Anatoly GOLUB

GENERALIZED MOMENT REPRESENTATIONS AND PADÉ APPROXIMANTS

Abstract

Using the method of generalized moment representations Padé approximants of orders $[N-1 / N], N \geq 1$, are constructed for some elementary functions. 1. Introduction. In the theory of Padé approximants for functions that are not represented by Markov-Stieltjes integrals there are not unique approach to construction and investigation of diagonal and quasi-diagonal Padé approximants, and appropriate problems are solved only for some individual functions such as $\exp z,(1+z)^{\alpha}$, etc. (majority of known examples are cited in [1]). Proposed by V.K.Dzyadyk method of generalized moment representations [2] admitted to receive practically all known examples from unique positions as well as to widen substantially the number of these examples.

Let us introduce necessary definitions.
Definition 1 ([3]). The rational function

$$
[M / N]_{f}(z)=\frac{P_{M}(z)}{Q_{N}(z)}
$$

where $P_{M}(z)$ and $Q_{N}(z)$ are algebraic polynomials of degrees $\leq M$ and \leq N recpectively, is called to be Padé approximant of order $[M / N]$ for analytic function

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} s_{k} z^{k}, \tag{1}
\end{equation*}
$$

if $f(z)-[M / N]_{f}(z)=O\left(z^{M+N+1}\right)$ for $z \rightarrow 0$, i.e. power expansion of rational function $[M / N]_{f}(z)$ coinsides with expansion (1) up to the term, containing z^{M+N}.

Definition $2([2])$. The generalized moment representation of the number sequence $\left\{s_{k}\right\}_{k=0}^{\infty}$ in Banach space X is defined as two-parametric set of equalities

$$
\begin{equation*}
s_{k+j}=l_{j}\left(x_{k}\right), k, j=\overline{0, \infty} \tag{2}
\end{equation*}
$$

where $x_{k} \in X, k=\overline{0, \infty}, l_{j} \in X^{*}, j=\overline{0, \infty}$.
In the case when in X there exists linear continuous operator $A: X \rightarrow X$ such that

$$
A x_{k}=x_{k+1}, k=\overline{0, \infty}
$$

the representation (2) is equivalent to the representation:

$$
\begin{equation*}
s_{k}=l_{0}\left(A^{k} x_{0}\right), k=\overline{0, \infty} \tag{3}
\end{equation*}
$$

Then the function having power expansion of the form (1) with coefficients represented in the form (3) will have the representation:

$$
\begin{equation*}
f(z)=l_{0}\left(R_{z}(A) x_{0}\right), \tag{4}
\end{equation*}
$$

where $R_{z}(A)=(I-z A)^{-1}$ - the resolvent of the operator A (see [4]).
In this paper we construct Padé approximants of orders $[N-1 / N], n \geq 1$, for functions:

$$
\begin{gathered}
f_{1}(z)=\frac{2(2+z)}{z \sqrt{4-z^{2}}} \arctan \frac{z}{\sqrt{4-z^{2}}} \\
f_{2}(z)=\frac{\tan \sqrt{z}}{\sqrt{z}} \\
f_{3}(z)=\frac{\sin z+1-\cos z}{z \cos z}
\end{gathered}
$$

2. Padé Approximants for Function $f_{1}(z)$.

Theorem 1. The Padé approximants of orders $[N-1 / N], N \geq 1$ for the function

$$
f_{1}(z)=\frac{2(2+z)}{z \sqrt{4-z^{2}}} \arctan \frac{z}{\sqrt{4-z^{2}}}
$$

may be represented in the form

$$
[N-1 / N]_{f_{1}}(z)=\frac{P_{N-1}(z)}{Q_{N}(z)}
$$

$$
\begin{gathered}
\text { where } P_{N-1}(z)=\sum_{m=1}^{N} z^{N-m}(-1)^{[m / 2]} \frac{1}{[(m-1) / 2]!} \times \\
\times \sum_{k=m}^{N} l_{k}^{(N)} \frac{(k-[m / 2]-1)!}{(k-m)!} \sum_{j=0}^{m-1} \frac{[(j+1) / 2]![j / 2]!}{(j+1)!} z^{j} \\
Q_{N}(z)=l_{0}^{(N)} z^{N}+\sum_{m=1}^{N}(-1)^{[m / 2]} \frac{1}{[(m-1) / 2]!} \sum_{k=m}^{N} l_{k}^{(N)} \frac{(k-[m / 2]-1)!}{(k-m)!} z^{N-m},
\end{gathered}
$$

and $l_{k}^{(N)}, k=\overline{0, N}$ are the coefficients of shifted orthonormal on $[0,1]$ Legendre polynomial

$$
L_{N}^{*}(t)=\sum_{k=0}^{N} l_{k}^{(N)} t^{k}
$$

Here and further by $[p]$ entire part of number p is denoted.
Proof. Let us consider in the space $C[0,1]$ of continuous on $[0,1]$ functions linear bounded operator

$$
(A \phi)(t)=t \phi(1-t)
$$

It is easy seen that its second degree is representable in the form

$$
\begin{equation*}
\left(A^{2} \phi\right)(t)=t(1-t) \phi(t) \tag{5}
\end{equation*}
$$

The resolvent of operator A^{2} has the form:

$$
\begin{equation*}
\left[R_{z}\left(A^{2}\right) \phi\right](t)=\sum_{k=0}^{\infty} z^{k}\left(A^{2 k} \phi\right)(t)=\frac{\phi(t)}{1-z t(1-t)} \tag{6}
\end{equation*}
$$

