Anatoly GOLUB

GENERALIZED MOMENT REPRESENTATIONS AND PADÉ APPROXIMANTS

Abstract. Using the method of generalized moment representations Padé approximants of orders [N - 1/N], $N \ge 1$, are constructed for some elementary functions.

1. Introduction. In the theory of Padé approximants for functions that are not represented by Markov-Stieltjes integrals there are not unique approach to construction and investigation of diagonal and quasi-diagonal Padé approximants, and appropriate problems are solved only for some individual functions such as $\exp z$, $(1 + z)^{\alpha}$, etc. (majority of known examples are cited in [1]). Proposed by V.K.Dzyadyk method of generalized moment representations [2] admitted to receive practically all known examples from unique positions as well as to widen substantially the number of these examples.

Let us introduce necessary definitions.

Definition 1 ([3]). The rational function

$$[M/N]_f(z) = \frac{P_M(z)}{Q_N(z)},$$

where $P_M(z)$ and $Q_N(z)$ are algebraic polynomials of degrees $\leq M$ and $\leq N$ recpectively, is called to be Padé approximant of order [M/N] for analytic function

$$f(z) = \sum_{k=0}^{\infty} s_k z^k,\tag{1}$$

if $f(z) - [M/N]_f(z) = O(z^{M+N+1})$ for $z \to 0$, i.e. power expansion of rational function $[M/N]_f(z)$ coinsides with expansion (1) up to the term, containing z^{M+N} .

Definition 2 ([2]). The generalized moment representation of the number sequence $\{s_k\}_{k=0}^{\infty}$ in Banach space X is defined as two-parametric set of equalities

$$s_{k+j} = l_j(x_k), \ k, j = \overline{0, \infty},\tag{2}$$

where $x_k \in X$, $k = \overline{0, \infty}$, $l_j \in X^*$, $j = \overline{0, \infty}$.

In the case when in X there exists linear continuous operator $A:X\to X$ such that

$$Ax_k = x_{k+1}, \ k = \overline{0, \infty},$$

the representation (2) is equivalent to the representation:

$$s_k = l_0(A^k x_0), \ k = \overline{0, \infty}.$$
(3)

Then the function having power expansion of the form (1) with coefficients represented in the form (3) will have the representation:

$$f(z) = l_0(R_z(A)x_0),$$
(4)

where $R_z(A) = (I - zA)^{-1}$ - the resolvent of the operator A (see [4]).

In this paper we construct Padé approximants of orders [N - 1/N], $n \ge 1$, for functions:

$$f_1(z) = \frac{2(2+z)}{z\sqrt{4-z^2}} \arctan \frac{z}{\sqrt{4-z^2}}$$
$$f_2(z) = \frac{\tan\sqrt{z}}{\sqrt{z}},$$
$$f_3(z) = \frac{\sin z + 1 - \cos z}{z\cos z}.$$

2. Padé Approximants for Function $f_1(z)$.

Theorem 1. The Padé approximants of orders [N - 1/N], $N \ge 1$ for the function

$$f_1(z) = \frac{2(2+z)}{z\sqrt{4-z^2}} \arctan \frac{z}{\sqrt{4-z^2}},$$

may be represented in the form

$$[N-1/N]_{f_1}(z) = \frac{P_{N-1}(z)}{Q_N(z)},$$

where

$$P_{N-1}(z) = \sum_{m=1}^{N} z^{N-m} (-1)^{[m/2]} \frac{1}{[(m-1)/2]!} \times \sum_{k=m}^{N} l_k^{(N)} \frac{(k - [m/2] - 1)!}{(k - m)!} \sum_{j=0}^{m-1} \frac{[(j+1)/2]! [j/2]!}{(j+1)!} z^j,$$

$$Q_N(z) = l_0^{(N)} z^N + \sum_{m=1}^{N} (-1)^{[m/2]} \frac{1}{[(m-1)/2]!} \sum_{k=m}^{N} l_k^{(N)} \frac{(k - [m/2] - 1)!}{(k - m)!} z^{N-m},$$

and $l_k^{(N)},\,k=\overline{0,N}$ are the coefficients of shifted orthonormal on [0,1] Legendre polynomial

$$L_{N}^{*}(t) = \sum_{k=0}^{N} l_{k}^{(N)} t^{k}$$

Here and further by [p] entire part of number p is denoted.

