ON SEQUENCES THAT DO NOT INCREASE THE NUMBER OF REAL ROOTS OF POLYNOMIALS

A. G. Bakan and A. P. Golub

A complete description is given for the sequences $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ such that, for an arbitrary real polynomial $f(t)=\sum_{k=0}^{n} a_{k} t^{k}$, an arbitrary $A \in(0,+\infty)$, and a fixed $C \in(0,+\infty)$, the number of roots of the polynomial $(T f)(t)=\sum_{k=0}^{n} a_{k} \lambda_{k} t^{k}$ on [0,C] does not exceed the number of roots of $f(t)$ on $[0, A]$.

The following problem was formulated in [1, p. 382]:

Karlin's problem. Describe the sequences of factors $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ that do not increase the number of real zeros of polynomials, i.e., the sequences such that, for any real polynomial $f(x)=\sum_{k=0}^{n} a_{k} x^{k}$,

$$
\begin{equation*}
\mathbb{Z}_{\mathbb{R}}\left(\sum_{k=0}^{n} a_{k} \lambda_{k} x^{k}\right) \leq \mathbb{Z}_{\mathbb{R}}\left(\sum_{k=0}^{n} a_{k} x^{k}\right) \tag{1}
\end{equation*}
$$

where $\mathbb{Z}_{\mathbb{R}}(f)$ is the number of real zeros of f taking account of their multiplicities.
In [6], it was proved that the solution of this problem presented in [2-5] is not correct and, thus, Karlin's problem remains open.

In this paper, we describe the sequences of factors $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ such that, for an arbitrary real polynomial $f(t)=$ $\sum_{k=0}^{n} a_{k} t^{k}$, an arbitrary $A \in(0, \infty)$, and a fixed $C \in(0, \infty)$, the number of roots of the polynomial $\sum_{k=0}^{n} a_{k} \lambda_{k} x^{k}$ on $[0, C]$ does not exceed the number of roots of $f(t)$ on $[0, A]$.

Denote by τ the class of all sequences that do not increase the number of real zeros, i.e., sequences satisfying property (1); the transformations determined by sequences of this type are denoted by T, i.e., if $f(x)=\sum_{k=0}^{n} a_{k} x^{k}$, then

$$
\begin{equation*}
(T f)(x)=\sum_{k=0}^{n} a_{k} \lambda_{k} x^{k} . \tag{2}
\end{equation*}
$$

Let us prove some auxiliary results.

Lemma 1. If $\left\{\lambda_{k}\right\}_{k=0}^{\infty} \in \tau$, then there exists a nondecreasing function $\mu(t)$ on $[0,+\infty)$ and numbers δ_{1} $= \pm 1$ and $\delta_{2}= \pm 1$ such that

$$
\begin{equation*}
\lambda_{k}=\delta_{1} \int_{0}^{\infty}\left(\delta_{2} t\right)^{k} d \mu(t), \quad k=\overline{0, \infty} \tag{3}
\end{equation*}
$$

Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Translated from Ukrainskii Matematicheskii Zhumal, Vol. 45, No. 10, pp. 1323-1331, October, 1993. Original article submitted March 20, 1992.

Proof. We take an arbitrary algebraic polynomial

$$
P(t)=\sum_{k=0}^{n} \xi_{k} t^{k}
$$

and construct the polynomial

$$
f(x)=[P(t)]^{2}+\varepsilon=\sum_{k, j=0}^{n} \xi_{k} \xi_{j} k^{k+j}+\varepsilon
$$

where $\varepsilon>0$. It is obvious that the polynomial $f(t)$ is strictly positive on the entire real axis and, therefore, does not have real roots. By applying to $f(t)$ the linear transformation T determined by relation (2), we get

$$
(T f)(t)=\sum_{k, j=0}^{n} \xi_{k} \xi_{j} t^{k+j} \lambda_{k+j}+\varepsilon \lambda_{0} .
$$

One can easily find that

$$
(T f)(0)=\xi_{0}^{2} \lambda_{0}+\varepsilon \lambda_{0}
$$

If $\left\{\lambda_{k}\right\}_{k=0}^{\infty} \in \tau$, then $(T f)(t)$ also has no real roots and, thus, it preserves its sign on the entire real axis. For example,

$$
\operatorname{sign}(T f)(1)=\operatorname{sign}\left[\sum_{k, j=0}^{n} \xi_{k} \xi_{j} \lambda_{k+j}+\varepsilon \lambda_{0}\right]=\operatorname{sign}(T f)(0)=\operatorname{sign} \lambda_{0}=: \delta_{1}
$$

