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We present the necessary definitions. 

Definition 1 (cf. [I]). Let f(z) be a formal power series of the form 

A system of equations 
k==O 

sl+# = ~ a  l (t) b i (l) d~ (l), i, ] = 0,--~, 

where U(t) is a nondecreasing function on (-~, ~) and {ai(t)}~ and {bj(t)}~= o are sequences of 
measurable functions on (-~, ~) such that all the integrals in (2) exist and take on finite 
values, is called a generalized moment representation of the series (i). 

Generalized moment representations introduced by Dzyadyk in 1981 in [i] are wideiy 
used in problems of rational approximation and analytic continuation of functions (cf. [2, 
3]) 

In this paper generalized moment representations of basis hypergeometric series which 
were first considered by H. E. Heine in 1878 are constructed and analyzed (cf., e.g~ [~]). 

Definition 2 [4]. A basis hypergeometric series is a power series of the form 

(1) 

(2) 

where 

(~ (~i)q.-" "'" " (a')a, n ( 3 ) <,-, = ,  . . . . .  =':z: = S = =". 
" - 'Lp, ,  P, . . . . .  p. 

. J ,O 

. . /  l - - a \  
(a)q., : ---- (1 - -  a) (1 - -  o4) ( 1 - -  aq=)..... (I - -  aq "-~) -= (1 - -  q) t ~  ) x 

l - - a  ) 1 - - a  X(']-"~+a "...'(q--~_q +a+aq+...+aqn-'); ( a ) q . o : : l ,  

and =i, ..., =r; P* ..... P, ; q are parameters with q ~ i. 

THEOREM I. For the function 

provided only 

of the form 

S S zn (z)= snz"= ( ~ +  l + p ) [ y +  l + p ( 1  + q ) ] . . . . . [ y + l + p •  = 
n~O n=O x (1 + q + ... + q")] 

q--p 
V : = ~ > - -  1; p, q > O; q ~ 1, t h e r e  e x i s t s  a g e n e r a l i z e d  moment r e p r e s e n t a t i o n  

I 

s~+s --  ~ a, (t) bj (t) dt, i, ] = 0,-'-'~, 
0 

(5) 
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where 

tp~ i+t (q) 
a~( t )= i , i =  O, oo; 

P q ' - - I  

m 

bj(t) ---- -. ~m,~o( - l)mq ~ - -  1 )  , ts ~= O, oo; 
' i z] (q~ - -  ]1 , (q'-- 1) ,=t 

ql-- 1 q~- -  1 
%i(q) := q - - I  ' i =  l, oo; Z~(q ) :=  (q__l)q,n , m = O ,  co. 

Proof. Note that a linear bounded operator A:C[0, I] + C[0, i] of the form 

(6) 

(7) 

! 

(A~p) (t) = t o f (P (t~u) u~du 
0 

possesses the following properties: 

1 ) (Aa,)  (t) = a~+t (t), i = O, 0% 

where the functions a, (t) are defined by the formulas (6); 

2) for an arbitrary function ~(t) integrable on [0, i] and a function 
[0, i] the following is valid: 

i ' (Aeo) (t) ~ (t) dt = ~ cO (t) (B~)  (t) dt, 
0 0 

where t h e  o p e r a t o r  B:LI[O,  l ]  ~ L~[O,  1] i s  o f  t h e  form 

1 ~.-t-! --~,o--2q 
1 t~S~(v t /O)o  o dr. (B@) (t) = -~ , 

(8) 

(9) 

~(t) continuous on 

(I0) 

(ii) 

The validity of Eq. (i0) is verified directly, utilizing change of variables and inte- 
gration by parts; 

3) the k-th powers of the operators A and B are, respectively, of the form 

p~kcqJ(q__ 1)~-, .-~ .~(m-,~ H ql uXmW~du, k>~ 1. (12) 
(A%) {0 = ~_, I 'P {/") "" ~ (- O"(T-- -- 1 

[ I  (q" - -  I) o ,.=0 '=' 

k-I E ( -  1)m (qk-t __ 1) 
= x 

(B%p)(t) q~ [ l  (q" - -  I )  ~=0 ~=~ 

• qm(m-~)/2 ( t  ~a~(q)Vpffk(q~+I/ek--(v+:)~ (vl/qk)dv, k~  I. (13) 

Formula (12) is ver i f ied with the aid of (8) by an induction argument. Formula (13) 
is then deduced from (12) by utilizing the equality 

I 

(Ak(p) (t) ~ (t) dl = S (p (t) (Bk~) (t) dt, ( 14 ) 
0 0 

which follows from (i0). 

Substituting the function bo(t) = t v into (13) in place of ~?(t) and integrating, we arrive 
at formula (7). The proof of the theorem is thus completed. 

THEOREM 2. Pad~ polynomials of the order [N - I/N], N = i, =, which are nondegenerate, 
exist for the function f(z) of the form (4) under the conditions of Theorem i (i.e., j > - i; 
0, q > 0, q ~ i). 
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Proof. 
for each N = 0, = are Chebyshev system (cf. [5]). In view 
exists in this case for all N = 0, ~ a generalized polynomial 

N 

posses s ing  the  b i o r t h o g o n a l i t y  p r o p e r t y :  

I 

S As (t) Os (t) dt = 6#. i, i = O, N. 