 $\mathit{Proof.}$ Let us consider in the space C[0,1] of continuous on [0,1] functions linear bounded operator

$$(A\phi)(t) = t\phi(1-t).$$

It is easy seen that its second degree is representable in the form

$$(A^{2}\phi)(t) = t(1-t)\phi(t).$$
 (5)

The resolvent of operator A^2 has the form:

$$[R_z(A^2)\phi](t) = \sum_{k=0}^{\infty} z^k (A^{2k}\phi)(t) = \frac{\phi(t)}{1 - zt(1-t)}.$$
(6)

Obviously:

$$R_z(A^2) = R_{-\sqrt{z}}(A)R_{\sqrt{z}}(A),$$

and, consequently,

$$R_{\sqrt{z}}(A) = (I + \sqrt{z}A)R_z(A^2).$$

Thus, because of (6):

$$[R_z(A)\phi](t) = \frac{\phi(t) + zt\phi(1-t)}{1 - z^2t(1-t)}.$$

Let us assume now:

$$x_0(t) \equiv 1, l_0(x) = \int_0^1 x(t) dt,$$

and construct the function of the form (4):

$$f_1(z) = \int_0^1 \frac{1+zt}{1-z^2t(1-t)} dt = \frac{2(2+z)}{z\sqrt{4-z^2}} \arctan\frac{z}{\sqrt{4-z^2}}.$$

Its Padé approximant of order $[N-1/N], N \ge 1$ according to [2] may be written in the form:

$$[N - 1/N]_{f_1}(z) = \frac{P_{N-1}(z)}{Q_N(z)},$$

where

$$P_{N-1}(z) = \sum_{m=1}^{N} c_m^{(N)} z^{N-m} \sum_{k=0}^{m-1} s_k z^k,$$
(7)

$$Q_N(z) = \sum_{m=0}^{N} c_m^{(N)} z^{N-m},$$
(8)

and coefficients $c_m^{(N)}$, $m = \overline{0, N}$ are defined from bi-orthogonality relations for generalized polynomial:

$$L_N = \sum_{m=0}^N c_m^{(N)} l_m$$

of the form:

$$L_N(x_k) = 0, k = \overline{0, N-1},$$

and s_k , $k = \overline{0, \infty}$ - Maclaurin coefficients of the function $f_1(z)$.

Let us determine the functions

$$x_k(t) = (A^k x_0)(t), k = \overline{0, \infty}$$

From (5) it is seen that for even k = 2m:

$$x_{2m}(t) = t^m (1-t)^m, m = \overline{0, \infty}.$$
 (9)

Applying operator A to (9) we will obtain:

$$x_{2m+1}(t) = t^{m+1}(1-t)^m, m = \overline{0, \infty}.$$

Similarly we now determine linear functionals $l_k = A^{*k} l_0, k = \overline{0, \infty}$:

$$l_k(x) = \int_0^1 x(t) y_k(t) dt,$$

where

$$y_k(t) = \begin{cases} t^m (1-t)^m & \text{for } k = 2m \\ t^m (1-t)^{m+1} & \text{for } k = 2m+1. \end{cases}$$

Thus, the construction of bi-orthogonal polynomial L_N is reduced to bi-orthogonalization of systems of functions $\{x_k(t)\}_{k=0}^N$ and $\{y_k(t)\}_{k=0}^N$ on interval [0, 1]. Because $x_k(t)$ and $y_k(t)$ are algebraic polynomials of degree equal exactly to k, then such bi-orthogonalization inevitably will lead us to construction up to constant multiplyer which is unessential in our reasoning of shifted orthonormal on [0, 1] Legendre polynomials $L_N^*(t)$ (see, for example, [5]):

$$X_N(t) = \sum_{m=0}^{N} c_m^{(N)} x_m(t) = L_N^*(t).$$
(10)

In order to calculate coefficients $c_m^{(N)}$ it is necessary to represent functions t^k , $k = \overline{0, \infty}$ by means of functions $x_k(t)$, $k = \overline{0, \infty}$. Let us write required representation with indeterminate coefficients:

$$t^{2k} = \sum_{m=0}^{k} \alpha_m^{(k)} x_{2m}(t) + \sum_{m=0}^{k-1} \beta_m^{(k)} x_{2m+1}(t), \ k = \overline{0, \infty}, \tag{11}$$

$$t^{2k+1} = \sum_{m=1}^{k} \gamma_m^{(k)} x_{2m}(t) + \sum_{m=0}^{k} \delta_m^{(k)} x_{2m+1}(t), \ k = \overline{0, \infty}, \tag{12}$$

and consider generating functions:

$$A(z,w) = \sum_{k=0}^{\infty} z^k \sum_{m=0}^{k} \alpha_m^{(k)} w^m,$$

$$\begin{split} B(z,w) &= \sum_{k=1}^{\infty} z^k \sum_{m=0}^{k-1} \beta_m^{(k)} w^m, \\ \Gamma(z,w) &= \sum_{k=1}^{\infty} z^k \sum_{m=1}^k \gamma_m^{(k)} w^m, \\ \Delta(z,w) &= \sum_{k=0}^{\infty} z^k \sum_{m=0}^k \delta_m^{(k)} w^m. \end{split}$$