Since $\varepsilon>0$ is arbitrary, we conclude that the sequence $\left\{\delta_{1} \lambda_{k}\right\}_{k=0}^{\infty}$ is positive [7, p.10]. Given an arbitrary polynomial

$$
P(t)=\sum_{k=0}^{n} \xi_{k} t^{k},
$$

we construct the following one:

$$
f(t)=t\left([P(t)]^{2}+\varepsilon\right)=\sum_{k, j=0}^{n} \xi_{k} \xi_{j} t^{k+j+1}+\varepsilon t, \quad \varepsilon>0 .
$$

Let us apply the transformation T to $f(t)$,

$$
(T f)(t)=\sum_{k, j=0}^{n} \xi_{k} \xi_{j} t^{k j+1} \lambda_{k+j+1}+\varepsilon t \lambda_{1}
$$

Since $f(t)$ has exactly one root $t=0$ and $(T f)(0)=0$, we conclude that $Q(t):=\frac{1}{t}(T f)(t)$ cannot have any real roots. Obviously,

$$
Q(0)=\xi_{0}^{2} \lambda_{1}+\varepsilon \lambda_{1} .
$$

Therefore,

$$
\operatorname{sign} Q(1)=\operatorname{sign}\left[\sum_{k, j=0}^{n} \xi_{k} \xi_{j} \lambda_{k+j+1}+\varepsilon \lambda_{1}\right]=\operatorname{sign} Q(0)=\operatorname{sign} \lambda_{1}=: \delta_{2} / \delta_{1} .
$$

Consequently, in view of the arbitrariness of $\varepsilon>0$, the sequence $\left\{\left(\delta_{2} / \delta_{1}\right) \lambda_{k+1}\right\}_{k=0}^{\infty}$ is also positive. This implies that representation (3) holds [7, p. 93].

Without loss of generality, we assume in what follows that $\delta_{1}=\delta_{2}=1$. The subclass of the class τ, determined by these conditions, is denoted by τ^{+}.

Assume that the sequence $\left\{\lambda_{k}\right\}_{k=0}^{\infty} \in \tau^{+}$possesses the following additional property: There exists a positive constant C such that

$$
\begin{equation*}
\mathbb{Z}_{[0, C A]}(T f) \leq \mathbb{Z}_{[0, A]}(f) \tag{4}
\end{equation*}
$$

for any real polynomial $f(t)$ and any $A \in(0,+\infty)$, where, by analogy with the notation introduced above, $\mathbb{Z}_{[0, A]}(f)$ denotes the number of zeros of the polynomial $f(t)$ on the interval $[0, A]$ taking account of their multiplicities. Let τ_{C}^{+}denote the subclass of the class τ^{+}for which this condition is satisfied.

Lemma 2. If a sequence $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ belongs to τ_{C}^{+}, then it can be represented in the form

$$
\begin{equation*}
\lambda_{k}=\int_{0}^{c} t^{k} d \mu(t), \quad k=\overline{0, \infty}, \tag{5}
\end{equation*}
$$

where $\mu(t)$ is a nondecreasing function on the segment $[0, C]$.

Proof. One can easily see that it suffices to consider the case where $C=1$. Consider the algebraic polynomial

$$
f(x)=(1-t)^{m} t^{n}+\varepsilon=\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} t^{k+n} A^{m-k}+\varepsilon,
$$

where m and n are nonnegative integers and $\varepsilon>0$. This polynomial is strictly positive on $[0, A]$ and, hence, it have no zeros on this segment. Let us apply the transformation T determined by the sequence $\left\{\lambda_{k}\right\}_{k=0}^{\infty} \in \tau_{1}^{+}$to this polynomial,

$$
(T f)(t)=\sum_{k=0}^{m}\binom{m}{k}(-1)^{k} t^{k+n} \lambda_{k+n} A^{m-k}+\varepsilon \lambda_{0} .
$$

Taking into account the assumptions concerning the sequence $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$, we conclude that $(T f)(t)$ is strictly positive on $[0, A]$ and, in particular,

$$
(T f)(A)=A^{m+n} \sum_{k=0}^{m}\binom{m}{k}(-1)^{k} \lambda_{k+n}+\varepsilon \lambda_{0}>0 .
$$

Letting ε tend to zero, we obtain the Hausdorff condition [7, p. 97], which implies the possibility of representation (5). Note that in our proof we only have used the validity of condition (4) for a single fixed number $A>0$.

