We present the necessary definitions.
Definition 1 (cf. [1]). Let $f(z)$ be a formal power series of the form

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} s_{k} z^{k} . \tag{1}
\end{equation*}
$$

A system of equations

$$
\begin{equation*}
s_{i+i}=\int_{-\infty}^{\infty} a_{i}(t) b_{1}(t) \mathrm{d} \mu(t), \quad i, j=\overline{0, \infty}, \tag{2}
\end{equation*}
$$

where $\mu(t)$ is a nondecreasing function on ($-\infty, \infty$) and $\left\{a_{i}(t)\right\}_{i=0}^{\infty}$ and $\left\{b_{j}(t)\right\}_{j=0}^{\infty}$ are sequences of measurable functions on ($-\infty, \infty$) such that all the integrals in (2) exist and take on finite values, is called a generalized moment representation of the series (1).

Generalized moment representations introduced by Dzyadyk in 1981 in [1] are widely used in problems of rational approximation and analytic continuation of functions (cf. [2, 3]).

In this paper generalized moment representations of basis hypergeometric series which were first considered by H. E. Heine in 1878 are constructed and analyzed (cf., e.g., [4]).

Definition 2 [4]. A basis hypergeometric series is a power series of the form

$$
\Phi_{s}\left[\begin{array}{l}
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r} ; z \tag{3}\\
\rho_{1}, \rho_{2}, \ldots, \rho_{s}
\end{array}\right]:=\sum_{n=0}^{\infty} \frac{\left(\alpha_{\Lambda_{q, n}}\left(\alpha_{2}\right)_{q, n} \cdot \ldots \cdot\left(\alpha_{r}\right)_{a, n}\right.}{(q)_{q, n}\left(\rho_{1}\right)_{a, n} \cdot \ldots \cdot\left(\rho_{s}\right)_{q, n}} z^{n}
$$

where

$$
\begin{aligned}
& (a)_{q, n}:=(1-a)(1-a q)\left(1-a q^{2}\right) \cdot \ldots \cdot\left(1-a q^{n-1}\right)=(1-q)^{n}\left(\frac{1-a}{1-q}\right) \times \\
& \quad \times\left(\frac{1-a}{1-q}+a\right) \cdot \ldots \cdot\left(\frac{1-a}{1-q}+a+a q+\ldots+a q^{n-2}\right) ; \quad(a) q, 0:=1
\end{aligned}
$$

and $\alpha_{1}, \ldots, \alpha_{r} ; \rho_{1}, \ldots, \rho_{s} ; q$ are parameters with $q \neq 1$.
THEOREM 1. For the function

$$
\begin{gather*}
f(z)=\sum_{n=0}^{\infty} s_{n} z^{n}=\sum_{n=0}^{\infty} \frac{z^{n}}{(\gamma+1+\rho)[\gamma+1+\rho(1+q)] \cdot \ldots \cdot[\gamma+1+\rho \times}= \\
\left.\times\left(1+q+\ldots+q^{n}\right)\right] \tag{4}
\end{gather*}=
$$

provided only $\gamma:=\frac{q-\rho}{1-q}>-1 ; \rho, q>0 ; q \neq 1$, there exists a generalized moment representation of the form

$$
\begin{equation*}
s_{l+j}=\int_{0}^{1} a_{i}(t) b_{j}(t) \mathrm{dt}, \quad i, j=\overline{0, \infty}, \tag{5}
\end{equation*}
$$

