A. P. Golub

We present the necessary definitions.

Definition 1 (cf. [1]). Let f(z) be a formal power series of the form

$$f(z) = \sum_{k=0}^{\infty} s_k z^k.$$
(1)

A system of equations

$$s_{i+j} = \int_{-\infty}^{\infty} a_i(t) b_i(t) d\mu(t), \quad i, j = \overline{0, \infty},$$
(2)

where $\mu(t)$ is a nondecreasing function on $(-\infty, \infty)$ and $\{a_i(t)\}_{i=0}^{\infty}$ and $\{b_j(t)\}_{j=0}^{\infty}$ are sequences of measurable functions on $(-\infty, \infty)$ such that all the integrals in (2) exist and take on finite values, is called a generalized moment representation of the series (1).

Generalized moment representations introduced by Dzyadyk in 1981 in [1] are widely used in problems of rational approximation and analytic continuation of functions (cf. [2, 3]).

In this paper generalized moment representations of basis hypergeometric series which were first considered by H. E. Heine in 1878 are constructed and analyzed (cf., e.g., [4]).

Definition 2 [4]. A basis hypergeometric series is a power series of the form

$${}_{r}\Phi_{s}\begin{bmatrix}\alpha_{1}, \alpha_{2}, \dots, \alpha_{r}; z\\\rho_{1}, \rho_{2}, \dots, \rho_{s}\end{bmatrix}:=\sum_{n=0}^{\infty}\frac{(\alpha_{1})_{q,n}(\alpha_{2})_{q,n}\cdot \dots\cdot (\alpha_{r})_{q,n}}{(q)_{q,n}(\rho_{1})_{q,n}\cdot \dots\cdot (\rho_{s})_{q,n}}z^{n},$$
(3)

where

$$(a)_{q,n} := (1-a)(1-aq)(1-aq^2) \cdot \dots \cdot (1-aq^{n-1}) = (1-q)^n \left(\frac{1-a}{1-q}\right) \times \left(\frac{1-a}{1-q} + a\right) \cdot \dots \cdot \left(\frac{1-a}{1-q} + a + aq + \dots + aq^{n-2}\right); \quad (a)_{q,0} := 1,$$

and $\alpha_1, \ldots, \alpha_r; \rho_1, \ldots, \rho_s; q$ are parameters with $q \neq 1$.

THEOREM 1. For the function

$$f(z) = \sum_{n=0}^{\infty} s_n z^n = \sum_{n=0}^{\infty} \frac{z^n}{(\gamma + 1 + \rho) [\gamma + 1 + \rho(1 + q)] \cdot \dots \cdot [\gamma + 1 + \rho \times} = \\ \times (1 + q + \dots + q^n)] = \left(\frac{1 - \rho}{1 - q}\right) z^{-2} \left\{ {}_1 \Phi_1 \begin{bmatrix} q; (1 - q) z \\ \rho \end{bmatrix} - 1 - \frac{z(1 - q)}{1 - \rho} \right\},$$
(4)

provided only $\gamma:=\frac{q-\rho}{1-q}>-1$; $\rho,q>0$; $q\neq 1$, there exists a generalized moment representation of the form

$$s_{i+j} = \int_{0}^{1} a_i(t) b_j(t) dt, \quad i, j = \overline{0, \infty},$$

Institute of Simulation and Power Engineering Problems, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 41, No. 6, pp. 803-808, June, 1989. Original article submitted September 30, 1986.

UDC 517.53

(-)

$$a_{i}(t) = \frac{t^{p\lambda_{i+1}(q)}}{\prod_{r=1}^{i} \left(\gamma + 1 + p \frac{q'-1}{q-1}\right)}, \quad i = \overline{0, \infty};$$

$$b_{j}(t) = \frac{t^{\gamma}(q-1)^{j}}{\prod_{r=1}^{i} (q'-1)} \sum_{m=0}^{i} (-1)^{m} q^{\frac{m(m-1)}{2}} \left[\sum_{r=1}^{m} \frac{(q^{j-r+1}-1)}{(q^{r}-1)}\right] t^{\tilde{\lambda}_{m}(q)}, \quad j = \overline{0, \infty};$$

$$\lambda_{i}(q) := \frac{q^{i}-1}{q-1}, \quad i = \overline{1, \infty}; \qquad \tilde{\lambda}_{m}(q) := \frac{q^{m}-1}{(q-1)q^{m}}, \quad m = \overline{0, \infty}.$$

$$(6)$$

<u>Proof.</u> Note that a linear bounded operator $A:C[0, 1] \rightarrow C[0, 1]$ of the form

$$(A\varphi)(t) = t^{\rho} \int_{0}^{1} \varphi(t^{q}u) u^{\gamma} du$$
(8)

possesses the following properties:

1)

$$(Aa_i)(t) = a_{i+1}(t), \quad i = \overline{0, \infty},$$
 (9)

where the functions $a_i(t)$ are defined by the formulas (6);

2) for an arbitrary function $\psi(t)$ integrable on [0, 1] and a function $\varphi(t)$ continuous on [0, 1] the following is valid:

$$\int_{0}^{1} (A\varphi)(t) \psi(t) dt = \int_{0}^{1} \varphi(t) (B\psi)(t) dt, \qquad (10)$$

where the operator $B:L^1[0, 1] \rightarrow L^1[0, 1]$ is of the form

$$(B\psi)(t) = \frac{1}{q} t^{\gamma} \int_{t}^{1} \psi(v^{1/a}) v^{\frac{\alpha+1-\gamma a-2q}{a}} dv.$$
(11)

The validity of Eq. (10) is verified directly, utilizing change of variables and integration by parts;

3) the k-th powers of the operators A and B are, respectively, of the form

$$(A^{k}\varphi)(t) = \frac{t^{\rho\lambda_{k}(q)}(q-1)^{k-1}}{\prod_{r=1}^{k-1}(q^{r}-1)} \int_{0}^{1} \varphi(t^{q^{k}}u) u^{\gamma} \sum_{m=0}^{k-1} (-1)^{m} q^{\frac{m(m-1)}{2}} \left[\prod_{l=1}^{m} \left(\frac{q^{k-l}-1}{q^{l}-1} \right) \right] u^{\tilde{\lambda}_{m}(q)} du, \quad k \ge 1,$$
(12)
$$(B^{k}\psi)(t) = \frac{t^{\gamma}(q-1)^{k-1}}{q^{k} \prod_{r=1}^{k-1}(q^{r}-1)} \int_{1}^{1} \sum_{m=0}^{k-1} (-1)^{m} \left[\prod_{l=1}^{m} \frac{(q^{k-l}-1)}{(q^{l}-1)} \right] \times$$
$$\times q^{m(m-1)/2} \left(\frac{t}{v} \right)^{\tilde{\lambda}_{m}(q)} v^{\rho \tilde{\lambda}_{k}(q)+1/q^{k}-(\gamma+2)} \psi(v^{1/q^{k}}) dv, \quad k \ge 1.$$
(13)

Formula (12) is verified with the aid of (8) by an induction argument. Formula (13) is then deduced from (12) by utilizing the equality

$$\int_{0}^{1} (A^{k} \varphi)(t) \psi(t) dt = \int_{0}^{1} \varphi(t) (B^{k} \psi)(t) dt, \qquad (14)$$

which follows from (10).

Substituting the function $b_0(t) = t^{\gamma}$ into (13) in place of $\psi(t)$ and integrating, we arrive at formula (7). The proof of the theorem is thus completed.

<u>THEOREM 2.</u> Padé polynomials of the order [N - 1/N], N = 1, ∞ , which are nondegenerate, exist for the function f(z) of the form (4) under the conditions of Theorem 1 (i.e., j > -1; ρ , q > 0, $q \neq 1$).