Representation (5) allows one to define the transformation T not only on algebraic polynomials but also on arbitrary functions continuous on the semiaxis $[0,+\infty)$. Consider the polynomial in powers of a logarithm

$$
\begin{equation*}
g(t)=A^{m+n} \sum_{k=0}^{m} c_{k}(\log t)^{k} . \tag{6}
\end{equation*}
$$

Since the function $g(t)$ can take arbitrarily large values at the point $t=0$, it is impossible to define the transformation T directly on it. Therefore, we define the transformation T that corresponds to the sequence $\left\{\lambda_{k}\right\}_{k=0}^{\infty} \in$ τ_{1}^{+}on the function

$$
\begin{equation*}
g_{\rho}(t)=t^{\rho} g(t), \quad \rho>0, \tag{7}
\end{equation*}
$$

by the relation

$$
\begin{equation*}
\left(T g_{\rho}\right)(x)=\int_{0}^{1} g_{\rho}(x t) d \mu(t)=x^{\rho} \int_{0}^{1} t^{\rho} g(x t) d \mu(t) . \tag{8}
\end{equation*}
$$

Let us prove the following lemma:

Lemma 3. Assume that the sequences $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ belong to τ_{1}^{+}. Then, for an arbitrary polynomial

$$
g(t)=\sum_{k=0}^{m} c_{k}(\log t)^{k}
$$

with real coefficients $c_{k}, k=\overline{0, m}, \sum_{k=0}^{m} c_{k}^{2}>0$, for any $\rho>0$ and $A \in(0,+\infty)$, the following inequality holds:

$$
\begin{equation*}
\mathbb{Z}_{[0, A]}\left(T g_{\rho}\right) \leq \mathbb{Z}_{[0, A]}\left(g_{\rho}\right) \tag{9}
\end{equation*}
$$

Proof. Assume that the polynomial $g(t)$ has r roots (taking account of their multiplicities) $t_{1}, t_{2}, \ldots, t_{r}$ on ($0, A$]. Consider an auxiliary function

$$
\varphi(t)=\frac{g_{p}(t)}{\left(t-t_{1}\right)\left(t-t_{2}\right) \ldots\left(t-t_{r}\right)}
$$

The function $\varphi(t)$ is continuous on $[0, A]$ and preserves its sign on ($0, A$]. Without loss of generality, we assume that it is strictly positive on $(0, A]$. According to the Weierstrass theorem, the function $\sqrt{\varphi(t)}$ can be approximated on $[0, A$] by an algebraic polynomial $P(t)$ so that

$$
\|\sqrt{\varphi(t)}-P(t)\|_{C[0, A]}<\varepsilon
$$

for an arbitrary given $\varepsilon>0$.
Consider the algebraic polynomial

$$
Q(t)=\left([P(t)]^{2}+\varepsilon^{2}\right)\left(t-t_{1}\right) \ldots\left(t-t_{r}\right) .
$$

Obviously, $Q(t)$ has exactly as many zeros on $(0, A]$ as $g(t)$. Let us estimate on $[0, A]$ the difference