Multiplying equality (11) by t we will obtain:

$$t^{2k+1} = \sum_{m=0}^{k} \alpha_m^{(k)} x_{2m+1}(t) + \sum_{m=0}^{k-1} \beta_m^{(k)} x_{2m+1}(t) - \sum_{m=0}^{k-1} \beta_m^{(k)} x_{2m+2}(t) =$$
$$= \sum_{m=0}^{k} \alpha_m^{(k)} x_{2m+1}(t) + \sum_{m=0}^{k-1} \beta_m^{(k)} x_{2m+1}(t) - \sum_{m=1}^{k} \beta_{m-1}^{(k)} x_{2m}(t).$$
(13)

Since functions $x_k(t)$ are linearly independent, and right sides of (12) and (13) coinside, then their equality will not be broken if we instead of functions $x_{2m}(t)$ substitute w^m , and instead of functions $x_{2m+1}(t)$ substitute zeros. We will receive:

$$\sum_{m=1}^{k} \gamma_m^{(k)} w^m = -\sum_{m=1}^{k} \beta_{m-1}^{(k)} w^m.$$
(14)

Let us multiply (14) by z^k , and sum by k from 1 to ∞ . We will obtain:

$$\Gamma(z,w) = -wB(z,w). \tag{15}$$

Similarly we will establish the relations:

$$A(z,w) = 1 - zw\Delta(z,w), \tag{16}$$

$$B(z,w) = z\Delta(z,w) + z\Gamma(z,w), \qquad (17)$$

$$\Delta(z, w) = A(z, w) + B(z, w).$$
(18)

Solving the system of linear algebraic equations (15)-(18) we will receive:

$$A(z,w) = \frac{1+zw-z}{(1+zw)^2 - z},$$

$$B(z,w) = \frac{z}{(1+zw)^2 - z},$$

$$\Gamma(z,w) = \frac{-wz}{(1+zw)^2 - z},$$

$$\Delta(z,w) = \frac{1+zw}{(1+zw)^2 - z}.$$

From this formulae we have:

$$\begin{split} A(z,w) &= \frac{1+zw-z}{(1+zw)^2-z} = \frac{(1-\sqrt{z})/2}{1+zw-\sqrt{z}} + \frac{(1+\sqrt{z})/2}{1+zw+\sqrt{z}} = \\ &= 1/2\sum_{k=0}^{\infty} (-1)^k \frac{z^k w^k}{(1-\sqrt{z})^k} + 1/2\sum_{k=0}^{\infty} (-1)^k \frac{z^k w^k}{(1+\sqrt{z})^k} = \\ &= 1/2\sum_{k=0}^{\infty} (-1)^k z^k w^k [\sum_{m=0}^{\infty} \frac{(k+m-1)!}{(k-1)!m!} z^{m/2} + \sum_{m=0}^{\infty} \frac{(k+m-1)!}{(k-1)!m!} (-1)^m z^{m/2}] = \\ &= \sum_{k=0}^{\infty} (-1)^k w^k \sum_{m=k}^{\infty} \frac{(2m-k-1)!}{(k-1)!(2m-2k)!} z^m = \sum_{m=0}^{\infty} z^m \sum_{k=0}^m (-1)^k w^k \frac{(2m-k-1)!}{(k-1)!(2m-2k)!}, \end{split}$$

whence

$$\alpha_m^{(k)} = (-1)^m \frac{(2k - m - 1)!}{(m - 1)!(2k - 2m)!}.$$
(19)

Similarly we will obtain:

$$\beta_m^{(k)} = (-1)^m \frac{(2k - m - 1)!}{m!(2k - 2m - 1)!},$$
(20)

$$\gamma_m^{(k)} = (-1)^m \frac{(2k-m)!}{(m-1)!(2k-2m+1)!},\tag{21}$$

$$\delta_m^{(k)} = (-1)^m \frac{(2k-m)!}{m!(2k-2m)!}.$$
(22)

Substituting (19)-(22) in (11)-(12), and combining these equalities, we will receive:

$$t^{k} = \sum_{m=1}^{k} (-1)^{[m/2]} \frac{(k - [m/2] - 1)!}{[(m-1)/2]!(k-m)!} x_{m}(t) \text{ for } k \ge 1$$
(23)

and $t^0 = 1 = x_0(t)$. From (10) and (23) we will obtain:

$$c_m^{(N)} = (-1)^{[m/2]} \frac{1}{[(m-1)/2]!} \sum_{k=m}^N l_k^{(N)} \frac{(k-[m/2]-1)!}{(k-m)!} \text{ for } m = \overline{1, N}$$
(24)

and $c_0^{(N)} = l_0^{(N)}$.

