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In this article we obtain a representation of arcsin z in the form of a Markov~tieltjes 
integral which allows us to resolve the question of the convergence of its Pade approximation 
on the basis of a classical result. It is to be noted that arcsin z is the only basic ele- 
mentary function for which this question remains unresolved. We also obtain bounds for the 
Hankel determinants. 

I. Integral Representation of arcsin z. The expansion 

arcsin z = ~ a~,z2k+: ( 1 ) 
k=O 

for [z I ~I, where ak = (2k-- l)!!/(2k)!!(2k + I), is well known. We establish that {ak}~= o 
is a sequence of moments for some measure V(t)dt on [0, I]. In fact, it is easy to express 
(2k- l)!!/(2k)!! in terms of Euler's beta function: 

We have further 
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Interchanging the order of integration, we get 
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a~ -w-- lim f 1 1 1 
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Since the first term admits the estimate 

1 dx tk-Tdt ~ s  1 B  r, -+0 
xV1---  

f o r  0 < r < k + 1 /2  and  e + O, i t  f o l l o w s  t h a t  
1 

a~ = ~ t ~  (t) dr, 
0 

dxd/. 

(2) 

where 
! 

~(0 = 2~V--t xVl------x 2 { I n  1 + v r - ~ - {  
t 

I f  we t a k e  (1 )  and  (2 )  i n t o  a c c o u n t ,  we g e t  a r e p r e s e n t a t i o n  o f  a r c s i n  z i n  t h e  f o r m  o f  a 
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arcsin z = z 1 - -  z~t ~ (t) dr. 

0 

(3 )  

Since the functions on both sides of (3 )  are analytic in D =  C\((--~.--l]U[+l,+oo)), it 
follows that it will hold not only for Izl ~ ] but for all z6D. 

2. Pade Approximant of arcsin z. We consider the function 

1 

arcsin pr~ S 1 
(z) = V-z = ~ ~ (t) dt 

0 

(z) = ~ a~z~ for I z I < I. 
k=O 

(4) 

A rational polynomial ~M,N(z) = PM(z)/QN(z), where PM(Z) and QN(Z) are polynomials of degrees 
not greater than M and N, respectively, for which the relation ~(z) -- ~M,N(Z) = O(z M+N+I) 
holds for z § 0 is called a Pade approximant of q~(z) of order [M, N] at z = 0 (see, e.g., [I, 
p. 5]). 

It is well known that the Pade approximant ~N+J,N(Z), J~--] of the function ~(z) repre- 
sented in (4), where ~(t) is a function which is nonnegative, integrable on [0, ]], and dif- 
ferent from zero on a set of positive measure, can be expressed in the form 

r~+j ,~  (~; z) = akz ~ 4 1 " " Ojm(+] ~  1-- ~ d+'~.( t)dt, 
k=o 

w h e r e  {QJ,N}~=o i s  a s e q u e n c e  o f  p o l y n o m i a l s  w h i c h  a r e  o r t h o n o r m a l  on  [0 ,  1] w i t h  r e s p e c t  t o  
the measure tJ+1~(t)dt (see, e.g., [2, p. 267]). It has been shown [2, p. 268] that the se- 
quence ~N+J,N(cp; z) converges uniformly to cp(z) as N § ~ on every compact subset of C~[+I, 
+oo). By virtue of this, the Pade approximant of order [2(N + j) + ], 2N], J ~--], of arcsin 
z converges uniformly to arcsin z as N + ~ on every compact set contained in D. 

3. Estimates for the Hankel Determinant of arcsin z. A study of the behavior of the 
Hankel determinant of a given function has a great deal of significance in problems concern- 
ing its Pade approximants. The determinant 

I a k ate+l . . .  an 
a k + 1  a k + 2  . �9 �9 a n + l  

Hk,n . . . . . . . . . . .  k < ~ n  

an an+l . . .  a2n-k 

is called the Hankel determinant of @(z). 

In the case where ~(t) is nonnegative, integrable on [0, ]], and different from zero on 
a set of positive measure, the Hankel determinant of a function of the form (4) is always 
positive (see [|, p. 210]). We consider the sequence {Qk,n(t)}~=o of polynomials which are 
orthonormalized on [0, ]] with respect to the measure tk+~(t)dt, k = ], 0, ], .... It is 
clear that 

ak-i-I a~.+-2 . . .  ar t+k+l  

C4~+2 a l~+3  . . .  a n + l e + 2  

a n - - I  a n �9 �9 �9 a 2 n - - k - - 1  

[ I t . . .  t n. 
1 

Therefore S [Q~ n (t)]2~ (t) tk+Idt = ~2 H H , k,n k + l  ,n+k-[.-I k + l  ,n-{-k �9 

t e r m  o f  Q k , n ( t )  i s  _Hk+l,n+k . 
/-/k + 1 ,n+k+x 

Therefore, the coefficient of the leading 
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It is well known (see, e.g., [3, p. 39]) that the minimum of the integral I [An(t)]2a(t)dt 

for all polynomials An(t) of degree not ~reater than n with leading coefficien~ I is achieved 
if and only if An(t ) = (I/~n)Pn(t); where Pn(t) is a polynomial which is orthonormalized on 
[0, I] with respect to the measure o(t)dt, and ~n is its leading coefficient; in addition, the 
desired minimum is I/~. Thus 

I 

Hk+in+k+1 = min S[A~(t)]2tk+1~(t~dt" 
Hk+l,n+~ An=tn+... 

For the funct ion ~(t)= 2~uFln 1 - - U i - - ~  ,the inequalities ~(t)>/. ~7 , ~(t)~< c~ Vr --t 
~- +~ 

g > 0, hold. Therefore, 

1 (I ~+~ , 
Hk+l,.+~+l > / ~  min ~ [A. (t)]2t V 1 -- t dt. 
Hk+l,n+k ~ An=~n+...,) 

0 

This last minimum, as is well known, is achieved for shifted Jaeobi polynomials, and it can 
be calculated (see [3, p. 273]). As a final result, we get 

/-/k+l ,,,+,~+l ~ 122k+4(k_l_2n..}.2 ) B n -}- -~-, n-t-k+ B (n + 1 n + k + 2). 
Hk+l ,n+k ~ 

For k =--1,  0, we can s imp l i fy  the r igh t -hand  s ide :  Ho,n/Ho,n-~ >/1/v2 4n-3, H~,n+~/Hl,n >/ 
I/~24n-I. We can obtain an upper bound similarly: 

n + k + 2 - - e ) .  

I * 

2. 
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