Institute of Simulation and Power Engineering Problems, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 41, No. 6, pp. 803-808, June, 1989. Original article submitted September 30, 1986.
where

$$
\begin{gather*}
a_{i}(t)=\frac{t^{p \lambda_{i+1}^{(q)}}}{\prod_{r=1}^{i}\left(\gamma+1+p \frac{q^{r}-1}{q-1}\right)}, \quad i=\overline{0, \infty} ; \tag{6}\\
b_{j}(t)=\frac{t^{\hat{v}}(q-1)^{i}}{\prod_{r=1}^{i}\left(q^{\prime}-1\right)} \sum_{m=0}^{i}(-1)^{m} q^{\frac{m(m-1)}{2}}\left[\sum_{r=1}^{m} \frac{\left(q^{i-r+1}-1\right)}{\left(q^{\prime}-1\right)}\right] t^{\tilde{\lambda}_{m}(q)}, \quad i=\overline{0, \infty} ; \tag{7}\\
\lambda_{i}(q):=\frac{q^{i}-1}{q-1}, \quad i=\overline{1, \infty} ; \quad \tilde{\lambda}_{m}(q):=\frac{q^{m}-1}{(q-1) q^{m}}, \quad m=\overline{0, \infty} .
\end{gather*}
$$

Proof. Note that a linear bounded operator $A: C[0,1] \rightarrow C[0,1]$ of the form

$$
\begin{equation*}
(A \varphi)(t)=t^{\rho} \int_{0}^{1} \varphi\left(t^{a} u\right) u^{v} \mathrm{~d} u \tag{8}
\end{equation*}
$$

possesses the following properties:
1)

$$
\begin{equation*}
\left(A a_{i}\right)(t)=a_{i+1}(t), \quad i=\overline{0, \infty} \tag{9}
\end{equation*}
$$

where the functions $a_{i}(t)$ are defined by the formulas (6);
2) for an arbitrary function $\psi(t)$ integrable on $[0,1]$ and a function $\varphi(t)$ continuous on $[0,1]$ the following is valid:

$$
\begin{equation*}
\int_{0}^{1}(A \varphi)(t) \psi(t) \mathrm{d} t=\int_{0}^{1} \varphi(t)(B \psi)(t) \mathrm{d} t_{2} \tag{10}
\end{equation*}
$$

where the operator $B: L^{1}[0,1] \rightarrow L^{1}[0,1]$ is of the form

$$
\begin{equation*}
(B \psi)(t)=\frac{1}{q} t^{\nu} \int_{i}^{1} \psi\left(v^{1 / o} ; 0^{\frac{i+1-\gamma \sigma-2 q}{a}} \mathrm{~d} v .\right. \tag{11}
\end{equation*}
$$

The validity of Eq. (10) is verified directly, utilizing change of variables and integration by parts;
3) the k-th powers of the operators A and B are, respectively, of the form

$$
\begin{gather*}
\left(A^{k} \varphi\right)(t)=\frac{t^{p \lambda_{k}(q)}(q-1)^{k-1}}{\prod_{r=1}^{k-1}\left(q^{r}-1\right)} \int_{0}^{1} \varphi\left(t^{q^{k}} u\right) u^{v} \sum_{m=0}^{k-1}(-1)^{m} q^{\frac{m(m-1)}{2}}\left[\prod_{l=1}^{m}\left(\frac{q^{k-l}-1}{q^{l}-1}\right)\right] u^{\tilde{\lambda}_{m}(q)} \mathrm{d} u, \quad k \geqslant 1, \tag{12}\\
\left(B^{k} \psi\right)(t)=\frac{t^{v}(q--1)^{k-1}}{q^{k} \prod_{r=1}^{k-1}\left(q^{r}-1\right)} \int_{i}^{1} \sum_{m=0}^{k-1}(-1)^{m}\left[\prod_{l=1}^{m} \frac{\left(q^{k-l}-1\right)}{\left(q^{l}-1\right)}\right] \times \\
\quad \times q^{m(m-1) / 2}\left(\frac{t}{v}\right)^{\bar{\lambda}_{m}(q)} v^{0 \tilde{\lambda}_{k}(q)+1 / q^{k}-(v+2)} \psi\left(v^{1 / q^{k}}\right) \mathrm{d} v, \quad k \geqslant 1 . \tag{13}
\end{gather*}
$$