Substituting (24) in (7) and (8) we will receive the statement of the Theorem 1.

Remark. Similarly it is possible to construct Padé approximants for function:

$$f(x) = \frac{2}{z\sqrt{1-\alpha^2}}\sqrt{\frac{2+(1-\alpha)z}{2-(1+\alpha)z}} \arctan\frac{z\sqrt{1-\alpha^2}}{\sqrt{(2-(\alpha+1)z)(2-(\alpha-1)z)}}$$

for $\alpha \neq \pm 1$ (for $\alpha = 0$ we will obtain function $f_1(z)$). For this it is necessary to consider in space C[0, 1] operator

$$(A\phi)(t) = \alpha t\phi(t) + t\phi(1-t).$$

3. PadéApproximants for function $f_2(z)$.

Theorem 2. Padé approximants of orders [N-1/N], $N \ge 1$ for the function:

$$f_2(z) = \frac{\tan\sqrt{z}}{\sqrt{z}}$$

are representable in the form:

$$[N-1/N]_{f_2}(z) = \frac{P_{N-1}(z)}{Q_N(z)},$$

where

$$P_{N-1}(z) = \sum_{k=1}^{N} (-1)^k \sum_{m=k}^{N} \kappa_m^{(N)} \frac{(2m)!}{(2m-2k)!} z^{N-k} \sum_{j=0}^{k-1} \frac{2^{2j+2} (2^{2j+2}-1)B_{j+1}}{(2j+2)!} z^j,$$
$$Q_N(z) = \sum_{k=0}^{N} (-1)^k \sum_{m=k}^{N} \kappa_m^{(N)} \frac{(2m)!}{(2m-2k)!} z^{N-k},$$

and by $\kappa_m^{(N)}$ the coefficients of shifted orthonormal on [0,1] with weight $t^{-1/2}$ Jacobi polynomial

$$R_N^{(0,-1/2)}(t) = \sum_{m=0}^N \kappa_m^{(N)} t^m$$

are denoted, and B_{j} - Bernoulli numbers, defined by formulae:

$$B_j = \frac{(2j)!}{\pi^{2j}2^{2j-1}} \left[1 + \frac{1}{2^{2j}} + \frac{1}{3^{2j}} + \frac{1}{4^{2j}} + \dots\right].$$
 (25)

Proof. Let us consider in space C[0, 1] linear bounded operator

$$(A\phi)(t) = \int_{0}^{1-t} \phi(\tau) d\tau$$

Its second degree may be represented in the form:

$$(A^{2}\phi)(t) = (1-t)\int_{0}^{t}\phi(\tau)d\tau + \int_{t}^{1}\phi(\tau)(1-\tau)d\tau.$$

Let us assume $x_0(t) \equiv 1$ and find $[R_z(A^2)x_0](t)$ from operator equation:

$$[(I - zA^2)\phi](t) = \phi(z) - z(1 - t) \int_0^t \phi(\tau)d\tau - z \int_t^1 \phi(\tau)(1 - \tau)d\tau = 1.$$
(26)

Successive double differentiation of the equality (26) gives:

$$\phi'(t) + z \int_0^t \phi(\tau) d\tau = 0, \qquad (27)$$

$$\phi''(t) + z\phi(t) = 0.$$
(28)

General solution of equation (28) is representable in the form:

$$\phi(t) = C_1 \cos \sqrt{zt} + C_2 \sin \sqrt{zt}.$$
(29)

From (26) and (27) we will obtain boundary conditions:

$$\phi(1) = 1, \quad \phi'(0) = 0. \tag{30}$$

Taking into account (29) and (30), we will receive:

$$[R_z(A^2)x_0](t) = \frac{\cos\sqrt{zt}}{\cos\sqrt{z}}.$$

Let us assume now $l_0(x) = \int_0^1 x(\tau) d\tau$, and construct function:

$$f_2(x) = l_0[R_z(A^2)x_0] = \int_0^1 \frac{\cos\sqrt{zt}}{\cos\sqrt{z}} dt = \frac{\tan\sqrt{z}}{\sqrt{z}}.$$