Obviously:

$$
R_{z}\left(A^{2}\right)=R_{-\sqrt{z}}(A) R_{\sqrt{z}}(A),
$$

and, consequently,

$$
R_{\sqrt{z}}(A)=(I+\sqrt{z} A) R_{z}\left(A^{2}\right) .
$$

Thus, because of (6):

$$
\left[R_{z}(A) \phi\right](t)=\frac{\phi(t)+z t \phi(1-t)}{1-z^{2} t(1-t)}
$$

Let us assume now:

$$
x_{0}(t) \equiv 1, l_{0}(x)=\int_{0}^{1} x(t) d t
$$

and construct the function of the form (4):

$$
f_{1}(z)=\int_{0}^{1} \frac{1+z t}{1-z^{2} t(1-t)} d t=\frac{2(2+z)}{z \sqrt{4-z^{2}}} \arctan \frac{z}{\sqrt{4-z^{2}}}
$$

Its Padé approximant of order $[N-1 / N], N \geq 1$ according to [2] may be written in the form:

$$
[N-1 / N]_{f_{1}}(z)=\frac{P_{N-1}(z)}{Q_{N}(z)}
$$

where

$$
\begin{gather*}
P_{N-1}(z)=\sum_{m=1}^{N} c_{m}^{(N)} z^{N-m} \sum_{k=0}^{m-1} s_{k} z^{k} \tag{7}\\
Q_{N}(z)=\sum_{m=0}^{N} c_{m}^{(N)} z^{N-m} \tag{8}
\end{gather*}
$$

and coefficients $c_{m}^{(N)}, m=\overline{0, N}$ are defined from bi-orthogonality relations for generalized polynomial:

$$
L_{N}=\sum_{m=0}^{N} c_{m}^{(N)} l_{m}
$$

of the form:

$$
L_{N}\left(x_{k}\right)=0, k=\overline{0, N-1},
$$

and $s_{k}, k=\overline{0, \infty}$ - Maclaurin coefficients of the function $f_{1}(z)$.
Let us determine the functions

$$
x_{k}(t)=\left(A^{k} x_{0}\right)(t), k=\overline{0, \infty} .
$$

From (5) it is seen that for even $k=2 m$:

$$
\begin{equation*}
x_{2 m}(t)=t^{m}(1-t)^{m}, m=\overline{0, \infty} \tag{9}
\end{equation*}
$$

Applying operator A to (9) we will obtain:

$$
x_{2 m+1}(t)=t^{m+1}(1-t)^{m}, m=\overline{0, \infty} .
$$

Similarly we now determine linear functionals $l_{k}=A^{* k} l_{0}, k=\overline{0, \infty}$:

$$
l_{k}(x)=\int_{0}^{1} x(t) y_{k}(t) d t
$$

where

$$
y_{k}(t)= \begin{cases}t^{m}(1-t)^{m} & \text { for } k=2 m \\ t^{m}(1-t)^{m+1} & \text { for } k=2 m+1\end{cases}
$$

Thus, the construction of bi-orthogonal polynomial L_{N} is reduced to bi-orthogonalization of systems of functions $\left\{x_{k}(t)\right\}_{k=0}^{N}$ and $\left\{y_{k}(t)\right\}_{k=0}^{N}$ on interval [0,1]. Because $x_{k}(t)$ and $y_{k}(t)$ are algebraic polynomials of degree equal exactly to k, then such bi-orthogonalization inevitably will lead us to construction up to constant multiplyer which is unessential in our reasoning of shifted orthonormal on $[0,1]$ Legendre polynomials $L_{N}^{*}(t)$ (see, for example, [5]):

$$
\begin{equation*}
X_{N}(t)=\sum_{m=0}^{N} c_{m}^{(N)} x_{m}(t)=L_{N}^{*}(t) \tag{10}
\end{equation*}
$$

In order to calculate coefficients $c_{m}^{(N)}$ it is necessary to represent functions $t^{k}, k=$ $\overline{0, \infty}$ by means of functions $x_{k}(t), k=\overline{0, \infty}$. Let us write required representation with indeterminate coefficients:

$$
\begin{align*}
& t^{2 k}=\sum_{m=0}^{k} \alpha_{m}^{(k)} x_{2 m}(t)+\sum_{m=0}^{k-1} \beta_{m}^{(k)} x_{2 m+1}(t), k=\overline{0, \infty}, \tag{11}\\
& t^{2 k+1}=\sum_{m=1}^{k} \gamma_{m}^{(k)} x_{2 m}(t)+\sum_{m=0}^{k} \delta_{m}^{(k)} x_{2 m+1}(t), k=\overline{0, \infty}, \tag{12}
\end{align*}
$$

and consider generating functions:

$$
A(z, w)=\sum_{k=0}^{\infty} z^{k} \sum_{m=0}^{k} \alpha_{m}^{(k)} w^{m}
$$

$$
\begin{aligned}
& B(z, w)=\sum_{k=1}^{\infty} z^{k} \sum_{m=0}^{k-1} \beta_{m}^{(k)} w^{m}, \\
& \Gamma(z, w)=\sum_{k=1}^{\infty} z^{k} \sum_{m=1}^{k} \gamma_{m}^{(k)} w^{m}, \\
& \Delta(z, w)=\sum_{k=0}^{\infty} z^{k} \sum_{m=0}^{k} \delta_{m}^{(k)} w^{m} .
\end{aligned}
$$