$$
\begin{align*}
\left|\left(T g_{\rho}\right)(x)-(T Q)(x)\right| & =\left|\int_{0}^{1}\left[x^{\rho} t^{\rho} g(x t)-Q(x t)\right] d \mu(t)\right| \\
& =\mid \int_{0}^{1}\left[\varphi(x t)\left(x t-t_{1}\right) \ldots\left(x t-t_{r}\right)-\left([P(x t)]^{2}+\varepsilon^{2}\right)\right. \\
& \left.\times\left(x t-t_{1}\right) \ldots\left(x t-t_{r}\right)\right] d \mu(t)\left|\leq \int_{0}^{1}\right| x t-t_{1}|\ldots| x t-t_{r} \| \varphi(x t) \\
& -[P(x t)]^{2}\left|d \mu(t)+\varepsilon^{2} \int_{0}^{1}\right| x t-t_{1}|\ldots| x t-t_{r} \mid d \mu(t) \\
& \leq A^{r} \int_{0}^{1}|\sqrt{\varphi(x t)}-P(x t) \| \sqrt{\varphi(x t)}+P(x t)| d \mu(t)+A^{r} \varepsilon^{2} \\
& \leq A^{r} \lambda_{0}\|\sqrt{\varphi(t)}-P(t)\|_{C[0, A]}\|\sqrt{\varphi(t)}+P(t)\|_{C[0, A]}+A^{r} \varepsilon^{2} \\
& \leq A^{r} \varepsilon\left(2\|\sqrt{\varphi(t)}\|_{C[0, A]}+\varepsilon\right) \lambda_{0}+A^{r} \varepsilon^{2} . \tag{10}
\end{align*}
$$

Thus, the value

$$
\left\|\left(T g_{\rho}\right)(x)-(T Q)(x)\right\|_{[10, A]}
$$

can be made as small as desired by the proper choice of the polynomial $P(t)$. We complete the proof by contradiction. Let $\left(T g_{\rho}\right)(x)$ have $q>r$ zeros on ($0, A$]. Without loss of generality, we can assume that these roots are distinct; otherwise, we can make these roots distinct by changing insignificantly the coefficients of the polynomial $g(t)$ so that the number of its zeros remains unchanged. In exactly the same way, we can arrange that none of these roots would coincide with the point $x=A$. We order the roots of $\left(T g_{\rho}\right)(x)$ so that $0<x_{1}<x_{2}<\ldots<x_{q}<A$ and denote $x_{0}:=0$ and $x_{q+1}:=A$. Let us introduce the value

$$
\kappa:=\min _{j=\overline{0, q}} \sup _{x \in\left[x_{j}, x_{j+1}\right]}\left|\left(T_{\rho}\right)(x)\right|>0 .
$$

Taking the previous reasoning into account, we get

$$
\left\|\left(T g_{\rho}\right)(x)-(T Q)(x)\right\|_{C[0, A]}<\kappa .
$$

It is now easy to show that the algebraic polynomial $(T Q)(x)$ has at least as many zeros on $(0, A]$ as $\left(T g_{\rho}\right)(x)$. Thus,

$$
\mathbb{Z}_{(0, A]}(T Q) \geq \mathbb{Z}_{(0, A]}\left(T g_{\rho}\right)=q>r=\mathbb{Z}_{(0, A]}\left(g_{\rho}\right)=\mathbb{Z}_{(0, A]}(Q)
$$

This contradicts our assumption that $\left\{\lambda_{k}\right\}_{k=0}^{\infty} \in \tau_{1}^{+}$. Lemma 3 is proved.
We can now prove the principal result of this paper.

Theorem. In order that a sequence $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ belong to the class $\tau_{C}^{+}, 0<C<+\infty$, it is necessary and sufficient that the following conditions be satisfied:
(i) The sequence $\left\{\lambda_{k}\right\}_{k=0}^{\infty}$ can be represented in the form

$$
\lambda_{k}=\int_{0}^{C} t^{k} d \mu(t), \quad k=\overline{0, \infty}
$$

where $\mu(t)$ is a nondecreasing function on $[0, C]$,
(ii) The function

$$
\Phi(z)=\int_{0}^{C} t^{z} d \mu(t)
$$

is analytic in $\mathbb{C} \backslash(-\infty, 0)$ and can be represented in the form

$$
\begin{equation*}
\Phi(z)=\frac{\lambda_{0} e^{\delta z}}{\prod_{i=1}^{\infty}\left(1+a_{i} z\right)} \tag{11}
\end{equation*}
$$

where $a_{i} \geq 0, i=\overline{0, \infty}, \sum_{i=0}^{\infty} a_{i}<\infty, \delta \leq \log C$.