Let us assume:

$$x_{2k}(t) = (A^{2k}x_0)(t).$$

Taking into account the equality:

$$[R_z(A^2)x_0](t) = \sum_{k=0}^{\infty} z^k (A^{2k}x_0)(t) = \sum_{k=0}^{\infty} z^k x_{2k}(t),$$

as well as expansion:

$$\frac{\cos\sqrt{zt}}{\cos\sqrt{z}} = \cos\sqrt{zt}\sec\sqrt{z} = \sum_{k=0}^{\infty} \frac{(-1)^k z^k t^{2k}}{(2k)!} \sum_{k=0}^{\infty} \frac{E_k z^k}{(2k)!} =$$
$$= \sum_{k=0}^{\infty} z^k \sum_{m=0}^k \frac{(-1)^m t^{2m} E_{k-m}}{(2m)!(2k-2m)!},$$

where ${\cal E}_k$ are Euler numbers defined by formulae:

$$E_k = \frac{2^{2k+2}(2k)!}{\pi^{2k+1}} \left[1 - \frac{1}{3^{2k+1}} + \frac{1}{5^{2k+1}} - \frac{1}{7^{2k+1}} + \ldots\right],\tag{31}$$

we will obtain:

$$x_{2k}(t) = \sum_{m=0}^{k} \frac{(-1)^m t^{2m} E_{k-m}}{(2m)!(2k-2m)!},$$

i.e. functions $x_{2k}(t)$ are even algebraic polynomials of degree equal exactly to 2k. Let us take into account also that

$$l_{2k}(x) = A^{*2k} l_0(x) = l_0(A^{2k}x) = \int_0^1 (A^{2k}x)(t)dt = \int_0^1 \int_0^{1-t} (A^{2k-1}x)(\tau)d\tau dt =$$
$$= \int_0^1 \int_0^t (A^{2k-1}x)(\tau)d\tau dt = \int_0^1 (A^{2k-1}x)(t)(1-t)dt = \dots = \int_0^1 x(t)x_{2k}(t)dt.$$
(32)

According to [2] Padé approximant for function $f_2(z)$ of order [N-1/N], $N \ge 1$ may be written in the form:

$$[N - 1/N]_{f_2}(z) = \frac{P_{N-1}(z)}{Q_N(z)},$$

where

$$P_{N-1}(z) = \sum_{m=1}^{N} c_m^{(N)} z^{N-m} \sum_{k=0}^{m-1} s_k z^k,$$
(33)

$$Q_N(z) = \sum_{m=0}^{N} c_m^{(N)} z^{N-m},$$
(34)

and coefficients $c_m^{(N)}$, $m = \overline{0, N}$ are defined from bi-orthogonality relations for generalized polynomial:

$$L_{2N} = \sum_{m=0}^{N} c_m^{(N)} l_{2m}$$

of the form:

$$L_{2N}(x_{2k}) = 0, k = \overline{0, N - 1},$$

and s_k , $k = \overline{0, \infty}$ - Maclaurin coefficients of the function $f_2(z)$.

Keeping in mind (32) we conclude that the construction of polynomial L_{2N} is equivalent to construction of polynomial

$$X_{2N}(t) = \sum_{m=0}^{N} c_m^{(N)} x_{2m}(t),$$

having bi-orthogonality properties

$$\int_{0}^{1} x_{2k}(t) X_{2N}(t) dt = 0, \ k = \overline{0, N-1}.$$

Taking into account that $x_{2k}(t)$ are even algebraic polynomials one can write:

$$X_{2N}(t) = U_N(t^2),$$

where $U_N(t)$ is algebraic polynomial of degree equal exactly to N such that

$$\int_{0}^{1} U_N(t^2) t^{2k} dt = 0, \ k = \overline{0, N-1}.$$

Fulfilling the substitution $v = t^2$ in the last integral we see that $U_N(v)$ is shifted orthonormal on [0, 1] with the weight $v^{-1/2}$ Jacobi polynomial up to constant multiplyer (see, for example [5])

$$U_N(v) = \sum_{m=0}^N \kappa_m^{(N)} v^m = R_N^{(0,-1/2)}(v).$$

In order to determine coefficients $c_m^{(N)}$ of the polynomial $X_{2N}(t)$ we need, therefore, to find the expression of even degrees of variable by means of functions $x_{2k}(t)$. We have:

$$\frac{\cos\sqrt{zt}}{\cos\sqrt{z}} = \sum_{k=0}^{\infty} z^k x_{2k}(t).$$

Hence

$$\cos\sqrt{z}t = \cos\sqrt{z}\sum_{k=0}^{\infty} z^k x_{2k}(t)$$

or

$$\sum_{k=0}^{\infty} \frac{z^k (-1)^k t^{2k}}{(2k)!} = \sum_{k=0}^{\infty} \frac{z^k (-1)^k}{(2k)!} \sum_{k=0}^{\infty} z^k x_{2k}(t) = \sum_{k=0}^{\infty} z^k \sum_{m=0}^k x_{2m}(t) \frac{(-1)^{k-m}}{(2k-2m)!}.$$