Formula (12) is verified with the aid of (8) by an induction argument. Formula (13) is then deduced from (12) by utilizing the equality

$$
\begin{equation*}
\int_{0}^{1}\left(A^{k} \varphi\right)(t) \psi(t) \mathrm{d} t=\int_{0}^{1} \varphi(t)\left(B^{k} \psi\right)(t) \mathrm{d} t, \tag{14}
\end{equation*}
$$

which follows from (10).
Substituting the function $b_{0}(t)=t^{\gamma}$ into (13) in place of $\psi(t)$ and integrating, we arrive at formula (7). The proof of the theorem is thus completed.

THEOREM 2. Pade polynomials of the order $[\mathrm{N}-1 / \mathrm{N}], \mathrm{N}=\overline{1, \infty}$, which are nondegenerate, exist for the function $f(z)$ of the form (4) under the conditions of Theorem 1 (i.e., $j>-1$; $p, q>0, q \neq 1$).

Proof. Formulas (6) and (7) imply that the system of functions $\left\{t^{-\rho} a_{;}(t)\right\}_{i=6}^{N}$ and $\left\{t^{-v} b_{;}(t)\right\}_{j=6}^{N}$ for each $N=0, \infty$ are Chebyshev system (cf. [5]). In view of Lemma 1 in [6] there exists in this case for all $N=\overline{0, \infty}$ a generalized polynomial

$$
\begin{equation*}
A_{N}(t)=\sum_{i=0}^{N} c_{i}^{(N)} a_{i}(t) \tag{15}
\end{equation*}
$$

possessing the biorthogonality property:

$$
\begin{equation*}
\int_{1}^{1} A_{N}(t) b_{j}(t) \mathrm{d} t=\delta_{N, j}, \quad j=\overline{0, N} \tag{16}
\end{equation*}
$$

Moreover, $t^{-\rho} A_{N}(t)$ has exactly N distinct roots on (0,1); it thus follows in particular that $c_{0}^{(N)}$ and $c_{N}^{(N)}$ do not vanish for each N. In that case, in view of Theorem 2.1 in [7] the Padé polynomials $[N-1 / N]_{f}(z)$ can be written in the form

$$
\begin{equation*}
[N-1 l N]_{j}(z)=\frac{\sum_{i=1}^{N} c_{i}^{(N)} z^{N-i} T_{i-1}(\eta ; z)}{\sum_{i=1}^{N} c_{i}^{(N)} z^{N-i}}, \tag{17}
\end{equation*}
$$

where $T_{i}(f ; z)$ are partial sums of the series (4) of order i. Moreover, the following integral representation is valid for the approximation error:

$$
\begin{equation*}
f(z)-[N-1 \eta N]_{j}(z)=\frac{z^{N}}{Q_{N}(z)} \int_{0}^{1} A_{N}(t) B(z, t) \mathrm{d} t_{3} \tag{18}
\end{equation*}
$$

where $Q_{N}(z):=\sum_{i=0}^{N} c_{i}^{(N)} z^{N-i} ; \quad B(z, t):=\sum_{j=1}^{\infty} z^{i} b_{i}(t)$.
If $q>1$, then (18) will be valid for all $z \in \mathbb{C} ;$ if, however, $q<1$, it is valid for $|z|<1$.

Formula (17) together with the above-mentioned inequalities $c_{0}^{(N)} c_{N}^{(N)} \neq 0, N=\overline{0, \infty}$, imply that the Pade polynomials are nondegenerate. Theorem 2 is thus proved.

Remark. In [8] Padé diagonal polynomials were essentially constructed for the q-analog of an exponential function, which is a particular case of (4).

