(t_{j}\right)\right\|_{k, j=0}^{N}= \\
=\operatorname{det}\left\|\frac{t_{j}}{\left(1-\delta \gamma^{k}\right) t_{j}+\delta \gamma^{k}}\right\|_{k, j=0}^{N} & =\prod_{j=0}^{N} t_{j} \times \prod_{k=0}^{N} \frac{1}{1-\delta \gamma^{k}} \times \operatorname{det}\left\|\frac{1}{t_{j}+\varkappa_{k}}\right\|_{k, j=0}^{N},
\end{aligned}
$$

where $\varkappa_{k}=\frac{\delta \gamma^{k}}{1-\delta \gamma^{k}}, k=\overline{0, N}, N=\overline{0, \infty}$. The last determinant is determinant of Cauchy matrix (see [4, Chapter I, $\S 3$, example 4]) which is equal

$$
\operatorname{det}\left\|\frac{1}{t_{j}+\varkappa_{k}}\right\|_{k, j=0}^{N}=\frac{\prod_{j<k}\left(t_{k}-t_{j}\right)\left(\varkappa_{k}-\varkappa_{j}\right)}{\prod_{j, k}\left(t_{j}+\varkappa_{k}\right)} .
$$

Because as easily seen $\varkappa_{k} \neq \varkappa_{j}$ for $k \neq j$ then last determinant as well as determinant Δ_{n} is different from zero, hence, system of functions $\left\{x_{k}(t)\right\}_{k=0}^{N}$ for any $N=\overline{0, \infty}$ is Tchebycheff on segment $[0,1]$ (see [4, Chapter I, §1, Def.1.1]).

Let us consider on the product of spaces $\mathscr{X} \times \mathscr{X}$ bilinear form

$$
\begin{equation*}
\langle x, y\rangle=\int_{0}^{1} x(t) y(t) d t \tag{4}
\end{equation*}
$$

Simple calculations give expressions for the degrees of operator A^{*} conjugate to operator A with respect to bilinear form (4)

$$
\left(A^{*} \psi\right)(t)=\frac{\gamma}{(1-(1-\gamma) t)^{2}} \psi\left(\frac{\gamma t}{1-(1-\gamma) t}\right) .
$$

Let us assume now that $y_{0}(t) \equiv 1$, and construct system of functions

$$
\begin{equation*}
y_{j}(t)=\left(A^{*} y_{0}\right)(t)=\frac{\gamma^{j}}{\left(1-\left(1-\gamma^{j}\right) t\right)^{2}} . \tag{5}
\end{equation*}
$$

Let us verify that system of functions (5) is also Tchebycheff. It is easily seen that

$$
\frac{d^{m}}{d t^{m}} y_{j}(t)=\frac{(m+1)!\gamma^{j}\left(1-\gamma^{j}\right)^{m}}{\left(1-\left(1-\gamma^{j}\right) t\right)^{m+2}} .
$$

Therefore Wronskian of system of functions (5) will have a form

$$
\begin{aligned}
& W_{N}=\operatorname{det}\left\|\frac{d^{m}}{d t^{m}} y_{j}(t)\right\|_{j, m=0}^{N}=\operatorname{det}\left\|\frac{(m+1)!\gamma^{j}\left(1-\gamma^{j}\right)^{m}}{\left(1-\left(1-\gamma^{j}\right) t\right)^{m+2}}\right\|_{j, m=0}^{N}= \\
& =\prod_{m=0}^{N}(m+1)!\times \prod_{j=0}^{N} \gamma^{j} \times \prod_{j=0}^{N} \frac{1}{\left(1-\left(1-\gamma^{j}\right) t\right)^{2}} \times \operatorname{det}\left\|\frac{1}{\left(\frac{1}{1-\gamma^{j}}-t\right)^{m}}\right\|_{j, m=0}^{N} .
\end{aligned}
$$

The last determinant is Vandermonde determinant (see [4, Chapter I, §1])

$$
\operatorname{det}\left\|\frac{1}{\left(\frac{1}{1-\gamma^{j}}-t\right)^{m}}\right\|_{j, m=0}^{N}=\prod_{k<j}\left(\frac{1}{\frac{1}{1-\gamma^{k}}-t}-\frac{1}{\frac{1}{1-\gamma^{j}}-t}\right)=
$$

$$
=\prod_{k<j} \frac{\gamma^{j}-\gamma^{k}}{\left(1-t\left(1-\gamma^{k}\right)\right)\left(1-t\left(1-\gamma^{j}\right)\right)} \neq 0 .
$$

It implies that system of functions (5) is Tchebycheff on $[0,1]$ for any $N=\overline{0, \infty}$ (see [4, Chapter XI, §1, Theorem 1.1]).
3^{0}. Generalized moment representations associated with bilinear transformations. Previous considerations may be summarized in the following results.