Multiplying equality (11) by t we will obtain:

$$
\begin{align*}
t^{2 k+1} & =\sum_{m=0}^{k} \alpha_{m}^{(k)} x_{2 m+1}(t)+\sum_{m=0}^{k-1} \beta_{m}^{(k)} x_{2 m+1}(t)-\sum_{m=0}^{k-1} \beta_{m}^{(k)} x_{2 m+2}(t)= \\
& =\sum_{m=0}^{k} \alpha_{m}^{(k)} x_{2 m+1}(t)+\sum_{m=0}^{k-1} \beta_{m}^{(k)} x_{2 m+1}(t)-\sum_{m=1}^{k} \beta_{m-1}^{(k)} x_{2 m}(t) \tag{13}
\end{align*}
$$

Since functions $x_{k}(t)$ are linearly independent, and right sides of (12) and (13) coinside, then their equality will not be broken if we instead of functions $x_{2 m}(t)$ substitute w^{m}, and instead of functions $x_{2 m+1}(t)$ substitute zeros. We will receive:

$$
\begin{equation*}
\sum_{m=1}^{k} \gamma_{m}^{(k)} w^{m}=-\sum_{m=1}^{k} \beta_{m-1}^{(k)} w^{m} \tag{14}
\end{equation*}
$$

Let us multiply (14) by z^{k}, and sum by k from 1 to ∞. We will obtain:

$$
\begin{equation*}
\Gamma(z, w)=-w B(z, w) \tag{15}
\end{equation*}
$$

Similarly we will establish the relations:

$$
\begin{gather*}
A(z, w)=1-z w \Delta(z, w) \tag{16}\\
B(z, w)=z \Delta(z, w)+z \Gamma(z, w), \tag{17}\\
\Delta(z, w)=A(z, w)+B(z, w) . \tag{18}
\end{gather*}
$$

Solving the system of linear algebraic equations (15)-(18) we will receive:

$$
\begin{aligned}
& A(z, w)=\frac{1+z w-z}{(1+z w)^{2}-z}, \\
& B(z, w)=\frac{z}{(1+z w)^{2}-z}, \\
& \Gamma(z, w)=\frac{-w z}{(1+z w)^{2}-z}, \\
& \Delta(z, w)=\frac{1+z w}{(1+z w)^{2}-z} .
\end{aligned}
$$

From this formulae we have:

$$
\begin{gathered}
A(z, w)=\frac{1+z w-z}{(1+z w)^{2}-z}=\frac{(1-\sqrt{z}) / 2}{1+z w-\sqrt{z}}+\frac{(1+\sqrt{z}) / 2}{1+z w+\sqrt{z}}= \\
=1 / 2 \sum_{k=0}^{\infty}(-1)^{k} \frac{z^{k} w^{k}}{(1-\sqrt{z})^{k}}+1 / 2 \sum_{k=0}^{\infty}(-1)^{k} \frac{z^{k} w^{k}}{(1+\sqrt{z})^{k}}= \\
=1 / 2 \sum_{k=0}^{\infty}(-1)^{k} z^{k} w^{k}\left[\sum_{m=0}^{\infty} \frac{(k+m-1)!}{(k-1)!m!} z^{m / 2}+\sum_{m=0}^{\infty} \frac{(k+m-1)!}{(k-1)!m!}(-1)^{m} z^{m / 2}\right]= \\
=\sum_{k=0}^{\infty}(-1)^{k} w^{k} \sum_{m=k}^{\infty} \frac{(2 m-k-1)!}{(k-1)!(2 m-2 k)!} z^{m}=\sum_{m=0}^{\infty} z^{m} \sum_{k=0}^{m}(-1)^{k} w^{k} \frac{(2 m-k-1)!}{(k-1)!(2 m-2 k)!},
\end{gathered}
$$

whence

$$
\begin{equation*}
\alpha_{m}^{(k)}=(-1)^{m} \frac{(2 k-m-1)!}{(m-1)!(2 k-2 m)!} . \tag{19}
\end{equation*}
$$

Similarly we will obtain:

$$
\begin{gather*}
\beta_{m}^{(k)}=(-1)^{m} \frac{(2 k-m-1)!}{m!(2 k-2 m-1)!} \tag{20}\\
\gamma_{m}^{(k)}=(-1)^{m} \frac{(2 k-m)!}{(m-1)!(2 k-2 m+1)!}, \tag{21}\\
\delta_{m}^{(k)}=(-1)^{m} \frac{(2 k-m)!}{m!(2 k-2 m)!} . \tag{22}
\end{gather*}
$$

Substituting (19)-(22) in (11)-(12), and combining these equalities, we will receive:

$$
\begin{equation*}
t^{k}=\sum_{m=1}^{k}(-1)^{[m / 2]} \frac{(k-[m / 2]-1)!}{[(m-1) / 2]!(k-m)!} x_{m}(t) \text { for } k \geq 1 \tag{23}
\end{equation*}
$$

and $t^{0}=1=x_{0}(t)$. From (10) and (23) we will obtain:

$$
\begin{equation*}
c_{m}^{(N)}=(-1)^{[m / 2]} \frac{1}{[(m-1) / 2]!} \sum_{k=m}^{N} l_{k}^{(N)} \frac{(k-[m / 2]-1)!}{(k-m)!} \text { for } m=\overline{1, N} \tag{24}
\end{equation*}
$$

and $c_{0}^{(N)}=l_{0}^{(N)}$.
Substituting (24) in (7) and (8) we will receive the statement of the Theorem 1.