THEOREM 3. For the function

$$
\begin{gather*}
f(z)=\sum_{n=0}^{\infty} s_{n} z^{n}=\sum_{n=0}^{\infty} \frac{(\rho+\gamma+\sigma+1)[\rho(q+1)+\gamma+\sigma+1] \cdot \ldots \cdot\left[\rho\left(q^{n-1}+\ldots+1\right)+\right.}{} \begin{array}{c}
+\gamma+\sigma+1]
\end{array} z^{n+\gamma+1)[\rho(q+1)+\gamma+1] \cdot \ldots \cdot\left[\rho\left(q^{n}+\ldots+1\right)+\gamma+1\right]}= \\
=\frac{(1-q) \alpha}{(1-\alpha) z \rho}\left\{2_{2}\left[\begin{array}{c}
\left.q, \alpha ; \frac{\xi z}{\alpha q}\right]-1 \\
\xi
\end{array}\right]\right.
\end{gather*}
$$

[here $\alpha:=\rho / x-\sigma(q-1) ; \quad \xi:=\rho q / x: \quad x:=\rho-(q-1)(\gamma+1)]$ the generalized moment representation of the form

$$
\begin{equation*}
s_{i+j}=\int_{0}^{1} a_{i}(t) b_{j}(t) \mathrm{d} t, \quad i, j=\overline{0, \infty} \tag{20}
\end{equation*}
$$

is valid provided

$$
\gamma>-1 ; \rho, q>0 ; q \neq 1 ; \sigma \neq \frac{x\left(q^{r}-1\right)}{q^{r}(q-1)}, r=\overline{1, \infty}
$$

where

$$
\begin{equation*}
a_{i}(t)=t^{\rho \lambda_{i+1}^{(o)}} \prod_{r=1}^{i} \frac{\left(\gamma+\sigma+1+\rho \frac{q^{r}-1}{q-1}\right)}{\left(\gamma+1+\rho \frac{q^{r}-1}{q-1}\right)}, \quad i=\overline{0, \infty} \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
b_{j}(t)=\sum_{m=0}^{j} t^{\tilde{t_{m}}(q)+\gamma} \prod_{l=1}^{i-m} \frac{\sigma+x\left(\frac{q^{l-1}-1}{q-1}\right)}{x\left(\frac{q^{l}-1}{q-1}\right)} \prod_{r=1}^{m}\left(\frac{1}{q}-\frac{\sigma(q-1) q^{r-1}}{x\left(q^{r}-1\right)}\right), \quad i=\overline{0, \infty} ; \tag{22}
\end{equation*}
$$

and as above $\lambda_{i}(q)=\left(q^{i}-1\right) /(q-1), i=\overline{1, \infty} ; \quad \bar{\lambda}_{m}(q)=\left(q^{m}-1\right) /(q-1) q^{m}, \quad m=\overline{0, \infty}$.
Proof. Functions (21) can be constructed by means of successive application of the linear continuous operator $A: C[0,1] \rightarrow C[0,1]$ of the form

$$
\begin{equation*}
(A \varphi)(t)=\sigma t^{v} \int_{v}^{1} \varphi\left(t^{4} u\right) u^{v} \mathrm{~d} u+t^{\rho} \varphi\left(t^{a}\right) \tag{23}
\end{equation*}
$$

to the function $a_{0}(t)=t^{\rho}$. Moreover, the equalities

$$
\begin{equation*}
s_{t}=\int_{0}^{1} a_{i}(t) t^{\eta} d t, \quad i=\overline{0, \infty} \tag{24}
\end{equation*}
$$

evidently hold.
Taking this into account, we construct a linear continuous operator $B: L^{1}[0,1] \rightarrow L^{1}[0,1]$ of the form

$$
\begin{equation*}
(B \psi)(t)=\frac{\sigma}{q} t^{\nu} \int_{t}^{1} \psi\left(v^{1 / q}\right) v^{(\rho+1-v q-20) / q} \mathrm{~d} v+\frac{1}{q} t^{(\rho-o+1) / a} \psi\left(t^{1 / q}\right), \tag{25}
\end{equation*}
$$