Proof. First, we prove the necessity of conditions (i) and (ii). We again restrict ourselves to the case where $C=1$, since the proof can be easily generalized for arbitrary $C \in(0,+\infty)$ (for this purpose, it suffices to consider the sequence $\left\{\lambda_{k} / C^{k}\right\}_{k=0}^{\infty}$). It follows from Lemma 3 that

$$
\begin{equation*}
\mathbb{Z}_{(0, A]}\left(\int_{0}^{1} x^{\mathrm{P}}{ }_{t} \rho \sum_{k=0}^{m} c_{k}(\log x t)^{k} d \mu(t)\right) \leq \mathbb{Z}_{[0, A]}\left(t^{\rho} \sum_{k=0}^{m} c_{k}(\log t)^{k}\right) \tag{12}
\end{equation*}
$$

for all real $c_{k}, k=\overline{0, m}$, that are not equal to zero simultaneously. Let us make the change $u=-\log t$ in the integral on the left-hand side of (12) and set $w=\log x$. We get

$$
\mathbb{Z}_{(-\infty, \log A]}\left(-\int_{0}^{\infty} e^{\rho(w-u)} \sum_{k=0}^{m} c_{k}(w-u)^{k} d \mu\left(e^{-u}\right)\right) \leq \mathbb{Z}_{(-\infty, \log A]}\left(e^{\rho w} \sum_{k=0}^{m} c_{k} w^{k}\right)
$$

Since $A \in(0,+\infty)$, this yields

$$
\begin{equation*}
\mathbb{Z}_{(-\infty, 0]}\left(-\int_{0}^{\infty} e^{-\rho u} \sum_{k=0}^{m} c_{k}(w-u)^{k} d \mu\left(e^{-u}\right)\right) \leq \mathbb{Z}_{(-\infty, 0]}\left(\sum_{k=0}^{m} c_{k} w^{k}\right) \tag{13}
\end{equation*}
$$

The proof can be completed by an argument analogous to that used in the proof of Theorem 3.2 in [1, p. 342]. Denote

$$
\begin{gather*}
f(w)=\sum_{k=0}^{m} c_{k} w^{k} \tag{14}\\
F(w)=-\int_{0}^{\infty} e^{-\rho u} f(w-u) d \mu\left(e^{-u}\right), \tag{15}\\
\left.s_{k}=-\int_{0}^{\infty} u^{k} e^{-\rho u} d \mu\left(e^{-u}\right)\right), \quad k=\overline{0, \infty} . \tag{16}
\end{gather*}
$$

Thus, by setting $D=d / d w$ and

$$
\begin{equation*}
U_{m}(D)=\sum_{k=0}^{m}(-1)^{k} \frac{s_{k} D^{k}}{k!} \tag{17}
\end{equation*}
$$

we can rewrite equality (15) in the form

$$
\begin{equation*}
F(w)=U_{m}(D) f(w) \tag{18}
\end{equation*}
$$

By applying the Laplace transform to the density $-e^{-\rho u} d \mu\left(e^{-u}\right), 0 \leq u<+\infty$, we obtain

$$
\begin{equation*}
\Phi(z)=-\int_{0}^{\infty} e^{-z u} e^{-\rho u} d \mu\left(e^{-u}\right)=\sum_{k=0}^{m}(-1)^{k} \frac{s_{k} z^{k}}{k!} \tag{19}
\end{equation*}
$$

Series (19) converges in a disk whose radius is nonzero. Since $\Phi(0)=s_{0}=\lambda_{0} \neq 0$, the series

$$
\begin{equation*}
\frac{1}{\Phi(z)}=\Psi(z)=\sum_{k=0}^{\infty} \frac{r_{k}}{k!} z^{k} \tag{20}
\end{equation*}
$$

also converges in a certain neighborhood V_{0} of the point $z=0$.
Further, since $f(w)$ and $F(w)$ are polynomials, equality (15) can be converted, and we get

$$
\begin{equation*}
f(w)=\Psi(D) F(w)=\left(\sum_{k=0}^{m} \frac{r_{k}}{k!} D^{k}\right) F(w) \tag{21}
\end{equation*}
$$

It follows from equality (13) that

$$
\mathbb{Z}_{(-\infty, 0]}(F) \leq \mathbb{Z}_{(-\infty, 0]}(f)
$$

Consequently, if $F(w)=w^{m}$, then $\mathbb{Z}_{(-\infty, 0]}(f)=m$. In this case, equality (21) yields

$$
f(w)=\Psi(D) w^{m}=A_{m}(w)=\sum_{k=0}^{m} \frac{r_{k}}{k!} \frac{m!}{(m-k)!} w^{m-k}
$$