<u>Proof.</u> Formulas (6) and (7) imply that the system of functions $\{t^{-\rho}a_i(t)\}_{i=0}^N$ and $\{t^{-\gamma}b_i(t)\}_{j=0}^N$ for each N = 0, ∞ are Chebyshev system (cf. [5]). In view of Lemma 1 in [6] there exists in this case for all N = $\overline{0}$, ∞ a generalized polynomial

$$A_{N}(t) = \sum_{i=0}^{N} c_{i}^{(N)} a_{i}(t), \qquad (15)$$

possessing the biorthogonality property:

$$\int_{0}^{1} A_{N}(t) b_{j}(t) dt = \delta_{N,j}, \quad j = \overline{0, N}.$$
(16)

Moreover, $t^{-\rho}A_N(t)$ has exactly N distinct roots on (0, 1); it thus follows in particular that $c_0^{(N)}$ and $c_N^{(N)}$ do not vanish for each N. In that case, in view of Theorem 2.1 in [7] the Padé polynomials $[N - 1/N]_f(z)$ can be written in the form

$$[N - 1/N]_{f}(z) = \frac{\sum_{i=1}^{N} c_{i}^{(N)} z^{N-i} T_{i-1}(f; z)}{\sum_{i=0}^{N} c_{i}^{(N)} z^{N-i}},$$
(17)

where $T_i(f; z)$ are partial sums of the series (4) of order i. Moreover, the following integral representation is valid for the approximation error:

$$f(z) - [N - 1/N]_{I}(z) = \frac{z^{N}}{Q_{N}(z)} \int_{0}^{1} A_{N}(t) B(z, t) dt, \qquad (18)$$

where $Q_N(z) := \sum_{i=0}^{N} c_i^{(N)} z^{N-i};$ $B(z, t) := \sum_{j=0}^{\infty} z^j b_j(t).$

If q > 1, then (18) will be valid for all $z \in \mathbb{C}$; if, however, q < 1, it is valid for |z| < 1.

Formula (17) together with the above-mentioned inequalities $c_0^{(N)}c_N^{(N)} \neq 0$, N = $\overline{0, \infty}$, imply that the Padé polynomials are nondegenerate. Theorem 2 is thus proved.

<u>Remark.</u> In [8] Padé diagonal polynomials were essentially constructed for the q-analog of an exponential function, which is a particular case of (4).

THEOREM 3. For the function

$$f(z) = \sum_{n=0}^{\infty} s_n z^n = \sum_{n=0}^{\infty} \frac{(\rho + \gamma + \sigma + 1) \left[\rho \left(q + 1 \right) + \gamma + \sigma + 1 \right] \cdot \dots \cdot \left[\rho \left(q^{n-1} + \dots + 1 \right) + \gamma + 1 \right] \cdot \dots \cdot \left[\rho \left(q^n + \dots + 1 \right) + \gamma + 1 \right]}{(\rho + \gamma + 1) \left[\rho \left(q + 1 \right) + \gamma + 1 \right] \cdot \dots \cdot \left[\rho \left(q^n + \dots + 1 \right) + \gamma + 1 \right]} z^n = \frac{(1 - q)\alpha}{(1 - \alpha) z\rho} \left\{ z \Phi_1 \begin{bmatrix} q, \alpha; \frac{\xi z}{\alpha q} \\ \xi \end{bmatrix} - 1 \right\}$$
(19)

[here $\alpha := \rho/x - \sigma(q-1)$; $\xi := \rho q/x$; $x := \rho - (q-1)(\gamma + 1)$] the generalized moment representation of the form

$$s_{i+j} = \int_{0}^{1} a_{i}(t) b_{j}(t) dt, \quad i, j = \overline{0, \infty},$$
 (20)

is valid provided

$$\gamma > -1$$
; $\rho, q > 0$; $q \neq 1$; $\sigma \neq \frac{\varkappa(q^r - 1)}{q^r (q - 1)}$, $r = \overline{1, \infty}$,

where

$$a_{i}(t) = t^{\rho\lambda_{i+1}(\sigma)} \prod_{r=1}^{i} \frac{\left(\gamma + \sigma + 1 + \rho \frac{q^{r} - 1}{q - 1}\right)}{\left(\gamma + 1 + \rho \frac{q^{r} - 1}{q - 1}\right)}, \quad i = \overline{0, \infty};$$
(21)

$$b_{j}(t) = \sum_{m=0}^{j} t^{\tilde{\lambda}_{m}(q)+\gamma} \prod_{i=1}^{j-m} \frac{\sigma + \varkappa \left(\frac{q^{i-1}-1}{q-1}\right)}{\varkappa \left(\frac{q^{i}-1}{q-1}\right)} \prod_{r=1}^{m} \left(\frac{1}{q} - \frac{\sigma (q-1) q^{r-1}}{\varkappa (q^{r}-1)}\right), \quad j = \overline{0, \infty};$$
(22)

and as above $\lambda_i(q) = (q^i - 1)/(q - 1), i = \overline{1, \infty}; \ \lambda_m(q) = (q^m - 1)/(q - 1)q^m, \ m = \overline{0, \infty}$.