Remark. Similarly it is possible to construct Padé approximants for function:

$$
f(x)=\frac{2}{z \sqrt{1-\alpha^{2}}} \sqrt{\frac{2+(1-\alpha) z}{2-(1+\alpha) z}} \arctan \frac{z \sqrt{1-\alpha^{2}}}{\sqrt{(2-(\alpha+1) z)(2-(\alpha-1) z)}}
$$

for $\alpha \neq \pm 1$ (for $\alpha=0$ we will obtain function $f_{1}(z)$). For this it is necessary to consider in space $C[0,1]$ operator

$$
(A \phi)(t)=\alpha t \phi(t)+t \phi(1-t) .
$$

3. PadéApproximants for function $f_{2}(z)$.

Theorem 2. Padé approximants of orders $[N-1 / N], N \geq 1$ for the function:

$$
f_{2}(z)=\frac{\tan \sqrt{z}}{\sqrt{z}}
$$

are representable in the form:

$$
[N-1 / N]_{f_{2}}(z)=\frac{P_{N-1}(z)}{Q_{N}(z)}
$$

where

$$
\begin{gathered}
P_{N-1}(z)=\sum_{k=1}^{N}(-1)^{k} \sum_{m=k}^{N} \kappa_{m}^{(N)} \frac{(2 m)!}{(2 m-2 k)!} z^{N-k} \sum_{j=0}^{k-1} \frac{2^{2 j+2}\left(2^{2 j+2}-1\right) B_{j+1}}{(2 j+2)!} z^{j} \\
Q_{N}(z)=\sum_{k=0}^{N}(-1)^{k} \sum_{m=k}^{N} \kappa_{m}^{(N)} \frac{(2 m)!}{(2 m-2 k)!} z^{N-k}
\end{gathered}
$$

and by $\kappa_{m}^{(N)}$ the coefficients of shifted orthonormal on $[0,1]$ with weight $t^{-1 / 2}$ Jacobi polynomial

$$
R_{N}^{(0,-1 / 2)}(t)=\sum_{m=0}^{N} \kappa_{m}^{(N)} t^{m}
$$

are denoted, and B_{j} - Bernoulli numbers, defined by formulae:

$$
\begin{equation*}
B_{j}=\frac{(2 j)!}{\pi^{2 j} 2^{2 j-1}}\left[1+\frac{1}{2^{2 j}}+\frac{1}{3^{2 j}}+\frac{1}{4^{2 j}}+\ldots\right] \tag{25}
\end{equation*}
$$

Proof. Let us consider in space $C[0,1]$ linear bounded operator

$$
(A \phi)(t)=\int_{0}^{1-t} \phi(\tau) d \tau
$$

Its second degree may be represented in the form:

$$
\left(A^{2} \phi\right)(t)=(1-t) \int_{0}^{t} \phi(\tau) d \tau+\int_{t}^{1} \phi(\tau)(1-\tau) d \tau
$$

Let us assume $x_{0}(t) \equiv 1$ and find $\left[R_{z}\left(A^{2}\right) x_{0}\right](t)$ from operator equation:

$$
\begin{equation*}
\left[\left(I-z A^{2}\right) \phi\right](t)=\phi(z)-z(1-t) \int_{0}^{t} \phi(\tau) d \tau-z \int_{t}^{1} \phi(\tau)(1-\tau) d \tau=1 \tag{26}
\end{equation*}
$$

Successive double differentiation of the equality (26) gives:

$$
\begin{gather*}
\phi^{\prime}(t)+z \int_{0}^{t} \phi(\tau) d \tau=0 \tag{27}\\
\phi^{\prime \prime}(t)+z \phi(t)=0 \tag{28}
\end{gather*}
$$

General solution of equation (28) is representable in the form:

$$
\begin{equation*}
\phi(t)=C_{1} \cos \sqrt{z} t+C_{2} \sin \sqrt{z} t \tag{29}
\end{equation*}
$$

From (26) and (27) we will obtain boundary conditions:

$$
\begin{equation*}
\phi(1)=1, \quad \phi^{\prime}(0)=0 . \tag{30}
\end{equation*}
$$

Taking into account (29) and (30), we will receive:

$$
\left[R_{z}\left(A^{2}\right) x_{0}\right](t)=\frac{\cos \sqrt{z} t}{\cos \sqrt{z}} .
$$

Let us assume now $l_{0}(x)=\int_{0}^{1} x(\tau) d \tau$, and construct function:

$$
f_{2}(x)=l_{0}\left[R_{z}\left(A^{2}\right) x_{0}\right]=\int_{0}^{1} \frac{\cos \sqrt{z} t}{\cos \sqrt{z}} d t=\frac{\tan \sqrt{z}}{\sqrt{z}} .
$$