Theorem 1. For the sequence

$$
s_{k}=\frac{t_{0}}{\left(1-\delta \gamma^{k}\right) t_{0}+\delta \gamma^{k}}, \quad k=\overline{0, \infty}
$$

where $\gamma \in(0, \infty) \backslash\{1\}, \delta \in(0, \infty) \backslash\{1\}, t_{0} \in(0,1)$ the generalized moment representation holds in Banach space $\mathscr{X}=C[0,1]$

$$
s_{k+j}=y_{j}\left(x_{k}\right), \quad k, j=\overline{0, \infty}
$$

where

$$
x_{k}(t)=\frac{t}{\left(1-\delta \gamma^{k}\right) t+\delta \gamma^{k}}, \quad k=\overline{0, \infty},
$$

and functionals $y_{j}(x), j=\overline{0, \infty}$ are defined by formulae

$$
\begin{equation*}
y_{j}(x)=x\left(t_{j}\right)=x\left(\frac{t_{0}}{\left(1-\gamma^{j}\right) t_{0}+\gamma^{j}}\right), \quad j=\overline{0, \infty}, \tag{6}
\end{equation*}
$$

Theorem 2. For the sequence

$$
s_{k}=\frac{1}{1-\delta \gamma^{k}}+\frac{(\ln \delta+k \ln \gamma) \delta \gamma^{k}}{\left(1-\delta \gamma^{k}\right)^{2}}, \quad k=\overline{0, \infty},
$$

where $\gamma \in(0, \infty) \backslash\{1\}, \delta \in(0, \infty) \backslash\{1\}$, the generalized moment representation holds on the product of spaces $C[0,1] \times$ $C[0,1]$
$s_{k+j}=\int_{0}^{1} \frac{t}{\left(1-\delta \gamma^{k}\right) t+\delta \gamma^{k}} \times \frac{\gamma^{j}}{\left(1-\left(1-\gamma^{j}\right) t\right)^{2}} d t, \quad k, j=\overline{0, \infty}$.
4^{0}. Applications to Padé approximants. Using the main result by V.K. Dzyadyk [1] on application of generalized moment representations to the problem of Padé approximation we can receive the following results.

Theorem 3. Padé approximants for the power series

$$
f(z)=\sum_{k=0}^{\infty} \frac{t_{0} z^{k}}{\left(1-\delta \gamma^{k}\right) t_{0}+\delta \gamma^{k}},
$$

where $\gamma \in(0, \infty) \backslash\{1\}, \delta \in(0, \infty) \backslash\{1\}, t_{0} \in(0,1)$ of orders $[N-1 / N], N \geq 1$, exist and are nondegenerate and may be represented in the form

$$
[N-1 / N]_{f}(z)=\frac{P_{N-1}(z)}{Q_{N}(z)}
$$

where

$$
Q_{N}(z)=\sum_{k=0}^{N} c_{k}^{(N)} z^{N-k}
$$

$$
P_{N-1}(z)=\sum_{m=0}^{N-1} z^{m} \sum_{k=0}^{m} c_{N-k}^{(N)} \frac{t_{0}}{\left(1-\delta \gamma^{m-k}\right) t_{0}+\gamma^{m-k}},
$$

and $c_{k}^{(N)}, k=\overline{0, N}$ - coefficients of biorthogonal polynomial

$$
Y_{N}=\sum_{j=0}^{N} c_{j}^{(N)} y_{j}
$$

defined by the relations

$$
Y_{N}\left(x_{k}\right)=0, \quad k=\overline{0, N-1},
$$

(functions $x_{k}(t), k=\overline{0, \infty}$, are defined by formulae (3), and functionals $y_{j}, j=\overline{0, \infty}$, are defined by formulae (6)).

Theorem 4. Padé approximants for the power series

$$
f(z)=\sum_{k=0}^{\infty}\left\{\frac{1}{1-\delta \gamma^{k}}+\frac{(\ln \delta+k \ln \gamma) \delta \gamma^{k}}{\left(1-\delta \gamma^{k}\right)^{2}}\right\} z^{k}
$$

where $\gamma \in(0, \infty) \backslash\{1\}, \delta \in(0, \infty) \backslash\{1\}$, of orders $[N-1 / N]$, $N \geq 1$, exist and are nondegenerate and may be represented in the form

$$
[N-1 / N]_{f}(z)=\frac{P_{N-1}(z)}{Q_{N}(z)}
$$

where

$$
\begin{gathered}
Q_{N}(z)=\sum_{k=0}^{N} c_{k}^{(N)} z^{N-k} \\
P_{N-1}(z)=\sum_{j=0}^{N-1} z^{j} \sum_{m=0}^{j} c_{N-m}^{(N)}\left\{\frac{1}{1-\delta \gamma^{j-m}}+\frac{(\ln \delta+(j-m) \ln \gamma) \delta \gamma^{j-m}}{\left(1-\delta \gamma^{j-m}\right)^{2}}\right\},
\end{gathered}
$$

and $c_{k}^{(N)}, k=\overline{0, N}$ are coefficients of generalized polynomial

$$
X_{N}(t)=\sum_{k=0}^{N} c_{k}^{(N)} \frac{t}{\left(1-\delta \gamma^{k}\right) t+\delta \gamma^{k}}
$$

for which biorthogonality conditions

$$
\int_{0}^{1} X_{N}(t) \frac{\gamma^{j}}{\left(1-\left(1-\gamma^{j}\right) t\right)^{2}} d t=0, \quad j=\overline{0, N-1},
$$

are satisfied.

References

1. Dzyadyk V.K. A generalization of moment problem//Dokl.Akad.Nauk Ukr.SSR., Ser.A. - 1981. - N 6. - P. 8-12.
2. Golub A.P. Generalized moment representations and rational approximations. - Kiev, 1987. - 50 p. (Preprint/Akad. Nauk Ukrain. SSR. Inst.Mat.; 87.25).
3. Baker G.A.Jr. Essentials of Padé approximants. - N.Y.: Academic Press, 1975. - 306 p.
4. Karlin S., Studden W.J. Tchebycheff systems: with applications in analysis and statistics. - N.Y.: Interscience Publishers, 1966.