<u>Proof.</u> Functions (21) can be constructed by means of successive application of the linear continuous operator A:C[0, 1] \rightarrow C[0, 1] of the form

$$(A\varphi)(t) = \sigma t^{\nu} \int_{0}^{1} \varphi(t^{a}u) u^{\gamma} du + t^{\rho} \varphi(t^{a})$$
(23)

to the function $a_0(t) = t^{\circ}$. Moreover, the equalities

$$s_i = \int_0^1 a_i(t) t^{\gamma} dt, \quad i = \overline{0, \infty}$$
(24)

evidently hold.

Taking this into account, we construct a linear continuous operator $B:L^1[0, 1] \rightarrow L^1[0, 1]$ of the form

$$(B\psi)(t) = \frac{\sigma}{q} t^{\gamma} \int_{t}^{1} \psi(v^{1/q}) v^{(\rho+1-\gamma q-2q)/q} dv + \frac{1}{q} t^{(\rho-q+1)/q} \psi(t^{1/q}),$$
(25)

possessing the property

$$\int_{0}^{1} (A\varphi)(t) \psi(t) dt = \int_{0}^{1} \varphi(t) (B\psi)(t) dt$$
(26)

for an arbitrary function $\psi(t)$ integrable on [0, 1] and a function $\varphi(t)$ continuous on [0, 1].

Next, setting $b_0(t) = t^{\gamma}$, we easily obtain

$$s_{i+j} = \int_{0}^{1} (A^{i}a_{0})(t) (B^{j}b_{0})(t) dt.$$
(27)

To complete the proof of the theorem, it remains only to show that $(B^{l}b_{0})(t)$, $j = \overline{0,\infty}$, are expressed by formula (22). However, formula (22) is verified directly. The theorem is thus proved.

<u>THEOREM 4.</u> Padé polynomials of the order [N - 1/N], $N = \overline{1, \infty}$, which are nondegenerate, exist for the function f(x) of the form (19) under the conditions of Theorem 3 [i.e., $\gamma > -1$; $\rho, q > 0; q \neq 1; \sigma \neq \varkappa \tilde{\lambda}_m(q), m = \overline{1, \infty}$]. Moreover, if $\tilde{A}_N(t)$ is a generalized polynomials of the form

$$\tilde{A}_{N}(t) = \sum_{i=0}^{N} c_{i}^{(N)} a_{i}(t), \quad N = \overline{0, \infty},$$
(28)

possessing biorthogonality properties

$$\int_{0}^{1} \tilde{A}_{N}(t) b_{j}(t) dt = \delta_{j,N}, \quad j = \overline{0, N},$$
(29)

then the Padé polynomials of order [N - 1/N], $N = \overline{1, \infty}$, of the function f(z) can be written in the form

$$[N-1/N]_{f}(z) = \frac{\sum_{i=1}^{N} c_{i}^{(N)} z^{N-i} T_{i-1}(f; z)}{\sum_{i=0}^{N} c_{i}^{(N)} z^{N-i}},$$
(30)

where $T_i(f; z)$ are partial sums of the series (19) of order i. Then the integral representation

$$f(z) - [N - 1/N]_f(z) = \frac{z^N}{Q_N(z)} \int_0^1 \bar{A}_N(t) B(z, t) dt$$
(31)

693

for the approximation error, where $Q_N(z) := \sum_{i=0}^N c_i^{(N)} z^{N-i}$; $B(z, t) := \sum_{j=0}^\infty z^j b_j(t)$, is valid for |z| < 1.

<u>The proof</u> is analogous to the proof of Theorem 2. Note that the biorthogonal polynomial $\tilde{A}_N(t)$ defined by formulas (28), (29) coincides up to a multiplicative constant with the polynomial $A_N(t)$ defined by the equalities (15) and (16).