From here we obtain

$$t^{2k} = \sum_{m=0}^{k} x_{2m}(t) \frac{(-1)^m (2k)!}{(2k-2m)!}$$

Thus,

$$X_{2N}(t) = U_N(t^2) = \sum_{k=0}^N \kappa_k^{(N)} t^{2k} = \sum_{k=0}^N \kappa_k^{(N)} \sum_{m=0}^k x_{2m}(t) \frac{(-1)^m (2k)!}{(2k-2m)!} =$$
$$= \sum_{m=0}^N x_{2m}(t) (-1)^m \sum_{k=m}^N \kappa_k^{(N)} \frac{(2k)!}{(2k-2m)!},$$

whence

$$c_m^{(N)} = (-1)^m \sum_{k=m}^N \kappa_k^{(N)} \frac{(2k)!}{(2k-2m)!}.$$
(35)

Substituting (35) in (33)-(34) and taking account of well-known formula for Maclaurin coefficients of function $f_2(z)$, we will obtain the statement of the Theorem 2.

Remark. Let us note that Padé approximants for $f_2(z)$ by another way were constructed in [1].

4. Padé Approximants for function $f_3(z)$.

Theorem 3. Padé approximants of orders $[N - 1/N], N \ge 1$ for function

$$f_3(z) = \frac{\sin z + 1 - \cos z}{z \cos z}$$

are representable in the form:

$$[N - 1/N]_{f_2}(z) = \frac{P_{N-1}(z)}{Q_N(z)},$$

where

$$P_{N-1}(z) = \sum_{k=1}^{N} (-1)^{[k/2]} \sum_{m=k}^{N} l_m^{(N)} \frac{m!}{(m-k)!} [\epsilon_m + \delta_{k,m} (1-\epsilon_m)] z^{N-k} \sum_{j=0}^{k-1} s_j z^j,$$
$$Q_N(z) = \sum_{k=0}^{N} (-1)^{[k/2]} \sum_{m=k}^{N} l_m^{(N)} \frac{m!}{(m-k)!} [\epsilon_m + \delta_{k,m} (1-\epsilon_m)] z^{N-k},$$

and by $l_k^{(N)},\,k=\overline{0,N}$ the coefficients of shifted orthonormal on [0,1] Legendre polynomial are denoted,

$$\epsilon_m = \begin{cases} 1, & \text{if } m \text{ is even,} \\ 0, & \text{if } m \text{ is odd,} \end{cases}$$

Kronecker symbol $\delta_{k,m}$ is defined by formula:

$$\delta_{k,m} = \begin{cases} 1, & \text{if } k = m, \\ 0, & \text{if } k \neq m, \end{cases}$$

and s_j , $j = \overline{0, \infty}$ are Maclaurin coefficients of function $f_3(z)$:

$$s_j = \begin{cases} \frac{2^{2k+2}(2^{2k+2}-1)B_{k+1}}{(2k+2)!}, & \text{if } j = 2k, \\ \frac{E_{k+1}}{(2k+2)!}, & \text{if } j = 2k+1 \end{cases}$$

(Bernoulli numbers B_k and Euler numbers E_k are defined respectively by formulae (25) and (31)).

Proof. Let us use the same operator A as in proof of the Theorem 2. We have established that

$$[R_z(A^2)x_0](t) = \frac{\cos\sqrt{zt}}{\cos\sqrt{z}}.$$

Hence

$$[R_z(A)x_0](t) = \{(I+zA)R_{z^2}(A^2)x_0\}(t) =$$

$$= \frac{\cos zt}{\cos z} + z \int_{0}^{1-t} \frac{\cos z\tau}{\cos z} d\tau = \frac{\cos zt + \sin z(1-t)}{\cos z}.$$

Assuming $l_0(x) = \int_0^1 x(\tau) d\tau$, we receive the function

$$f_3(z) = l_0[R_z(A)x_0] = \int_0^1 \frac{\cos zt + \sin z(1-t)}{\cos z} dt = \frac{\sin z + 1 - \cos z}{z \cos z}.$$

While proving the Theorem 2 we also have obtained that

$$x_{2k}(t) = (A^{2k}x_0)(t) = \sum_{m=0}^{k} \frac{(-1)^m t^{2m} E_{k-m}}{(2m)!(2k-2m)!}.$$
(36)

Hence

$$x_{2k+1}(t) = (Ax_{2k})(t) = \sum_{m=0}^{k} \frac{(-1)^m (1-t)^{2m+1} E_{k-m}}{(2m+1)! (2k-2m)!}.$$
 (37)

Formulae (36) and (37) ensure that $x_k(t)$ are algebraic polynomials of degrees equal exactly to k.