possessing the property

$$
\begin{equation*}
\int_{0}^{1}(A \varphi)(t) \psi(t) \mathrm{d} t=\int_{0}^{1} \varphi(t)(B \psi)(t) \mathrm{d} t \tag{26}
\end{equation*}
$$

for an arbitrary function $\psi(t)$ integrable on $[0,1]$ and a function $\varphi(t)$ continuous on [0, 1].
Next, setting $b_{0}(t)=t \gamma$, we easily obtain

$$
\begin{equation*}
s_{i+j}=\int_{0}^{1}\left(A^{i} a_{0}\right)(t)\left(B^{i} b_{0}\right)(t) \mathrm{d} t . \tag{27}
\end{equation*}
$$

To complete the proof of the theorem, it remains only to show that $\left(B^{\prime} b_{0}\right)(t), j=\overline{0, \infty}$, are expressed by formula (22). However, formula (22) is verified directly. The theorem is thus proved.

THEOREM 4. Pade polynomials of the order $[\mathrm{N}-1 / \mathrm{N}], \mathrm{N}=\overline{1, \infty}$, which are nondegenerate, exist for the function $f(x)$ of the form (19) under the conditions of Theorem 3 [i.e., $\gamma>-1$; $\left.\rho, q>0 ; q \neq 1 ; \sigma \neq x \overline{\lambda_{m}}(q), m=\overline{1, \infty}\right]$. Moreover, if $\tilde{A}_{N}(\mathrm{t})$ is a generalized polynomials of the form

$$
\begin{equation*}
\tilde{A}_{N}(t)=\sum_{i=0}^{N} c_{l}^{(N)} a_{i}(t), \quad N=\overline{0, \infty} \tag{28}
\end{equation*}
$$

possessing biorthogonality properties

$$
\begin{equation*}
\int_{0}^{1} \tilde{A}_{N}(t) b_{j}(t) \mathrm{d} t=\delta_{i, N}, \quad j=\overline{0, N}, \tag{29}
\end{equation*}
$$

then the Pade polynomials of order $[\mathrm{N}-1 / \mathrm{N}], \mathrm{N}=\overline{1, \infty}$, of the function $\mathrm{f}(\mathrm{z})$ can be written in the form

$$
\begin{equation*}
[N-1 / N]_{t}(z)=\frac{\sum_{i=1}^{N} c_{s}^{(N)} z^{N-i} T_{i-1}(f ; z)}{\sum_{i=0}^{N} c_{i}^{(N)} z^{N-i}} \tag{30}
\end{equation*}
$$

where $T_{i}(f ; z)$ are partial sums of the series (19) of order i. Then the integral representatation

$$
\begin{equation*}
f(z)-[N-1 / N]_{f}(z)=\frac{z^{N}}{Q_{N}(z)} \int_{0}^{1} \tilde{A}_{N}(t) B(z, t) \mathrm{d} t \tag{31}
\end{equation*}
$$

for the approximation error, where $Q_{N}(z):=\sum_{i=0}^{N} c_{i}^{(N)} z^{N-i} ; B(z, t):=\sum_{j=0}^{\infty} z^{i} b_{j}(t)$, is valid for $|z|<1$.
The proof is analogous to the proof of Theorem 2. Note that the biorthogonal polynomial $\tilde{A}_{N}(t)$ defined by formulas (28), (29) coincides up to a multiplicative constant with the polynomial $A_{N}(t)$ defined by the equalities (15) and (16).