LITERATURE CITED

- V. K. Dzyadyk, "On a generalization of the moment problem," Dokl. Akad. Nauk Ukr. SSR, Ser. Mat., No. 6, 8-12 (1981).
- 2. A. P. Golub, "Application of the generalized moment problem to the Padé approximation of certain functions," Preprint, Akad. Nauk Ukr. SSR, Inst. Mat., No. 81.58, Kiev (1981).
- 3. M. N. Chyp, "A generalized moment problem and the integral representation of functions," Preprint, Akad. Nauk Ukr. SSR, Inst. Mat., No. 85.49, Kiev (1985).
- 4. H. Bateman and A. Erdélyi, Higher Transcendental Functions; Hypergeometric Function, Legendre Functions, Vol. 1, McGraw Hill, New York (1953).
- 5. S. Karlin and W. Studden, Tchebycheff Systems with Applications in Analysis and Statistics, Interscience Publishers, New York (1966).
- 6. A. P. Golub, "On the Padé approximation of the Mittag-Leffler function," Teor. Priblizhen. Funkts. Ee Prilozh., 52-59 (1984).
- 7. V. K. Dzyadyk and A. P. Golub, "Generalized moment problem and the Padé approximation," Preprint, Akad. Nauk Ukr. SSR, Inst. Mat., No. 81.58, Kiev (1981).
- 8. R. Walliser, "Rationale Approximation des q-Analogons der Exponentialfunction und Irrationalitätsaussagen für diese Function," Arch. Math., 44, No. 1, 59-64 (1985).

STRONG SUMMABILITY OF FOURIER SERIES OF (ψ , β)-DIFFERENTIABLE FUNCTIONS

N. L. Pachulia

UDC 517.5

Let $f(\cdot)$ be a summable 2π -periodic function $(f \in L)$, $S[f] = a_0(f)/2 + \sum_{k=1}^{\infty} (a_k(f) \cos kx + b_k(f) \sin kx)$

its Fourier series, $S_k(f, x)$ the k-th partial sums of the series, $\rho_k(f; x) = f(x) - S_k(f, x)$, $\lambda = (\lambda_k)_{k \in N}$ and $\delta = (\delta_k)_{k \in N}$ nonnegative sequences of numbers (the numbers λ_k may also depend on a parameter m), φ a function defined and nonnegative on $[0, \infty)$.

Consider the operator

$$H_n^{\rho}(f; x, \lambda, \delta) = \sum_{k=n}^{\infty} \lambda_k \varphi(\delta_k | \rho_k(f; x)|).$$
(1)

Operators of type (1), with $\varphi(u) = u^p$, p > 0, where first studied by Hardy and Littlewood [1, 2], who thereby laid the foundations for the modern theory of strong summability of Fourier series. Similar objects were subsequently investigated by other authors [3-5].

In this paper we derive estimates for the values of (1) in the uniform metric for the Fourier series of functions $f \in C_{\beta}^{\Psi}C$. These classes of functions were first defined by Stepanets [6], as follows. Let $(\psi(k))_{k \in N}$ be a fixed sequence of numbers, β a fixed number and

$$\sum_{k=1}^{\infty} \frac{1}{\psi(k)} (a_k(f) \cos(kx + \theta) + b_k(f) \sin(kx + \theta)), \quad \theta = \beta \pi/2,$$

the Fourier series of some function $f^{\psi}_{\beta} \in L$. This function is called the (ψ, β) -derivative of f. The set of functions $f \in C$ for which $f^{\psi}_{\beta} \in C$ is denoted by $C^{\psi}_{\beta} C$.

We shall assume that the numbers $\psi(k)$ are the traces on N of a function $\psi(v)$ of a continuous argument $v \ge 1$, assumed to be convex downward for all $v \in [1, \infty)$ and such that $\lim_{v \to \infty} \psi(v) = 0$. The set of all such functions will be denoted by \mathfrak{M} .

Abkhazian University, Sukhumi. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 41, No. 6, pp. 808-814, June, 1989. Original article submitted April 22, 1988.

694