According to [2] Padé approximant for function $f_3(z)$ of order [N - 1/N], $N \ge 1$ may be written in the form:

$$[N - 1/N]_{f_1}(z) = \frac{P_{N-1}(z)}{Q_N(z)},$$

where

$$P_{N-1}(z) = \sum_{m=1}^{N} c_m^{(N)} z^{N-m} \sum_{k=0}^{m-1} s_k z^k,$$
(38)

$$Q_N(z) = \sum_{m=0}^{N} c_m^{(N)} z^{N-m},$$
(39)

and coefficients $c_m^{(N)}$, $m = \overline{0, N}$ are defined from bi-orthogonality relations for generalized polynomial:

$$L_N = \sum_{m=0}^N c_m^{(N)} l_m$$

of the form:

$$L_N(x_k) = 0, k = \overline{0, N-1},$$

and $s_k, k = \overline{0, \infty}$ - Maclaurin coefficients of the function $f_3(z)$.

As before we conclude that construction of polynomials ${\cal L}_N$ is equivalent to construction of the polynomial

$$X_N(t) = \sum_{m=0}^{N} c_m^{(N)} x_m(t),$$

having bi-orthogonality properties

$$\int_{0}^{1} x_k(t) X_N(t) dt = 0, \ k = \overline{0, N-1},$$

but this construction taking into account stated above will give us as well as in Theorem 1 shifted orthonormal on [0, 1] Legendre polynomials $L_N^*(t)$ (up to constant mulriplyer). In order to obtain coefficients $c_m^{(N)}$ of polynomial $X_N(t)$ let us first find expressions of functions t^k , $k = \overline{0, \infty}$ by means of functions $x_k(t)$, $k = \overline{0, \infty}$. For even degrees these expressions are received in the proof of the Theorem 2:

$$t^{2k} = \sum_{m=0}^{k} x_{2m}(t) \frac{(-1)^m (2k)!}{(2k-2m)!}.$$

For odd degrees let us write expression with indeterminate coefficients:

$$t^{2k+1} = \sum_{m=0}^{k} \alpha_m^{(k)} x_{2m}(t) + \sum_{m=0}^{k} \beta_m^{(k)} x_{2m+1}(t).$$
(40)

Let us apply operator A^2 to (40). We will obtain:

$$\frac{1-t^{2k+3}}{(2k+2)(2k+3)} = \sum_{m=0}^{k} \alpha_m^{(k)} x_{2m+2}(t) + \sum_{m=0}^{k} \beta_m^{(k)} x_{2m+3}(t).$$
(41)

From other hand

$$\frac{1-t^{2k+3}}{(2k+2)(2k+3)} = \frac{1}{(2k+2)(2k+3)} [x_0(t) - \sum_{m=0}^{k+1} \alpha_m^{(k+1)} x_{2m}(t) - \sum_{m=0}^{k+1} \beta_m^{(k+1)} x_{2m+1}(t)].$$
(42)

Comparing right sides of (41) and (42) and taking into account linear independence of functions $x_k(t)$, $k = \overline{0, \infty}$, we will receive

$$\alpha_0^{(k+1)} = 1,$$

$$\alpha_m^{(k+1)} = -(2k+2)(2k+3)\alpha_{m-1}^{(k)} = \dots = (-1)^m \frac{(2k+3)!}{(2k-2m+3)!}\alpha_0^{(k-m+1)},$$

whence

$$\alpha_m^{(k)} = (-1)^m \frac{(2k+1)!}{(2k-2m+1)!},$$

and also

$$\beta_0^{(k+1)} = 0$$

$$\beta_m^{(k+1)} = -(2k+2)(2k+3)\beta_{m-1}^{(k)} = \dots = (-1)^m \frac{(2k+3)!}{(2k-2m+3)!}\beta_0^{(k-m+1)},$$

whence

$$\beta_m^{(k)} = 0, \text{ if } m < k,$$

$$\beta_k^{(k)} = (-1)^k (2k+1)! \beta_0^{(0)} = -(-1)^k (2k+1)!.$$

We obtain the representation:

$$t^{2k+1} = \sum_{m=0}^{k} (-1)^k \frac{(2k+1)!}{(2k-2m+1)!} x_{2m}(t) - (-1)^k (2k+1)! x_{2k+1}(t).$$
(43)