LITERATURE CITED

1. V. K. Dzyadyk, "On a generalization of the moment problem," Dok1. Akad. Nauk Ukr. SSR, Ser. Mat., No. 6, 8-12 (1981).
2. A. P. Golub, "Application of the generalized moment problem to the Pade approximation of certain functions," Preprint, Akad. Nauk Ukr. SSR, Inst. Mat., No. 81.58, Kiev (1981).
3. M. N. Chyp, "A generalized moment problem and the integral representation of functions," Preprint, Akad. Nauk Ukr. SSR, Inst. Mat., No. 85.49, Kiev (1985).
4. H. Bateman and A. Erdélyi, Higher Transcendental Functions; Hypergeometric Function, Legendre Functions, Vol. 1, McGraw Hill, New York (1953).
5. S. Karlin and W. Studden, Tchebycheff Systems with Applications in Analysis and Statistics, Interscience Publishers, New York (1966).
6. A. P. Golub, "On the Pade approximation of the Mittag-Leffler function," Teor. Priblizhen. Funkts. Ee Prilozh., 52-59 (1984).
7. V. K. Dzyadyk and A. P. Golub, "Generalized moment problem and the Pade approximation," Preprint, Akad. Nauk Ukr. SSR, Inst. Mat., No. 81.58, Kiev (1981).
8. R. Walliser, "Rationale Approximation des q-Analogons der Exponentialfunction und Irrationalitätsaussagen für diese Function," Arch. Math., 44, No. 1, 59-54 (1985).

STRONG SUMMABILITY OF FOURIER SERIES OF (ψ, β)-DIFFERENTIABLE FUNCTIONS

N. L. Pachulia

UDC 517.5

Let $\mathbf{f}(\cdot)$ be a summable 2π-periodic function $(f \in L), S[f]=a_{0}(f) / 2+\sum_{k=1}^{\infty}\left(a_{k}(f) \cos k x+b_{k}(f) \sin k x\right)$. its Fourier series, $S_{k}(f, x)$ the k-th partial sums of the series, $\rho_{k}(f ; x)=f(x)-S_{k}(f, x)$, $\lambda=$ $\left(\lambda_{k}\right)_{k \in N}$ and $\delta=\left(\delta_{k}\right)_{k \in N}$ nonnegative sequences of numbers (the numbers λ_{k} may also depend on a parameter m), φ a function defined and nonnegative on [$0, \infty$).

Consider the operator

$$
\begin{equation*}
H_{n}^{p}(f ; x, \lambda, \delta)=\sum_{k=n}^{\infty} \lambda_{k} \varphi\left(\delta_{k}\left|\rho_{k}(f ; x)\right|\right) \tag{1}
\end{equation*}
$$

Operators of type (1), with $\varphi(u)=u^{p}, p>0$, where first studied by Hardy and Littlewood [1, 2], who thereby laid the foundations for the modern theory of strong summability of Fourier series. Similar objects were subsequently investigated by other authors [3-5].

In this paper we derive estimates for the values of (1) in the uniform metric for the Fourier series of functions $f \in C_{B}^{\psi} C$. These classes of functions were first defined by Stepanets [6], as follows. Let $(\psi(k))_{k \in N}$ be a fixed sequence of numbers, β a fixed number and

$$
\sum_{k=1}^{\infty} \frac{1}{\psi(k)}\left(a_{k}(f) \cos (k x+\theta)+b_{k}(f) \sin (k x+\theta)\right), \quad \theta=\beta \pi / 2
$$

the Fourier series of some function $f_{\beta}^{\psi} \in L$. This function is called the (ψ, β)-derivative of f. The set of functions $f \in C$ for which $f_{\beta}^{\psi} \in C$ is denoted by $C_{B}^{\|} C$.

We shall assume that the numbers $\psi(k)$ are the traces on N of a function $\psi(v)$ of a continuous argument $v \geqslant 1$, assumed to be convex downward for all $v \in[1, \infty)$ and such that $\lim _{v \rightarrow \infty} \psi(v)=$ 0 . The set of all such functions will be denoted by \mathfrak{R}.

Abkhazian University, Sukhumi. 41, No. 6, pp. 808-814, June, 1989.

Translated from Ukrainskii Matematicheskii Zhurnal, Vol. Original article submitted April 22, 1988.