Moreover, t-PAN(t) has exactly N distinct roots on (0, 
c~ N) and r do not vanish for each N. In that case, 
polynomials [N - i/N]f(z) can be written in the form 

N 

C~N'ZN--IT,_, q; z) 

[N-- IIN]t(z)= t=t N 
~ j  C~NIZ N - i  

t - 
i,,,o 

where T i ( f ;  z) a re  p a r t i a l  sums of  t he  s e r i e s  (4) of  o rde r  i .  
g r a l  r e p r e s e n t a t i o n  i s  v a l i d  f o r  the  approximat ion  e r r o r :  

t(z) -- [N -- IIN]j (z) = ~ o 4# (t) B (z, 0dr, 

Formulas (6) and (7) imply that the system of functions {t--~ and{t-Vb~ (l)}/=,,:'~' 
of Lemma 1 in [6] there 

(15) 

(16) 

i); it thus follows in particular that 
in view of Theorem 2.1 in [7] the Pad4 

(17) 

Moreover, the following inte- 

(18)  

N 

, ,  # * , ~ - "  B (z, t) : = zibt (t). where Q#(z):= -~ - , ;.~ 

I f  q > 1, then  (18) w i l l  be v a l i d  f o r  a l l  z E ~ ;  i f ,  however ,  q < 1, i t  i s  v a l i d  f o r  _ 
Izl < 1. 

Formula (17) t o g e t h e r  wi th  the  above-ment ioned i n e q u a l i t i e s  c l m ~ t N ) ~ 0 ,  N = 0, =, imply -0  - N  

t h a t  the  Pad6 polynomia ls  are  nondegenera te .  Theorem 2 i s  thus  p roved .  

Remark. In [8] Pad4 d iagona l  po lynomia l s  were e s s e n t i a l l y  c o n s t r u c t e d  f o r  t he  q -ana log  
of an e x p o n e n t i a l  f u n c t i o n ,  which i s  a p a r t i c u l a r  case  of (4 ) .  

THEOREM 3. For t he  f u n c t i o n  

(p+?q-a+ l)[p(q+ l)+y+~+ l]. ... . [p (q"-' + ... + l)4- 

r (z)= s , z " =  (P -1- ~-t- 1)[p(q-t- 1 ) + y +  11 .... . [ o ( q " +  ... + 1)-1-,/+ 1] 
n,=-O 

= (I -- u) zp 2(~1 ~ aq ] -- I 

[here =:= p~R--ff(q--l); ~:---pq/x; x:=p--(q--l)(pq- I) ] the generalized moment representation 
of the form 

1 

st+j = ~ ai (t) b s (t) dt, i, ] = 0-~'~,  ( 2 0 )  
0 

is valid provided 

x {q' - -  1) .......... 
? > - - 1 ;  p ,q>O;  q=/= 1; o=/= q ' ( q - - l )  ' r =  1 , ~ ,  

where 

q" - - l  ) 
~ + o + l + p-~---- 

at i f ) =  t "~t+~(~ - -  1 
V - - l  

,=~ ( y +  l + p ~ )  
, i = O, c~; 

(21) 
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' '-" ) 
{q , - l~  .(q,-l)  ' ] = 0,0o; (22)  

and as above 

Proof. 
e a r  c o n t i n u o u s  o p e r a t o r  A:C[O, 1] ~ C[O, 1] of  t h e  fo rm 

l 

(A~) (t) = of' S ~ (Pu) uVdu + F~ (l q) 
u 

to the function ao(t) : ~. Moreover, the equalities 

I 

%=~at(OF~, i : O ,  oo 
0 

evidently hold. 

k~(q) = (q~--l)/(q--l), i=1 ,  ~ ;  %m(q)=(qm__ l)/(q__l)qm, m : O, oo . 

Functions (21) can be constructed by means of successive application of the lin- 

(23)  

(24)  

Taking this into account, we construct a linear continuous operator B:LZ[0, i] ~ Lz[0, i] 
of the form 

o t v i  i tm_o+,)/or (25)  (B$) (t) = "~ o ~ (vl/q) vm+l-vo--~)l#dv + ~- 
�9 t 

possessing the property 

I I 

(A~) (t) ~ (l) dl = S ~ (t) (B~) (t) dt (26)  
0 0 

for an arbitrary function ~(t) integrable on [0, i] and a function ~ (0 continuous on [0, i]. 

Next, setting b0(t) = t~, we easily obtain 

I 

s~+i = ~ (A~ao) (t) (Bibo) (t) dr. (27) 
0 

To complete the proof of the theorem, it remains only to show that (Blbo)(l),]=O, oo, are 
expressed by formula (22). However, formula (22) is verified directly. The theorem is thus 
proved. 