Let us assume:

$$
x_{2 k}(t)=\left(A^{2 k} x_{0}\right)(t) .
$$

Taking into account the equality:

$$
\left[R_{z}\left(A^{2}\right) x_{0}\right](t)=\sum_{k=0}^{\infty} z^{k}\left(A^{2 k} x_{0}\right)(t)=\sum_{k=0}^{\infty} z^{k} x_{2 k}(t)
$$

as well as expansion:

$$
\begin{gathered}
\frac{\cos \sqrt{z} t}{\cos \sqrt{z}}=\cos \sqrt{z} t \sec \sqrt{z}=\sum_{k=0}^{\infty} \frac{(-1)^{k} z^{k} t^{2 k}}{(2 k)!} \sum_{k=0}^{\infty} \frac{E_{k} z^{k}}{(2 k)!}= \\
=\sum_{k=0}^{\infty} z^{k} \sum_{m=0}^{k} \frac{(-1)^{m} t^{2 m} E_{k-m}}{(2 m)!(2 k-2 m)!},
\end{gathered}
$$

where E_{k} are Euler numbers defined by formulae:

$$
\begin{equation*}
E_{k}=\frac{2^{2 k+2}(2 k)!}{\pi^{2 k+1}}\left[1-\frac{1}{3^{2 k+1}}+\frac{1}{5^{2 k+1}}-\frac{1}{7^{2 k+1}}+\ldots\right], \tag{31}
\end{equation*}
$$

we will obtain:

$$
x_{2 k}(t)=\sum_{m=0}^{k} \frac{(-1)^{m} t^{2 m} E_{k-m}}{(2 m)!(2 k-2 m)!},
$$

i.e. functions $x_{2 k}(t)$ are even algebraic polynomials of degree equal exactly to $2 k$. Let us take into account also that

$$
\begin{align*}
& l_{2 k}(x)=A^{* 2 k} l_{0}(x)=l_{0}\left(A^{2 k} x\right)=\int_{0}^{1}\left(A^{2 k} x\right)(t) d t=\int_{0}^{1} \int_{0}^{1-t}\left(A^{2 k-1} x\right)(\tau) d \tau d t= \\
& =\int_{0}^{1} \int_{0}^{t}\left(A^{2 k-1} x\right)(\tau) d \tau d t=\int_{0}^{1}\left(A^{2 k-1} x\right)(t)(1-t) d t=\ldots=\int_{0}^{1} x(t) x_{2 k}(t) d t . \tag{32}
\end{align*}
$$

According to [2] Padé approximant for function $f_{2}(z)$ of order $[N-1 / N], N \geq 1$ may be written in the form:

$$
[N-1 / N]_{f_{2}}(z)=\frac{P_{N-1}(z)}{Q_{N}(z)},
$$

where

$$
\begin{gather*}
P_{N-1}(z)=\sum_{m=1}^{N} c_{m}^{(N)} z^{N-m} \sum_{k=0}^{m-1} s_{k} z^{k} \tag{33}\\
Q_{N}(z)=\sum_{m=0}^{N} c_{m}^{(N)} z^{N-m} \tag{34}
\end{gather*}
$$

and coefficients $c_{m}^{(N)}, m=\overline{0, N}$ are defined from bi-orthogonality relations for generalized polynomial:

$$
L_{2 N}=\sum_{m=0}^{N} c_{m}^{(N)} l_{2 m}
$$

of the form:

$$
L_{2 N}\left(x_{2 k}\right)=0, k=\overline{0, N-1},
$$

and $s_{k}, k=\overline{0, \infty}$ - Maclaurin coefficients of the function $f_{2}(z)$.
Keeping in mind (32) we conclude that the construction of polynomial $L_{2 N}$ is equivalent to construction of polynomial

$$
X_{2 N}(t)=\sum_{m=0}^{N} c_{m}^{(N)} x_{2 m}(t),
$$

having bi-orthogonality properties

$$
\int_{0}^{1} x_{2 k}(t) X_{2 N}(t) d t=0, k=\overline{0, N-1}
$$

Taking into account that $x_{2 k}(t)$ are even algebraic polynomials one can write:

$$
X_{2 N}(t)=U_{N}\left(t^{2}\right)
$$

where $U_{N}(t)$ is algebraic polynomial of degree equal exactly to N such that

$$
\int_{0}^{1} U_{N}\left(t^{2}\right) t^{2 k} d t=0, k=\overline{0, N-1}
$$

Fulfilling the substitution $v=t^{2}$ in the last integral we see that $U_{N}(v)$ is shifted orthonormal on $[0,1]$ with the weight $v^{-1 / 2}$ Jacobi polynomial up to constant multiplyer (see, for example [5])

$$
U_{N}(v)=\sum_{m=0}^{N} \kappa_{m}^{(N)} v^{m}=R_{N}^{(0,-1 / 2)}(v)
$$

In order to determine coefficients $c_{m}^{(N)}$ of the polynomial $X_{2 N}(t)$ we need, therefore, to find the expression of even degrees of variable by means of functions $x_{2 k}(t)$. We have:

$$
\frac{\cos \sqrt{z} t}{\cos \sqrt{z}}=\sum_{k=0}^{\infty} z^{k} x_{2 k}(t)
$$

Hence

$$
\cos \sqrt{z} t=\cos \sqrt{z} \sum_{k=0}^{\infty} z^{k} x_{2 k}(t)
$$

or

$$
\sum_{k=0}^{\infty} \frac{z^{k}(-1)^{k} t^{2 k}}{(2 k)!}=\sum_{k=0}^{\infty} \frac{z^{k}(-1)^{k}}{(2 k)!} \sum_{k=0}^{\infty} z^{k} x_{2 k}(t)=\sum_{k=0}^{\infty} z^{k} \sum_{m=0}^{k} x_{2 m}(t) \frac{(-1)^{k-m}}{(2 k-2 m)!}
$$