Combining formulae (40) and (43) we will receive:

$$t^{k} = \sum_{m=0}^{[k/2]} (-1)^{m} \frac{k!}{(k-2m)!} x_{2m}(t) - (1-\epsilon_{k})(-1)^{(k-1)/2} k! x_{k}(t), \qquad (44)$$

where

$$\epsilon_m = \begin{cases} 1, & \text{if } m \text{ is even,} \\ 0, & \text{if } m \text{ is odd.} \end{cases}$$

From (44) we have:

$$\begin{aligned} X_N(t) &= \sum_{k=0}^N c_k^{(N)} x_k(t) = L_N^*(t) = \sum_{k=0}^N l_k^{(N)} t^k = \\ &= \sum_{k=0}^N l_k^{(N)} [\sum_{m=0}^{[k/2]} (-1)^m \frac{k!}{(k-2m)!} x_{2m}(t) - \epsilon_k (-1)^{(k-1)/2} k! x_k(t)] = \\ &= \sum_{m=0}^{[N/2]} (-1)^m x_{2m}(t) \sum_{k=m}^{[N/2]} l_{2k}^{(N)} \frac{(2k)!}{(2k-2m)!} + \\ &+ \sum_{m=0}^{[(N-1)/2]} (-1)^m x_{2m}(t) \sum_{k=m}^{[(N-1)/2]} l_{2k+1}^{(N)} \frac{(2k+1)!}{(2k-2m+1)!} - \\ &- \sum_{k=0}^{[(N-1)/2]} (-1)^k x_{2k+1}(t) l_{2k+1}^{(N)} (2k+1)!. \end{aligned}$$

Thus for N = 2M being even we will obtain

$$c_{(2m)}^{2M} = (-1)^m \left[\sum_{k=m}^M l_{2k}^{(2M)} \frac{(2k)!}{(2k-2m)!} + (1-\delta_{m,M}) \sum_{k=m}^{M-1} l_{2k+1}^{(2M)} \frac{(2k+1)!}{(2k-2m+1)!}, \\ c_{2m+1}^{(2M)} = (-1)^m l_{2m+1}^{(2M)} (2m+1)!.$$
(45)

For N = 2M + 1 being odd

$$c_{2m}^{(2M+1)} = (-1)^m \left[\sum_{k=m}^M l_{2k}^{(2M+1)} \frac{(2k)!}{(2k-2m)!} + \sum_{k=m}^M l_{2k+1}^{(2M+1)} \frac{(2k+1)!}{(2k-2m+1)!}\right],$$

$$c_{2m+1}^{(2M+1)} = (-1)^m l_{2m+1}^{(2M+1)} (2m+1)!.$$
(46)

Substituting ((45)-(46) to (38)-(39) we will receive the statement of the Theorem 3.

Remark. Continuing the reasoning used in proofs of the Theorem 2 and Theorem 3 it is possible to construct also Padé approximants of orders [N - 1/N], $N \ge 1$ for function $f(z) = (\sec\sqrt{z} - 1)/z$, which is representable in the form $f(z) = l_1(R_z(A^2)x_0)$, where A_0 , x_0 and l_1 are just the same as in mentioned theorems. This result is equivalent to construction of diagonal Padé approximants for function $\cos z$ carried out in [6]. Besides that if in the proof of the Theorem 3 instead of operator $(A\phi)(t) = \int_{0}^{1-t} \phi(\tau)d\tau$ one consider operator

$$(A\phi)(t) = \alpha \int_{0}^{t} \phi(\tau) d\tau + \int_{0}^{1-t} \phi(\tau) d\tau$$

(for $\alpha \neq 1$) it is possible to construct Padé approximants for function

$$f(z) = \frac{(1-\alpha)\frac{\sin z\sqrt{1-\alpha^2}}{\sqrt{1-\alpha^2}} - \cos z\sqrt{1-\alpha^2} + 1}{z[\cos z\sqrt{1-\alpha^2} - \alpha]}.$$

References

1. Luke Y., Mathematical Functions and Their Approximations, Academic Press, New York (1975).

2. Dzyadyk, V.K., A Generalization of Moment Problem, Dokl.Akad.Nauk Ukr.SSR, Ser.A, No.6 (1981), 8-12.

3. Baker G.A., Graves-Morris P.R., *Padé Approximants*, Parts I and II, Addison-Wesley, Reading, Mass.(1981).

4. Golub A.P., *Generalized Moment Representations and Rational Approximants*, Institute of Mathematics of the Academy of Sciences of Ukrainian SSR, Preprint No.25, (1987).

5. Suetin P.K., *Classical Orthogonal Polynomials*, Nauka Publishers, Moscow (1979).

6. Dzyadyk, V.K. On Asymptotics of Diagonal Padé Approximants of functions sin z, cos z, sinh z and cosh z, Mat.Sbornik, **108** (1979), 247-267.