Hence, the polynomial

$$
w^{m} A_{m}\left(\frac{1}{w}\right)=\sum_{k=0}^{m}\binom{m}{k} r_{k} w^{k}=A_{m}^{*}(w)
$$

has only nonpositive zeros. Moreover, $A_{m}^{*}\left(\frac{w}{m}\right)$ converges uniformly to $\Psi(w)$ inside any compact subregion K_{0} $\subset V_{0}$. Indeed, for given $\varepsilon>0$, we choose $N=N(\varepsilon)$ such that

$$
\sum_{k=N(\varepsilon)}^{\infty} \frac{\left|r_{k}\right|}{k!}|w|^{k} \leq \varepsilon \quad \forall w \in K_{0}
$$

Then, for any $n>N$, we obtain the following estimate:

$$
\left|A_{n}^{*}\left(\frac{w}{n}\right)-\Psi(w)\right| \leq\left|\sum_{k=0}^{N} \frac{r_{k}}{k!} w^{k}\left(\frac{n!}{(n-k)!n^{k}}-1\right)\right|+2 \sum_{k=N}^{\infty} \frac{\left|r_{k}\right|}{k!}|w|^{k},
$$

which implies the convergence. Thus, the function $\Psi(z)$ is a uniform limit of a sequence of polynomials having only real nonpositive zeros. It is known [1, p. 336] that this function admits the following representation:

$$
\Psi(z)=\alpha z^{k} e^{\delta z} \prod_{i=1}^{\infty}\left(1+a_{i} z\right)
$$

where $\alpha \in \mathbb{R}, \delta \geq 0, a_{i} \geq 0, i=\overline{0, \infty}$, and $0<\sum_{i=0}^{\infty} a_{i}<\infty, k \in \mathbb{N} \cup\{0\}$.
Hence,

$$
\Phi(z)=\frac{1}{\Psi(z)}=\frac{e^{-\delta z}}{\alpha z^{k} \prod_{i=1}^{\infty}\left(1+a_{i} z\right)}
$$

On the other hand,

$$
\Phi(z)=-\int_{0}^{\infty} e^{-u(\rho+z)} d \mu\left(e^{-u}\right)=\int_{0}^{\infty} t^{\rho+z} d \mu(t)
$$

Since $\rho>0$ is arbitrary, we have the representation

$$
\begin{equation*}
\Phi(z)=\Phi_{0}(z)=\int_{0}^{1} t^{2} d \mu(t)=\frac{e^{-\delta z}}{\alpha z^{k} \prod_{i=1}^{\infty}\left(1+a_{i} z\right)} \tag{22}
\end{equation*}
$$

Since the function $\Phi(z)$ is equal to λ_{0} at the point $z=0$, we have $k=0$ and $1 / \alpha=\lambda_{0}$ in (22). Note that the condition $\sum_{i=1}^{\infty} a_{i}>0$ may be not satisfied after passing to the limit as $\rho \rightarrow 0$. Thus, the necessity of conditions (i) and (ii) is proved. Sufficiency follows from the Laguerre theorem [2, p. 544] and Theorem 2.1 in [1, p. 336].

REFERENCES

1. S. Karlin, Total Positivity, Vol. 1, Stanford Univ. Press, Stanford (1968).
2. T. Graven and G. Csordas, "Zero-diminishing linear transformations," Proc. Amer. Math. Soc., 80, No. 4, 544-546 (1980).
3. T. Graven and G. Csordas, "An inequality for the distribution of zeros of polynomials and entire functions," Pacif. J. Math., 95, No. 2, 263-280 (1981).
4. T. Graven and G. Csordas, "On the number of real roots of polynomials," Pacif. J. Math., 102, No. 1, 15-28 (1981).
5. T. Graven and G. Csordas, "Locations of zeros. Pt 1: Real polynomials and entire functions," Pacif. J. Math., 27, No. 2, 244-278 (1983).
6. A. G. Bakan and A. P. Golub, "Some negative results on sequences of factors of the first kind" Ukr. Mat. Zh., 44, No. 3, 305-309 (1992).
7. N. I. Akhiezer, The Classical Moment Problem and Some Related Problems in Analysis [in Russian], Fizmatgiz, Moscow (1961).