From here we obtain

$$
t^{2 k}=\sum_{m=0}^{k} x_{2 m}(t) \frac{(-1)^{m}(2 k)!}{(2 k-2 m)!} .
$$

Thus,

$$
\begin{gathered}
X_{2 N}(t)=U_{N}\left(t^{2}\right)=\sum_{k=0}^{N} \kappa_{k}^{(N)} t^{2 k}=\sum_{k=0}^{N} \kappa_{k}^{(N)} \sum_{m=0}^{k} x_{2 m}(t) \frac{(-1)^{m}(2 k)!}{(2 k-2 m)!}= \\
=\sum_{m=0}^{N} x_{2 m}(t)(-1)^{m} \sum_{k=m}^{N} \kappa_{k}^{(N)} \frac{(2 k)!}{(2 k-2 m)!},
\end{gathered}
$$

whence

$$
\begin{equation*}
c_{m}^{(N)}=(-1)^{m} \sum_{k=m}^{N} \kappa_{k}^{(N)} \frac{(2 k)!}{(2 k-2 m)!} . \tag{35}
\end{equation*}
$$

Substituting (35) in (33)-(34) and taking account of well-known formula for Maclaurin coefficients of function $f_{2}(z)$, we will obtain the statement of the Theorem 2.

Remark. Let us note that Padé approximants for $f_{2}(z)$ by another way were constructed in [1].
4. Padé Approximants for function $f_{3}(z)$.

Theorem 3. Padé approximants of orders $[N-1 / N], N \geq 1$ for function

$$
f_{3}(z)=\frac{\sin z+1-\cos z}{z \cos z}
$$

are representable in the form:

$$
[N-1 / N]_{f_{2}}(z)=\frac{P_{N-1}(z)}{Q_{N}(z)}
$$

where

$$
\begin{gathered}
P_{N-1}(z)=\sum_{k=1}^{N}(-1)^{[k / 2]} \sum_{m=k}^{N} l_{m}^{(N)} \frac{m!}{(m-k)!}\left[\epsilon_{m}+\delta_{k, m}\left(1-\epsilon_{m}\right)\right] z^{N-k} \sum_{j=0}^{k-1} s_{j} z^{j} \\
Q_{N}(z)=\sum_{k=0}^{N}(-1)^{[k / 2]} \sum_{m=k}^{N} l_{m}^{(N)} \frac{m!}{(m-k)!}\left[\epsilon_{m}+\delta_{k, m}\left(1-\epsilon_{m}\right)\right] z^{N-k}
\end{gathered}
$$

and by $l_{k}^{(N)}, k=\overline{0, N}$ the coefficients of shifted orthonormal on $[0,1]$ Legendre polynomial are denoted,

$$
\epsilon_{m}= \begin{cases}1, & \text { if } m \text { is even } \\ 0, & \text { if } m \text { is odd }\end{cases}
$$

Kronecker symbol $\delta_{k, m}$ is defined by formula:

$$
\delta_{k, m}= \begin{cases}1, & \text { if } k=m \\ 0, & \text { if } k \neq m,\end{cases}
$$

and $s_{j}, j=\overline{0, \infty}$ are Maclaurin coefficients of function $f_{3}(z)$:

$$
s_{j}= \begin{cases}\frac{2^{2 k+2}\left(2^{2 k+2}-1\right) B_{k+1}}{(2 k+2)!}, & \text { if } j=2 k, \\ \frac{E_{k+1}}{(2 k+2)!}, & \text { if } j=2 k+1\end{cases}
$$

(Bernoulli numbers B_{k} and Euler numbers E_{k} are defined respectively by formulae (25) and (31)).

Proof. Let us use the same operator A as in proof of the Theorem 2. We have established that

$$
\left[R_{z}\left(A^{2}\right) x_{0}\right](t)=\frac{\cos \sqrt{z} t}{\cos \sqrt{z}} .
$$

Hence

$$
\left[R_{z}(A) x_{0}\right](t)=\left\{(I+z A) R_{z^{2}}\left(A^{2}\right) x_{0}\right\}(t)=
$$

$$
=\frac{\cos z t}{\cos z}+z \int_{0}^{1-t} \frac{\cos z \tau}{\cos z} d \tau=\frac{\cos z t+\sin z(1-t)}{\cos z} .
$$

Assuming $l_{0}(x)=\int_{0}^{1} x(\tau) d \tau$, we receive the function

$$
f_{3}(z)=l_{0}\left[R_{z}(A) x_{0}\right]=\int_{0}^{1} \frac{\cos z t+\sin z(1-t)}{\cos z} d t=\frac{\sin z+1-\cos z}{z \cos z}
$$

While proving the Theorem 2 we also have obtained that

$$
\begin{equation*}
x_{2 k}(t)=\left(A^{2 k} x_{0}\right)(t)=\sum_{m=0}^{k} \frac{(-1)^{m} t^{2 m} E_{k-m}}{(2 m)!(2 k-2 m)!} . \tag{36}
\end{equation*}
$$

Hence

$$
\begin{equation*}
x_{2 k+1}(t)=\left(A x_{2 k}\right)(t)=\sum_{m=0}^{k} \frac{(-1)^{m}(1-t)^{2 m+1} E_{k-m}}{(2 m+1)!(2 k-2 m)!} . \tag{37}
\end{equation*}
$$

Formulae (36) and (37) ensure that $x_{k}(t)$ are algebraic polynomials of degrees equal exactly to k.