THEOREM 4. Pad6 polynomials of the order [N - I/N], N = i, ~, which are nondegenerate, 
exist for the function f(x) of the form (19) under the conditions ~ of Theorem 3 [i.e., 7 > -i; 

p,q>0;q~=l; 6~• m=l,~ ]. Moreover, if AN(t) is a generalized polynomials of the 
form 

N 

A~ (0 = ~]  c~ 'a ,  (t), N = 0, ~ ,  ( 2 8 )  
i,,,,,0 

possessing biorthogonality properties 

l 

I ~ (0 bi (t) dt = 6i. N, ] = 0, N, ( 29 ) 
0 

then the Pad6 polynomials of order [N - l/N], N = i, ~, of the function f(z) can be written 
in the form 

N 

cUC)zN--~T . 

[N llNll(z) = ~=1 N 

\-, cyV,zS-, 
z , , ,a  

where Ti(f ; z) are partial sums of the series (19) of order i. 
tation 

zN t 

[ (z) - -  [N --  I/N] 1 (z) : ~ ! AN (t) B (z, t)dt 

(30) 

Then the integral representa- 

(31) 

693 



c~A"z N-t" B (z, t) : = zfbl (0, for the approximation error, where QN(z):= ; , 
�9 z ~  

is valid for Iz[ < i. 

The proof is analogous to the proof of Theorem 2. Note that the biorthogonal poly- 
nomial ~N(t) defined by formulas (28), (29) coincides up to a multiplicative constant with 
the polynomial AN(t) defined by the equalities (15) and (16). 

LITERATURE CITED 

i. V.K. Dzyadyk, "On a generalization of the moment problem," Dokl. Akad. Nauk Ukr. SSR, 
Ser. Mat., No. 6, 8-12 (1981). 

2. A.P. Golub, "Application of the generalized moment problem to the Pad~ approximation 
of certain functions," Preprint, Akad. Nauk Ukr. SSR, Inst. Mat., No. 81.58, Kiev (1981). 

3. M.N. Chyp, "A generalized moment problem and the integral representation of functions," 
Preprint, Akad. Nauk Ukr. SSR, Inst. Mat., No. 85.49, Kiev (1985). 

4. H. Bateman and A. Erd~lyi, Higher Transcendental Functions; Hypergeometric Function, 
Legendre Functions, Vol. I, McGraw Hill, New York (1953). 

5. S. Karlin and W. Studden, Tchebycheff Systems with Applications in Analysis and Sta- 
tistics, Interscience Publishers, New York (1966). 

6. A.P. Golub, "On the Pad~ approximation of the Mittag-Leffler function," Teor. Prib- 
lizhen. Funkts. Ee Prilozh., 52-59 (1984). 

7. V.K. Dzyadyk and A. P. Golub, "Generalized moment problem and the Pad~ approximation," 
Preprint, Akad. Nauk Ukr. SSR, Inst. Mat., No. 81.58, Kiev (1981). 

8. R. Walliser, "Rationale Approximation des q-Analogons der Exponentialfunction und Irra- 
tionalit~tsaussagen fHr diese Function," Arch. Math., 44, No. i, 59-64 (1985). 

STRONG SUMMABILITY OF FOURIER SERIES OF (~, ~)-DIFFERENTIABLE FUNCTIONS 

N. L. Pachulia UDC 517~5 

ca 

Let  f ( .  ) be a summable 2 ~ - p e r i o d i c  f u n c t i o n  (f6 L), S [/] =ao([)/2 + ~'z (aa (f) coskx ~- b h (/)sinkx) 

i t s  F o u r i e r  s e r i e s ,  S k ( f ,  x) t he  k - t h  p a r t i a l  sums of  the  s e r i e s ,  ph( f ;x )=  f ( x ) - - S h ( f ,  x), k =  
(l~)keN and 8 =  (6k)ke~ nonnega t ive  sequences  of  numbers ( t h e  numbers k k may a l s o  depend On a 
parameter  m), ~ a f u n c t i o n  d e f i n e d  and nonnega t ive  on [0, ~) .  

Consider the operator 

~ ~; x, ~, ~) = ~ ~,~ (6~ I p~ (f; x)l). (1)  
k = t l  

Operators of type (i), with ~ (u)= u ~ p >0, where first studied by Hardy and Littlewood 
[i, 2], who thereby laid the foundations for the modern theory of strong summability of 
Fourier series. Similar objects were subsequently investigated by other authors [3-5]. 

In this paper we derive estimates for the values of (i) in the uniform metric for the 
Fourier series of functions f6C~C. These classes of functions were first defined by Stepa- 
nets [6], as follows. Let (~p(k))~EN be a fixed sequence of numbers, $ a fixed number and 

~=I ~ (ak (f) cos (kx + O) + bh (f) sin (kx + 0)), 0 = ~z12, 

the Fourier series of some function f~6L. This function is called the (~), ~)-derivative of" 
f. The set of functions [6C for which f~6C is denoted by C~ C. 

We shall assume that the numbers ~(k) are the traces on N of a function tg(v) of a con- 
tinuous argument v~l. assumed to be convex downward for all v6[l, oo) and such that ]irn~(v)----- 
0. The set of all such functions will be denoted by ~9~. v.~ 
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