According to [2] Padé approximant for function $f_{3}(z)$ of order $[N-1 / N]$, $N \geq 1$ may be written in the form:

$$
[N-1 / N]_{f_{1}}(z)=\frac{P_{N-1}(z)}{Q_{N}(z)}
$$

where

$$
\begin{gather*}
P_{N-1}(z)=\sum_{m=1}^{N} c_{m}^{(N)} z^{N-m} \sum_{k=0}^{m-1} s_{k} z^{k} \tag{38}\\
Q_{N}(z)=\sum_{m=0}^{N} c_{m}^{(N)} z^{N-m} \tag{39}
\end{gather*}
$$

and coefficients $c_{m}^{(N)}, m=\overline{0, N}$ are defined from bi-orthogonality relations for generalized polynomial:

$$
L_{N}=\sum_{m=0}^{N} c_{m}^{(N)} l_{m}
$$

of the form:

$$
L_{N}\left(x_{k}\right)=0, k=\overline{0, N-1},
$$

and $s_{k}, k=\overline{0, \infty}$ - Maclaurin coefficients of the function $f_{3}(z)$.
As before we conclude that construction of polynomials L_{N} is equivalent to construction of the polynomial

$$
X_{N}(t)=\sum_{m=0}^{N} c_{m}^{(N)} x_{m}(t)
$$

having bi-orthogonality properties

$$
\int_{0}^{1} x_{k}(t) X_{N}(t) d t=0, k=\overline{0, N-1},
$$

but this construction taking into account stated above will give us as well as in Theorem 1 shifted orthonormal on $[0,1]$ Legendre polynomials $L_{N}^{*}(t)$ (up to constant mulriplyer). In order to obtain coefficients $c_{m}^{(N)}$ of polynomial $X_{N}(t)$ let us first find expressions of functions $t^{k}, k=\overline{0, \infty}$ by means of functions $x_{k}(t)$, $k=\overline{0, \infty}$. For even degrees these expressions are received in the proof of the Theorem 2:

$$
t^{2 k}=\sum_{m=0}^{k} x_{2 m}(t) \frac{(-1)^{m}(2 k)!}{(2 k-2 m)!}
$$

For odd degrees let us write expression with indeterminate coefficients:

$$
\begin{equation*}
t^{2 k+1}=\sum_{m=0}^{k} \alpha_{m}^{(k)} x_{2 m}(t)+\sum_{m=0}^{k} \beta_{m}^{(k)} x_{2 m+1}(t) \tag{40}
\end{equation*}
$$

Let us apply operator A^{2} to (40). We will obtain:

$$
\begin{equation*}
\frac{1-t^{2 k+3}}{(2 k+2)(2 k+3)}=\sum_{m=0}^{k} \alpha_{m}^{(k)} x_{2 m+2}(t)+\sum_{m=0}^{k} \beta_{m}^{(k)} x_{2 m+3}(t) \tag{41}
\end{equation*}
$$

From other hand

$$
\begin{align*}
\frac{1-t^{2 k+3}}{(2 k+2)(2 k+3)}= & \frac{1}{(2 k+2)(2 k+3)}\left[x_{0}(t)-\sum_{m=0}^{k+1} \alpha_{m}^{(k+1)} x_{2 m}(t)-\right. \\
& \left.-\sum_{m=0}^{k+1} \beta_{m}^{(k+1)} x_{2 m+1}(t)\right] . \tag{42}
\end{align*}
$$

Comparing right sides of (41) and (42) and taking into account linear independence of functions $x_{k}(t), k=\overline{0, \infty}$, we will receive

$$
\begin{gathered}
\alpha_{0}^{(k+1)}=1 \\
\alpha_{m}^{(k+1)}=-(2 k+2)(2 k+3) \alpha_{m-1}^{(k)}=\ldots=(-1)^{m} \frac{(2 k+3)!}{(2 k-2 m+3)!} \alpha_{0}^{(k-m+1)},
\end{gathered}
$$

whence

$$
\alpha_{m}^{(k)}=(-1)^{m} \frac{(2 k+1)!}{(2 k-2 m+1)!},
$$

and also

$$
\beta_{0}^{(k+1)}=0,
$$

$$
\beta_{m}^{(k+1)}=-(2 k+2)(2 k+3) \beta_{m-1}^{(k)}=\ldots=(-1)^{m} \frac{(2 k+3)!}{(2 k-2 m+3)!} \beta_{0}^{(k-m+1)}
$$

whence

$$
\begin{gathered}
\beta_{m}^{(k)}=0, \text { if } m<k, \\
\beta_{k}^{(k)}=(-1)^{k}(2 k+1)!\beta_{0}^{(0)}=-(-1)^{k}(2 k+1)!
\end{gathered}
$$

We obtain the representation:

$$
\begin{equation*}
t^{2 k+1}=\sum_{m=0}^{k}(-1)^{k} \frac{(2 k+1)!}{(2 k-2 m+1)!} x_{2 m}(t)-(-1)^{k}(2 k+1)!x_{2 k+1}(t) \tag{43}
\end{equation*}
$$

Combining formulae (40) and (43) we will receive:

$$
\begin{equation*}
t^{k}=\sum_{m=0}^{[k / 2]}(-1)^{m} \frac{k!}{(k-2 m)!} x_{2 m}(t)-\left(1-\epsilon_{k}\right)(-1)^{(k-1) / 2} k!x_{k}(t) \tag{44}
\end{equation*}
$$

where

$$
\epsilon_{m}= \begin{cases}1, & \text { if } m \text { is even } \\ 0, & \text { if } m \text { is odd }\end{cases}
$$

From (44) we have:

$$
\begin{gathered}
X_{N}(t)=\sum_{k=0}^{N} c_{k}^{(N)} x_{k}(t)=L_{N}^{*}(t)=\sum_{k=0}^{N} l_{k}^{(N)} t^{k}= \\
=\sum_{k=o}^{N} l_{k}^{(N)}\left[\sum_{m=0}^{[k / 2]}(-1)^{m} \frac{k!}{(k-2 m)!} x_{2 m}(t)-\epsilon_{k}(-1)^{(k-1) / 2} k!x_{k}(t)\right]= \\
=\sum_{m=0}^{[N / 2]}(-1)^{m} x_{2 m}(t) \sum_{k=m}^{[N / 2]} l_{2 k}^{(N)} \frac{(2 k)!}{(2 k-2 m)!}+ \\
+\sum_{m=0}^{[(N-1) / 2]}(-1)^{m} x_{2 m}(t) \sum_{k=m}^{[(N-1) / 2]} l_{2 k+1}^{(N)} \frac{(2 k+1)!}{(2 k-2 m+1)!}- \\
-\sum_{k=0}^{[(N-1) / 2]}(-1)^{k} x_{2 k+1}(t) l_{2 k+1}^{(N)}(2 k+1)!.
\end{gathered}
$$

Thus for $N=2 M$ being even we will obtain

$$
\begin{gather*}
c_{(2 m)}^{2 M}=(-1)^{m}\left[\sum_{k=m}^{M} l_{2 k}^{(2 M)} \frac{(2 k)!}{(2 k-2 m)!}+\left(1-\delta_{m, M}\right) \sum_{k=m}^{M-1} l_{2 k+1}^{(2 M)} \frac{(2 k+1)!}{(2 k-2 m+1)!}\right. \\
c_{2 m+1}^{(2 M)}=(-1)^{m} l_{2 m+1}^{(2 M)}(2 m+1)! \tag{45}
\end{gather*}
$$

For $N=2 M+1$ being odd

$$
\begin{gather*}
c_{2 m}^{(2 M+1)}=(-1)^{m}\left[\sum_{k=m}^{M} l_{2 k}^{(2 M+1)} \frac{(2 k)!}{(2 k-2 m)!}+\sum_{k=m}^{M} l_{2 k+1}^{(2 M+1)} \frac{(2 k+1)!}{(2 k-2 m+1)!}\right] \\
c_{2 m+1}^{(2 M+1)}=(-1)^{m} l_{2 m+1}^{(2 M+1)}(2 m+1)! \tag{46}
\end{gather*}
$$

Substituting ((45)-(46) to (38)-(39) we will receive the statement of the Theorem 3.

Remark. Continuing the reasoning used in proofs of the Theorem 2 and Theorem 3 it is possible to construct also Padé approximants of orders [$N-$ $1 / N], N \geq 1$ for function $f(z)=(\sec \sqrt{z}-1) / z$, which is representable in the form $f(z)=l_{1}\left(R_{z}\left(A^{2}\right) x_{0}\right)$, where A_{0}, x_{0} and l_{1} are just the same as in mentioned theorems. This result is equivalent to construction of diagonal Padé approximants for function $\cos z$ carried out in [6]. Besides that if in the proof of the Theorem 3 instead of operator $(A \phi)(t)=\int_{0}^{1-t} \phi(\tau) d \tau$ one consider operator

$$
(A \phi)(t)=\alpha \int_{0}^{t} \phi(\tau) d \tau+\int_{0}^{1-t} \phi(\tau) d \tau
$$

(for $\alpha \neq 1$) it is possible to construct Padé approximants for function

$$
f(z)=\frac{(1-\alpha) \frac{\sin z \sqrt{1-\alpha^{2}}}{\sqrt{1-\alpha^{2}}}-\cos z \sqrt{1-\alpha^{2}}+1}{z\left[\cos z \sqrt{1-\alpha^{2}}-\alpha\right]}
$$

References

1. Luke Y., Mathematical Functions and Their Approximations, Academic Press, New York (1975).
2. Dzyadyk,V.K., A Generalization of Moment Problem, Dokl.Akad.Nauk Ukr.SSR, Ser.A, No. 6 (1981), 8-12.
3. Baker G.A., Graves-Morris P.R., Padé Approximants, Parts I and II, AddisonWesley, Reading, Mass.(1981).
4. Golub A.P., Generalized Moment Representations and Rational Approximants, Institute of Mathematics of the Academy of Sciences of Ukrainian SSR, Preprint No.25, (1987).
5. Suetin P.K., Classical Orthogonal Polynomials, Nauka Publishers, Moscow (1979).
6. Dzyadyk, V.K. On Asymptotics of Diagonal Padé Approximants of functions $\sin z, \cos z, \sinh z$ and $\cosh z$, Mat.Sbornik, 108 (1979), 247-267.
